OMEGA: Shared resources for single particle tracking and for analyzing the dynamics of intracellular trafficking

Caterina Strambio De Castillia

University of Massachusetts UMASS. Medical School Umassmed.edu

2018-5-30, 2018 OME Meeting, Dundee

The Image Problem: can the quantitative content of images be fully exploited for systems biology and integrated with other types of data?

Outline

- WHO AM I AND WHAT I AM DOING DEALING WITH THESE STUFF?
- **<u>BIOLOGICAL MOTIVATION</u>** \rightarrow real-time trafficking of HIV-1 in target cells
- APPROACH → develop SHARABLE TOOLS, METADATA DESCRIPTORS and ERROR ACCOUNTING METHODS to:
 - Streamline the workflow
 - Capture the full flow of information and data across the workflow
 - Account for the propagation of error along the analysis routine
- PROGRESS REPORT → so far we have:
 - Produced a tool called OMEGA
 - Produced a data model / metadata standard called MIAPTE
 - Developed a sharable method to assess the error associated with motion type classification

Tracking fluorescently-labeled viral particles movement to gain insight into the underlying biology → VIRAL ENTRY

Tracking fluorescently-labeled viral particles movement to gain insight into the underlying biology → VIRAL ASSEMBLY

Moving fluorescently-labeled virions are imaged at high temporal and spatial resolution

Particle tracking : estimation of the trajectory followed by individual sub-diffraction particles

Particle Tracking output

Motion Analysis: computation of "biologically meaningful" metrics from individual trajectories

Outline

- WHO AM I AND WHAT I AM DOING DEALING WITH THESE STUFF?
- **BIOLOGICAL MOTIVATION** \rightarrow real-time trafficking of HIV-1 in target cells
- <u>APPROACH</u>→ develop SHARABLE TOOLS, METADATA DESCRIPTORS and ERROR ACCOUNTING METHODS to:
 - Streamline the workflow
 - Capture the full flow of information and data across the workflow
 - Account for the propagation of error along the analysis routine

PROGRESS REPORT → so far we have:

- Produced the MIAPTE particle tracking data model / metadata standard
- Produced the OMEGA particle tracking tool
- Developed a sharable method to assess the error associated with motion type classification

Particle Tracking and Motion Analysis minimum reporting guidelines: Minimum Information About Particle Tracking Experiments

- Available on github.org
 <u>https://github.com/OmegaProject/MIAPTE</u>
- Deposited on fairsharing.org <u>https://fairsharing.org/bsg-s000671</u>
- Posted to biorXiv.org:

https://www.biorxiv.org/content/early/2017/07/13/155036

MIAPTE: based on the tracking workflow and on the resulting trajectory data structure

MIAPTE v03 – Trajectory Elements

MIAPTE v03 (4DN) – Analysis Elements

A tool for the management, analysis, and dissemination of intracellular trafficking data that incorporates motion type classification and quality control

Open Microscopy Environment inteGrated Analysis

- Posted to biorXiv.org <u>http://biorxiv.org/cgi/content/short/251850v1</u>
- Available on github.org https://github.com/OmegaProject/Omega

The goal is to automate the Single Particle Tracking and Motion Analysis workflow and capture the entire data life-cycle...

... with the purpose of fostering the reproducibility of the process, the (re-)use and (re-)interpretation of results and the standardization of error reporting

... the solution is to integrate both work-flow and data-flow in a unified framework

OMEGA: integrates workflow, dataflow and data provenance

OMEGA: easy to use graphical user interface

OMEGA: motion analysis workflow

OMEGA: example use case – Nocodazole abrogates mobility during MPMV assembly

OMEGA data browser: analysis results management

	Workspace - OM	EGA Data Browser	
File View			
Auto Select Entire Tree	Tracking Quality Control		
Loaded Data	- Detection Run	- Linking Pup	- Editing Pup
[-1] OMEGA_benchmarking		Inking kun I II 2017-11-08 10-50-36	I I I I 2017-11-08 10-50-36
[-1] Chenouard et al. 2014_si			
Crnhaned analyses			
	Parameters:	Parameters:	Editing Pup. ID: NA
age ID: NA vner: Caterina Strambio De Castillia	-Radius: 2	-Displacement: 20.0	Owner: Caterina Strambio De Castil
me: VIRUS snr 7 density low_tSr.tif	-Cutoff: 0.001 -Percentile: 0.1	-Link Range: 1 -Movement Type: Brownian	Algorithm: OMEGA Trajectory Editir
nes Analyzed: 1 quired: 2015-03-03 12-03-34	-Absolute Percentile: false	-Object Feature: 1.0	Times Analyzed: 3
ported: 2015-03-03 12-06-57	-Analyzed Z-plane: 0	-Dynamics: 1.0	Total number of trajectories: 59
mensions (XY): 512 x 512	Executed: 2017-11-08 10-31-28	-Min Track Length: 25	Average trajectory length: 32.728813559322035
mensions (ZTC): 1 × 100 × 1	Times Analyzed: 2	Executed: 2017-11-08 10-50-36	Max trajectory length: 49
	per time point: 77.51	Total number of trajectories: 59	Min trajectory length: 26
	Max number of spots found per	Average trajectory length:	
	Min number of spots found per	Max trajectory length: 49	
	time point: 60	Min trajectory length: 26	
	Algorithm Information	Algorithm Information	Algorithm Information
Edit Details			

OMEGA data browser: analysis results management

FAIR requirements of Particle Tracking Data

Data management: **OMEGA** vs. **OMERO**

massmed.edu

Accounting the effect of particle detection uncertainty on motion type estimation

A Monte Carlo simulation method to assess motion type estimation error in multiple particle tracking

• In preparation

Motion type classification in OMEGA is based on a method developed by the MOSAIC group

The motion type is evaluated by the evaluation of four plots:

- 1. x y Trajectory plot
- 2. Log-log MSD vs. Δt plot
- 3. Moment Scaling Spectrum (MSS) plot
- 4. Slope of MSS vs.Observed DiffusionConstant phase spaceplot

The behavior of trajectories on the four plots allows to classify their dynamics and understand their biological functioning

MSD Plot

Phase Space

02 (µm+2/s

MSD Plot

10 15 20 25 10 15 40

OSED SMSS 1-0 D 0-0100-Segm

Phase Space

Normal diffusion

Superdiffusion

How can we be confident about motion type classification? What are the sources of error in motion analysis?

1) Localization error: inversely proportional to PRECISION and ACCURACY

2) Sampling error: the shorter the trajectory (i.e. the fewer detected points) the more likely one will make an error in calculating metrics that describe the type of motion

Monte Carlo simulation method to empirically estimate the accuracy and precision of each particle localization algorithm

Simulating the effect of position error on artificial trajectories

When simulating the effect of <u>position error</u> on artificial trajectories, we sample uniformly at random directly from distributions of empirically observed x and y offsets, to "modify" the position of each point along the particle path

Assessing and reporting motion type estimation error

OMEGA: example use case – Reporting error using particle tracking benchmarking datasets

Thank you from the OMEGA team

Project co-founders

Image acquisition

Software engineering and infrastructure

Motion analysis and algorithms integration

