
Singapore Workshop 08/03/2019

The presentation and a PDF version of the workshop are available at
https://downloads.openmicroscopy.org/presentations/2019/Singapore/

Software versions used for this workshop:
● OMERO: 5.4.10
● OMERO.iviewer: 0.7.0a1
● OMERO.figure: 4.0.2
● OMERO.mapr 0.2.3
● OMERO.parade: 0.1.1
● OMERO.FPBioimage: 0.3.0
● OMERO training scripts: 0.5.1
● OMERO training notebooks: 0.4.1
● TrackMate: 3.8.0
● Orbit: 3.0.6
● Bio-Formats: 5.9.2
● Fiji/ImageJ: 2.0.0-rc-68/1.52e
● CellProfiler: 3.1.3

Content
● Introductory talk about OMERO
● Analysis with 3rd party tools

○ Analysis with Fiji: manual
○ Java API:

■ Using API via Fiji
● Analysis in OMERO (Python)

○ Analysis server side analysis
○ How to write script
○ How to manage script

● API usage
○ Python API

■ in Jupyter notebook - simple FRAP analysis
■ Using API via a 3rd party software CellProfiler

○ R API in Jupyter notebook
● Data mining using OMERO.parade

https://downloads.openmicroscopy.org/presentations/2019/Singapore/

Analysis with Fiji
Description
Fiji is a free open-source image processing package based on ImageJ.

We show how to analyze a batch of images stored in OMERO using the scripting facility in Fiji, the
results of the analysis will be stored as a CSV and OMERO.table,

If analyzing other users data, the user analyzing the data needs to have admin privileges.

More information about restricted privileges can be found at
https://docs.openmicroscopy.org/latest/omero/sysadmins/restricted-admins.html.

Setup
● Fiji has been installed on the local machine with the OMERO.insight-ij plugin. The installation

instructions can be found at http://help.openmicroscopy.org/imagej.html#plugins.
● Installing the OMERO.plugin also adds the dependencies required to connect to OMERO using

the Script Editor of Fiji.
● The OMERO.script

https://github.com/ome/training-scripts/blob/v0.5.1/practical/python/server/batch_roi_export_to_ta
ble.py has been uploaded to the server.

Fiji Manual simple workflow: Draw ROI

1. Launch Fiji.
2. Go to Plugins > OMERO > Connect To OMERO. This will show a login screen where you can

enter the name of the server to connect to, the username and password. The OMERO plugin
will allow you to browse your data in a similar manner to the webclient.

https://docs.openmicroscopy.org/latest/omero/sysadmins/restricted-admins.html
http://help.openmicroscopy.org/imagej.html#plugins
https://github.com/ome/training-scripts/blob/v0.5.1/practical/python/server/batch_roi_export_to_table.py
https://github.com/ome/training-scripts/blob/v0.5.1/practical/python/server/batch_roi_export_to_table.py

3. Select the A-Fiji-dataset Dataset.
4. Double-click on a thumbnail or on an Image in the left-hand tree to open an Image in ImageJ.
5. Go to Analyze > Tools > ROI Manager…
6. Draw a shape using for example the Freehand selection tool.
7. In the ROI manager, click the button Add [t] to add the shape to the Manager.

8. Move to another channel, using the c slider.
9. Draw other shapes if desired. Add drawing a shape. Click Add [t] to add it to the Manager.
10. When done with the drawing, click the button Measure in the ROI Manager
11. A dialog with measurements for each shape pops up.
12. To save the ROI and the measurement back to OMERO, go to Plugins > OMERO > Save ROIs

To OMERO.
13. In the dialog popping up, under the Save section select ROI and Measurements.

14. The measurements are saved as a CSV file.

15. Go back to the webclient, in the right-hand panel, check that there is a new CSV file under the
Attachments harmonica.

16. Open the image in iviewer to the see the ROIs and make sure that you can interact with them.

Fiji Manual simple workflow: Crop Image
1. This time we will crop an Image stored in OMERO and saved the cropped Image back to

OMERO as OME-TIFF.
2. Select the A-Fiji-dataset Dataset.
3. Double-click on a thumbnail or on an Image in the left-hand tree to open an Image in ImageJ.
4. Draw a Rectangle on the Image.
5. Select Image > Crop
6. A new Image will be displayed in a Fiji window
7. Go to Plugins > OMERO > Save Image(s) To OMERO
8. An Import dialog (specific to Fiji plugin) will pop up.

9. Check that the option Add Image from current window is selected
10. Select where to import the cropped Image e.g. A-Fiji-dataset Dataset.
11. Click Add to the Queue button
12. Then click Import. The import will start
13. When the import is done, go back to the Tree view in the Fiji plugin or Web client. Refresh.

Check the new Image.

Fiji Manual workflow
1. Launch Fiji.
2. To open an image stored in OMERO, Go to Plugins > OMERO > Connect To OMERO if

necessary.

3. In the OMERO login dialog, click the wrench icon and then add the server address in the
dialog i.e. outreach.openmicroscopy.org. Click Apply.

4. Enter your Username and Password and click Login.
5. Browse to the Project idr0021, open any Dataset and double-click once on an Image to open it in

Fiji. Bio-Formats is used to view the Image.
○ Make sure to select View stack with: Hyperstack in the Bio-Formats Import Options

dialog.
○ Note that each plane will be transferred from the server to the client machine so this may

take a few moments.
6. To open the recorder, go Plugins > Macros > Record…, select JavaScript to record the actions.

The steps will then be used in the Scripting workflow below.
7. Convert floating-point pixel-type to 8-bit using Image > Type > 8-bit.
8. Go to Image > Adjust > Auto Threshold, to open the Auto Threshold dialog:

○ Select MaxEntropy for the Method parameter.
○ Check the checkbox Stack.

9. Click OK.

10. Then open Analyze > Analyze Particles….
11. In the dialog

○ Set Size to 10-Infinity and check Pixel units.
○ Check the following checkboxes:

i. Display results
ii. Clear results
iii. Add to Manager

○ Click OK then Yes in the popup dialog indicating asking to Process all 3 images?.

12. To save the thresholded Image back to OMERO with the generated ROIs and the
measurements:

○ Select Plugins > OMERO > Save Image(s) to OMERO.
○ Create a New Dataset for the image

i. Click the New… button next to the selection box on the Dataset row.
ii. In the dialog that pops up, enter a name and a description (optional).
iii. Click Create.

○ The newly created Dataset will automatically be selected.
○ Click Add to the Queue then Import.
○ Go to the webclient and check that the measurements have been saved in a CSV file and

attached to the Images. The attachment can then be downloaded at any time.

Fiji Scripting workflow
We will now repeat the manual analysis on a Dataset using the scripting facility available in Fiji.
Let’s go over the scripts to understand the logic and see how it matches the UI steps.
This script explores the JAVA API using groovy. See
https://docs.openmicroscopy.org/latest/omero/developers/Java.html,

Now, we will present 3 simple steps (three scripts) to facilitate this analysis.

1. Go to https://outreach.openmicroscopy.org/.

https://docs.openmicroscopy.org/latest/omero/developers/Java.html
https://outreach.openmicroscopy.org/

2. Log in using the credentials provided
3. Make sure you are selecting your own data. Select the Dataset A-Fiji-dataset.
4. Launch Fiji. (relaunch if opened).
5. Go to File > New > Script….
6. A dialog pops up. In the Language menu select Groovy.
7. Copy the content of the script

https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/groovy/analyse_dataset_s
ave_rois_and_summary_table.groovy into the text script editor of Fiji.

8. Edit the following parameters: dataset_id, USERNAME, PASSWORD.

9. The script will process all the Images in the specified Dataset, applying threshold, analyzing

particles and saving ROIs back in OMERO i.e. we reproduce in a script the manual steps
recorded above. Further, it will create a CSV and OMERO.table to be attached to that Dataset in
OMERO. Both are not necessary when analysing data, this is mainly to show how it we

10. Click Run.
11. Return to the webclient and open an Image from this Dataset in OMERO.iviewer.
12. Click the ROIs tab to see the added ROIs. Note that the ROIs have been assigned a Channel

index to indicate which Channel they were derived from.
13. In the Settings tab, turning channels on/off will also show/hide ROIs assigned to those channels.

https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/groovy/analyse_dataset_save_rois_and_summary_table.groovy
https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/groovy/analyse_dataset_save_rois_and_summary_table.groovy

14. Open the image in OMERO.figure for a quick publication by going to Info tab in iviewer and

clicking on OMERO.figure in the Open with line.
15. This script was used previously to run on the whole idr0021 Project and produce the resulting

CSV file. We can now download this file from OMERO and open it in Microsoft Excel.
16. In Excel, select the Dataset column and the column bounding_box and then click on Insert > X Y

Scatter > Scatter . Depending on the version of Excel you are using, this option might not
be available.

 .
17. This will create a scatter plot. Right-click into the Chart now and select Change chart type >

Statistical > Box and Whisker.

1. Click the ROIs tab to see the added ROIs. Note that the ROIs have been assigned a Channel
index to indicate which Channel they were derived from.

2. In the Settings tab, turning channels on/off will also show/hide ROIs assigned to those channels.
3. Open the image in OMERO.figure for a quick publication by going to Info tab in iviewer and

clicking on OMERO.figure in the Open with line. .

Fiji-TrackMate example
In this example we open all images from a dataset in OMERO in Fiji and use TrackMate plugin of Fiji.
For more details about TrackMate, go to https://imagej.net/TrackMate. We first find the tracks of the
moving objects. Afterwards, these tracks (polygon ROIs), as well as the segmented objects ROIs will be
saved to the same images in OMERO. Also, an OMERO.table will be produced from the measurement
results of TrackMate and saved as an attachment to the Project containing the images in OMERO.
To determine the parameters suitable to analyse the images, we will first go through a manual
TrackMate workflow, then later we will use the parameters in a scripted TrackMate workflow.

Setup

● Fiji has been installed on the local machine with the OMERO.insight-ij plugin. The installation
instructions can be found at http://help.openmicroscopy.org/imagej.html#plugins.

● Installing the OMERO plugin also adds the dependencies required to connect to OMERO using
the Script Editor of Fiji.

https://imagej.net/TrackMate
http://help.openmicroscopy.org/imagej.html#plugins

Manual
Each of you can work on your own data. We will use this manual workflow to explain the steps of the
script below.

1. Launch Fiji
2. Go to Plugins > OMERO > Connect to OMERO
3. Enter the username and password provided for you.
4. Browse the Dataset artificial-trackmate
5. Double-click on the FakeTracks.tif Image to open it in Fiji. Make sure it is opened using the

Hyperstack viewer (This option is dependent on what you did last time when using your Fiji. If
you last time used Fiji for running the scripts from Day 1 of this workshop, you should be fine.)

6. Go to Plugins > Tracking > TrackMate.
7. Click Next in the first dialog that pops up.
8. A new dialog pop ups indicating to select a detector. Select the DoG detector. Click Next.

a. Set the Estimated blob diameter to 5.0
b. Set the Threshold to 5.0

9. Click the Preview button to find spots. 4 spots should be found
10. Click the Next button few times, until you get to the Select a view dialog.
11. Select the HyperStack Displayer view

12. Click the Next button twice, until you get to the Select a tracker window. Select the LAP Tracker

13. Click the Next button few times (5), until a dialog with three tabs pops up, see screenshot below.
14. Select the Tracks tab to display the Tracks.

15. Click Next until you get to Select a action dialog.

a. Select the option Capture overlay
b. Click Execute.

16. Click OK in the following dialog, leaving the defaults (the whole stack will be captured).
17. New image appears. Select it. This new Image can then be imported as on OME-TIFF using the

option Plugins > OMERO > Save Image(s) to OMERO.

Programatically
This option saves the ROIs to the server, we do not generate a new Image.

1. Go to https://outreach.openmicroscopy.org/webclient/.
2. Enter the username and password provided.
3. Make sure you are working with your own data.
4. Create a Project: trackmate.

https://outreach.openmicroscopy.org/webclient/

5. Drag and Drop the Dataset dv-iain-multiTZ into the Project: trackmate. Note the ID of the
Project.

6. Launch Fiji, open File > New > Script... and select Python as language.
7. Copy the content of the script

https://raw.githubusercontent.com/ome/training-scripts/v0.3.0/practical/jython/tracker.jy into the
script window of Fiji.

8. Edit the credentials to connect to the server and change the ID of the Project in the script window
of Fiji, replacing it with the ID of your Project trackmate.

9. Study the script step-by-step.
10. Click Run.
11. After the script has finished, go to the images in the webclient and open the second image in

OMERO.iviewer.
12. Click on the ROI tab and observe that you now have ROIs under which there are Shapes. Each

ROI is a collection of shapes. The ROI corresponds to a Track in Trackmate. There is always
one polyline shape in each ROI which represents the track. The other, elliptical shapes in the
same ROI represent the tracked spots.

13. Play the timelapse video in OMERO.iviewer.
14. Go to the Info tab, and in the Open with: line click on OMERO.figure. In OMERO.figure, add the

Tracks and ellipses to the panel by selecting the appropriate ROIs in the Labels tab of
OMERO.figure.

https://raw.githubusercontent.com/ome/training-scripts/v0.3.0/practical/jython/tracker.jy

Orbit workflow: Manual training and segmentation (demo only)

Description:
Orbit Image Analysis is a free open-source software with the focus on quantification of big images like
whole slide scans. It offers sophisticated image analysis algorithms. Of those, tissue quantification using
machine learning techniques, object / cell segmentation, and object classification are the basic ones. For
more details, go to http://www.orbit.bio/.

Setup
Orbit has been installed on the local machine. See http://www.orbit.bio/ for details.

Orbit workflow: Login and manual training

1. Launch Orbit, click Yes in the first dialog box:

2. Then enter server details in the next dialog. Only the Host/IP field is essential here and should be

set to outreach.openmicroscopy.org.

http://www.orbit.bio/
http://www.orbit.bio/

3. Then login to OMERO with the username and password provided:

4. Orbit will show data from OMERO in the left-hand panel. Click show only my assets to filter by

data you own.
5. Select the group Lab1.
6. Datasets not within a Project are listed under unassigned:

7. Select the svs Dataset. Image thumbnails will be shown in the panel below.
8. Double-click on the 77928.svs [Series 1] thumbnail or drag and drop it into the centre panel and

maximise the viewer window to fill the centre panel.
9. We want to train a model to recognize cell nuclei and use this for segmentation.

10. Click the Model tab and then the Classes button
11. In the dialog, remove the Celltype 1 class by selecting it and click the remove class button.
12. The select the Celltype 2 class, and rename it by typing Foreground in the name field and

clicking rename class.
13. You should now have two classes named Background and Foreground:

14. Click OK to close the dialog.
15. Now we will construct the model by defining regions of Foreground and Background on the

Image.
16. Click the Object Detection tab, select the Polygon tool and choose the Foreground class from the

chooser at the top-left of the screen. .
17. You can now draw around a number of cell nuclei on the Image. The more accurately you draw

and the higher number of objects you define, the more you will improve the performance of the
segmentation, but about a dozen should be sufficient.

18. Now switch to the Background class and draw around several background regions:

19. We can then train the model by clicking the Train button or press F7. You will see a
progress bar in the right-hand panel.

20. To see how this model classifies objects within a region, click the Define ROI button and draw
around a region of the image. Then click Classify. If no ROI is drawn, Orbit will attempt to classify

the whole Image which can be very time-consuming.
21. Once the classification is complete, a notification window pops up. Close it and view the results

on the Image by dragging the slider below the Image to the right:

22. To segment the Image using this classification, click Set Primary Segmentation Model and then

Object Segmentation.

23. Click the Model tab and Save Model On Server, enter a name to save the model to OMERO.

Note that you can also use Save Model as… to save the model to your local drive.

Orbit workflow: Scripted segmentation and saving to OMERO
Description: We will use the model created in the last step above to repeat the segmentation, using a
script which allows us to save the results back to OMERO. This will use a saved ROI Annotation instead
of a temporary ROI as in the manual workflow.

1. Re-open the same image 77928.svs [Series 1] to clear the ROIs and in the right-hand panel
select the Annotations tab.

2. Pan the Image to a region you wish to analyse, select the Add Polygon button and draw around a

region.
3. Select this Annotation from the list in the right panel and click Edit (pencil icon).
4. In the dialog, set the Type to ROI.

5. Click Ok. This will save the ROI as an annotation on this image in OMERO.
6. Click on Tools > Script Editor to open a scripting window.
7. Copy the script from training-scripts:

https://raw.githubusercontent.com/ome/training-scripts/v0.4.2/practical/orbit/segmentation.groovy
and replace the existing code in the script window.

8. Update the username and password
9. The script will load the Orbit model and the ROI that we saved to OMERO, segment the image

within the ROI and save the segmented shapes as Polygons to OMERO.
10. Click Run.
11. When complete, you can use OMERO.iviewer to see the ROIs created in OMERO.

Exploring the OMERO Java API
We can use the Fiji’s script editor as a convenient way to explore the OMERO Java API. For
convenience, we will use Groovy language.

https://raw.githubusercontent.com/ome/training-scripts/v0.4.2/practical/orbit/segmentation.groovy

Exercise 1
Using the above example and the documentation available at
https://docs.openmicroscopy.org/latest/omero/developers/Java.html, write a script with the following
steps:

● Load any image stored in OMERO using its ID.
● Open the image using Bio-Formats Import plugin.
● Crop a rectangle using IJ.makeRectangle.
● Save the generated image locally as OME-TIFF using the Bio-Formats Exporter plugin.
● Create a dataset in OMERO into which the image will be imported.
● Import the generated image to OMERO.

Exercise 2
Using the above example and the documentation available at
https://docs.openmicroscopy.org/latest/omero/developers/Java.html, write a script with the following
steps:

● Load an image from idr0021 using its ID.
● Open the image using Bio-Formats Import plugin.
● Analyse the image using Analyse particles plugin (see script above).
● Count the number of ROIs.
● Create a Map Annotation with the following Key/Value pairs:

○ Analysis: Fiji
○ ROIs: Roi count
○ Antibody: Rabbit

● Link the Map Annotation to the Image.

Solutions
Exercise 1
https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/groovy/crop_rectangle_from_ima
ge.groovy

Exercise 2
https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/groovy/analyse_image_map_ann
otation.groovy

Analysis in OMERO

Analysis workflow Server side

Setup

https://docs.openmicroscopy.org/latest/omero/developers/Java.html
https://docs.openmicroscopy.org/latest/omero/developers/Java.html
https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/groovy/crop_rectangle_from_image.groovy
https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/groovy/crop_rectangle_from_image.groovy
https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/groovy/analyse_image_map_annotation.groovy
https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/groovy/analyse_image_map_annotation.groovy

● The following OMERO.scripts have been uploaded to the server for this workshop:
○ https://github.com/ome/scripts/blob/v5.4.10/omero/export_scripts/Batch_ROI_Export.py
○ https://github.com/ome/training-scripts/blob/v0.5.1/practical/python/server/Kymograph_An

alysis.py
○ https://github.com/ome/training-scripts/blob/v0.5.1/practical/python/server/Kymograph.py

1. We will now analyse the ROIs created in OMERO.iviewer using a server-side script.
2. Go to the siRNA-HeLa Dataset and open several images whose name start with VRAQ… in

OMERO.iviewer.
3. We want to measure the distance between Centromeres, stained with ACA in the 4th Channel.

Turn on ONLY the 4th channel and open the ROIs tab to on the right-hand pane.
4. Draw several lines between the centromeres as indicated on the screenshot below.

5. Try to identify centromere pairs:

a. Select the Line tool and draw a line between the centres of the centromeres.
b. In the ROIs table, in the Comments column, click the 3 dots in the column header and

choose to Show Area/Length.
6. Do the same now on several of the Images whose names start with IN..., which are in the

Metaphase state.
7. Select Dataset siRNA-HeLa.

8. Click the Script button in the top-right of the page .
9. Select export_scripts > Batch_ROI_Export…
10. In the dialog that pops up, click on View Script to view the Python code.
11. Search for “idr” to find the code block that selects the filter_channel based on Dataset and

Channel names.

https://github.com/ome/scripts/blob/v5.4.10/omero/export_scripts/Batch_ROI_Export.py
https://github.com/ome/training-scripts/blob/v0.5.1/practical/python/server/Kymograph_Analysis.py
https://github.com/ome/training-scripts/blob/v0.5.1/practical/python/server/Kymograph_Analysis.py
https://github.com/ome/training-scripts/blob/v0.5.1/practical/python/server/Kymograph.py

12. Scroll to the bottom of the script to see where the input parameters are defined, such as
Data_Type and IDs. Note how these appear in the script dialog and are auto-populated with the
currently-selected Datasets or Images.

13. The script will process all the Images in the selected Dataset and data can be exported as CSV

file, with one table row per Shape/Channel.
14. Click Run Script.

15. The status of the processing is displayed in the Activities dialog .
16. When the script has completed, it will show in the Activities dialog and allow you to download the

CSV file. Download this and open it, e.g. in Excel, to see the output data for all the shapes.

We will now use another server-side script for creating a Kymograph from an Image in OMERO. The
Image we will use for the Kymograph demonstration has been published in a study investigating protein
migration along microtubules http://jcb.rupress.org/content/194/2/187.(Bowen et. al. Journal of Cell
Biology 194 (2): 187).

1. Go to the Dataset Kymograph.
2. Select the Image inside the Dataset.

http://jcb.rupress.org/content/194/2/187

3. Double-click to open the Image in OMERO.iviewer and draw one or more lines along
microtubules which seems to have the most persistent trafficking of objects along them.

4. Save the line(s).

5. Go back to the webclient. Click the Script button in the top-right of the page .

6. Select workshop_scripts > Kymograph...
7. The script will create a new image (=Kymograph) where the pixels under the line region you have

drawn previously will be collated into this image timepoint by timepoint. The row of pixels from
the first timepoint will be on the top of the new Kymograph Image.

8. Note: the direction in which you have drawn the line ROI on the original image matters with
respect to the orientation of the stripes composing the Kymograph image. The start of the original
line is on the left of the Kymograph Image, the end on the right.

9. Open the new Kymograph image in OMERO.iviewer.
10. Find some tracks (typically red stripes going under angles across the image, see screenshot

below).

11. Draw some lines over these tracks and save them.
12. Go back to the webclient, select the Kymograph Image and select the script analysis >

Kymograph analysis...
13. Run this script. The Kymograph analysis script will produce a CSV file attachment on the

Kymograph Image.
14. Open the CSV in Excel for example and verify the speeds of the observed particles in the original

image.

How to write a server-side script

The server side follows some simple steps so that a simple UI can be generated automatically.
In this section we will show how to write a simple script and upload it to the OMERO.server: The user
will specify a dataset and the script will be uploaded by the OMERO.server administrator (or
administrator with restricted privileges) to the OMERO.server. If the script is uploaded as “official”, it can
be run by all users on the OMERO.server after upload. The script demonstrated here is very simple, it
just loads the images contained in a dataset.
See https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/python/server/hello_world.py

1. Click on the link above and copy and paste the script into a text editor of your choice.
2. Study the composition of the script - the script is taking a Dataset ID and produces an output of

all the images contained in that dataset. This is of course just a springboard for further work with
the images in a more advanced script.

3. (demo only) The script can be immediately uploaded to the OMERO.server in this present state,
using

a. OMERO.insight, the sixth icon from the left, top-left of the UI (Note that only admins
and restricted admins will see this icon in OMERO.insight).

b. Command line interface (CLI0 using the command.

https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/python/server/hello_world.py

i. $ bin/omero script upload test-script1.py --official
4. After the demonstrator uploaded the script, you can

a. Go to OMERO.web and select any dataset in the left-hand tree
b. Above the central pane, find the “cogs” icon with scripts
c. Find the newly uploaded script.
d. Click on the menu item, the script dialog will be already pre-populated with the ID of the

selected Dataset.
e. Click Run.

How to manage a server-side script
Please refer to https://docs.openmicroscopy.org/omero/5.4.10/developers/scripts/user-guide.html for
how to write other simple scripts, execute, edit and delete them.

OMERO API usage

OMERO.py scripting - Simple FRAP

Setup

● The following OMERO.scripts have been uploaded to the server for this workshop:
○ https://github.com/ome/training-scripts/blob/v0.5.1/practical/python/server/simple_frap.py
○ https://github.com/ome/training-scripts/blob/v0.5.1/practical/python/server/simple_frap_wit

h_figure.py
We will use Jupyter notebooks to introduce the OMERO Python API. See docs for OMERO Python at
https://docs.openmicroscopy.org/latest/omero/developers/Python.html.
We will use various code examples from that page to begin a very simple FRAP analysis.
All the examples use the BlitzGateway connection wrapper “conn” to access data in OMERO.

● Go to https://idr-analysis.openmicroscopy.org/training
● Load the notebook Files > notebooks > Python > OMEROHelloWorldNotebook.ipynb. The first

step is already loaded for you:

from omero.gateway import BlitzGateway

conn = BlitzGateway(raw_input("Username: "), getpass("OMERO Password: "),

host="outreach.openmicroscopy.org", port=4064)

conn.connect()

1. Go to webclient, and make sure you are working on your own data.
2. Find the Dataset FRAP.
3. Note the ID of the first image in this Dataset.

https://docs.openmicroscopy.org/omero/5.4.10/developers/scripts/user-guide.html#omero-scripts-user-guide
https://github.com/ome/training-scripts/blob/v0.5.1/practical/python/server/simple_frap.py
https://github.com/ome/training-scripts/blob/v0.5.1/practical/python/server/simple_frap_with_figure.py
https://github.com/ome/training-scripts/blob/v0.5.1/practical/python/server/simple_frap_with_figure.py
https://docs.openmicroscopy.org/latest/omero/developers/Python.html
https://idr-analysis.openmicroscopy.org/training

4. Double-click on the first Image from this Dataset to open it in OMERO.iviewer.
5. Play the timelapse in OMERO.iviewer.
6. Draw in OMERO.iviewer an ellipse ROI on the spot which was bleached.
7. We will use an Ellipse saved on the Image in OMERO.iviewer without T index set (spans all T).

8. Click on the lock next to the T Box to unlock .
9. Save the ROI.
10. Go back to the Jupyter notebook. First list the ROIs and Shapes saved on the Image, using the

image_id of the image you just worked with in iviewer.
11. Enter your username and password when requested.
12. You may with to ‘Cut’ (remove) the remaining steps from the HelloWorld example before adding

your own.
13. Add a new step with this code, setting the image_id to the Image you just edited.

image_id = 123

roi_service = conn.getRoiService()

result = roi_service.findByImage(image_id, None)

shape_id = None

for roi in result.rois:

 for s in roi.copyShapes():

 shape_id = s.id.val

print shape_id

14. With the shape_id, we can get pixel intensity stats for the first channel across all time points and
make a list of mean intensity values. Add a new step with this code:

the_c = 0

image = conn.getObject('Image', image_id)

size_t = image.getSizeT()

meanvalues = []

for t in range(size_t):

 stats = roi_service.getShapeStatsRestricted([shape_id],0, t, [the_c])

 meanvalues.append(stats[0].mean[the_c])

print meanvalues

15. We can add these values as a Map Annotation (Key-Value pairs) on the image:

import omero

key_value_data = [[str(t), str(meanvalues[t])] for t in range(size_t)]

map_ann = omero.gateway.MapAnnotationWrapper(conn)

namespace = "demo.simple_frap_data"

map_ann.setNs(namespace)

map_ann.setValue(key_value_data)

map_ann.save()

image.linkAnnotation(map_ann)

16. Plot values with Matplotlib:

from PIL import Image

import matplotlib

matplotlib.use('Agg')

from matplotlib import pyplot as plt

fig = plt.figure()

plt.subplot(111)

plt.plot(meanvalues)

fig.canvas.draw()

fig.savefig('plot.png')

pil_img = Image.open('plot.png')

pil_img.show()

17. Go to the webclient, select the Image you have drawn the ROI on.
18. Note the new Map Annotation (Key-Value pairs).
19. If desired, draw an Ellipse as above (T unset) on additional FRAP Images to analyse.
20. Select the image(s) and Open the script workshop_scripts > simple frap...
21. Click on the View script link in the bottom-left corner and inspect the script - basically, the script

does what you have done in the Jupyter notebook up till now.
22. Run the script, then observe that a new Map Annotation appeared on the image with the FRAP

values.
23. Now select the script workshop_scripts > simple frap with figure...
24. Inspect this script as well, it is basically an extension of the simple frap script with the creation of

OMERO.figure at the end.
25. Run the script on the image. Note in Activities, the ID of the newly created figure.
26. Open OMERO.figure, and go to File > Open… to open the newly created figure (named FRAP

Figure from script).

CellProfiler
CellProfiler is a free open-source software for quantitative analysis of biological images.
For more details, go to http://cellprofiler.org/.

Setup:
CellProfiler version 3.1.3 has been installed in a Jupyter notebook using docker as described at
https://github.com/ome/training-notebooks/releases/tag/v0.4.1. We will use the Python API only.
To use CellProfiler using the Python API, you can see how to set up the environment
https://github.com/ome/training-notebooks/blob/v0.4.1/docker/environment-python2-cellprofiler.yml
and https://github.com/ome/training-notebooks/blob/v0.4.1/Dockerfile

1. We will use CellProfiler to analyse a Plate of Images in OMERO. We will run CellProfiler version
3.1.3 “headless” via a Jupyter notebook.

2. We will use the example pipeline from http://cellprofiler.org/examples/#PercentPositive to
analyse RNAi screening data from IDR
https://idr.openmicroscopy.org/webclient/?show=screen-102

3. First, open the webclient and find the Plate belonging to trainer-1 named plate1_1_013.

http://cellprofiler.org/
https://github.com/ome/training-notebooks/releases/tag/v0.4.1
https://github.com/ome/training-notebooks/blob/v0.4.1/docker/environment-python2-cellprofiler.yml
https://github.com/ome/training-notebooks/blob/v0.4.1/Dockerfile
http://cellprofiler.org/examples/#PercentPositive
https://idr.openmicroscopy.org/webclient/?show=screen-102

4. Go to https://idr-analysis.openmicroscopy.org/training and look under Notebooks > CellProfiler
for idr0002.ipynb.

5. Select the first Step and click on the Run button to execute each step in turn.
6. For the connection to OMERO, you will be ask to enter your login details when running the

OMERO credentials cell.
7. Select the plate in the webclient, find the Plate ID in the right-hand panel and copy this into the

plate_id variable in the next step of the notebook.
8. The following step loads the example pipeline and modifies it to remove the modules that are

normally used for loading images from disk.
9. These modules are replaced by the InjectImage modules, using numpy planes loaded from

OMERO Images.
10. The pipeline is run on a 2-Channel image from each Well in the 96-well plate, generating a CSV

file containing rows for different objects identified in the image and columns for various
parameters measured.

11. Note that to save time during the workshop, we can run on a subset of all Wells in the plate. To
use the first 5 wells, add this line wells = wells[0:5] as shown:

12. CSV files are read into a Dataframe for each image. We add the Image ID and Well ID, as well

as the total number of Objects, Cell_Count, to each Dataframe.
13. All the Dataframes are then concatenated into a single Dataframe.

https://idr-analysis.openmicroscopy.org/training

14. We can visualise the data as histograms for each column with df.hist()

15. Finally, the Dataframe rows are grouped by Image to give an average value per Image of each

parameter (column) in the table.
16. This data is saved back to OMERO as an HDF5-based table attached to the Plate, which can be

read by other clients.
17. Return to the webclient and select the Plate.
18. Select a Well and open the Tables pane in the General tab in the right-hand panel. This will show

all the CellProfiler values for this Well.
19. In the Thumbnails chooser at the top-right of the centre panel, select the Parade plugin.
20. At the top-left of the centre panel choose Add filter… -> Table to filter Wells by the data from

CellProfiler.
21. Change the filter from ImageNumber to Cell_Count (at the bottom of the list).

22. Now you can use a slider to filter Wells by Cell Count.

Analyse data using R

For this section we use R as part of a Jupyter notebook. In order to be able to connect to OMERO from
within R we need the romero.gateway and rJava packages. rJava can be difficult to set up, depending
on the operating system you use. On the Jupyter server, however, everything has already been installed
and we can simply access the notebook in the web browser. Everything we are going to do there can be
done in Rstudio as well, if the romero.gateway package and its dependencies are available on your
system. For installation instructions go to

 romero.gateway github page.

In the notebook we are going to use the idr0021 data. These are super resolution microscopy images
showing certain proteins around the centrioles. With these images the authors of the article
Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar
material showed that the area around the centrioles has a specific structure. By measuring the shape
and diameter of these proteins and comparing them to each other they could show that each protein
builds a specific part of this structure, see Figure 1. Instead of manually measuring each centriole ring
like the authors did, we are going to try to do this in an automated way in order to show that there is a
significant difference between these proteins and create a plot similar to the one seen on Figure 1.

In order to do that we need to…

1. Fetch the images from OMERO. (romero.gateway)
2. Perform image segmentation to identify the protein rings around the centrioles. (EBImage)
3. Calculate the properties (features) of the identified objects (shape, diameter, etc.). (EBImage)
4. Store these features as R dataframe. (in R)
5. The segmentation and feature calculation is a rather costly process. You don’t want to do this all

over again. Therefore:

https://github.com/ome/rOMERO-gateway
https://www.nature.com/articles/ncb2591
https://www.nature.com/articles/ncb2591
https://www.nature.com/articles/ncb2591/figures/1
https://www.nature.com/articles/ncb2591/figures/1

a. Save the identified objects (ROIs, region of interests) back to OMERO. (romero.gateway)
b. Save the properties back to OMERO. (romero.gateway)

6. Perform statistical analysis on that data. (in R)

Note: We are going to do the image segmentation and feature calculation on a small subset. Everyone
has a dataset called ‘R-dataset’ which contains four images of the idr0021 data. Use this dataset for
learning the segmentation tasks. The full analysis of the idr0021 project has already been done and the
result saved as ‘Summary from R’ table. We are going to load this table in order to do the statistical
analysis at the end of the notebook.

- Go to https://idr-analysis.openmicroscopy.org/training .
- In the Files > notebooks > R folder, select the notebook idr0021_Segmentation.ipynb.
- Follow the steps in the notebook.

Further exercise: At the end of the notebook you will have created a plot which is similar to the one
shown in Figure 1 of the article. It won’t be exactly the same. Can you explain why it is different? One
dataset in particular has extreme outliers. Use OMERO.parade to find the images which cause the
outliers. What went wrong in these cases? Note: OMERO.parade uses the ‘Summary from R’ table
which is attached to the project, in order to provide enhanced filtering and plotting features.

Analyze data using MATLAB
Here we demonstrate how to analyze a batch of images associated to the paper Subdiffraction imaging of
centrosomes reveals higher-order organizational features of pericentriolar material.
This will show how to connect to OMERO, load data, analyse and save the output back to the server.
We will use https://docs.openmicroscopy.org/latest/omero/developers/Matlab.html as a reference.

Setup

1. The OMERO.matlab toolbox and the Image Processing toolbox have been installed.
2. Make sure that the OMERO.matlab toolbox is on the MATLAB path. To add it to the path, you

can
a. Launch MATLAB
b. Under the HOME tab, click on Set Path (middle of the top task bar).

.
c. A Set Path dialog pops up.
d. Click on the button Add with Subfolders...
e. Select the OMERO.matlab toolbox, Click Open
f. Close the Set Path dialog, you can either save the path for future use or not.

https://idr-analysis.openmicroscopy.org/training
https://www.nature.com/articles/ncb2591/figures/1
https://www.nature.com/articles/ncb2591
https://www.nature.com/articles/ncb2591
https://docs.openmicroscopy.org/latest/omero/developers/Matlab.html

For the exercises below, we will use code examples from the following page
https://docs.openmicroscopy.org/latest/omero/developers/Matlab.html

● The parameter servername is outreach.openmicroscopy.org
● The parameter user is the username provided i.e. user-x
● The parameter password is the password provided

Exercise
The aim of this exercise is to show how to connect to OMERO and load images in a dataset.

1. Launch MATLAB
2. Create a new Script, name it for example analyse_dataset.m.

3. When saved, click on the EDITOR tab. Note: If you do not have an EDITOR tab in your Matlab,

you are probably in a new window after you clicked on New button in the taskbar (step above). In

such case, you can click on the small blue downward arrow on top right of that window
and select Dock to get the EDITOR tab into your workspace. Once done, you can create as
many short script snippets as you like in this environment by clicking on a plus to open a new tab
in your EDITOR.

4. Create a connection
5. Select the Dataset CDK5RAP2-C in the left-hand tree. Note its ID displayed in the right-hand

panel.
6. In the same script, load the dataset with all its images using the getDatasets function
7. Print out the name of the dataset
8. Iterate through the Images in the dataset. A Java list is returned, you may want to convert it to a

Matlab list.
1. For each Image

a. Retrieve its name and its ID.

Solution:
First part of
https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/matlab/analyze_dataset_s
ave_rois_and_attachments.m

https://docs.openmicroscopy.org/latest/omero/developers/Matlab.html
https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/matlab/analyze_dataset_save_rois_and_attachments.m
https://raw.githubusercontent.com/ome/training-scripts/v0.5.1/practical/matlab/analyze_dataset_save_rois_and_attachments.m

Analyze metadata using OMERO.parade
First let’s look at the analytical results generated using the Analyze particles plugin in Fiji

1. Select the Project idr0021.
2. Choose the Parade option in the centre panel dropdown menu.
3. Expand all Datasets by clicking on the Open All button.
4. In the Add filter... selection box, select the Table item so we can find using the analytical results

generated previously:. Choose the Bounding_Box item and drag the slider to filter the Images.
Note that PCNT has the largest number of Images with large ROIs.

i.
5.

i.

6. Switch to Table layout (middle button) .
7. In the selection box Add table data…, select

a. Table_Bounding_Box
b. Table_Total_Area
c. Table_Image
d. Note that it is currently not possible to remove a column.

8. Click on the name of a column to sort it.
9. Uncheck Show Datasets to sort all Images together e.g. by ROI count.

10.
11. Check the checkbox in each column to show the Heatmap. Note the corresponding pattern in the

Heatmap.
12. Switch now to the Plot Layout (third button)
13. It takes the table data loaded and plot the values.
14. Filters can be added to plot the relevant results.
15. Try plotting by different Axis values.
16. Closing a Dataset in the left-hand tree removes the values from the plot.
17. Drag to select several outliers.
18. Note that you can use the selected images in right panel to annotate or Open with....
19. Choose Open with Figure…

Let’s now look at the results generated by CellProfiler

1. Return to the webclient and select the Plate named plate1_1_013.
2. Select a Well and open the Tables pane in the General tab in the right-hand panel. This will show

all the CellProfiler values for this Well.
3. In the Thumbnails chooser at the top-right of the centre panel, select the Parade plugin.
4. At the top-left of the centre panel choose Add filter… -> Table to filter Wells by the data from

CellProfiler.
5. Change the filter from ImageNumber to Cell_Count (at the bottom of the list).
6. Now you can use a slider to filter Wells by Cell Count.

