C++ Build Environment Setup for Building

Bio-Formats and OmeroCpp

Roger Leigh

Wednesday 3™ September 2014
University of Dundee

é\\]ERSI T},o
®
(X wellcometrust
.. O. O M E »‘ Strategic Award

DUNDEE

Overview

Overview

Installation of prerequisites
Compiler and toolchain
Package installation
Obtaining packages
Configuration

Building C++ code
Build systems
cmake introduction
cmake demonstration

Examples
gtest on Unix
Bio-Formats on Unix
OmeroCpp on Unix
gtest and OmeroCpp on Windows

2/30

Compiler and toolchain
Package installation
Obtaining packages
Configuration

Installation of prerequisites

Default compilers

v

FreeBSD: LLVM/clang++ or GCC/g++

Linux: GCC/g++ and GNU Binutils/1d

MacOS X: XCode (custom LLVM/clang++)
Windows: Visual Studio or Visual Studio Express
(MSVC/c1)

Earlier versions of MacOS X used GCC 4.2.

v

v

v

3/30

Compiler and toolchain
Package installation
Obtaining packages
Configuration

Installation of prerequisites

Package managers

» FreeBSD: Ports (e.g. pkg, portmaster)

» Linux: Distribution package manager (e.g. apt-get or yum)

» MacOS X: homebrew (brew)

» Windows: Yeah, right. You need to manually download all
the tools and then compile all the libraries by hand for your

specific version of Visual Studio. (Microsoft love to make
development for their platform easy and painless. Not!)

On the next few pages, the needed packages for each platform
will be detailed. This includes all packages needed for
Bio-Formats and OMERQO including unit testing and API
documentation generation; you might not need them all but it
doesn't hurt to have them all.

4/30

Compiler and toolchain
Package installation
Obtaining packages
Configuration

Installation of prerequisites

FreeBSD packages

Run pkg install to install:

devel/apache-ant java/openjdk7
devel/boost-all java/junit
devel/binutils lang/clang33
devel/cmake lang/python
devel/doxygen lang/python27
devel/git print/texlive-full
devel/googletest science/hdf5
devel/ice textproc/py-genshi
graphics/graphviz textproc/py-sphinx
graphics/tiff textproc/xerces-c3

Add /usr/local/bin before /usr/bin in the PATH so that the newer GNU 1d is used.

5/30

Compiler and toolchain
Package installation
Obtaining packages
Configuration

Installation of prerequisites

Debian and Ubuntu packages

Run apt-get install to install:

ant ant-contrib ant-optional
libzeroc-ice35-dev
ice3b-services ice3b-slice

build-essential

cmake ice3b-translators icebox
doxygen python-zeroc-ice

git openjdk-7-jdk openjdk-7-jre
graphviz python python2.7

junit4 texlive-full
libboost-all-dev libhdf5-dev

libgtest-dev python-genshi (or use pip)
libtiff5-dev python-sphinx (Or use pip)

libxerces-c-dev

6/30

Compiler and toolchain
Package installation
Obtaining packages
Configuration

Installation of prerequisites

CentOS and RHEL packages

Run yum groupinstall "Development Tools"

Run yum install to install:

boost-devel java-1.7.0-openjdk

cmake junit4

doxygen libtiff-devel

git python-genshi (Or use pip)
graphviz python

gtest-devel texlive-full

hdf5-devel xerces-c-devel

Install the following by hand:

>

vvyyvyy

Ant

JUnit

Ice (RPMs available)
TeXLive (via install-t1)
sphinx (via pip)

7130

Installation of prerequisites

Compiler and toolchain
Package installation
Obtaining packages
Configuration

MacOS X homebrew packages

Install XCode and its command line tools

Run brew install to install:

ant

boost

cmake

doxygen

git

graphviz

Install the following by hand:

>

>
>
>

hdf5
ice
libtiff
python

xerces-c

Google Test (gtest) from zip or subversion

Java (JDK 1.7 from Oracle)
TeXLive (via install-t1 or MacTEX)
sphinx (via pip)

8/30

Compiler and toolchain
Package installation
Obtaining packages
Configuration

Installation of prerequisites

Windows installation (packages)

Install the following by hand:

>

>

>

>

Ant

CMake

Doxygen and Graphviz

Git (msysgit)

Ice (latest ZeroC installer or our 3.5.1 build)

Java (latest JDK 1.7 from Oracle)

IATEX (MIKTEX)

Python (latest 2.7 from python.org; 64-bit recommended)
genshi

sphinx

Visual Studio (2010, 2012 or 2013; Full or Express edition)

9/30

Compiler and toolchain
Package installation
Obtaining packages
Configuration

Installation of prerequisites

Windows installation (libraries)

For python, either download separate installers for each
packages, or install setuptools and pip for Python, then pip
install needed packages; ensure any downloaded packages
are 64-bit if using 64-bit python)

Download and build gtest using cmake (no installation
required)

Build and install the following by hand (for Bio-Formats):

boost tiff
hdf5 xerces
icu zlib

...and possibly more—we haven't yet done a Bio-Formats C++

build on Windows.
10/30

Compiler and toolchain
Package installation
Obtaining packages
Configuration

Installation of prerequisites

Obtaining packages by hand

>
>
>
>
>
>
>
>
>
>
>

Google Test ...o.ovvriii i (website) (download zip) (svn tag)
CMaKe .. (website) (download)
JaVa (JDK7 download)
Visual Studiocooiiiiiiii (Dundee staff) (Express download)
ANt (website) (download)
Gt ot (website) (download)
I (website) (download)
Python (website) (download) (extra packages)
ATEX oo (TEXLive) (TeXLive install) (MiKTEX website) (MikTEX download)
DOXYGEN . (website) (download)
GraphViz ..o (website) (download)

11/30

https://code.google.com/p/googletest/
https://code.google.com/p/googletest/downloads/detail?name=gtest-1.7.0.zip
http://googletest.googlecode.com/svn/tags/release-1.7.0
http://cmake.org/
http://cmake.org/cmake/resources/software.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
https://my.dundee.ac.uk/webapps/blackboard/content/listContent.jsp?course_id=_28436_1&content_id=_3952234_1
http://www.visualstudio.com/downloads/download-visual-studio-vs#d-express-windows-desktop
http://ant.apache.org/
http://ant.apache.org/bindownload.cgi
http://www.git-scm.com/
http://www.git-scm.com/downloads
http://zeroc.com/
http://zeroc.com/download.html#win32_msi
https://www.python.org/
https://www.python.org/download/releases/2.7.8/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.tug.org/texlive/
https://www.tug.org/texlive/quickinstall.html
http://www.miktex.org/
http://www.miktex.org/download
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/download.html
http://graphviz.org/
http://graphviz.org/Download_windows.php

Compiler and toolchain
Package installation
Obtaining packages
Configuration

Installation of prerequisites

System configuration

» In general, none of the tools should require any
configuration
» IATEX may require local font configuration to make the TEX
Gyre fonts available.
» Linux and FreeBSD: Use the provided fontconfig template
or create your own
» MacOS X: Add to system using FontBook
» Windows: May need adding to the system fonts if not found
automatically

12/30

Compiler and toolchain
Package installation
Obtaining packages
Configuration

Installation of prerequisites

Environment configuration

» Primarily needed on Windows

» Rather than setting globally, make a batch file which can
set up the environment.

» Activate a python virtualenv if needed

» Ensure that all tools are on the user PATH

» ant, cmake, doxygen, dot, git, python, java, sphinx,
xelatex

» Set CMAKE_PREFIX_ PATH if some libraries and tools are not
on the default search path.

» Not all tools need to be on the default path; some will be
discovered automatically by cmake

» No need to use a special Visual Studio shell when using

cmake
13/30

Build systems
Building C++ code cmake introduction
cmake demonstration

Available build systems

There are many available build systems, which include:

Make and GNU Make
GNU Autotools
CMake

Qt gmake

SCons

Jam /BJdam

Ant / Maven / Gradle

v

v

v

v

v

v

v

14/30

Build systems
Building C++ code cmake introduction
cmake demonstration

cmake overview

CMakelLists. txt
6 Compiler detection
Program detection
Library detection
Feature tests
Package options
Rules for creating
libraries programs,
unit tests, installation

<

\J

Makefile project.sln and .vcxproj
(make) ©°' " (visual Studio msbuild)

Eclipse project Sublime text project

...and many more build systems
and IDES are supported 15/30

Build systems
Building C++ code cmake introduction
cmake demonstration

cmake features

» cmake iS a generic cross-platform build system
» cmake generates build files for a large number of common
build systems

» On FreeBSD, Linux and MacOS X, make Makefiles will be
used

» On Windows with Visual Studio, msbuild .sln solution
files will be used

» Eclipse, Sublime Text, Kate, Code::Blocks or several other
IDEs or build systems may be used instead, if desired

16/30

Build systems
Building C++ code cmake introduction
cmake demonstration

Using cmake (live demo)

Basic cmake usage

» Basic options
» Available generators

Building gtest on MacOS X

» Running cmake
» Building

17/30

Build systems
Building C++ code cmake introduction
cmake demonstration

Using cmake (live demo)

Building Bio-Formats on MacOS X

v

Running cmake
Cache variables
Building

Testing
Installing

v

v

v

v

Building OmeroCpp on Windows

» Running cmake
» Building
» Installing

18/30

gtest on Unix
Bio-Formats on Unix
OmeroCpp on Unix

Examples gtest and OmeroCpp on Windows

Building gtest on UNix

Build from downloaded zip:

% cd /tmp

% unzip ~/Downloads/gtest-1.7.0.zip
% cd gtest-1.7.0

% cmake .

% make

This is used with other builds by setting the GTEST_ROOT
environment variable or the GTEST _ROOT cmake cache
variable.

19/30

gtest on Unix
Bio-Formats on Unix
OmeroCpp on Unix

Examples gtest and OmeroCpp on Windows

Building gtest on Debian or Ubuntu

Build using installed sources and headers from the
libgtest-dev package:

% cd /tmp

% mkdir gtest

% cd gtest

% cmake /usr/src/gtest
% make

This is used with other builds by setting the GTEST_ROOT
environment variable or the GTEST _ROOT cmake cache
variable.

20/30

gtest on Unix
Bio-Formats on Unix
OmeroCpp on Unix

Examples gtest and OmeroCpp on Windows

Building Bio-Formats on UNix (1)

Building from git or release zip:
Configure the build:

% mkdir /tmp/bfbuild
% cd /tmp/bfbuild
% cmake -DGTEST_ROOT=/tmp/gtest /path/to/bioformats

Show cache variables and advanced cache variables which may be used to customise
the build:

% cmake -LH
% cmake -LAH

Run the build with either of:

% make [VERBOSE=1]
% cmake --build .

Build the API reference documentation with either of:

% make doc
% cmake --build . --target doc

21/30

gtest on Unix
Bio-Formats on Unix
OmeroCpp on Unix

Examples gtest and OmeroCpp on Windows

Building Bio-Formats on UNix (2)

Run the unit tests with any of:

% make test
% cmake --build . --target test
% ctest [-V]

Individual tests may be run by hand:

% cpp/test/ome-bioformats/pixelbuffer
% cpp/test/ome-bioformats/pixelbuffer --gtest_help

Use --gtest_help to list test options. Useful when debugging to run specific tests or
subsets of the tests.

22/30

gtest on Unix
Bio-Formats on Unix
OmeroCpp on Unix

Examples gtest and OmeroCpp on Windows

Building Bio-Formats on UNix (3)

Install the build with either of:

% make install [VERBOSE=1] [DESTDIR=/staging/path]
% cmake --build . --target install

By default, this will install into CMAKE_INSTALL_PREFIX which will default to
/usr/local. Use DESTDIR to install into an alternative prefixed location, which is

useful for testing and packaging for release.

23/30

gtest on Unix
Bio-Formats on Unix
OmeroCpp on Unix

Examples gtest and OmeroCpp on Windows

Building OmeroCpp on UNix (1)

Building from git or release zip:
Configure the build. optionally showing Ice autodetection diagnostics:

% mkdir /tmp/ocppbuild

% cd /tmp/ocppbuild

% cmake -DGTEST_ROOT=/tmp/gtest [-DIce_HOME=/path/to/ice] \
[-DIce_DEBUG=0N] /path/to/openmicroscopy

Show cache variables and advanced cache variables which may be used to customise
the build:

% cmake -LH
% cmake -LAH

Run the build with either of:

% make [VERBOSE=1]
% cmake --build .

24/30

gtest on Unix
Bio-Formats on Unix
OmeroCpp on Unix

Examples gtest and OmeroCpp on Windows

Building OmeroCpp on UNix (2)

Alternatively, it is possible to build in the openmicroscopy tree directly:

% ./build.py
% ./build.py build-cpp -Dcmake.opts="cmake options"

However, passing in cmake options and using different generators is much more
difficult and more fragile with this method.

25/30

gtest on Unix
Bio-Formats on Unix
OmeroCpp on Unix

Examples gtest and OmeroCpp on Windows

Building OmeroCpp on UNix (3)

Run the unit tests with any of:

% make test
% cmake --build . --target test
% ctest [-V]

Note that ICE_CONFIG needs setting with the details of a running OMERO server which
the unit and integration tests can connect to for testing against.

Individual tests may be run by hand:

% components/tools/OmeroCpp/test/unit/unit
% components/tools/OmeroCpp/test/unit/unit --gtest_help

Use --gtest_help to list test options. Useful when debugging to run specific tests or
subsets of the tests.

26/30

gtest on Unix
Bio-Formats on Unix
OmeroCpp on Unix

Examples gtest and OmeroCpp on Windows

Building OmeroCpp on UNix (4)

Install the build with either of:

% make install [VERBOSE=1] [DESTDIR=/staging/path]
% cmake --build . --target install

By default, this will install into CMAKE_INSTALL_PREFIX which will default to
/usr/local. Use DESTDIR to install into an alternative prefixed location, which is

useful for testing and packaging for release.

27/30

gtest on Unix
Bio-Formats on Unix
OmeroCpp on Unix

Examples gtest and OmeroCpp on Windows

Windows environment

| set up the environment with a custom batch file:

set "ICE_HOME=C:\Program Files (x86)\ZeroC\Ice-3.5.1"
set "PATH=/,ICE_HOME%\bin\vc110\x64;C:\Program Files (x86)\CMake\bin;%PATH/"
c:\venv\27\scripts\activate

| also have Ant, Git, Java (JDK), and LaTeX on the default PATH. However, these could
also be included in the custom batch file.

| use ConsoleZ with custom tabs which source different batch files to create different
environments. For the above, | use the following command to set up a custom OMERO
tab:

C:\Windows\System32\cmd /k C:\Users\rleigh\bin\omeroenv.bat

Note that the Ice setup is only required for running build.py; it is optional for direct use

of cmake.

28/30

https://github.com/cbucher/console/wiki/Downloads

gtest on Unix
Bio-Formats on Unix
OmeroCpp on Unix

Examples gtest and OmeroCpp on Windows

Building gtest on Windows

Download and unpack gtest, then run:

set CL=/D_VARIADIC_MAX=10

cd c:\Users\rleigh\gtest-1.7.0

cmake -G "Visual Studio 11 2012 Win64"
cmake --build .

vV V. Vv Vv

The _VARIADIC_MAX=10 define works around a lack of variadic templates in this version
of Visual Studio; may affect other Visual Studio versions. Leave set for the remaining

steps.

29/30

gtest on Unix
Bio-Formats on Unix
OmeroCpp on Unix

Examples gtest and OmeroCpp on Windows

Building OmeroCpp on Windows

Note: OmeroCpp building on Windows is a work in progress and not get completely
finished.

Note: starting from a clean and up-to-date develop branch of openmicroscopy.git
located in c:\Users\rleigh\openmicroscopy.

\

mkdir c:\Users\rleigh\ocppbuild

cd c:\Users\rleigh\ocppbuild

cmake -G "Visual Studio 11 2012 Win64" \
-DGTEST_ROOT=C:\Users\rleigh\gtest-1.7.0 \
-DGTEST_LIBRARY=C:\Users\rleigh\gtest-1.7.0\Debug\gtest.lib \
-DGTEST_MAIN_LIBRARY=C:\Users\rleigh\gtest-1.7.0\Debug\gtest_main.lib \
. .\openmicroscopy

cmake --build .

Vv Vv

\

After running cmake, it's also possible to open the solution file in Visual Studio and build
from inside the application.

30/30

Acknowledgements

» OME Team, Dundee » Micron, Oxford

» Jason Swedlow » Douglas Russell
» Jean-Marie Burel

» Mark Carroll

» Andrew Patterson

» ...and the rest of the

team
‘e Wellcometrust
>4

Strategic Award

» Glencoe Software

» Melissa Linkert
» Josh Moore

e OME

DUNDEE

31/30

	Installation of prerequisites
	Compiler and toolchain
	Package installation
	Obtaining packages
	Configuration

	Building C++ code
	Build systems
	cmake introduction
	cmake demonstration

	Examples
	gtest on Unix
	Bio-Formats on Unix
	OmeroCpp on Unix
	gtest and OmeroCpp on Windows

	Appendix

