
Presentation is available at  

https://downloads.openmicroscopy.org/presentations/2018/Users-Meeting/Workshops/Metadata
-Import/slides/index.html 
 
This is the first part of the three parts Metadata workshop held at the Annual Users meeting: 

● Part 2 
https://downloads.openmicroscopy.org/presentations/2018/Users-Meeting/Workshops/M
etadata-Analysis/analysis.pdf 

● Part 3 
https://downloads.openmicroscopy.org/presentations/2018/Users-Meeting/Workshops/M
etadata-Handling/handling.pdf 

 

Import metadata 
 
Description 
In this first part, we show how to import data for another user into OMERO using various import 
strategies. The user importing the data needs to have some admin privileges. More information 
about restricted privileges can be found at 
https://docs.openmicroscopy.org/latest/omero/sysadmins/restricted-admins.html 

For this workshop, we will mainly use the Command Line Interface (CLI) to import and manipulate 
data. 

The import will done by a facility manager importer1.  

 

Setup 
● The Desktop client OMERO.insight has been installed on the local machine. The 

installation instructions can be found at 
http://help.openmicroscopy.org/getting-started-5.html#installing.  

● OMERO.server has to be installed to import images using CLI. The installation 
instructions can be found at 
https://docs.openmicroscopy.org/latest/omero/users/cli/installation.html. 

● To use the cli-render plugin, OMERO.py has to be installed. This is included with 
OMERO.server but if you are not planning to import using CLI, you can only install 
OMERO.py. 

● We assume that you have pip already installed. 
● To install the cli-render plugin, run:  

a. $ pip install omero-cli-render 

https://downloads.openmicroscopy.org/presentations/2018/Users-Meeting/Workshops/Metadata-Import/slides/index.html
https://downloads.openmicroscopy.org/presentations/2018/Users-Meeting/Workshops/Metadata-Import/slides/index.html
https://downloads.openmicroscopy.org/presentations/2018/Users-Meeting/Workshops/Metadata-Analysis/analysis.pdf
https://downloads.openmicroscopy.org/presentations/2018/Users-Meeting/Workshops/Metadata-Analysis/analysis.pdf
https://downloads.openmicroscopy.org/presentations/2018/Users-Meeting/Workshops/Metadata-Handling/handling.pdf
https://downloads.openmicroscopy.org/presentations/2018/Users-Meeting/Workshops/Metadata-Handling/handling.pdf
https://docs.openmicroscopy.org/latest/omero/sysadmins/restricted-admins.html
http://help.openmicroscopy.org/getting-started-5.html#installing
https://docs.openmicroscopy.org/latest/omero/users/cli/installation.html


Desktop client Import 
In this example, we show how to import data for another user. A facility manager importer1 with 
restricted privileges imports the data for user-1. 
 

1. Launch OMERO.insight. 

2. In the OMERO login dialog, click the wrench icon  and then add the server address in 
the dialog i.e. outreach.openmicroscopy.org. Click Apply. 

3. Enter your Username and Password and click Login. 
4. Click on the Import Icon in the toolbar. 
5. Use the File Chooser to locate the data to be imported. We will import the DICOM files 

listed in https://github.com/ome/training-repos/blob/master/data.md (“Brain”). 

6. Select the image data, click on the right Add arrow . 
a. Optional: Create a Project medical. 

7. (Optional) Go to the Options tab  

a. Click on  to bring the Tag selection dialog. 
b. Select the tag(s) on the left-hand side. 

c. Click  to move the tag(s) to the right-hand side. 
d. Click Save. 

8. In the Import Location dialog, select: 
a. the Group 
b. the User to import data for 
c. Optionally, select the target Project and/or Dataset 

9. Click Add to the Queue. 
10. Click Import. 
11. Check that the images have been imported for the specified user. 

 
Advantages: 

● Users can validate that import worked. 
● Failed imports can be repeated and/or reported to QA etc.. 
● Users do not have to wait for import to be scheduled. 

 
Limitations 

● Installation of a Desktop application to import data. 
● The number of files that can be imported at the same time is limited. The default is 2000. 

The option is configurable client-side. 
● Import can be slow due to the data transfer to OMERO via the client. 

https://github.com/ome/training-repos/blob/master/data.md


● The person doing the import must be in the same group as the user. This is a limitation 
of the Desktop client. 

 
More information about import options using the Desktop client can be found at 
http://help.openmicroscopy.org/importing-data-5.html. 

In-place Import CLI 
In this example, we show how to import data for another user and how to avoid data duplication 
by doing 
a so-called in-place import. A facility manager importer1 with restricted privileges imports the 
data for user-1. The facility manager has been given the ability to import for others. 
For this training, the path to the OMERO.server is /opt/omero/server. 
The facility manager is also a UNIX user. 
 
Important: 
Someone wanting to perform an in-place import MUST have: 

● a regular OMERO account 
● an OS-account with access to bin/omero 
● read access to the location of the data 
● write access to the ManagedRepository or one of its subdirectories. More information 

about the ManagedRepository can be found at 
https://docs.openmicroscopy.org/latest/omero/developers/Server/FS.html 

 

 
 

http://help.openmicroscopy.org/importing-data-5.html
https://docs.openmicroscopy.org/latest/omero/developers/Server/FS.html


1. Open a terminal and connect to the server as importer1 using ssh. 
2. Go to /OMERO and look at the subdirectories. 
3. Go to /OMERO/in-place-import i.e. cd /OMERO/in-place-import. 
4. The importer1 user logins as user-1: 

a. $ /opt/omero/server/OMERO.server/bin/omero --sudo importer1 -u 
user-1 login 

5. Create a Dataset import_one as user-1: 
a. DID=$(/opt/omero/server/OMERO.server/bin/omero obj new Dataset 

name=import_one) 
6. Import the data “in-place” in the newly created Dataset. The option for performing an 

in-place transfer is --transfer: 
a. $ /opt/omero/server/OMERO.server/bin/omero import -d $DID 

--transfer=ln_s /OMERO/in-place-import/svs/77917.svs 

7. Check that the image is successfully imported and open it in OMERO.figure. 
 
More information about import options using the CLI import can be found at 
https://docs.openmicroscopy.org/latest/omero/sysadmins/in-place-import.html and 
https://docs.openmicroscopy.org/latest/omero/users/cli/import.html 
 
Advantages: 

● All in-place import scenarios provide non-copying benefit. Data that is too large to exist 
in multiple places, or which is accessed too frequently in its original form to be renamed, 
remains where it was originally acquired. 

● The person doing the import does not need to be in the same group as the user. 
 
Limitations: 

● Only available on the OMERO server system itself 
● Do not move the files after an in-place import. OMERO may no longer be able to access 

them if you do. 

Bulk Import CLI 
In this example, we show how to combine several import strategies using a configuration file. 
This is a strategy heavily used to import data to https://idr.openmicroscopy.org/. 
We import one study (set of images) named idr0021. For this training, the path to the 
OMERO.server is /opt/omero/server. 
 

1. Open a terminal and connect to the server as importer1 using ssh. 
2. Description of the files used to set up the import, the files are in the directory 

idr0021-scripts under /OMERO/in-place-import: 
a. idr0021.tsv: this file has at least two columns where the first column is the name 

of the target Dataset and the second one is the path to the file to import. We will 
import the whole study, which consists of ~400 files in 10 Datasets. 

https://docs.openmicroscopy.org/latest/omero/sysadmins/in-place-import.html
https://docs.openmicroscopy.org/latest/omero/users/cli/import.html
https://idr.openmicroscopy.org/


b. bulk.yml: this file defines the various import options: transfer option, checksum 
algorithm, format of the .tsv file, etc. Note that setting the dry_run option to true 
allows to first run an import in dry_run mode and copy the output to an external 
file. This is useful when running an import in parallel. 

3. Go to /OMERO/in-place-import i.e. cd /OMERO/in-place-import. 
4. The importer1 (Facility Manager with ability to import for others) user logs in as user-1: 

a. $ /opt/omero/server/OMERO.server/bin/omero --sudo importer1 -u user-1 
login 

5. Import the data using the --bulk command: 
a. $ /opt/omero/server/OMERO.server/bin/omero import --bulk 

idr0021-scripts/bulk.yml  
6. Go to the webclient during the import process to show the newly created dataset. 
7. Select an image.  
8. In the right-hand panel, select the General tab to validate: 

a. Click on  to show the import details. 

b. Validate that In-place import is indicated . 

 

Advantages: 
● Large amount of data imported using one import command. 
● Reproducible import. 

 
Limitations: 

● Preparation of the .tsv file. 
 
 
More information about import options using the CLI import can be found at 
https://docs.openmicroscopy.org/latest/omero/users/cli/import.html. 
 
 

Render data using CLI 
In this section, we will now change the rendering settings of the images imported in OMERO in 
two different Datasets in a bulk manner. The cli-render plugin is available from 
https://pypi.org/project/omero-cli-render/. 
This section assumes that the plugin has already been installed. 
 

1. On your local machine, open a terminal. 
2. Go to the place where you can run bin/omero commands e.g. in the OMERO.py-xxx/ 

directory. 

https://docs.openmicroscopy.org/latest/omero/users/cli/import.html
https://pypi.org/project/omero-cli-render/


3. Description of the files used to set up the rendering. The files can be found under 
https://github.com/ome/training-scripts/blob/v0.1.0/maintenance/scripts/:  

a. renderingdef.yml  and renderingdef2.yml are files defining the various rendering 
parameters, such as the channel color, channel name and minimum and 
maximum values.  

b. renderingMapping.tsv: this file has two columns, in the left-hand one there are 
the images to be rendered and in the right-hand side column points to the 
appropriate renderingdef.yml for that image. This file is consumed by the bash 
script (see below) and thus is not used in the workshop itself. 

4. Change the rendering of images in one Dataset:  
a. Run  bin/omero render set Dataset:$ID local_path/to/renderingdef.yml  

where the $ID is the ID of the CDK5RAP2-C  Dataset. 
b. This will modify the rendering settings of each of the Image included in 

CDK5RAP2-C  Dataset. 
5. Verify the change in the browser.  
6. Change the rendering of images in two Datasets:  

a. Run  bin/omero render set Dataset:$ID1 Dataset:$ID2 renderingdef2.yml  
where the $ID1 and $ID2 are the IDs of CDK5RAP2-C Dataset and CENT2 
Dataset respectively. 

b. This will again change the rendering settings of Images in CDK5RAP2-C 
Dataset as well as in CENT2 Dataset. 

7. It is also possible to modify the rendering settings in batch using, for example, a shell 
script such as 
https://github.com/ome/training-scripts/blob/v0.1.0/maintenance/scripts/apply_rnd_settin
gs_as.sh 

8. which uses HQL to find the Images IDs in OMERO and deliver them to the 
omero-cli-render plugin. The script reads the Datasets in which the Images are located 
in OMERO are listed from a renderingMapping.tsv file, such as 
https://github.com/ome/training-scripts/blob/v0.1.0/maintenance/preparation/renderingMa
pping.tsv 

9. (not covered today) Go to the folder when the script is located. 
10. Run the bash script with the default parameters: 

a. $ sh apply_rnd_settings.sh 
b. The script could be run by a facility manager on behalf of other users. 

 
 

Metadata Import CLI (not covered today) 
In this example, we show how to add Map Annotations to the idr0021 dataset. This plugin is not 
yet available on PyPI but it can be used as part of the default installation. We are currently 
migrating it to its own repository, see https://github.com/ome/omero-cli-metadata. 
 

https://github.com/ome/training-scripts/blob/v0.1.0/maintenance/scripts/
https://github.com/ome/training-scripts/blob/v0.1.0/maintenance/scripts/apply_rnd_settings_as.sh
https://github.com/ome/training-scripts/blob/v0.1.0/maintenance/scripts/apply_rnd_settings_as.sh
https://github.com/ome/training-scripts/blob/v0.1.0/maintenance/preparation/renderingMapping.tsv
https://github.com/ome/training-scripts/blob/v0.1.0/maintenance/preparation/renderingMapping.tsv
https://github.com/ome/omero-cli-metadata


1. Log in to webclient on the target server and create a Project: in-place-idr0021. 
2. Drag and Drop the ten Datasets of idr0021 you just imported, into the Project: 

in-place-idr0021.  Also, note the ID of the  Project: in-place-idr0021. 
3. On your local machine, open a terminal. 
4. Go to the place where you can run bin/omero commands e.g. in the OMERO.py-xxx/ 

directory. 
5. There is a CSV file which is a table with one row per image describing what metadata 

will be added to each Image in a given Project. The CSV table is converted into an 
OMERO.table (an HDF5 table) using the command 8b below. The OMERO.table has an 
additional column (when compared to the original CSV file), which lists the ID of the 
Image in OMERO. 

6. In the second step, a bulkmap-config.yml file specifies the categories of the Map 
Annotations (Key-Value pairs) such as Gene or Phenotype. In the command 8c below 
the OMERO.table on the Project: in-place-idr0021 is read and the values are written 
into Key-Value pairs on each Image. The Key-Value pairs are categorized according to 
the bulkmap-config.yml file. 

7. Below is the description of the files used to set up the metadata population: 
a. Idr0021-annotation.csv describes the setup of the future OMERO.table created 

in the command 8b listed below.  
b. Idr0021-bulkmap-config.yml specifies the categories of the Map Annotations 

(Key-Value pairs). 
8. Run: 

a. $ export OMERO_DEV_PLUGINS=1 

b. $ bin/omero metadata populate --report --batch 1000 --file 

idr0021-subset-annotation.csv Project:<project_id> (enter value) 

c. $ bin/omero metadata populate --context bulkmap --cfg 

idr0021-bulkmap-config.yml --batch 100 Project:<project_id> 

 
 
 


