
How an Event Becomes a 
Message

Message busses, HornetQ, and the firehose



What is a “Message Bus”?

● A mechanism for sending arbitrary 
messages between different software 
components

● (Mostly) Independent of implementation 
language and transport protocol

● Can have a central broker, or a distributed 
topology



Queue vs. Topic

Queue
● Point-to-point
● Each message 

consumed exactly 
once

● Guaranteed 
delivery

Topic
● One-to-many
● Every subscriber 

has chance to 
consume message

● Potentially lossy 
(messages not re-
delivered)



Queue vs. and Topic

● Queue is the most basic unit of 
communication

● Topics can be simulated as a collection of 
Queues connecting publishers and 
subscribers

● Clever combination of Queues and Topics 
can generate complex topologies



In Javaland...



JMS – Java Message Service

● A standardized API for interacting with 
message Queues and Topics

● Implemented by many Java libraries; lowest 
common denominator of functionality

● Provides mechanisms for getting resources, 
managing sessions, sending and receiving 
messages



JMS – Java Message Service

● Uses “dotted” notation for naming queues 
and topics (e.g. “jms.queue.myQueue” or 
“jms.topic.eventFeed”)

● Implements a “correlationId” and the ability 
to add filters to connections; this enables 
point-to-point-ish communication



JNDI – Java Naming and Directory Interface

● Ties names to resources (objects)

● Utilized by JMS to get references to queues 
and topics by name (e.g. “/queue/myQueue” 
or “/topic/eventFeed” naming style)

● Mostly transparent (but can be customized 
for larger/complex topologies)



HornetQ

● JMS Message Queue implementation from 
JBoss org

● Does not require a stand-alone broker

○ Ships with integration for Spring apps as well as 
JBoss AS

● Distributable, persistable, journalable, fast

● Secure w/permissions management



HornetQ

● Can connect directly (HornetQ “protocol”) or 
via JMS wrapper (included)

● Direct connections can only create Queues

● JMS Topics implemented by HornetQ as 
coordinated collection of Queues

● Configuration via XML (you were expecting something else?)



HornetQ

● Configuration
○ Queues/Topics – can be specified in hornetq-

jms.xml or created on the fly
○ Connectors – objects used by the system to connect 

(as a client) to queues/topics
○ Acceptors – interfaces clients can use to connect to 

queues/topics
● Connections can be in VM or via any 

interface supported by Netty (TCP, HTTP, 
STOMP, STOMP-WS)



STOMP – Simple Text-Oriented Messaging Protocol

● Similar to HTTP, but allows for bi-directional 
messaging over stateful connections

● Supported by HornetQ, AcitveMQ, 
RabbitMQ, others

● Works over TCP or even WebSockets



Messaging in 
OMERO



Firehose – Event Feed

● Hook into ome.security.basic.
EventHandler to send event messages at 
the point event logs are saved

● JSON of id, entity type, and action

● Feed available on the “/topic/eventFeed” or 
“jms.topic.eventFeed” topic



Firehose – Event Backhaul

● Endpoint for clients to get a span of events 
missed

● Same info as Event Feed, but not real-time

● Available on the “/queue/eventBackhaul” or 
“jms.queue.eventBackhaul” queue



Firehose – Client Library and More

● Python library (in progress) to consume 
Firehose, automatically handle 
reconnection/backhaul filling, scheduling, 
etc.

● Communication via STOMP (localhost only 
until security is implemented)

● Example CLI tool (omero firehose)



Questions?


