

IDR submission workflow

Eleanor Williams

8th November 2017

Over view of the work flow

idr-testing, idr-next and idr production

What is a reference dataset?

- have value beyond simply supporting an original publication
- Guidance from EuroBioimaging. See
 http://www.eurobioimaging.eu/sites/default/files/Euro-Biolmaging_Elixir_Image_Data_Strategy_0.pdf

- Criteria we use (see our <u>submission help page</u>) are:
 - Datasets associated with an existing or upcoming publication
 - Complete datasets not just images supporting one figure in the publication
 - Datasets whose metadata can be integrated with other datasets via identifiers from well-known biomolecular resources (Ensembl, NCBI Entrez Gene, RefSeq, PubChem, ChEBI etc)
 - Datasets generated using new imaging methods or new analysis methods
 - Datasets that are likely to be re-analysed or incorporated into other studies or integrated with other imaging datasets

Obtain raw image data and experimental metadata

• Raw images – send them a hard drive by post if over 500 Gb. If less than 500

Gb then we are going to set up an FTP transfer.

Image credit:
Simon Li

 Experimental metadata – ask them to fill out metadata templates – link on https://idr.openmicroscopy.org/about/submission.html

Metadata describing an imaging study is submitted using template files. These are available for download from https://github.com/IDR/idr0000-lastname-example/archive/master.zip.

Experimental metadata files

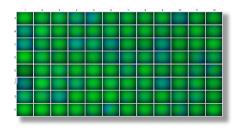
High Content Screen	Non-screen study			
Study file - mandatory	Study file - mandatory			
Library file - mandatory	Assay file - mandatory			
Processed data file - optional	Processed data file - optional			
Feature data, tracking data - optional	Feature data, tracking data - optional			

Lots of examples in https://github.com/IDR/idr-metadata

Study file

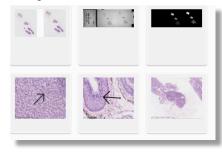
Title, description
Contact info
Publication info
License

Appears only once for each study


Library info for HCS
Experimental Conditions
Protocols
Phenotypes + CMPO mappings
Links to library/assay and processed files

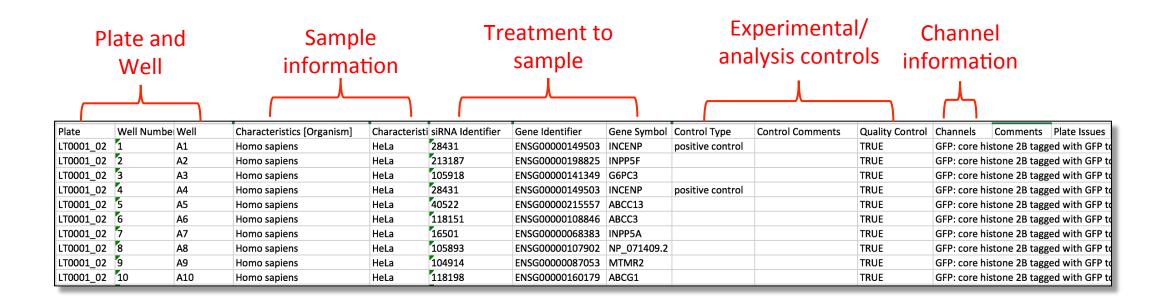
Repeated block for each screen or experiment e.g. screenA, experimentA

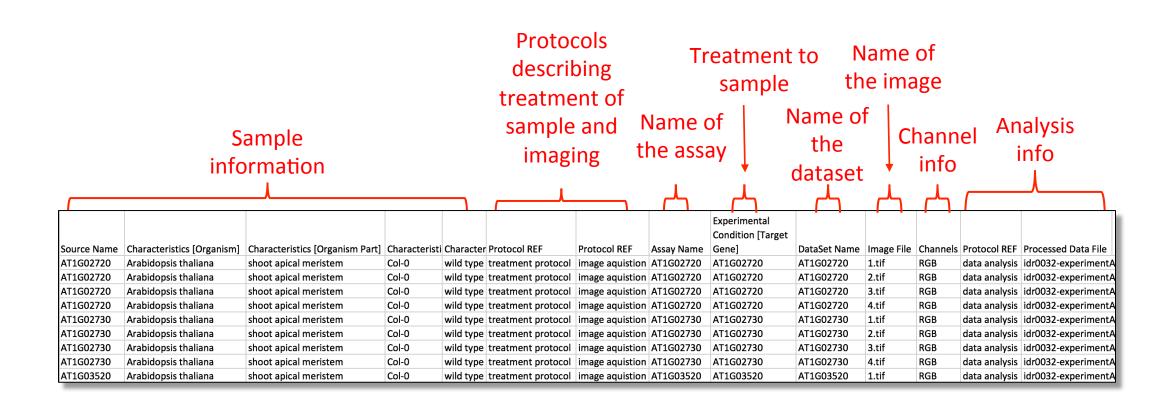
Library info for HCS
Experimental Conditions
Protocols
Phenotypes + CMPO mappings
Links to library/assay and processed files


Repeated block for each screen or experiment e.g. screenB, experimentB

Library and Assay files

Library file


- One row for each plate + well
- Describe the sample in the well e.g. species, cell line
- Describe treatment to the sample e.g. siRNA use, compound treatment, different media used to grow the cells
- Which are control wells positive control expect an effect, negative control – don't expect an effect
- Quality control any wells rejected by authors e.g. out of focus, too few cells
- Channels label and what is labeled e.g. DAPI:nucleus


Assays file

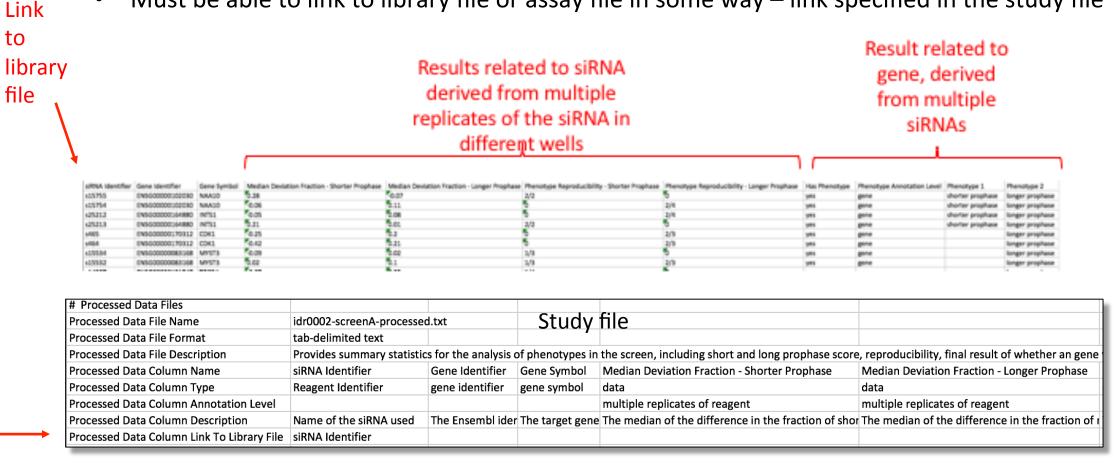
- One row for image file
- Describe the sample in the image e.g. species, cell line
- Describe treatment to the sample e.g. siRNA use, compound treatment, different media used to grow the cells
- List the protocols applied
- Group into **Datasets**
- Specify if raw or processed image
- Channels label and what is labeled e.g.
 DAPI:nucleus
- Links to **processed files**

Example library file – idr0013-screenA

Example assay file – idr0032-experimentA

Assays file – grouping into datasets

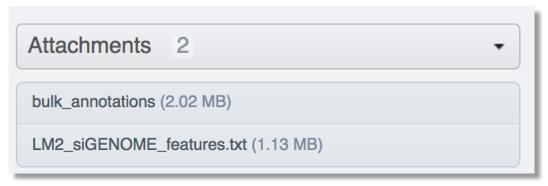
Sample	Experimental conditions	Assay	Dataset	Image File
sample1	Localization of protein X	assay1	proteinXlocalization	1.tiff
sample1	Localization of protein X	assay1	proteinXlocalization	2.tiff
sample2	Localization of protein Y	assay2	proteinYlocalization	1.tiff
sample2	Localization of protein Y	assay2	proteinYlocalization	2.tiff


idr0032

Sample	Experimental Conditions	Assay	Dataset	Image File
sample1	Embryonic kidney + localization of protein X	assay1	proteinXlocalization	1.czi
sample2	Kidney organoid + localization of protein X	assay2	proteinXlocalization	2.czi
sample3	Embryonic kidney + localization of protein Y	assay3	proteinYlocalization	3.czi
sample4	Kidney organoid + localization of protein Y	assay4	proteinYlocalization	4.czi

idr0038

Processed data files


- Summary results and phenotypes
- Must be able to link to library file or assay file in some way link specified in the study file

Other files that might be submitted

- Feature level data files + ROI/masks
- Tracking files
- Listed in study file but only attached to screen/assay if simple to do currently

# Feature Level Data Files (give individual	file details un	less there is c	ne file per we	ell)				
Feature Level Data File Name	LM2_siGENC	ME_features	.txt					
Feature Level Data File Description	Well averaged values for each feature for each well.							
Feature Level Data File Format	tab-delimited text							
Feature Level Data Column Name	Plate Row		Column	Genes	Well Name	Number of Cells selected	Intensity Nucleus - Mean per Well	Nucleus Area [um_] - Mean per Well
Feature Level Data Column Description	The name of	The row posi	The column p	Gene name o	Position in p	Number of cells chosen to analyse	Hoescht intensity	Number of pixels in nucleus. Values ar

Files needed to load data into IDR

Images

- Raw images on EBI file system but also copied to Dundee file system
- Plates.tsv or FilePaths.tsv
- Bulk.yml

Annotations

- Annotation.csv
- Bulkmap-config.yml

Plates.tsv/FilePath.tsv

	Column1	Column2
screens	Plate name	Path to directory with images or .screen files
non-screens Dataset na		Path to image file

idr0002-screenA-plates.tsv

plate1_1_013	/uod/idr/filesets/idr0002-heriche-condensation/20150401-original/chr_cond_screen/plate1_1_013/experiment_descriptor.xml
plate1_2_006	/uod/idr/filesets/idr0002-heriche-condensation/20150401-original/chr_cond_screen/plate1_2_006/experiment_descriptor.xml
plate1_3_003	/uod/idr/filesets/idr0002-heriche-condensation/20150401-original/chr_cond_screen/plate1_3_003/experiment_descriptor.xml

idr0033-screenA-plates.tsv

41744	/screens/41744.screen
41749	/screens/41749.screen
41754	/screens/41754.screen
41755	/screens/41755.screen

idr0032-experimentA-filePaths.tsv

Dataset:name:AT1G02720	/uod/idr/filesets/idr0032-yang-meristem/20161104-original/Pictures of all GTs/AT1G02720/1.tif
Dataset:name:AT1G02720	/uod/idr/filesets/idr0032-yang-meristem/20161104-original/Pictures of all GTs/AT1G02720/2.tif
Dataset:name:AT1G02720	/uod/idr/filesets/idr0032-yang-meristem/20161104-original/Pictures of all GTs/AT1G02720/3.tif
Dataset:name:AT1G02720	/uod/idr/filesets/idr0032-yang-meristem/20161104-original/Pictures of all GTs/AT1G02720/4.tif
Dataset:name:AT1G02730	/uod/idr/filesets/idr0032-yang-meristem/20161104-original/Pictures of all GTs/At1g02730/1.tif
Dataset:name:AT1G02730	/uod/idr/filesets/idr0032-yang-meristem/20161104-original/Pictures of all GTs/At1g02730/2.tif
Dataset:name:AT1G02730	/uod/idr/filesets/idr0032-yang-meristem/20161104-original/Pictures of all GTs/At1g02730/3.tif
Dataset:name:AT1G02730	/uod/idr/filesets/idr0032-yang-meristem/20161104-original/Pictures of all GTs/At1g02730/4.tif

Screen or assay bulk.yml

A yaml format file that allows bulk import of all the images on the command line

idr0002-screenA-bulk.yml

```
---
target: "Screen:name:idr0002-heriche-condensation/screenA"
include: "../../bulk.yml"
path: "idr0002-screenA-plates.tsv"
```

idr0032-experimentA-bulk.yml

```
include: "../../bulk.yml"
path: "idr0032-experimentA-filePaths.tsv"
columns:
    - target
    - path
```

 There is a higher level yaml file (idr-metadata/bulk.yml) file that sets some overall parameters about import

```
continue: "true"
transfer: "ln_s"
exclude: "clientpath"
checksum_algorithm: "File-Size-64"
logprefix: "logs/"
output: "yaml"
# Default columns for the regular screens.
# This may need to be modified in other bulk files.
columns:
    - name
    - path
```

Annotation.csv and bulkmap-config.yml

Annotation.csv

- A single annotation file is created for importing an hd5 table into IDR
- Contains metadata from the library or assay file, plus data in the processed file, plus phenotype to CMPO mappings from the study file
- All column headings must be unique
- Created from study, library and processed file for screens using perl script and manually for nonscreens

create bulk annotations file using studyfile.pl -s study.txt -l library.txt -p processed.txt -n screenNumber

From library file							From	proce	ssed file	From study file	
Plate	Well	Characteristics [Organism]	Characterist	i siRNA Identi	Gene Identifier	Gene Symbo	Median Devi	Median Devi	Phenotype 1	Phenotype 1 Term Name	Phenotype 1 Term Accession
plate1_1_01	A1	Homo sapiens	HeLa	s2748	ENSG00000117399	CDC20					
plate1_1_01	A2	Homo sapiens	HeLa	s20068	ENSG00000105127	AKAP8	0.25	-0.07	shorter prophase	decreased duration of mitotic prophase phenotype	CMPO_0000329
plate1_1_01	A3	Homo sapiens	HeLa	s5681	ENSG00000164404	GDF9	0.15	-0.03			
plate1_1_01	A4	Homo sapiens	HeLa	s15534	ENSG00000083168	MYST3	-0.09	0.02			
plate1_1_01	A5	Homo sapiens	HeLa	s10143	ENSG00000131165	CHMP1A	0.18	-0.01			

Annotation.csv and bulkmap-config.yml

Bulkmap-config.yml

• A yaml file that says what columns from annotation.csv to create map annotations from and how to display them

```
lname: idr0002-heriche-condensation/screenA
version: 3
defaults:
    # Should the column be processed when creating bulk-annotations (yes/no)
    # Columns type of the bulk-annotations column
    type: string
    # If non-empty a string used to separate multiple fields in a column
    # White space will be stripped
    split:
    # Should this column be included in the clients (yes/no)
    includeclient: yes
    # Should this column be visible in the clients, if no the column should be
    # hidden in the client but will still be indexed by the searcher (yes/no)
    # Should empty values be omitted from the client display
    omitempty: yes
columns:
  - name: Control Type
    include: ves
  - name: Control Comments
   include: yes
  - name: Quality Control
    include: yes
  - name: Channels
    include: ves
  - name: Comments
    include: yes
```

```
# mapr groups
 - group:
     namespace: openmicroscopy.org/mapr/organism
     - name: Characteristics [Organism]
      clientname: Organism
      include: yes
 - group:
     namespace: openmicroscopy.org/mapr/cell_line
     - name: Characteristics [Cell Line]
      clientname: Cell Line
      include: yes
 - group:
     namespace: openmicroscopy.org/mapr/sirna
     columns:
     - name: siRNA Identifier
      include: yes
      omitempty: no
     - name: siRNA Identifier
      clientname: siRNA Pool Identifier
      clientvalue: ""
      include: yes
      omitempty: no
```

Renderdef.yml

- A yaml file that allows you to specify the channel labels, colour, min and max intensity
- Can be applied to an image, plate, screen (don't think dataset)

```
# channel min and max changed from original imported

channels:
    1:
        label: "Cy3"
        min: 167
        max: 2000
        color: "FF0000"
    2:
        label: "eGFP"
        min: 288
        max: 4095
        color: "00FF00"
```

Git workflow

- Create all input files for a study
- Commit to a branch on your own forked version of https://github.com/IDR/idr-metadata/
- Create a PR against https://github.com/IDR/idr-metadata/
- Create a merge build using "MASTER-push" in Jenkins
- On idr-testing server clone the merge build
- Test files
- If ok, then PR can be merged and https://github.com/IDR/idr-metadata/ can be used on idr-next.

Import of images

Screens

```
omero import --bulk idr0030-screenA-bulk.yml
```

• Will create a screen with the name specified in the bulk.yml file

Non-screen projects

```
omero import --bulk idr0032-experimentA-bulk.yml
```

 Creates datasets that are specified in the filePaths.tsv file but you have to create the project manually via the Web UI

Adding annotaations

- Can be done directly or via shell scripts
- In both, first add the annotation.csv file then create map annotations from the value in the bulk annotations table

Directly

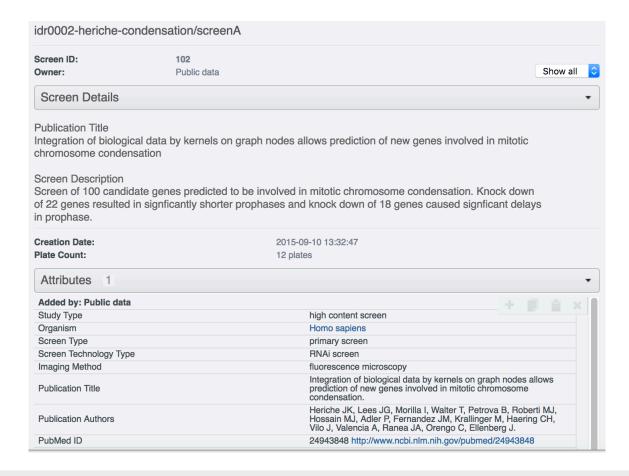
```
omero metadata populate --file idr0002-screenA-annotation.csv Screen:102

omero metadata populate --context bulkmap --cfg idr0002-screenA-bulkmap-
config.yml Screen:102
```

Via shell scripts in https:/github.com/IDR/idr-metadata/scripts

```
./bulk.sh prod37_input_bulk.txt
./annotate.sh prod37_input.txt
```

Applying rendering settings

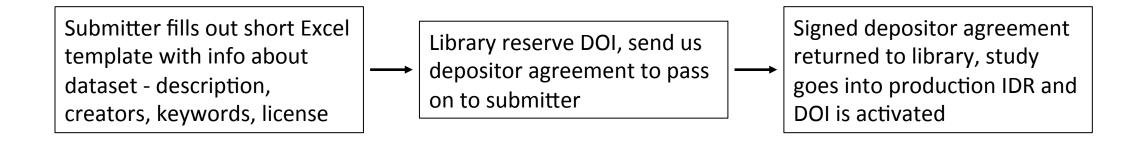

omero render edit Plate:1203 idr0019-screenA-renderdef.yml

omero render edit Screen:1203 idr0019-screenA-renderdef.yml

omero render edit Image:3427370 idr0038-experimentA-wtFK-cleared-Wt1-Pax2-renderdef.yml

Note: omero render edit --copy Screen: 1203 idr0019-screenA-renderdef.yml will copy the min and max from the first well to all images in the screen even if we are just specifying channel names in the renderdef.yml file

Adding study/screen/experiment level information



ssh idr-next.openmicroscopy.org -L 12345:test44-omeroreadwrite:80

Login via private window in browser and edit the right hand panel

Get DOI for screen/project

- Arranged through discovery@dundee.ac.uk and Philippa Sterlini in the library
- Minted through DataCite
- Can reserve DOI once complete in idr-next but not activated until study in idr.openmicroscopy.org

• Can create single DOI for a screen/project or parent and child DOIs e.g. idr0028 with a 'study level' parent DOI and 4 child DOIs for the 4 screens

Publicize using @IDRnews on Twitter

Detailed notes

Detailed notes about every step are being written at https://docs.google.com/a/openmicroscopy.org/document/d/17m8Z43 yhiO3AOua8oMk4mPWKWJtpeYNc2KLP17h-1l/edit? usp=sharing