Hierarchical Data Format, version 5 (HDF5)

|.u:

Contents

Contents
References

Training material

Introduction
Format features and goals
Format details

Data storage

Tools
Command Line

Graphical

Language bindings
ﬂ
Java
Python

Examples (C++ and Python)

Comparison with TIFF

Problems

Applications
OMERO.tables

Potential use by OME
OME-HDF5?

Presentation Notes




References

Wikipedia
Main website for the HDF group
Tutorials

Examples

Training material

e Git repository - source code examples
e /ome/team/rleigh/hdf5/samples - sample images
e hdfview download

Introduction

Format features and goals

In 1987, HDF was created by the NCSA to solve the problem of moving data, originally image
data, between different computing platforms. HDF is thus architecture independent by design.
The format was influenced by file formats of that era, and their limitations, including TIFF and
CGM . HDF was designed to be able to store and access large data objects efficiently, as well
as being able to store multiple data objects within a single file “container”. It was also designed
to be extensible so that it could store new types of data and metadata and so meet
unanticipated future needs. C and Fortran were, and are, the primary languages for using HDF.
HDF4 (the original format) was extended and simplified to result in HDF5, to scale from gigabyte
to petabyte scale storage.

HDF has been adopted by many organisations, for diverse purposes other than imaging,
including seismic data, astronomy and satellite imaging and mapping, simulation, weather data,
and biological data of varied types.

HDFS5 is used as the basis for several scientific imaging formats, including these supported by
Bio-Formats:

CellH5 (complex: grouped datasets and tables with attributes)
BigDataViewer (XML view registration with HDF5 backend; other formats also
supported)

e |maris IMS (complex: grouped datasets and tables with attributes)



https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/Tutor/
https://support.hdfgroup.org/HDF5/examples/
https://github.com/rleigh-codelibre/hdf5-tutorial
https://support.hdfgroup.org/products/java/hdfview/
http://www.cellh5.org/
http://imagej.net/BigDataViewer
http://open.bitplane.com/Default.aspx?tabid=268

e Veeco AFM (simple: single dataset with attributes)
e Medical Image NetCDF (MINC) (simple: multiple datasets, no attributes)

HDF is also used as the storage format for Matlab and PyTables.

HDFS5 is a generalised format acting as a container of arbitrary data, with specialised support for
multi-dimensional arrays. It can be used for a diverse range of applications, storing data with
very different structures.


https://www.nitrc.org/projects/minc/

Format details

HDF5 was developed to store data in a structured binary data, primarily multi-dimensional
arrays of numeric data, but also allowing for arbitrary binary data, metadata, and arbitrary data
types. It provides a flexible means of storing large and complex scientific data in a binary
container for fast and efficient access. The main structures in an HDF file are:

Groups (can nest to form a hierarchy of containers)

Datasets (multi-dimensional arrays)

Property lists (control behaviour and storage of HDF objects)

Datatypes (storage specification of stored data)

Dataspaces (selections of dataset regions)

Attributes (user metadata)

Links (between objects within an HDF file, or between different HDF files)

Group
Dataset
(_ ) Attribute
o
:r} Link

Datasets are contained within groups, which may be nested:



HDF5 file, root group (/)

Group 1
1.1 T
Group
m‘ D
(1
49,
Group 2

D2 26

O

Like directories and files on a UNIX filesystem, groups and datasets don’t have names. Links to
groups and datasets have names. Links can be hard or symbolic, and can also be cyclic.
Symbolic links can be absolute, relative or external (to a group or dataset in another HDF5 file).

As a graph:

HDF5 file, root group (/)

/ Group 1 Group 1.1 > D1 >

74

2
DLE

As a tree:



/

/D4

/Groupl

/Groupl/Groupl.l

/Groupl/Groupl.1l/D1

/Group?2

/Group2/D2

/Group2/D3

/Group2/D5 (same dataset as /Groupl/Groupl.1/D1)



Data storage

Rank (number of dimensions)
Extents (size of each dimension)
Chunks (splitting of each dimension)
Compression

Chunked

Simple {contiguous)

\

l Chunked, compressad

Data transfer:

A dataspace exists for both the data in memory and the dataset in the file. The data to transfer
is selected by choosing the range and step of the data (select hyperslab,

select elements), or by manually specifying individual element indexes. These may be
combined to create complex selections. Data may then be transferred between the data in
memory and the file dataset.



Memory dataspace File dataspace




Tools

e Summary of available tools

Command Line

h5dump

h5import

h5copy

h5diff

h51s

h5ftotxt and hbSfromtxt

Graphical

e Hdfview (download)


https://support.hdfgroup.org/products/hdf5_tools/index.html
https://support.hdfgroup.org/products/java/hdfview/

Language bindings

C++

e 1libhdf5 serial
® libhdf5 cpp

Java

e JHDF5
e CDM (NetCDF)

Python

e hb5py
e PyTables
e Pandas



Examples (C++ and Python)

write-array - write contiguous array with groups and annotations
read-array - read arrray

read-array-subset - read subset of array
write-chunked-array - write chunked array

hoh =



Comparison with TIFF

TIFF Header

TIFF Directory == Image Metadata == 'g}gﬂz

1

TIFF Directory =¥ |mage Metadata =

1

TIFF Directory == Image Metadata +

1

TIFF Directory — Image Metadata 4\ 'Bo9°

1

Image
Plane

:

TIFF supports a linear list of image planes. Navigation requires starting at the first image
directory and seeking along the chain of directory offsets. In contrast, HDF5 is much more
flexible in its use of grouping and access by name rather than by index. Images are limited to
single planes, i.e. two dimensions rather than an arbitrary rank. TIFF supports chunking and
compression, but access is via tile index and requires writing in a linear order while HDF5
permits writing in any order and by using natural ranges rather than complex index calculations.
Metadata is attached to TIFF directories as numeric tags with arbitrarily complex values.
However, there is a central tag registry and so it is not as extensible as HDF5 in practice; if you
create a new tag no other user will know the structure of the stored value. With HDF5 this is
explicit.



Problems

Single implementation (in C)

Need for repacking to consolidate space
Character encoding undefined

Thread safety



Applications

OMERO.tables

A service to provide access to an HDF5 table. This is columnar data using a limited set of
defined types, i.e. like an R data.frame, and not a general-purpose interface to HDF5. It
provides access to a limited subset of HDF5 functionality. Useful for e.g. summary data from
analysis but not for storing raw data in multi-dimensional arrays.

e Documentation

e Java example
e Python example



https://docs.openmicroscopy.org/omero/5.4.0/developers/Tables.html
https://github.com/openmicroscopy/openmicroscopy/blob/v5.4.0/components/tools/OmeroJava/test/integration/TableTest.java
https://github.com/openmicroscopy/openmicroscopy/blob/v5.4.0/components/tools/OmeroPy/test/integration/tablestest/test_service.py

Potential use by OME

OME-HDF5?

Store 5D images as 5D hypervolume; no more
DimensionOrder/Interleaving/RGBChannelCount and 2D plane limitations
Simplify fetching and ordering of image data from disc; replace openBytes with simple
fetch of exactly the data requested
Simplify image writing; ordering constraints are lifted
OME-XML metadata can be stored as string attribute
OME-XML metadata could alternatively be stored directly as attributes on datasets and
groups:

o More efficient to open, since unused metadata isn’t read into memory

o More efficient to read, since it's binary

o Hard links can deduplicate repeated metadata such as channel and instrument

metadata

Analysis results can be stored in HDF5 and link back to the original datasets (including
external references to the original datafiles)
Interoperability with HDF5 libraries allows easy access to OME image data and
metadata without the need for using our library APIs.
The existing model and metadatastore APIs are not designed with HDF in mind; they
would perform poorly unless they were updated to take advantage of HDF features.



