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References 
Wikipedia  
Main website for the HDF group 
Tutorials  
Examples  

Training material 
● Git repository - source code examples 
● /ome/team/rleigh/hdf5/samples - sample images 
● hdfview download  

Introduction 

Format features and goals 
In 1987, HDF was created by the NCSA to solve the problem of moving data, originally image 
data, between different computing platforms.  HDF is thus architecture independent by design. 
The format was influenced by file formats of that era, and their limitations, including TIFF and 
CGM .  HDF was designed to be able to store and access large data objects efficiently, as well 
as being able to store multiple data objects within a single file “container”.  It was also designed 
to be extensible so that it could store new types of data and metadata and so meet 
unanticipated future needs.  C and Fortran were, and are, the primary languages for using HDF. 
HDF4 (the original format) was extended and simplified to result in HDF5, to scale from gigabyte 
to petabyte scale storage. 
 
HDF has been adopted by many organisations, for diverse purposes other than imaging, 
including seismic data, astronomy and satellite imaging and mapping, simulation, weather data, 
and biological data of varied types. 
 
HDF5 is used as the basis for several scientific imaging formats, including these supported by 
Bio-Formats: 
 

● CellH5 (complex: grouped datasets and tables with attributes) 
● BigDataViewer (XML view registration with HDF5 backend; other formats also 

supported) 
● Imaris IMS (complex: grouped datasets and tables with attributes) 

 

https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/Tutor/
https://support.hdfgroup.org/HDF5/examples/
https://github.com/rleigh-codelibre/hdf5-tutorial
https://support.hdfgroup.org/products/java/hdfview/
http://www.cellh5.org/
http://imagej.net/BigDataViewer
http://open.bitplane.com/Default.aspx?tabid=268


 

● Veeco AFM (simple: single dataset with attributes) 
● Medical Image NetCDF (MINC) (simple: multiple datasets, no attributes) 

 
HDF is also used as the storage format for Matlab and PyTables. 
 
HDF5 is a generalised format acting as a container of arbitrary data, with specialised support for 
multi-dimensional arrays.  It can be used for a diverse range of applications, storing data with 
very different structures. 

 

  

 

https://www.nitrc.org/projects/minc/


 

Format details 
HDF5 was developed to store data in a structured binary data, primarily multi-dimensional 
arrays of numeric data, but also allowing for arbitrary binary data, metadata, and arbitrary data 
types.  It provides a flexible means of storing large and complex scientific data in a binary 
container for fast and efficient access.  The main structures in an HDF file are: 
 

● Groups (can nest to form a hierarchy of containers) 
● Datasets (multi-dimensional arrays) 
● Property lists (control behaviour and storage of HDF objects) 
● Datatypes (storage specification of stored data) 
● Dataspaces (selections of dataset regions) 
● Attributes (user metadata) 
● Links (between objects within an HDF file, or between different HDF files) 

 

 
 
Datasets are contained within groups, which may be nested: 

 



 

 
 
Like directories and files on a UNIX filesystem, groups and datasets don’t have names.  Links to 
groups and datasets have names.  Links can be hard or symbolic, and can also be cyclic. 
Symbolic links can be absolute, relative or external (to a group or dataset in another HDF5 file). 
 
As a graph: 

 
 
As a tree: 

 



 

/ 

/D4 

/Group1 

/Group1/Group1.1 

/Group1/Group1.1/D1 

/Group2 

/Group2/D2 

/Group2/D3 

/Group2/D5  (same  dataset  as  /Group1/Group1.1/D1) 

 

  

 



 

Data storage 
● Rank (number of dimensions) 
● Extents (size of each dimension) 
● Chunks (splitting of each dimension) 
● Compression 

 
 
Data transfer: 
 
A dataspace exists for both the data in memory and the dataset in the file.  The data to transfer 
is selected by choosing the range and step of the data (select_hyperslab , 
select_elements ), or by manually specifying individual element indexes.  These may be 
combined to create complex selections.  Data may then be transferred between the data in 
memory and the file dataset. 
 

 



 

 

 

  

 



 

Tools 
● Summary of available tools  

Command Line 
● h5dump 

● h5import 

● h5copy 

● h5diff 

● h5ls 

● h5ftotxt  and  h5fromtxt 

Graphical 
● Hdfview  ( download ) 

 

 

  

 

https://support.hdfgroup.org/products/hdf5_tools/index.html
https://support.hdfgroup.org/products/java/hdfview/


 

Language bindings 

C++ 
● libhdf5_serial 

● libhdf5_cpp 

Java 
● JHDF5 
● CDM (NetCDF) 

Python 
● h5py 
● PyTables 
● Pandas 

 

  

 



 

Examples (C++ and Python) 
1. write-array  - write contiguous array with groups and annotations 
2. read-array  - read arrray 
3. read-array-subset  - read subset of array 
4. write-chunked-array  - write chunked array 

 

  

 



 

Comparison with TIFF 

 
TIFF supports a linear list of image planes.  Navigation requires starting at the first image 
directory and seeking along the chain of directory offsets.  In contrast, HDF5 is much more 
flexible in its use of grouping and access by name rather than by index.  Images are limited to 
single planes, i.e. two dimensions rather than an arbitrary rank.  TIFF supports chunking and 
compression, but access is via tile index and requires writing in a linear order while HDF5 
permits writing in any order and by using natural ranges rather than complex index calculations. 
Metadata is attached to TIFF directories as numeric tags with arbitrarily complex values. 
However, there is a central tag registry and so it is not as extensible as HDF5 in practice; if you 
create a new tag no other user will know the structure of the stored value.  With HDF5 this is 
explicit. 

 

  

 



 

Problems 
● Single implementation (in C) 
● Need for repacking to consolidate space 
● Character encoding undefined 
● Thread safety 

 

  

 



 

Applications 

OMERO.tables 
A service to provide access to an HDF5 table.  This is columnar data using a limited set of 
defined types, i.e. like an R data.frame, and not a general-purpose interface to HDF5.  It 
provides access to a limited subset of HDF5 functionality.  Useful for e.g. summary data from 
analysis but not for storing raw data in multi-dimensional arrays. 
 

● Documentation  
● Java example 
● Python example  

 

  

 

https://docs.openmicroscopy.org/omero/5.4.0/developers/Tables.html
https://github.com/openmicroscopy/openmicroscopy/blob/v5.4.0/components/tools/OmeroJava/test/integration/TableTest.java
https://github.com/openmicroscopy/openmicroscopy/blob/v5.4.0/components/tools/OmeroPy/test/integration/tablestest/test_service.py


 

Potential use by OME 

OME-HDF5? 
● Store 5D images as 5D hypervolume; no more 

DimensionOrder/Interleaving/RGBChannelCount and 2D plane limitations 
● Simplify fetching and ordering of image data from disc; replace openBytes with simple 

fetch of exactly the data requested 
● Simplify image writing; ordering constraints are lifted 
● OME-XML metadata can be stored as string attribute 
● OME-XML metadata could alternatively be stored directly as attributes on datasets and 

groups: 
○ More efficient to open, since unused metadata isn’t read into memory 
○ More efficient to read, since it’s binary 
○ Hard links can deduplicate repeated metadata such as channel and instrument 

metadata 
● Analysis results can be stored in HDF5 and link back to the original datasets (including 

external references to the original datafiles) 
● Interoperability with HDF5 libraries allows easy access to OME image data and 

metadata without the need for using our library APIs. 
● The existing model and metadatastore APIs are not designed with HDF in mind; they 

would perform poorly unless they were updated to take advantage of HDF features. 
 
 

 

 


