What is R?

Statistics Package like SPSS, Minitab, etc. but R is free and opensource

Can be used as command line application (no GUI) or as programming language

Some language features:

• Functional
• Dynamic typed
• Call-by-value
• Built in support for matrices, complex numbers
• 4(?) different approaches for OOP
Why we should improve R support

• R is taking over in science in general

• Lots of bioinformatics and a substantial amount of image analysis packages available, e.g. https://cran.r-project.org/web/views/MedicalImaging.html

• Scripts can run on client and server side

• Easy, straightforward using the Java Gateway and rJava
Why we should not

- There is already an indirect way to interact with OMERO by directly accessing the files on the server and using RBioformats package (https://github.com/aoles/RBioFormats) (has not been updated since 5.0.8)

- Maybe there is no demand?

 Email from 2011 and a Trello card from 2013 for R support in OMERO
Examples and “R toolbox”

• Add examples to documentation for using the Java Gateway via rJava

• Build a “toolbox” of methods to make the interaction with R and OMERO more convenient → Needs more external input, use cases, etc.

• Create a Dockerfile building on top of r-base:latest

https://github.com/dominikl/rOMERO
Example – Connect to OMERO and build data frame

source("R/gateway.R")

Connect to OMERO
connect("user", "test", "localhost")

The dataset we're dealing with and the name of tags
datasetId <- 101
treatment1Tag <- "treatment1"
treatment2Tag <- "treatment2"

Define the data frame
df <- data.frame(Treatment1 = logical(), Treatment2 = logical(), CellSize = numeric())

Loop over the images and gather the data
for(image in images) {
 annos <- listImageAnnotations(image)
 rois <- listROIs(image)

 treatment1 <- FALSE
 treatment2 <- FALSE

 for(anno in annos) {
 if(.jinstanceof(anno, "omero/gateway/model/TagAnnotationData")) {
 tag <- .jcast(anno, "omero/gateway/model/TagAnnotationData")
 value <- tag$getTagValue()
 if(value == treatment1Tag)
 treatment1 <- TRUE
 if(value == treatment2Tag)
 treatment2 <- TRUE
 }
 }

 for (roi in rois) {
 row <- c(treatment1, treatment2, as.numeric(roi$getArea()))
 df[nrow(df) + 1,] <- row
 }
}

Disconnect again
disconnect()
Example – Plot data

Plot the data for a brief overview
boxplot(df$CellSize~df$Treatment1+df$Treatment2, ylab = "Cell Size", xlab = "Treatments",
names = c("Control", "Treatment1", "Treatment2", "Combined"),
col = c("red", "green", "green", "green"))
Example - Attach plot to OMERO Dataset

tmpfile <- "/tmp/boxplot.png"
png(tmpfile)
boxplot(df$CellSize~df$Treatment1+df$Treatment2, ylab = "Cell Size", xlab = "Treatments",
 names = c("Control", "Treatment1", "Treatment2", "Combined"),
 col = c("red", "green", "green", "green"))
dev.off()
addFile(tmpfile, dataset)
Example – Build model and attach to OMERO Dataset

```r
# Build a model
model <- lm(df$CellSize~as.factor(df$Treatment1)*as.factor(df$Treatment2))

# Attach the results to the dataset
tmpfile <- "~/tmp/linear_model.txt"
sink(tmpfile)
summary(model)
sink()
addFile(tmpfile, dataset)

tmpfile <- "~/tmp/linear_model.png"
png(tmpfile)
# Display four plots in one
par(mfrow=c(2,2))
plot(model)
dev.off()
addFile(tmpfile, dataset)
```

![Graphical representation of linear model output](linear_model.png)