I About Bio-Formats

1 Help

2 Bio-Formats versions

2.1 Versioning policy

3 Why Java?

4 Bio-Formats metadata processing

4.1 Reporting a bug

4.2 Version history

II User Information

5 Using Bio-Formats with ImageJ and Fiji

5.1 ImageJ overview

5.2 Fiji overview

5.3 Bio-Formats features in ImageJ and Fiji

5.4 Installing Bio-Formats in ImageJ

5.5 Using Bio-Formats to load images into ImageJ

5.6 Managing memory in ImageJ/Fiji using Bio-Formats

6 Command line tools

6.1 Command line tools introduction

6.2 Displaying images and metadata

6.3 Converting a file to different format

6.4 Validating XML in an OME-TIFF

6.5 Editing XML in an OME-TIFF

6.6 List formats by domain

6.7 List supported file formats

6.8 Display file in ImageJ

6.9 Format XML data

6.10 Create a high-content screen for testing

7 OMERO

8 Image server applications

8.1 BISQUE

8.2 OME Server

9 Libraries and scripting applications

9.1 FARSIGHT

9.2 i3dcore

9.3 ImgLib

9.4 ITK

9.5 Qu for MATLAB

10 Numerical data processing applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>GNU Octave</td>
<td>68</td>
</tr>
<tr>
<td>10.2</td>
<td>IDL</td>
<td>68</td>
</tr>
<tr>
<td>10.3</td>
<td>KNIME</td>
<td>69</td>
</tr>
<tr>
<td>10.4</td>
<td>MATLAB</td>
<td>69</td>
</tr>
<tr>
<td>10.5</td>
<td>VisAD</td>
<td>70</td>
</tr>
</tbody>
</table>

11 Visualization and analysis applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Bitplane Imaris</td>
<td>71</td>
</tr>
<tr>
<td>11.2</td>
<td>CellProfiler</td>
<td>71</td>
</tr>
<tr>
<td>11.3</td>
<td>Comstat2</td>
<td>72</td>
</tr>
<tr>
<td>11.4</td>
<td>Endrov</td>
<td>72</td>
</tr>
<tr>
<td>11.5</td>
<td>FocalPoint</td>
<td>72</td>
</tr>
<tr>
<td>11.6</td>
<td>Graphic Converter</td>
<td>72</td>
</tr>
<tr>
<td>11.7</td>
<td>Icy</td>
<td>73</td>
</tr>
<tr>
<td>11.8</td>
<td>Imago</td>
<td>73</td>
</tr>
<tr>
<td>11.9</td>
<td>Iqm</td>
<td>73</td>
</tr>
<tr>
<td>11.10</td>
<td>Macnification</td>
<td>73</td>
</tr>
<tr>
<td>11.11</td>
<td>Micro-Manager</td>
<td>73</td>
</tr>
<tr>
<td>11.12</td>
<td>MIPAV</td>
<td>74</td>
</tr>
<tr>
<td>11.13</td>
<td>Vaa3D</td>
<td>75</td>
</tr>
<tr>
<td>11.14</td>
<td>VisBio</td>
<td>75</td>
</tr>
<tr>
<td>11.15</td>
<td>XuvTools</td>
<td>76</td>
</tr>
</tbody>
</table>

III Developer Documentation

12 Introduction to Bio-Formats

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Overview for developers</td>
<td>79</td>
</tr>
<tr>
<td>12.2</td>
<td>Obtaining and building Bio-Formats</td>
<td>80</td>
</tr>
<tr>
<td>12.3</td>
<td>Component overview</td>
<td>82</td>
</tr>
<tr>
<td>12.4</td>
<td>Reading files</td>
<td>85</td>
</tr>
<tr>
<td>12.5</td>
<td>Writing files</td>
<td>87</td>
</tr>
</tbody>
</table>

13 Using Bio-Formats as a Java library

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Using Bio-Formats as a Java library</td>
<td>88</td>
</tr>
<tr>
<td>13.2</td>
<td>Units of measurement</td>
<td>92</td>
</tr>
<tr>
<td>13.3</td>
<td>Exporting files using Bio-Formats</td>
<td>93</td>
</tr>
<tr>
<td>13.4</td>
<td>Further details on exporting raw pixel data to OME-TIFF files</td>
<td>95</td>
</tr>
<tr>
<td>13.5</td>
<td>Logging</td>
<td>97</td>
</tr>
<tr>
<td>13.6</td>
<td>Converting files from FV1000 OIB/OIF to OME-TIFF</td>
<td>97</td>
</tr>
<tr>
<td>13.7</td>
<td>Using Bio-Formats in MATLAB</td>
<td>98</td>
</tr>
<tr>
<td>13.8</td>
<td>Using Bio-Formats in Python</td>
<td>104</td>
</tr>
<tr>
<td>13.9</td>
<td>Interfacing with Bio-Formats from non-Java code</td>
<td>104</td>
</tr>
</tbody>
</table>

14 Using Bio-Formats as a native C++ library

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Code formatting</td>
<td>106</td>
</tr>
<tr>
<td>15.2</td>
<td>Testing code changes</td>
<td>106</td>
</tr>
<tr>
<td>15.3</td>
<td>Generating test images</td>
<td>109</td>
</tr>
<tr>
<td>15.4</td>
<td>Writing a new file format reader</td>
<td>112</td>
</tr>
<tr>
<td>15.5</td>
<td>Adding format/reader documentation pages</td>
<td>116</td>
</tr>
<tr>
<td>15.6</td>
<td>Bio-Formats service and dependency infrastructure</td>
<td>117</td>
</tr>
<tr>
<td>15.7</td>
<td>Code generation with xsd-fu</td>
<td>119</td>
</tr>
<tr>
<td>15.8</td>
<td>Scripts for performing development tasks</td>
<td>122</td>
</tr>
</tbody>
</table>

IV Formats

16 Dataset Structure Table

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Flex Support</td>
<td>125</td>
</tr>
</tbody>
</table>

Note: The page numbers are placeholders and should be replaced with actual page numbers from the document. The table is designed to provide an overview of the content and structure of the document.
17 Supported Formats

17.1 3i SlideBook ... 135
17.2 Andor Bio-Imaging Division (ABD) TIFF 136
17.3 AIM .. 137
17.4 Alicona 3D ... 137
17.5 Amersham Biosciences Gel .. 138
17.6 Amira Mesh .. 139
17.7 Amnis FlowSight .. 139
17.8 Analyze 7.5 .. 140
17.9 Animated PNG ... 140
17.10 Aperio AFI ... 141
17.11 Aperio SVS TIFF ... 142
17.12 Applied Precision CellWorX .. 142
17.13 AVI (Audio Video Interleave) .. 143
17.14 Axon Raw Format .. 144
17.15 BD Pathway .. 145
17.16 Becker & Hickl SPC FIFO .. 145
17.17 Becker & Hickl SPImage ... 146
17.18 Bio-Rad Gel ... 147
17.19 Bio-Rad PIC .. 147
17.20 Bio-Rad SCN ... 148
17.21 Bitplane Imaris ... 149
17.22 Bruker MRI .. 150
17.23 Burleigh .. 150
17.24 Canon DNG .. 151
17.25 CellH5 .. 151
17.26 Cellomics .. 152
17.27 cellSens VSI ... 153
17.28 CellVoyager .. 153
17.29 DeltaVision .. 154
17.30 DICOM .. 155
17.31 ECAT7 ... 156
17.32 EPS (Encapsulated PostScript) ... 156
17.33 Evotec/PerkinElmer Opera Flex ... 157
17.34 FEI .. 158
17.35 FEI TIFF .. 158
17.36 FITS (Flexible Image Transport System) 159
17.37 Gatan Digital Micrograph .. 159
17.38 Gatan Digital Micrograph 2 .. 160
17.39 GIF (Graphics Interchange Format) .. 161
17.40 Hamamatsu Aquacosmos NAF .. 161
17.41 Hamamatsu HIS .. 162
17.42 Hamamatsu ndpi .. 163
17.43 Hamamatsu VMS .. 163
17.44 Hitachi S-4800 ... 164
17.45 I2I ... 165
17.46 ICS (Image Cytometry Standard) .. 165
17.47 Imacon .. 166
17.48 ImagePro Sequence .. 167
17.49 ImagePro Workspace .. 167
17.50 IMAGIC .. 168
17.51 IMOD ... 169
17.52 Improvision Openlab LIIFF .. 169
17.53 Improvision Openlab Raw ... 170
17.54 Improvision TIFF ... 171
17.55 Inspector OBF ... 171
17.56 InCell 1000/2000 .. 172
17.57 InCell 3000 ... 172
17.58 INR ... 173
17.59 Inveon .. 173
17.60 IPLab ... 174
<table>
<thead>
<tr>
<th>Page</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.61</td>
<td>IVision</td>
</tr>
<tr>
<td>17.62</td>
<td>JEOL</td>
</tr>
<tr>
<td>17.63</td>
<td>JPEG</td>
</tr>
<tr>
<td>17.64</td>
<td>JPEG 2000</td>
</tr>
<tr>
<td>17.65</td>
<td>JPK</td>
</tr>
<tr>
<td>17.66</td>
<td>JFX</td>
</tr>
<tr>
<td>17.67</td>
<td>Khoros VIFF (Visualization Image File Format) Bitmap</td>
</tr>
<tr>
<td>17.68</td>
<td>Kodak BIP</td>
</tr>
<tr>
<td>17.69</td>
<td>Lambert Instruments FLIM</td>
</tr>
<tr>
<td>17.70</td>
<td>LaVision Inspector</td>
</tr>
<tr>
<td>17.71</td>
<td>Leica LCS LEI</td>
</tr>
<tr>
<td>17.72</td>
<td>Leica LAS AF LIF (Leica Image File Format)</td>
</tr>
<tr>
<td>17.73</td>
<td>Leica SCN</td>
</tr>
<tr>
<td>17.74</td>
<td>LEO</td>
</tr>
<tr>
<td>17.75</td>
<td>Li-Cor L2D</td>
</tr>
<tr>
<td>17.76</td>
<td>LIM (Laboratory Imaging/Nikon)</td>
</tr>
<tr>
<td>17.77</td>
<td>MetaMorph 7.5 TIFF</td>
</tr>
<tr>
<td>17.78</td>
<td>MetaMorph Stack (STK)</td>
</tr>
<tr>
<td>17.79</td>
<td>MIAS (Maia Scientific)</td>
</tr>
<tr>
<td>17.80</td>
<td>Micro-Manager</td>
</tr>
<tr>
<td>17.81</td>
<td>MINC MRI</td>
</tr>
<tr>
<td>17.82</td>
<td>Minolta MRW</td>
</tr>
<tr>
<td>17.83</td>
<td>MNG (Multiple-image Network Graphics)</td>
</tr>
<tr>
<td>17.84</td>
<td>Molecular Imaging</td>
</tr>
<tr>
<td>17.85</td>
<td>MRC (Medical Research Council)</td>
</tr>
<tr>
<td>17.86</td>
<td>NEF (Nikon Electronic Format)</td>
</tr>
<tr>
<td>17.87</td>
<td>NIITT</td>
</tr>
<tr>
<td>17.88</td>
<td>Nikon Elements TIFF</td>
</tr>
<tr>
<td>17.89</td>
<td>Nikon EZ-C1 TIFF</td>
</tr>
<tr>
<td>17.90</td>
<td>Nikon NIS-Elements ND2</td>
</tr>
<tr>
<td>17.91</td>
<td>NRRD (Nearly Raw Raster Data)</td>
</tr>
<tr>
<td>17.92</td>
<td>Olympus CellIR/APL</td>
</tr>
<tr>
<td>17.93</td>
<td>Olympus FluoView FV1000</td>
</tr>
<tr>
<td>17.94</td>
<td>Olympus FluoView TIFF</td>
</tr>
<tr>
<td>17.95</td>
<td>Olympus ScanR</td>
</tr>
<tr>
<td>17.96</td>
<td>Olympus SIS TIFF</td>
</tr>
<tr>
<td>17.97</td>
<td>OME-TIFF</td>
</tr>
<tr>
<td>17.98</td>
<td>OME-XML</td>
</tr>
<tr>
<td>17.99</td>
<td>Oxford Instruments</td>
</tr>
<tr>
<td>17.100</td>
<td>PCORAW</td>
</tr>
<tr>
<td>17.101</td>
<td>PCX (PC Paintbrush)</td>
</tr>
<tr>
<td>17.102</td>
<td>PerkinElmer Densitometer</td>
</tr>
<tr>
<td>17.103</td>
<td>PerkinElmer Nuance</td>
</tr>
<tr>
<td>17.104</td>
<td>PerkinElmer Operetta</td>
</tr>
<tr>
<td>17.105</td>
<td>PerkinElmer UltraVIEW</td>
</tr>
<tr>
<td>17.106</td>
<td>Portable Any Map</td>
</tr>
<tr>
<td>17.107</td>
<td>Adobe Photoshop PSD</td>
</tr>
<tr>
<td>17.108</td>
<td>Photoshop TIFF</td>
</tr>
<tr>
<td>17.109</td>
<td>PicoQuant Bin</td>
</tr>
<tr>
<td>17.110</td>
<td>PICT (Macintosh Picture)</td>
</tr>
<tr>
<td>17.111</td>
<td>PNG (Portable Network Graphics)</td>
</tr>
<tr>
<td>17.112</td>
<td>Prairie Technologies TIFF</td>
</tr>
<tr>
<td>17.113</td>
<td>Princeton Instruments SPE</td>
</tr>
<tr>
<td>17.114</td>
<td>Questant</td>
</tr>
<tr>
<td>17.115</td>
<td>QuickTime Movie</td>
</tr>
<tr>
<td>17.116</td>
<td>RHK</td>
</tr>
<tr>
<td>17.117</td>
<td>SBIG</td>
</tr>
<tr>
<td>17.118</td>
<td>Seiko</td>
</tr>
<tr>
<td>17.119</td>
<td>SimplePCI & HCImage</td>
</tr>
<tr>
<td>17.120</td>
<td>SimplePCI & HCImage TIFF</td>
</tr>
<tr>
<td>17.121</td>
<td>ISM Camera</td>
</tr>
</tbody>
</table>
The following documentation is split into four parts. *About Bio-Formats* explains the goal of the software, discusses how it processes metadata, and provides other useful information such as version history and how to report bugs. *User Information* focuses on how to use Bio-Formats as a plugin for ImageJ and Fiji, and also gives details of other software packages which can use Bio-Formats to read and write microscopy formats. *Developer Documentation* covers more indepth information on using Bio-Formats as a Java library and how to interface from non-Java codes. Finally, *Formats* is a guide to all the file formats currently supported by Bio-Formats.
Part I

About Bio-Formats
Bio-Formats is a standalone Java library for reading and writing life sciences image file formats. It is capable of parsing both pixels and metadata for a large number of formats, as well as writing to several formats.

The primary goal of Bio-Formats is to facilitate the exchange of microscopy data between different software packages and organizations. It achieves this by converting proprietary microscopy data into an open standard called the OME data model\(^1\), particularly into the OME-TIFF\(^2\) file format.

We believe the standardization of microscopy metadata to a common structure is of vital importance to the community. You may find LOCI’s article on open source software in science\(^3\) of interest.

\(^1\)http://genomebiology.com/2005/6/5/R47
\(^2\)http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
\(^3\)http://loci.wisc.edu/software/oss
There is a guide for reporting bugs here.

For help relating to opening images in ImageJ or FIJI or when using the command line tools, refer to the users documentation. You can also find tips on common issues with specific formats on the pages linked from the supported formats table.

Please contact us\(^1\) if you have any questions or problems with Bio-Formats not addressed by referring to the documentation.

Other places where questions are commonly asked and/or bugs are reported include:

- OME Trac\(^2\)
- ome-devel mailing list\(^3\) (searchable using google with ‘site:lists.openmicroscopy.org.uk’)
- ome-users mailing list\(^4\) (searchable using google with ‘site:lists.openmicroscopy.org.uk’)
- ImageJ forum\(^5\) (for ImageJ/Fiji issues)
- ImageJ mailing list\(^6\) (and archive\(^7\))
- Fiji GitHub Issues\(^8\)
- Confocal microscopy mailing list\(^9\)

\(^1\)http://www.openmicroscopy.org/site/community/mailing-lists
\(^2\)https://trac.openmicroscopy.org/ome
\(^3\)http://lists.openmicroscopy.org.uk/pipermail/ome-devel
\(^4\)http://lists.openmicroscopy.org.uk/pipermail/ome-users
\(^5\)http://forum.imagej.net
\(^6\)http://imagej.nih.gov/ij/list.html
\(^7\)http://imagej.1557.n6.nabble.com/
\(^8\)https://github.com/fiji/fiji/issues
\(^9\)http://lists.umn.edu/cgi-bin/wa?A0=confocalmicroscopy
Bio-Formats is now decoupled from OMERO with its own release schedule rather than being updated whenever a new version of OMERO\(^1\) is released. We expect this to result in more frequent releases to get fixes out to the community faster.

See the version history for a list of major changes in each release.

2.1 Versioning policy

Bio-Formats does not yet conform to strict semantic versioning\(^2\). The following set of rules describe the current policy (using RFC 2119\(^3\)):

- The version number MUST take the form X.Y.Z where X, Y, and Z are non-negative integers, and MUST NOT contain leading zeroes. X is the major version, Y is the minor version and Z is the patch version.
- The patch version Z MUST be incremented if only backwards compatible bug fixes are introduced. A bug fix is defined as an internal change that fixes incorrect behavior.
- Either the minor version Y or the major version X MUST be incremented when backwards-incompatible changes (model-breaking API) are introduced to the public API. These version increases MAY also include patch level changes.
- Either the minor version or the major version MUST be incremented if the version of a non-OME/external dependency is updated.

The exception to this policy is serialization. Serialization functionality was implemented as a ReaderWrapper called Memoizer in Bio-Formats 5.0.0 and is exposed to the community via a public API. Currently:

- Major/minor/patch version bumps of Bio-Formats are not backwards-compatible with regard to serialization in that cached memo files written with a previous version may not be readable by later versions and may need to be rewritten.
- Consumers with code relying on Bio-Formats caching stability should not upgrade their Bio-Formats version for now.
- Changes breaking the serialization should be grouped together as much as possible in order to minimize the number of breakages per series.

See this GitHub issue\(^4\) for further details.

1. http://www.openmicroscopy.org/site/support/omero5.1/
2. http://semver.org
4. https://github.com/openmicroscopy/design/issues/55
CHAPTER
THREE

WHY JAVA?

From a practical perspective, Bio-Formats is written in Java because it is cross-platform and widely used, with a vast array of libraries for handling common programming tasks. Java is one of the easiest languages from which to deploy cross-platform software. In contrast to C++, which has a large number of complex platform issues to consider, and Python, which leans heavily on C and C++ for many of its components (e.g., NumPy and SciPy), Java code is compiled one time into platform-independent byte code, which can be deployed as is to all supported platforms. And despite this enormous flexibility, Java manages to provide time performance nearly equal to C++, often better in the case of I/O operations (see further discussion on the comparative speed of Java on the LOCI site\(^1\)).

There are also historical reasons associated with the fact that the project grew out of work on the VisAD Java component library\(^2\). You can read more about the origins of Bio-Formats on the LOCI Bio-Formats homepage\(^3\).

\(^1\)http://loci.wisc.edu/faq/isnt-java-too-slow
\(^2\)http://visad.ssec.wisc.edu
\(^3\)http://loci.wisc.edu/software/bio-formats
Pixels in microscopy are almost always very straightforward, stored on evenly spaced rectangular grids. It is the metadata (details about the acquisition, experiment, user, and other information) that can be complex. Using the OME data model enables applications to support a single metadata format, rather than the multitude of proprietary formats available today.

Every file format has a distinct set of metadata, stored differently. Bio-Formats processes and converts each format’s metadata structures into a standard form called the OME data model\(^1\), according to the OME-XML\(^2\) specification. We have defined an open exchange format called OME-TIFF\(^3\) that stores its metadata as OME-XML. Any software package that supports OME-TIFF is also compatible with the dozens of formats listed on the Bio-Formats page, because Bio-Formats can convert your files to OME-TIFF format.

To facilitate support of OME-XML, we have created a library in Java\(^4\) for reading and writing OME-XML\(^5\) metadata.

There are three types of metadata in Bio-Formats, which we call core metadata, original metadata, and OME metadata.

1. **Core metadata** only includes things necessary to understand the basic structure of the pixels: image resolution; number of focal planes, time points, channels, and other dimensional axes; byte order; dimension order; color arrangement (RGB, indexed color or separate channels); and thumbnail resolution.

2. **Original metadata** is information specific to a particular file format. These fields are key/value pairs in the original format, with no guarantee of cross-format naming consistency or compatibility. Nomenclature often differs between formats, as each vendor is free to use their own terminology.

3. **OME metadata** is information from #1 and #2 converted by Bio-Formats into the OME data model. **Performing this conversion is the primary purpose of Bio-Formats.** Bio-Formats uses its ability to convert proprietary metadata into OME-XML as part of its integration with the OME and OMERO servers—essentially, they are able to populate their databases in a structured way because Bio-Formats sorts the metadata into the proper places. This conversion is nowhere near complete or bug free, but we are constantly working to improve it. We would greatly appreciate any and all input from users concerning missing or improperly converted metadata fields.

4.1 Reporting a bug

4.1.1 Before filing a bug report

If you think you have found a bug in Bio-Formats, the first thing to do is update your version of Bio-Formats to the latest version to check if the problem has already been addressed. The Fiji updater will automatically do this for you, while in ImageJ you can select Plugins → Bio-Formats → Update Bio-Formats Plugins.

You can also download the latest version of Bio-Formats\(^6\). If you are not sure which version you need, select the latest build of the Bio-Formats package bundle from the components table.

2. http://www.openmicroscopy.org/site/support/ome-model/ome-xml
5. http://www.openmicroscopy.org/site/support/ome-model/ome-xml
4.1.2 Common issues to check

- If your 12, 14 or 16-bit images look all black when you open them, typically the problem is that the pixel values are very, very small relative to the maximum possible pixel value (4095, 16383, and 65535, respectively), so when displayed the pixels are effectively black. In ImageJ/Fiji, this is fixable by checking the “Autoscale” option; with the command line tools, the “--autoscale -fast” options should work.

- If the file is very, very small (4096 bytes) and any exception is generated when reading the file, then make sure it is not a Mac OS X resource fork. The ‘file’ command should tell you:

 $ file /path/to/suspicious-file
 suspicious-file: AppleDouble encoded Macintosh file

- If you get an OutOfMemory or NegativeArraySize error message when attempting to open an SVS or JPEG-2000 file then the amount of pixel data in a single image plane exceeds the amount of memory allocated to the JVM (Java Virtual Machine) or 2 GB, respectively. For the former, you can increase the amount of memory allocated; in the latter case, you will need to open the image in sections. If you are using Bio-Formats as a library, this means using the openBytes(int, int, int, int, int) method in loci.formats.IFormatReader. If you are using Bio-Formats within ImageJ, you can use the Crop on import option.

 Note that JPEG-2000 is a very efficient compression algorithm - thus the size of the file on disk will be substantially smaller than the amount of memory required to store the uncompressed pixel data. It is not uncommon for a JPEG-2000 or SVS file to occupy less than 200 MB on disk, and yet have over 2 GB of uncompressed pixel data.

4.1.3 Sending a bug report

If you can still reproduce the bug after updating to the latest version of Bio-Formats, and your issue does not relate to anything listed above or noted on the relevant file format page, please send a bug report to the OME Users mailing list. You can upload files to our QA system or for large files (>2 GB), we can provide you with an FTP server address if you write to the mailing list.

To ensure that any inquiries you make are resolved promptly, please include the following information:

- **Exact error message.** Copy and paste any error messages into the text of your email. Alternatively, attach a screenshot of the relevant windows.

- **Version information.** Indicate which release of Bio-Formats, which operating system, and which version of Java you are using.

- **Non-working data.** If possible, please send a non-working file. This helps us ensure that the problem is fixed for next release and will not reappear in later releases. Note that any data provided is used for internal testing only; we do not make images publicly available unless given explicit permission to do so.

- **Metadata and screenshots.** If possible, include any additional information about your data. We are especially interested in the expected dimensions (width, height, number of channels, Z slices, and timepoints). Screenshots of the image being successfully opened in other software are also useful.

- **Format details.** If you are requesting support for a new format, we ask that you send as much data as you have regarding this format (sample files, specifications, vendor/manufacturer information, etc.). This helps us to better support the format and ensures future versions of the format are also supported.

Please be patient - it may be a few days until you receive a response, but we reply to every email inquiry we receive.

4.2 Version history

4.2.1 5.2.3 (2016 October 5)

Java bug fixes:

- CZI

8http://lists.openmicroscopy.org.uk/mailman/listinfo/ome-users
9http://qa.openmicroscopy.org.uk/qa/upload/
fixed imageCount for RGB images

- ICS writing
 - fixed ordering of image dimensions

- DeltaVision
 - fixed reading of large time dimensions

Command-line tools improvements:
- `bftools.zip` now includes the version history as NEWS.rst (thanks to Gerhard Burger)

Code clean-up/improvements:
- switched to `String.indexOf(int)` in GPL-licensed reader code so that a simpler library method can be used
- strings now extended with characters where possible
- completed deprecation of `DataTools.sanitizeDouble()`
- deprecated unused OSGi and one-tools bundle build targets

OME-XML changes/improvements:
- bumped schema version number to 2 (schema namespace left unchanged)
- added acquisition modes BrightField, SweptFieldConfocal and SPIM
- added parsing for Laser Scan Confocal and Swept Field Confocal

Documentation improvements:
- documented versioning policy
- clarified supported versions for Micro-Manager and Olympus ScanR files

4.2.2 5.2.2 (2016 September 13)

Java bug fixes and improvements:
- fixed a regression in which the DataTools number parsing API would not be thread-safe anymore
- InCell
 - improved handling of Analyzer 2000 datasets to find TIFF files
- FV1000
 - fixed preview names ordering
- OME-TIFF
 - enabled all BigTIFF extensions
 - various code cleanup across the Java code
 - added test coverage for all example codes in the developer documentations
 - added tests covering the semantics of the INI parser

ImageJ bug fixes and improvements:
- fixed a bug in ImageJ when swapping dimensions of an image with multiple series of different dimensions
- added an option to the exporter to pad filename indexes with zeros

Command-line tools improvements:
- allowed the binaries to be symlinked (thanks to Gerhard Burger)
- added an option to bfconvert to pad filename indexes with zeros
4.2.3 5.2.1 (2016 August 25)

Java bug fixes:

- **Zeiss CZI**
 - fixed NumberFormatException when the position object is not null but the values of child are null
- **SimplePCI**
 - made IniParser less stringent to allow reading of imperfectly formatted TIFF description headers
- fixed stitching of file patterns in ImageJ to remove duplication of directory names in the file path
- added an option to bconvert to allow creation of OME-TIFF without lookup tables
- addition of MetadataOnly elements containing no BinData or TiffData now handled via MetadataTools API in ImageInfo
- example code in developer docs is now tested via a new Maven module

4.2.4 5.2.0 (2016 August 18)

Java format support improvements are listed below.

†Denotes a major breaking change to the reader (typically modification of core metadata). Code changes or re-import may be necessary in ImageJ/FIJI and OMERO.

- added support (and public sample files) for Becker & Hickl .spc FIFO data
- added support for Princeton Instruments .spe data
- **bug fixes for many formats including:**
 - **CellSens VSI†**
 * fixes for correctly reading dimensions
 - **FlowSight**
 * fixes to infer channel count from channel names (thanks to Lee Kamentsky)
 - **Hamamatsu VMS†**
 * fixed dimensions of full-resolution images
 - **ICS writing**
 * fixed dimension population for split files
 - **Kodak BIP**
 * fixed handling of CCD temperature stored in hexadecimal
 - **Leica LIF**
 * fixed incorrect plane offsets for large multi-tile files
 - **LiFlim**
 * fixed ExposureTime check and units usage
 - **Micro-Manager**
 * fixed handling of large datasets saved as image stacks and split over multiple files
 * added user documentation for file saving options
 - **MRC and Spider**
 * fixed format type checking
 - **Nifty**
 * fixed planeSize to prevent crashes when loading large files (thanks to Christian Niedworok)
 * added support for gzipped compressed .nii.gz files (thanks to Eric Barnhill)
* added public samples and updated documented supported file extensions

- **OME-TIFF**
 * fixed `Plane` population errors
 * fixed `NullPointerException` when closing reader for partial multi-file filesets
 * reduced buffer size for `RandomAccessInputStreams` to improve performance
 * deprecated `getMetadataStoreForConversion` and `getMetadataStoreForDisplay` methods

- **OME-XML**
 * fixed metadata store

- **PicoQuant**
 * updated reader to always buffer data

- **PNG writing**

- **SDT**
 * performance improvements for loading of large files

- **Slidebook**
 * `Slidebook6Reader` is now completely external and fully maintained by 3i (see http://www.openmicroscopy.org/info/slidebook) and is specified as such in the `readers.txt` configuration file

- **SVS**
 * fixed `NumberFormatException`

- **Tiff**
 * fixed integer overflow to read resolutions correctly
 * fixed handling of tiled images with tile width less than 64

- **Zeiss CZI**
 * fixed timestamp indexing when multiple separate channels are present
 * improved slide support - slides are now detected as a complete full-resolution image (instead of each tile being a separate series) and pyramid sub-resolutions and label/overview images are also detected

- **Zeiss LSM**
 * fixed `Plane` population errors

- **Zeiss ZVI†**
 * reworked image ordering calculation to allow for tiles

Top-level Bio-Formats API changes:

- Java 1.7 is now the minimum supported version
- the native-lib-loader dependency has been bumped to version 2.1.4
- the xalan dependency has been bumped to version 2.7.2
- all the ome.jxr classes have been deprecated to make clear that there is no JPEG-XR support implemented in Bio-Formats as yet
- the **DataTools API** has been extended to add a number of utility functions to:
 - account for decimal separators in different locales
 - parse a `String` into `Double`, `Float`, `Integer` etc
 - handle `NumberFormatException` thrown when parsing Unit tests
• the Logging API has been updated to respect logging frameworks (log4j/logback) initialized via a binding-specific configuration file and to prevent `DebugTools.enableLogging(String)` from overriding initialized logger levels (see `Logging` for more information)

• helper methods have been added to `FormatTools` allowing a stage position to be formatted from an input `Double` and an input unit

• the Formats API has also been updated to add a new validate property to `MetadataOptions` and support for `MetadataOptions` has been moved to `FormatHandler` level to allow it to be used by both Readers and Writers

• initial work on Reader discoverability\(^{10}\) extended the `ClassList` API to allow the `readers.txt` configuration file to be annotated using key/value pairs to mark optional Readers and specify additional per-Reader options

Other general improvements include:

• improved performance of `getUsedFiles`

• fixes for `FilePatternBlock`, `AxisGuesser`, `FilePattern`

• fixes for the detection of CSV pattern blocks by `FilePatternBlock`

• `bioformats_package.jar` now includes `bio-formats-tools` as a dependency so `ImageConverter`, `ImageFaker` and `ImageInfo` classes are included in the bundle

• the JACE C++ implementation has been decoupled as it does not function with Java 1.8 (see legacy repo\(^{11}\))

• `ImageJ` fixes
 – to allow reader delegation when a legacy reader is enabled but not working
 – to allow ROIs to be imported to the ImageJ ROI manager or added to a new overlay

• `MATLAB` fixes
 – improved integration with Octave (thanks to Carnë Draug)
 – added logging initialization

• `Command-line tools` fixes
 – upgrade check no longer run when passing `-version`
 – common methods refactoring
 – showinf improvements to preload format
 – tiffcomment now warns that it requires an ImageDescription tag to be present in the TIFF file

• added many automated tests and improved FakeReader testing framework

• documentation improvements include:
 – clarifying status of legacy Quicktime and ND2 readers
 – noting that the Gatan reader does not currently support stacks
 – more Java examples added to the developer documentation
 – new units page for developers

The Data Model version 2016-06 has been released to introduce `Folders`\(^{12}\), and to simplify both the graphical aspects of the model and code generation. Full details are available in the OME Model and Formats Documentation\(^{13}\). OME-XML changes include:

• `Map` is now a complexType rather than an element and `MapPairs` has been dropped

• extended enum metadata has been introduced to better support units

• `Shape` and `LightSource` are now complexTypes rather than elements

• `BinData` has been added to code generation to handle raw binary data

• various code generation improvements to:

\(^{10}\)https://github.com/openmicroscopy/design/issues/42

\(^{11}\)https://github.com/ome/bio-formats-jace

\(^{12}\)http://blog.openmicroscopy.org/data-model/future-plans/2016/05/23/folders-upcoming/

\(^{13}\)http://www.openmicroscopy.org/site/support/ome-model/schemas/june-2016.html
– simplify and standardize the generation process
– remove a number of hard-coded exceptional cases allowing for easier maintenance and growth
– allow for genuine abstract model types and enable C++ model implementation

• updated OME-XML and OME-TIFF public sample files

The Bio-Formats C++ native implementation has been decoupled from the Java codebase and will be released as OME-Files C++14 from now on, with the exception of OME-XML which is still within Bio-Formats at present (there is a plan to decouple both the Java and the C++ versions of OME-XML in future).

The following components have had their licensing updated to Simplified (2-clause) BSD:

• XSL transforms
• specification code
• xsd-fu Python code

4.2.5 5.1.10 (2016 May 9)

Java bug fixes:

• fixed warnings being thrown for ImageJ and other non-FIJI users on Windows (these warnings were triggered by the removal of the 3i Slidebook DLLs from the source code repository in Bio-Formats 5.1.9 and should now only be triggered when opening Slidebook files without the update site enabled - http://www.openmicroscopy.org/info/slidebar

• a fix in the ImageJ plugin for files grouped using the “Dimensions” option
• a fix for writing TIFF files in tiles

4.2.6 5.1.9 (2016 April 14)

• Java bug fixes, including:

 – SDT
 * fixed width padding calculation for single-pixel image

 – Deltavision
 * fixed the parsing of the new date format
 * added support for parsing and storing the working distance in native units

 – Micromanager
 * cleaned up JSON metadata parsing

 – Olympus Fluoview
 * fixed null pointer exceptions while parsing metadata

 – Leica LIF
 * fixed large multi-tiled files from having incorrect plane offsets after the 2GB mark

 – EM formats (MRC and Spider)
 * added native length support for EM readers

 – Gatan
 * fixed erroneous metadata parsing
 * added support for parsing and storing the physical sizes in native units

 – OME-TIFF
 * improved handling of OME-TIFF multi-file fileset’s with partial metadata blocks

14http://downloads.openmicroscopy.org/ome-files-cpp/
– Nikon ND2
 * fixed the parsing of emission wavelength

– Olympus CellR (APL)
 * fixed multiple parsing issues with the mtb file

– SlideBook
 * removed slidebook dlls from Bio-Formats repository
 * http://www.openmicroscopy.org/info/slidebook

– Zeiss CZI
 * fixed parsing of files with multiple mosaics and positions

• **Documentation updates, including:**
 – improved documentation for the export of BigTIFFs in ImageJ

• C++:
 – no changes.

4.2.7 5.1.8 (2016 February 15)

• **Java bug fixes, including:**
 – FEI TIFF
 * fixed stage position parsing and whitespace handling (thanks to Antoine Vandecreme)

 – Pyramid TIFF
 * fixed tile reading when a cache (.bfmemo) file is present

 – MicroManager
 * updated to parse JSON data from tags 50839 and 51123
 * fixed to detect *._metadata.txt files in addition to *.metadata.txt files
 * fixed to handle datasets with each stack in a single file

– OME-XML
 * updated to make .ome.xml an official extension

– OME-TIFF
 * fixed to ignore invalid BinaryOnly elements

– TIFF
 * fixed caching of BigTIFF files

– Slidebook
 * fixed handling of montages in Slidebook6Reader (thanks to Richard Myers)

– Performance improvement for writing files to disk (thanks to Stephane Dallongeville)

– Build system
 * fixed Maven POMs to reduce calls to artifacts.openmicroscopy.org
 * fixed bioformats_package.jar to include the loci.formats.tools package

• **Documentation updates, including:**
 – updated format pages to include links to example data
 – clarified description of Qu for MATLAB (thanks to Carnë Draug)
 – added installation instructions for Octave (thanks to Carnë Draug)
• **C++:**
 – Bugfixes to the OME-TIFF writer to correct use of the metadata store with multiple series
 – Ensure file and writer state consistency upon close failure

4.2.8 5.1.7 (2015 December 7)

- **Java bug fixes, including:**
 – Prevent physical pixel sizes from being rounded to 0, for all formats
 – **Metamorph**
 * fixed calculation of Z step size
 * fixed detection of post-processed dual camera acquisitions (thanks to Mark Kittisopikul)
 – **OME-XML**
 * fixed XML validation when an ‘xmlns’ value is not present (thanks to Bjoern Thiel)
 – **MINC**
 * fixed endianness of image data
 – **Andor/Fluoview TIFF**
 * fixed calculation of Z step size
 – **MATLAB**
 * improved performance by reducing static classpath checks (thanks to Mark Kittisopikul)
 – **Gatan**
 * fixed physical size parsing in non-English locales
 – **Automated testing**
 * fixed handling of non-default physical size and plane position units
- **Documentation updates, including:**
 – updated MapAnnotation example to show linkage of annotations to images
- **C++:**
 – no changes, released to keep version numbers in sync with Bio-Formats Java

4.2.9 5.1.6 (2015 November 16)

- **Java bug fixes, including:**
 – Updated to use native units for following formats:
 * IMOD
 * Analyze
 * Unisoku
 * Olympus CellR (APL)
 – **Metamorph TIFF**
 * fixed handling of multi-line descriptions
 * added support for dual camera acquisitions
 – **Zeiss LMS**
 * fixed exception in type detection
 – **Zeiss CZI**

4.2. Version history
* fixed detection of line scan Airyscan data

- **Slidebook**
 * fixed calculation of physical Z size

- **ImageJ plugins**
 * fixed handling of non-default units
 * fixed setting of preferences via macros

- **Automated testing**
 * fixed handling of non-default units for physical sizes and timings

C++ changes, including:

- allow relocatable installation on Windows
- reduce time required for debug builds

Documentation updates, including:

- addition of “Multiple Images” column to the supported formats table
- addition of a MapAnnotation example

4.2.10 5.1.5 (2015 October 12)

Java bug fixes, including:

- **ImageJ plugins**
 * fixed use of “Group files...” and “Open files individually” options
 * fixed placement of ROIs
 * fixed size of the “About Plugins > Bio-Formats Plugins” window

- **xsd-fu (code generation)**
 * removed OMERO-specific logic

- **Metamorph**
 * fixed physical Z size calculation

- **Gatan DM3/DM4**
 * fixed physical pixel size parsing

- **BMP**
 * added support for RLE compression

- **DICOM**
 * updated to respect the WINDOW_CENTER tag
 * fixed image dimensions when multiple sets of width and height values are present

- **Fluoview and Andor TIFF**
 * fixed physical Z size calculation

- **Inspector OBF**
 * updated to parse OME-XML metadata (thanks to Bjoern Thiel)

C++ changes:

- TIFF strip/tile row and column calculations corrected to compute the correct row and column count
- Several compiler warnings removed (false positive warnings in third-party headers disabled, and additional warnings fixed)
- It is now possible to build with Boost 1.59 and compile with a C++14 compiler
• The source release is now provided in both tar.xz and zip formats

• Documentation updates, including:
 – substantial updates to the format pages
 * improved linking of reader/writer classes to each format page
 * improved supported metadata pages for each format
 * updated format page formatting for clarity
 * added developer documentation for adding and modifying format pages

4.2.11 5.1.4 (2015 September 7)

• Bug fixes, including:
 – Command line tools
 * fixed display of usage information
 – Automated testing
 * fixed problems with symlinked data on Windows
 * added unit tests for checking physical pixel size creation
 – Cellomics
 * fixed reading of sparse plates
 – SlideBook
 * fixed a few lingering issues with native library packaging
 – SimplePCI/HCIImage TIFF
 * fixed bit depth parsing for files from newer versions of HCIImage
 – SimplePCI/HCIImage .cxd
 * fixed image dimensions to allow for extra padding bytes
 – Leica LIF
 * improved reading of image descriptions
 – ICS
 * fixed to use correct units for timestamps and physical pixel sizes
 – MicroManager
 * fixed to use correct units for timestamps
 – Gatan .dm3/.dm4
 * fixed problems with reading double-precision metadata values
 – Hamamatsu NDPI
 * fixed reading of mask images
 – Leica .lei
 * fixed reading of bit depth and endianness for datasets that were modified after acquisition
 – FEI TIFF
 * updated to read metadata from files produced by FEI Titan systems
 – QuickTime
 * fixed to handle planes with no stored pixels
 – Leica .scn
* fixed reading of files that contain fewer images than expected

 – **Zeiss .czi**
 * fixed channel colors when an alpha value is not recorded
 * fixed handling of pre-stitched image tiles

 – **SDT**
 * added support for Zip-compressed images

 – **Nikon .nd2**
 * fixed to read image dimensions from new non-XML metadata

 – **OME-XML**
 * fixed writing of integer metadata values

• **Native C++ updates:**

 – completed support for building on Windows

• **Documentation updates, including:**

 – updated instructions for running automated data tests
 – clarified JVM versions currently supported

4.2.12 5.1.3 (2015 July 21)

• **Native C++ updates:**

 – Added cmake superbuild to build core dependencies (zlib, bzip2, png, icu, xerces, boost)
 – Progress on support for Windows

• **Bug fixes, including:**

 – Fixed segfault in the `showinf` tool used with the C++ bindings
 – Allow reading from https URLs

 – **ImageJ**
 * improved performance of displaying ROIs

 – **Command line tools**
 * fixed bfconvert to correctly create datasets with multiple files

 – **Metamorph**
 * improved detection of time series
 * fixed .nd datasets with variable Z and T counts in each channel
 * fixed .nd datasets that contain invalid TIFF/STK files
 * fixed dimensions when the number of planes does not match the recorded Z, C, and T sizes

 – **SlideBook**
 * improved native library detection (thanks to Richard Myers)

 – **JPEG**
 * fixed decompression of lossless files with multiple channels (thanks to Aaron Avery)

 – **Imspector OBF**
 * updated to support version 2 files (thanks to Bjoern Thiel)

 – **Imspector MSR**
 * improved detection of Z stacks
- PerkinElmer Opera Flex
 * improved handling of multiple acquisitions of the same plate
- Zeiss CZI
 * fixed error when opening single-file datasets whose names contained “(” and “)”
- TIFF
 * improved speed of reading files with many tiles
- AVI
 * updated to read frame index (idx1) tables
- Nikon ND2
 * fixed channel counts for files with more than 3 channels
- PNG
 * fixed decoding of interlaced images with a width or height that is not a multiple of 8
- PSD
 * improved reading of compressed images

Documentation improvements, including:
- updated instructions for writing a new file format reader
- updated usage information for command line tools
- new Javadocs for the `MetadataStore` and `MetadataRetrieve` interfaces

4.2.13 5.1.2 (2015 May 28)

- Added OME-TIFF writing support to the native C++ implementation
- OME-TIFF export: switch to BigTIFF if .ome.tf2, .ome.tf8, or .ome.btf extensions are used
- Improved MATLAB developer documentation
- Added SlideBook reader that uses the SDK from 3I (thanks to Richard Myers and 3I - Intelligent Imaging Innovations\(^\text{15}\))
- Preliminary work to make MATLAB toolbox work with Octave
- Many bug fixes, including:
 - ImageJ
 * fixed regression in getPlanePosition* macro extension methods
 * fixed display of composite color virtual stacks
 - Nikon ND2
 * improved parsing of plane position and timestamp data
 - TIFF
 * reduced memory required to read color lookup tables
 - Zeiss LSM
 * improved parsing of 16-bit color lookup tables
 - Zeiss CZI
 * fixed ordering of original metadata table
 * fixed reading of large pre-stitched tiled images
 - AIM

\(^\text{15}\)https://www.intelligent-imaging.com
* fixed handling of truncated files
 – Metamorph/MetaXpress TIFF
 * improved UIC1 metadata tag parsing

4.2.14 5.1.1 (2015 April 28)

- Add TIFF writing support to the native C++ implementation
- Fixed remaining functional differences between Windows and Mac/Linux
- Improved performance of ImageJ plugin when working with ROIs
- TIFF export: switch to BigTIFF if .tf2, .tf8, or .btf extensions are used
- Many bug fixes, including:
 - fixed upgrade checking to more accurately report when a new version is available
 - Zeiss CZI
 * fixed ordering of multiposition data
 * improved support for RGB and fused images
 - Nikon ND2
 * improved ordering of multiposition data
 - Leica LIF
 * improved metadata validity checks
 * improved excitation wavelength detection
 - Metamorph STK/TIFF
 * record lens numerical aperture
 * fixed millisecond values in timestamps
 - Gatan DM3
 * correctly detect signed pixel data
 - Imaris HDF
 * fix channel count detection
 - ICS export
 * fix writing of files larger than 2GB

4.2.15 5.1.0 (2015 April 2)

- Improvements to performance with network file systems
- Improvements to developer documentation
- Initial version of native C++ implementation\(^\text{16}\)
- Improved support for opening and saving ROI data with ImageJ
- Added support for CellH5 data (thanks to Christoph Sommer)
- Added support for Perkin Elmer Nuance data (thanks to Lee Kamentsky)
- Added support for Amnis FlowSight data (thanks to Lee Kamentsky and Sebastien Simard)
- Added support for Veeco AFM data
- Added support for Zeiss .lms data (not to be confused with .lsm)

\(^\text{16}\)http://www.openmicroscopy.org/site/support/bio-formats5.1/developers/cpp/overview.html
• Added support for I2I data
• Added support for writing Vaa3D data (thanks to Brian Long)
• Updated to OME schema 2015-01\(^\text{17}\)
• Update RandomAccessInputStream and RandomAccessOutputStream to read and write bits
• Many bug fixes, including:
 – Leica SCN
 * fix pixel data decompression
 * fix handling of files with multiple channels
 * parse magnification and physical pixel size data
 – Olympus/CellSens .vsi
 * more thorough parsing of metadata
 * improved reading of thumbnails and multi-resolution images
 – NDPI
 * fix reading of files larger than 4GB
 * parse magnification data
 – Zeiss CZI
 * improve parsing of plane position coordinates
 – Inveon
 * fix reading of files larger than 2 GB
 – Nikon ND2
 * many improvements to dimension detection
 * many improvements to metadata parsing accuracy
 * update original metadata table to include PFS data
 – Gatan DM3
 * fix encoding when parsing metadata
 * fix physical pixel size parsing
 – Metamorph
 * fix off-by-one in metadata parsing
 * fix number parsing to be independent of the system locale
 – JPEG
 * parse EXIF data, if present (thanks to Paul Van Schayck)
 – OME-XML/OME-TIFF
 * fix handling of missing image data
 – PrairieView
 * improved support for version 5.2 data (thanks to Curtis Rueden)
 – DICOM
 * fix dimensions for multi-file datasets
 * fix pixel data decoding for files with multiple images
 – PNG
 * reduce memory required to read large images

\(^{17}\text{http://www.openmicroscopy.org/site/support/ome-model//schemas/january-2015.html}\)
– **Inspector OBF**
 * fix support for version 5 data (thanks to Bjoern Thiel)

– **PCORAW**
 * fix reading of files larger than 4 GB

– **AIM**
 * fix reading of files larger than 4 GB

– **MRC**
 * add support for signed 8-bit data

– **Fix build errors in MIPAV plugin**

– **ImageJ**
 * fix export from a script/macro
 * fix windowless export
 * allow exporting from any open image window
 * allow the “Group files with similar names” and “Swap dimensions” options to be used from a script/macro

– **bfconvert**
 * fix writing each channel, Z section, and/or timepoint to a separate file
 * add options for configuring the tile size to be used when saving images

4.2.16 5.0.8 (2015 February 10)

- No changes - release to keep version numbers in sync with OMERO

4.2.17 5.0.7 (2015 February 5)

- Several bug fixes, including:
 - ND filter parsing for DeltaVision
 - Timepoint count and original metadata parsing for Metamorph
 - Build issues when Genshi or Git are missing
 - LZW image decoding

4.2.18 5.0.6 (2014 November 11)

- Several bug fixes, including:
 - Pixel sign for DICOM images
 - Image dimensions for Zeiss CZI and Nikon ND2
 - Support for Leica LIF files produced by LAS AF 4.0 and later

4.2.19 5.0.5 (2014 September 23)

- Documentation improvements
- Support for non-spectral Prairie 5.2 datasets

4.2. Version history
4.2.20 5.0.4 (2014 September 3)

- Fix compile and runtime errors under Java 1.8
- Improvements to Nikon .nd2 metadata parsing
- Added support for PicoQuant .bin files (thanks to Ian Munro)

4.2.21 5.0.3 (2014 August 7)

- Many bug fixes for Nikon .nd2 files
- Several other bug fixes, including:
 - LZW image decoding
 - Stage position parsing for Zeiss CZI
 - Exposure time units for ScanR
 - Physical pixel size units for DICOM
 - NDPI and Zeiss LSM files larger than 4GB
 - Z and T dimensions for InCell 6000 plates
 - Export of RGB images in ImageJ
- Improved metadata saving in MATLAB functions

4.2.22 5.0.2 (2014 May 28)

- Many bug fixes for Zeiss .czi files
- Several other bug fixes, including:
 - Gatan .dm3 units and step count parsing
 - Imspector .msr 5D image support
 - DICOM reading of nested tags
- Update native-lib-loader version (to 2.0.1)
- Updates and improvements to user documentation

4.2.23 5.0.1 (2014 Apr 7)

- Added image pyramid support for CellSens .vsi data
- Several bug fixes, including:
 - Woolz import into OMERO
 - Cellomics file name parsing (thanks to Lee Kamentsky)
 - Olympus FV1000 timestamp support (thanks to Lewis Kraft and Patrick Riley)
 - (A)PNG large image support
 - Zeiss .czi dimension detection for SPIM datasets
- Performance improvements for Becker & Hickl .sdt file reading (thanks to Ian Munro)
- Performance improvements to directory listing over NFS
- Update slf4j and logback versions (to 1.7.6 and 1.1.1 respectively)
- Update jgoodies-forms version (to 1.7.2)
4.2.24 5.0.0 (2014 Feb 25)

- New bundled ‘bioformats_package.jar’ for ImageJ
- Now uses logback as the slf4j binding by default
- Updated component names, .jar file names, and Maven artifact names
- Fixed support for Becker & Hickl .sdt files with multiple blocks
- Fixed tiling support for TIFF, Hamamatsu .ndpi, JPEG, and Zeiss .czi files
- Improved continuous integration testing
- Updated command line documentation

4.2.25 5.0.0-RC1 (2013 Dec 19)

- Updated Maven build system and launched new Artifactory repository (http://artifacts.openmicroscopy.org)
- Added support for:
 - Bio-Rad SCN
 - Yokogawa CellVoyager (thanks to Jean-Yves Tinevez)
 - LaVision Inspector
 - PCORAW
 - Woolz (thanks to Bill Hill)
- Added support for populating and parsing ModuloAlong{Z, C, T} annotations for FLIM/SPIM data
- Updated netCDF and slf4j version requirements - netCDF 4.3.19 and slf4j 1.7.2 are now required
- Updated and improved MATLAB users and developers documentation
- Many bug fixes including for Nikon ND2, Zeiss CZI, and CellWorX formats

4.2.26 5.0.0-beta1 (2013 June 20)

- Updated to 2013-06 OME-XML schema
- Improved the performance in tiled formats
- Added caching of Reader metadata using http://code.google.com/p/kryo/
- Added support for:
 - Aperio AFI
 - Inveon
 - MPI-BPC Inspector
- Many bug fixes, including:
 - Add ZEN 2012/Lightsheet support to Zeiss CZI
 - Improved testing of autogenerated code
 - Moved OME-XML specification into Bio-Formats repository

4.2.27 4.4.10 (2014 Jan 15)

- Bug fixes including CellWorX, Metamorph and Zeiss CZI
- Updates to MATLAB documentation

18http://www.openmicroscopy.org/site/support/ome-model/
4.2.28 4.4.9 (2013 Oct 16)

- Many bug fixes including improvements to support for ND2 format
- Java 1.6 is now the minimum supported version; Java 1.5 is no longer supported

4.2.29 4.4.8 (2013 May 2)

- No changes - release to keep version numbers in sync with OMERO

4.2.30 4.4.7 (2013 April 25)

- Many bug fixes to improve support for more than 20 formats
- Improved export to multi-file datasets
- Now uses slf4j for logging rather than using log4j directly, enabling other logging implementations to be used, for example when Bio-Formats is used as a component in other software using a different logging system.

4.2.31 4.4.6 (2013 February 11)

- Many bug fixes
- Further documentation improvements

4.2.32 4.4.5 (2012 November 13)

- Restructured and improved documentation
- Many bug fixes, including:
 - File grouping in many multi-file formats
 - Maven build fixes
 - ITK plugin fixes

4.2.33 4.4.4 (2012 September 24)

- Many bug fixes

4.2.34 4.4.2 (2012 August 22)

- Security fix for OMERO plugins for ImageJ

4.2.35 4.4.1 (2012 July 20)

- Fix a bug that prevented BigTIFF files from being read
- Fix a bug that prevented PerkinElmer .flex files from importing into OMERO
4.2.36 4.4.0 (2012 July 13)

- Many, many bug fixes
- **Added support for:**
 - .nd2 files from Nikon Elements version 4
 - PerkinElmer Operetta data
 - MJPEG-compressed AVIs
 - MicroManager datasets with multiple positions
 - Zeiss CZI data
 - IMOD data

4.2.37 4.3.3 (2011 October 18)

- Many bug fixes, including:
 - Speed improvements to HCImage/SimplePCI and Zeiss ZVI files
 - Reduce memory required by Leica LIF reader
 - More accurately populate metadata for Prairie TIFF datasets
 - Various fixes to improve the security of the OMERO plugin for ImageJ
 - Better dimension detection for Bruker MRI datasets
 - Better thumbnail generation for histology (SVS, NDPI) datasets
 - Fix stage position parsing for Metamorph TIFF datasets
 - Correctly populate the channel name for PerkinElmer Flex files

4.2.38 4.3.2 (2011 September 15)

- Many bug fixes, including:
 - Better support for Volocity datasets that contain compressed data
 - More accurate parsing of ICS metadata
 - More accurate parsing of cellSens .vsi files
- **Added support for a few new formats**
 - .inr
 - Canon DNG
 - Hitachi S-4800
 - Kodak .bip
 - JPX
 - Volocity Library Clipping (.acff)
 - Bruker MRI
- Updated Zeiss LSM reader to parse application tags
- Various performance improvements, particularly for reading/writing TIFFs
- Updated OMERO ImageJ plugin to work with OMERO 4.3.x
4.2.39 4.3.1 (2011 July 8)

- Several bug fixes, including:
 - Fixes for multi-position DeltaVision files
 - Fixes for MicroManager 1.4 data
 - Fixes for 12 and 14-bit JPEG-2000 data
 - Various fixes for reading Volocity .mvd2 datasets
- Added various options to the ‘showinfo’ and ‘bfconvert’ command line tools
- Added better tests for OME-XML backwards compatibility
- Added the ability to roughly stitch tiles in a multi-position dataset

4.2.40 4.3.0 (2011 June 14)

- Many bug fixes, including:
 - Many fixes for reading and writing sub-images
 - Fixes for stage position parsing in the Zeiss formats
 - File type detection fixes
- Updated JPEG-2000 reading and writing support to be more flexible
- Added support for 9 new formats:
 - InCell 3000
 - Trestle
 - Hamamatsu .ndpi
 - Hamamatsu VMS
 - SPIDER
 - Volocity .mvd2
 - Olympus SIS TIFF
 - IMAGIC
 - cellSens VSI
- Updated to 2011-06 OME-XML schema
- Minor speed improvements in many formats
- Switched version control system from SVN to Git
- Moved all Trac tickets into the OME Trac: https://trac.openmicroscopy.org
- Improvements to testing frameworks
- Added Maven build system as an alternative to the existing Ant build system
- Added pre-compiled C++ bindings to the download page

4.2.41 4.2.2 (2010 December 6)

- Several bug fixes, notably:
 - Metadata parsing fixes for Zeiss LSM, Metamorph STK, and FV1000
 - Prevented leaked file handles when exporting to TIFF/OME-TIFF
 - Fixed how BufferedImages are converted to byte arrays
- Proper support for OME-XML XML annotations
- Added support for SCANCO Medical .aim files
- Minor improvements to ImageJ plugins
- Added support for reading JPEG-compressed AVI files

4.2.42 4.2.1 (2010 November 12)

- Many, many bug fixes
- **Added support for 7 new formats:**
 - CellWorX .pnl
 - ECAT7
 - Varian FDF
 - Perkin Elmer Densitometer
 - FEI TIFF
 - Compix/SimplePCI TIFF
 - Nikon Elements TIFF
- Updated Zeiss LSM metadata parsing, with generous assistance from Zeiss, FMI, and MPI-CBG
- Lots of work to ensure that converted OME-XML validates
- Improved file stitching functionality; non-numerical file patterns and limited regular expression-style patterns are now supported

4.2.43 4.2.0 (2010 July 9)

- Fixed many, many bugs in all aspects of Bio-Formats
- Reworked ImageJ plugins to be more user- and developer-friendly
- Added many new unit tests
- Added support for approximately 25 new file formats, primarily in the SPM domain
- Rewrote underlying I/O infrastructure to be thread-safe and based on Java NIO
- Rewrote OME-XML parsing/generation layer; OME-XML 2010-06 is now supported
- Improved support for exporting large images
- Improved support for exporting to multiple files
- Updated logging infrastructure to use slf4j and log4j

4.2.44 4.1.1 (2009 December 3)

- Fixed many bugs in popular file format readers

4.1 (2009 October 21):

- Fixed many bugs in most file format readers
- Significantly improved confocal and HCS metadata parsing
- Improved C++ bindings
- Eliminated references to Java AWT classes in core Bio-Formats packages
- Added support for reading Flex datasets from multiple servers
- Improved OME-XML generation; generated OME-XML is now valid
- Added support for Olympus ScanR data
• Added OSGi information to JARs
• Added support for Amira Mesh files
• Added support for LI-FLIM files
• Added more informative exceptions
• Added support for various types of ICS lifetime data
• Added support for Nikon EZ-C1 TIFFs
• Added support for Maia Scientific MIAS data

4.2.45 4.0.1 (2009 June 1)
• Lots of bug fixes in most format readers and writers
• Added support for Analyze 7.1 files
• Added support for Nifti files
• Added support for Cellomics .c01 files
• Refactored ImageJ plugins
• Bio-Formats, the common package, and the ImageJ plugins now require Java 1.5
• Eliminated native library dependency for reading lossless JPEGs
• Changed license from GPL v3 or later to GPL v2 or later
• Updated Olympus FV1000, Zeiss LSM, Zeiss ZVI and Nikon ND2 readers to parse ROI data
• Added option to ImageJ plugin for displaying ROIs parsed from the chosen dataset
• Fixed BufferedImage construction for signed data and unsigned int data

4.2.46 4.0.0 (2009 March 3)
• Improved OME data model population for Olympus FV1000, Nikon ND2, Metamorph STK, Leica LEI, Leica LIF, InCell 1000 and MicroManager
• Added TestNG tests for format writers
• Added option to ImageJ plugin to specify custom colors when customizing channels
• Added ability to upgrade the ImageJ plugin from within ImageJ
• Fixed bugs in Nikon ND2, Leica LIF, BioRad PIC, TIFF, PSD, and OME-TIFF
• Fixed bugs in Data Browser and Exporter plugins
• Added support for Axon Raw Format (ARF), courtesy of Johannes Schindelin
• Added preliminary support for IPLab-Mac file format

4.2.47 2008 December 29
• Improved metadata support for DeltaVision, Zeiss LSM, MicroManager, and Leica LEI
• Restructured code base/build system to be component-driven
• Added support for JPEG and JPEG-2000 codecs within TIFF, OME-TIFF and OME-XML
• Added support for 16-bit compressed Flex files
• Added support for writing JPEG-2000 files
• Added support for Minolta MRW format
• Added support for the 2008-09 release of OME-XML
- Removed dependency on JMagick
- Re-added caching support to data browser plugin
- Updated loci.formats.Codec API to be more user-friendly
- Expanded loci.formats.MetadataStore API to better represent the OME-XML model
- Improved support for Nikon NEF
- Improved support for TillVision files
- Improved ImageJ import options dialog
- Fixed bugs with Zeiss LSM files larger than 4 GB
- Fixed minor bugs in most readers
- Fixed bugs with exporting from an Image5D window
- Fixed several problems with virtual stacks in ImageJ

4.2.48 2008 August 30

- Fixed bugs in many file format readers
- Fixed several bugs with swapping dimensions
- Added support for Olympus CellR/APL files
- Added support for MINC MRI files
- Added support for Aperio SVS files compressed with JPEG 2000
- Added support for writing OME-XML files
- Added support for writing APNG files
- Added faster LZW codec
- Added drag and drop support to ImageJ shortcut window
- Re-integrated caching into the data browser plugin

4.2.49 2008 July 1

- Fixed bugs in most file format readers
- Fixed bugs in OME and OMERO download functionality
- Fixed bugs in OME server-side import
- Improved metadata storage/retrieval when uploading to and downloading from the OME Perl server
- Improved Bio-Formats ImageJ macro extensions
- Major updates to MetadataStore API
- Updated OME-XML generation to use 2008-02 schema by default
- Addressed time and memory performance issues in many readers
- Changed license from LGPL to GPL
- Added support for the FEI file format
- Added support for uncompressed Hamamatsu Aquacosmos NAF files
- Added support for Animated PNG files
- Added several new options to Bio-Formats ImageJ plugin
- Added support for writing ICS files

4.2. Version history
4.2.50 2008 April 17

- Fixed bugs in Slidebook, ND2, FV1000 OIB/OIF, Perkin Elmer, TIFF, Prairie, Openlab, Zeiss LSM, MNG, Molecular Dynamics GEL, and OME-TIFF
- Fixed bugs in OME and OMERO download functionality
- Fixed bugs in OME server-side import
- Fixed bugs in Data Browser
- Added support for downloading from OMERO 2.3 servers
- Added configuration plugin
- Updates to MetadataStore API
- Updates to OME-XML generation - 2007-06 schema used by default
- Added support for Li-Cor L2D format
- Major updates to TestNG testing framework
- Added support for writing multi-series OME-TIFF files
- Added support for writing BigTIFF files

4.2.51 2008 Feb 12

- Fixed bugs in QuickTime, SimplePCI and DICOM
- Fixed a bug in channel splitting logic

4.2.52 2008 Feb 8

- Many critical bugfixes in format readers and ImageJ plugins
- Newly reborn Data Browser for 5D image visualization
 - some combinations of import options do not work yet

4.2.53 2008 Feb 1

- Fixed bugs in Zeiss LSM, Metamorph STK, FV1000 OIB/OIF, Leica LEI, TIFF, Zeiss ZVI, ICS, Prairie, Openlab LIFF, Gatan, DICOM, QuickTime
- Fixed bug in OME-TIFF writer
- Major changes to MetadataStore API
- Added support for JPEG-compressed TIFF files
- Added basic support for Aperio SVS files
 - JPEG2000 compression is still not supported
- Improved “crop on import” functionality
- Improvements to bfconvert and bfview
- Improved OME-XML population for several formats
- Added support for JPEG2000-compressed DICOM files
- EXIF data is now parsed from TIFF files
4.2.54 2007 Dec 28

- Fixed bugs in Leica LEI, Leica TCS, SDT, Leica LIF, Visitech, DICOM, Imaris 5.5 (HDF), and Slidebook readers
- Better parsing of comments in TIFF files exported from ImageJ
- Fixed problem with exporting 48-bit RGB data
- Added logic to read multi-series datasets spread across multiple files
- Improved channel merging in ImageJ - requires ImageJ 1.39l
- Support for hyperstacks and virtual stacks in ImageJ - requires ImageJ 1.39l
- Added API for reading directly from a byte array or InputStream
- Metadata key/value pairs are now stored in ImageJ’s “Info” property
- Improved OMERO download plugin - it is now much faster
- Added “open all series” option to ImageJ importer
- ND2 reader based on Nikon’s SDK now uses our own native bindings
- Fixed metadata saving bug in ImageJ
- Added sub-channel labels to ImageJ windows
- Major updates to 4D Data Browser
- Minor updates to automated testing suite

4.2.55 2007 Dec 1

- Updated OME plugin for ImageJ to support downloading from OMERO
- Fixed bug with floating point TIFFs
- Fixed bugs in Visitech, Zeiss LSM, Imaris 5.5 (HDF)
- Added alternate ND2 reader that uses Nikon’s native libraries
- Fixed calibration and series name settings in importer
- Added basic support for InCell 1000 datasets

4.2.56 2007 Nov 21

- Fixed bugs in ND2, Leica LIF, DICOM, Zeiss ZVI, Zeiss LSM, FV1000 OIB, FV1000 OIF, BMP, Evotec Flex, BioRad PIC, Slidebook, TIFF
- Added new ImageJ plugins to slice stacks and do “smart” RGB merging
- Added “windowless” importer plugin
 - uses import parameters from IJ_Prefs.txt, without prompting the user
- Improved stack slicing and colorizing logic in importer plugin
- Added support for DICOM files compressed with lossless JPEG
 - requires native libraries
- Fixed bugs with signed pixel data
- Added support for Imaris 5.5 (HDF) files
- Added 4 channel merging to importer plugin
- Added API methods for reading subimages
- Major updates to the 4D Data Browser

4.2. Version history
4.2.57 2007 Oct 17

- Critical OME-TIFF bugfixes
- Fixed bugs in Leica LIF, Zeiss ZVI, TIFF, DICOM, and AVI readers
- Added support for JPEG-compressed ZVI images
- Added support for BigTIFF
- Added importer plugin option to open each plane in a new window
- Added MS Video 1 codec for AVI

4.2.58 2007 Oct 1

- Added support for compressed DICOM images
- Added support for uncompressed LIM files
- Added support for Adobe Photoshop PSD files
- Fixed bugs in DICOM, OME-TIFF, Leica LIF, Zeiss ZVI, Visitech, PerkinElmer and Metamorph
- Improved indexed color support
- Addressed several efficiency issues
- Fixed how multiple series are handled in 4D data browser
- Added option to reorder stacks in importer plugin
- Added option to turn off autoscaling in importer plugin
- Additional metadata convenience methods

4.2.59 2007 Sept 11

- Major improvements to ND2 support; lossless compression now supported
- Support for indexed color images
- Added support for Simple-PCI .cxd files
- Command-line OME-XML validation
- Bugfixes in most readers, especially Zeiss ZVI, Metamorph, PerkinElmer and Leica LEI
- Initial version of Bio-Formats macro extensions for ImageJ

4.2.60 2007 Aug 1

- Added support for latest version of Leica LIF
- Fixed several issues with Leica LIF, Zeiss ZVI
- Better metadata mapping for Zeiss ZVI
- Added OME-TIFF writer
- Added MetadataRetrieve API for retrieving data from a MetadataStore
- Miscellaneous bugfixes
4.2.61 2007 July 16

- Fixed several issues with ImageJ plugins
- Better support for Improvision and Leica TCS TIFF files
- Minor improvements to Leica LIF, ICS, QuickTime and Zeiss ZVI readers
- Added searchable metadata window to ImageJ importer

4.2.62 2007 July 2

- Fixed issues with ND2, Openlab LIFF and Slidebook
- Added support for Visitech XYS
- Added composite stack support to ImageJ importer

4.2.63 2007 June 18

- Fixed issues with ICS, ND2, MicroManager, Leica LEI, and FV1000 OIF
- Added support for large (> 2 GB) ND2 files
- Added support for new version of ND2
- Minor enhancements to ImageJ importer
- Implemented more flexible logging
- Updated automated testing framework to use TestNG
- Added package for caching images produced by Bio-Formats

4.2.64 2007 June 6

- Fixed OME upload/download bugs
- Fixed issues with ND2, EPS, Leica LIF, and OIF
- Added support for Khoros XV
- Minor improvements to the importer

4.2.65 2007 May 24

- Better Slidebook support
- Added support for Quicktime RPZA
- Better Leica LIF metadata parsing
- Added support for BioRad PIC companion files
- Added support for bzip2-compressed files
- Improved ImageJ plugins
- Native support for FITS and PGM
4.2.66 2007 May 2

- Added support for NRRD
- Added support for Evotec Flex (requires LuraWave Java SDK with license code)
- Added support for gzip-compressed files
- Added support for compressed QuickTime headers
- Fixed QuickTime Motion JPEG-B support
- Fixed some memory issues (repeated small array allocations)
- Fixed issues reading large (> 2 GB) files
- Removed “ignore color table” logic, and replaced with Leica-specific solution
- Added status event reporting to readers
- Added API to toggle metadata collection
- Support for multiple dimensions rasterized into channels
- Deprecated reader and writer methods that accept the ‘id’ parameter
- Deprecated IFormatWriter.save in favor of saveImage and saveBytes
- Moved dimension swapping and min/max calculation logic to delegates
- Separate GUI logic into isolated loci.formats.gui package
- Miscellaneous bug fixes and tweaks in most readers and writers
- Many other bug fixes and improvements

4.2.67 2007 Mar 16

- Fixed calibration bugs in importer plugin
- Enhanced metadata support for additional formats
- Fixed LSM bug

4.2.68 2007 Mar 7

- Added support for Micro-Manager file format
- Fixed several bugs – Leica LIF, Leica LEI, ICS, ND2, and others
- Enhanced metadata support for several formats
- Load series preview thumbnails in the background
- Better implementation of openBytes(String, int, byte[]) for most readers
- Expanded unit testing framework

4.2.69 2007 Feb 28

- Better series preview thumbnails
- Fixed bugs with multi-channel Leica LEI
- Fixed bugs with “ignore color tables” option in ImageJ plugin
4.2.70 2007 Feb 26

- Many bug fixes: Leica LEI, ICS, FV1000 OIB, OME-XML and others
- Better metadata parsing for BioRad PIC files
- Enhanced API for calculating channel minimum and maximum values
- Expanded MetadataStore API to include more semantic types
- Added thumbnails to series chooser in ImageJ plugin
- Fixed plugins that upload and download from an OME server

4.2.71 2007 Feb 7

- Added plugin for downloading images from OME server
- Improved HTTP import functionality
- Added metadata filtering – unreadable metadata is no longer shown
- Better metadata table for multi-series datasets
- Added support for calibration information in Gatan DM3
- Eliminated need to install JAI Image I/O Tools to read ND2 files
- Fixed ZVI bugs: metadata truncation, and other problems
- Fixed bugs in Leica LIF: incorrect calibration, first series labeling
- Fixed memory bug in Zeiss LSM
- Many bug fixes: PerkinElmer, DeltaVision, Leica LEI, LSM, ND2, and others
- IFormatReader.close(boolean) method to close files temporarily
- Replaced Compression utility class with extensible Compressor interface
- Improved testing framework to use .bioformats configuration files

4.2.72 2007 Jan 5

- Added support for Prairie TIFF
- Fixed bugs in Zeiss LSM, OIB, OIF, and ND2
- Improved API for writing files
- Added feature to read files over HTTP
- Fixed bugs in automated testing framework
- Miscellaneous bug fixes

4.2.73 2006 Dec 22

- Expanded ImageJ plugin to optionally use Image5D or View5D
- Improved support for ND2 and JPEG-2000 files
- Added automated testing framework
- Fixed bugs in Zeiss ZVI reader
- Miscellaneous bug fixes
4.2.74 2006 Nov 30

- Added support for ND2/JPEG-2000
- Added support for MRC
- Added support for MNG
- Improved support for floating-point images
- Fixed problem with 2-channel Leica LIF data
- Minor tweaks and bugfixes in many readers
- Improved file stitching logic
- Allow ImageJ plugin to be called from a macro

4.2.75 2006 Nov 2

- Bugfixes and improvements for Leica LIF, Zeiss LSM, OIF and OIB
- Colorize channels when they are split into separate windows
- Fixed a bug with 4-channel datasets

4.2.76 2006 Oct 31

- Added support for Imaris 5 files
- Added support for RGB ICS images

4.2.77 2006 Oct 30

- Added support for tiled TIFFs
- Fixed bugs in ICS reader
- Fixed importer plugin deadlock on some systems

4.2.78 2006 Oct 27

- Multi-series support for Slidebook
- Added support for Alicona AL3D
- Fixed plane ordering issue with FV1000 OIB
- Enhanced dimension detection in FV1000 OIF
- Added preliminary support for reading NEF images
- Added option to ignore color tables
- Fixed ImageJ GUI problems
- Fixed spatial calibration problem in ImageJ
- Fixed some lingering bugs in Zeiss ZVI support
- Fixed bugs in OME-XML reader
- Tweaked ICS floating-point logic
- Fixed memory leaks in all readers
- Better file stitching logic
4.2.79 2006 Oct 6

- Support for 3i SlideBook format (single series only for now)
- Support for 16-bit RGB palette TIFF
- Fixed bug preventing import of certain Metamorph STK files
- Fixed some bugs in PerkinElmer UltraView support
- Fixed some bugs in Leica LEI support
- Fixed a bug in Zeiss ZVI support
- Fixed bugs in Zeiss LSM support
- Fixed a bug causing slow identification of Leica datasets
- Fixed bugs in the channel merging logic
- Fixed memory leak for OIB format
- Better scaling of 48-bit RGB data to 24-bit RGB
- Fixed duplicate channels bug in “open each channel in a separate window”
- Fixed a bug preventing PICT import into ImageJ
- Better integration with HandleExtraFileTypes
- Better virtual stack support in Data Browser plugin
- Fixed bug in native QuickTime random access
- Keep aspect ratio for computed thumbnails
- Much faster file stitching logic

4.2.80 2006 Sep 27

- PerkinElmer: support for PE UltraView
- Openlab LIFF: support for Openlab v5
- Leica LEI: bug fixes, and support for multiple series
- ZVI, OIB, IPW: more robust handling of these formats (eliminated custom OLE parsing logic in favor of Apache POI)
- OIB: better metadata parsing (but maybe still not perfect?)
- LSM: fixed a bug preventing import of certain LSMs
- Metamorph STK: fixed a bug resulting in duplicate image planes
- User interface: use of system look & feel for file chooser dialog when available
- Better notification when JAR libraries are missing

4.2.81 2006 Sep 6

- Leica LIF: multiple distinct image series within a single file
- Zeiss ZVI: fixes and improvements contributed by Michel Boudinot
- Zeiss LSM: fixed bugs preventing the import of certain LSM files
- TIFF: fixed a bug preventing import of TIFFs created with Bio-Rad software

4.2.82 2006 Mar 31

- First release
Part II

User Information
The following sections explain the features of Bio-Formats and how to use it within ImageJ and Fiji:

5.1 ImageJ overview

ImageJ is an image processing and analysis application written in Java, widely used in the life sciences fields, with an extensible plugin infrastructure. You can use Bio-Formats as a plugin for ImageJ to read and write images in the formats it supports.

5.1.1 Installation

Download bioformats_package.jar and drop it into your ImageJ/plugins folder. Next time you run ImageJ, a new Bio-Formats submenu with several plugins will appear in the Plugins menu, including the Bio-Formats Importer and Bio-Formats Exporter.

5.1.2 Usage

The Bio-Formats Importer plugin can display image stacks in several ways:

• In a standard ImageJ window (including as a hyperstack)
• Using the LOCI Data Browser plugin (included)
• With Joachim Walter’s Image5D plugin (if installed)
• With Rainer Heintzmann’s View5D plugin (if installed)

ImageJ v1.37 and later automatically (via HandleExtraFileTypes) calls the Bio-Formats logic, if installed, as needed when a file is opened within ImageJ, i.e. when using File → Open instead of explicitly choosing Plugins → Bio-Formats → Bio-Formats Importer from the menu.

For a more detailed description of each plugin, see the Bio-Formats page of the ImageJ wiki.

5.1.3 Upgrading

To upgrade, just overwrite the old bioformats_package.jar with the latest one.

You can also upgrade the Bio-Formats plugin directly from ImageJ. Select Plugins → Bio-Formats → Update Bio-Formats Plugins from the ImageJ menu, then select which release you would like to use. You will then need to restart ImageJ to complete the upgrade process.

1 https://imagej.nih.gov/ij/index.html
2 http://downloads.openmicroscopy.org/latest/bio-formats5.2/artifacts/bioformats_package.jar
3 http://loci.wisc.edu/software/data-browser
4 http://developer.imagej.net/plugins/image5d
5 http://www.nanoimaging.de/View5D
6 http://imagej.net/Bio-Formats
7 http://downloads.openmicroscopy.org/latest/bio-formats5.2/
5.1.4 Macros and plugins

Bio-Formats is fully scriptable in a macro, and callable from a plugin. To use in a macro, use the Macro Recorder to record a call to the Bio-Formats Importer with the desired options. You can also perform more targeted metadata queries using the Bio-Formats macro extensions.

Here are some example ImageJ macros and plugins that use Bio-Formats to get you started:

- **basicMetadata.txt** - A macro that uses the Bio-Formats macro extensions to print the chosen file’s basic dimensional parameters to the Log.
- **planeTimings.txt** - A macro that uses the Bio-Formats macro extensions to print the chosen file’s plane timings to the Log.
- **recursiveTiffConvert.txt** - A macro for recursively converting files to TIFF using Bio-Formats.
- **bfOpenAsHyperstack.txt** - This macro from Wayne Rasband opens a file as a hyperstack using only the Bio-Formats macro extensions (without calling the Bio-Formats Importer plugin).
- **zvi2HyperStack.txt** - This macro from Sebastien Huart reads in a ZVI file using Bio-Formats, synthesizes the LUT using emission wavelength metadata, and displays the result as a hyperstack.
- **dvSplitTimePoints.txt** - This macro from Sebastien Huart splits timepoints/channels on all DV files in a folder.
- **batchTiffConvert.txt** - This macro converts all files in a directory to TIFF using the Bio-Formats macro extensions.
- **Read_Image** - A simple plugin that demonstrates how to use Bio-Formats to read files into ImageJ.
- **Mass_Importer** - A simple plugin that demonstrates how to open all image files in a directory using Bio-Formats, grouping files with similar names to avoiding opening the same dataset more than once.

5.1.5 Usage tips

- “How do I make the options window go away?” is a common question. There are a few ways to do this:
 - To disable the options window only for files in a specific format, select Plugins > Bio-Formats > Bio-Formats Plugins Configuration, then pick the format from the list and make sure the “Windowless” option is checked.
 - To avoid the options window entirely, use the Plugins > Bio-Formats > Bio-Formats Windowless Importer menu item to import files.
 - Open files by calling the Bio-Formats importer plugin from a macro.

- A common cause of problems having multiple copies of bioformats_package.jar in your ImageJ plugins folder, or a copy of bioformats_package.jar and a copy of formats-gpl.jar. It is often difficult to determine for sure that this is the problem - the only error message that pretty much guarantees it is a NoSuchMethodException. If you downloaded the latest version and whatever error message or odd behavior you are seeing has been reported as fixed, it is worth removing all copies of bioformats_package.jar (and loci_tools.jar or any other Bio-Formats jars) and download a fresh version.

- The Bio-Formats Exporter plugin’s file chooser will automatically add the first listed file extension to the file name if a specific file format is selected in the Files of Type box (e.g. .ome.tif for OME-TIFF). This can prevent BigTIFF and OME BigTIFF files from being created, as the .btf or .ome.btf file extension will be overwritten. To ensure that the desired extension is used, select All files or All supported file types in the Files of type box, as an extension will not be automatically added in those cases.

8https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-plugins/utils/macros/basicMetadata.txt
9https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-plugins/utils/macros/planeTimings.txt
10https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-plugins/utils/macros/recursiveTiffConvert.txt
11https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-plugins/utils/macros/bfOpenAsHyperstack.txt
12https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-plugins/utils/macros/zvi2HyperStack.txt
14https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-plugins/utils/macros/batchTiffConvert.txt
15https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-plugins/utils/Read_Image.java
16https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-plugins/utils/Mass_Importer.java
5.2 Fiji overview

Fiji17 is an image processing package. It can be described as a distribution of \textit{ImageJ} together with Java, Java 3D and a lot of plugins organized into a coherent menu structure. Fiji compares to ImageJ as Ubuntu compares to Linux.

Fiji works with Bio-Formats out of the box, because it comes bundled with the \textit{Bio-Formats ImageJ plugins}.

The Fiji documentation has been combined with the ImageJ wiki; for further details on Bio-Formats in Fiji, see the Bio-Formats ImageJ page18.

5.2.1 Upgrading

Upgrading Bio-Formats within Fiji is as simple as invoking the “Update Fiji” command from the Help menu. By default, Fiji even automatically checks for updates every time it is launched, so you will always be notified when new versions of Bio- Formats (or any other bundled plugin) are available.

Manual upgrade

Manually updating your Fiji installation should not be necessary but if you need to do so, the steps are detailed below. Note that although we assume you will be upgrading to the latest release version, all previous versions of Bio-Formats are available from http://downloads.openmicroscopy.org/bio-formats/ so you can revert to an earlier version using this guide if you need to.

1. Fiji must first be fully updated
2. Close Fiji
3. Open the Fiji installation folder (typically named ‘Fiji.app’)
4. Remove bio-formats_plugins.jar from the ‘plugins’ sub-folder
5. Remove all of the .jars from the ‘jars/bio-formats’ sub-folder:
 - jai_imageio.jar
 - formats-gpl.jar
 - formats-common.jar
 - turbojpeg.jar
 - ome-xml.jar
 - formats-bsd.jar
 - ome-poi.jar
 - specification.jar
 - mdbtools-java.jar
 - metakit.jar
 - formats-api.jar
6. Download bio-formats_plugins.jar (from the latest release http://downloads.openmicroscopy.org/bio-formats/) and place it in the ‘plugins’ sub-folder
7. Download each of the following (from the latest release http://downloads.openmicroscopy.org/bio-formats/) and place them in the ‘jars/bio-formats’ sub-folder:
 - jai_imageio.jar
 - formats-gpl.jar
 - formats-common.jar
 - turbojpeg.jar

17http://fiji.sc/
18http://imagej.net/Bio-Formats
• ome-xml.jar
• formats-bsd.jar
• ome-poi.jar
• specification.jar
• mdbtools-java.jar
• metakit.jar
• formats-api.jar

8. To Check Version of Bio-Formats Select Help > About Plugins > Bio-Formats Plugins... Check that the version of Bio-Formats matches the freshly downloaded version.

Note: It is vital to perform all of those steps in order; omitting even one will cause a problem. In particular, make sure that the old files are fully removed; it is not sufficient to add the new files to any sub-directory without removing the old files first.

5.3 Bio-Formats features in ImageJ and Fiji

When you select Bio-Formats under the Plugin menu, you will see the following features:

• The **Bio-Formats Importer** is a plugin for loading images into ImageJ or Fiji. It can read over 140 proprietary life sciences formats and standardizes their acquisition metadata into the common OME data model. It will also extract and set basic metadata values such as spatial calibration\(^{19}\) if they are available in the file.

• The **Bio-Formats Exporter** is a plugin for exporting data to disk. It can save to the open OME-TIFF\(^{20}\) file format, as well as several movie formats (e.g. QuickTime, AVI) and graphics formats (e.g. PNG, JPEG).

• The **Bio-Formats Remote Importer** is a plugin for importing data from a remote URL. It is likely to be less robust than working with files on disk, so we recommend downloading your data to disk and using the regular Bio-Formats Importer whenever possible.

• The **Bio-Formats Windowless Importer** is a version of the Bio-Formats Importer plugin that runs with the last used settings to avoid any additional dialogs beyond the file chooser. If you always use the same import settings, you may wish to use the windowless importer to save time (Learn more [here](http://fiji.sc/SpatialCalibration)).

• The **Bio-Formats Macro Extensions** plugin prints out the set of commands that can be used to create macro extensions. The commands and the instructions for using them are printed to the ImageJ log window.

• The **Stack Slicer** plugin is a helper plugin used by the Bio-Formats Importer. It can also be used to split a stack across channels, focal planes or time points.

• The **Bio-Formats Plugins Configuration** dialog is a useful way to configure the behavior of each file format. The Formats tab lists supported file formats and toggles each format on or off, which is useful if your file is detected as the wrong format. It also toggles whether each format bypasses the importer options dialog through the “Windowless” checkbox. You can also configure any specific option for each format. The Libraries tab provides a list of available helper libraries used by Bio-Formats.

• The **Bio-Formats Plugins Shortcut Window** opens a small window with a quick-launch button for each plugin. Dragging and dropping files onto the shortcut window opens them quickly using the Bio-Formats Importer plugin.

• The **Update Bio-Formats Plugins** command will check for updates to the plugins. We recommend you update to the newest Trunk build as soon as you think you may have discovered a bug.

5.4 Installing Bio-Formats in ImageJ

Note: Since FIJI is essentially ImageJ with plugins like Bio-Formats already built in, people who install Fiji can skip this section.

\(^{19}\)http://fiji.sc/SpatialCalibration
\(^{20}\)http://www.openmicroscopy.org/site/support/ome-model/ome-tiff

5.3. Bio-Formats features in ImageJ and Fiji 43
If you are also using the OMERO plugin for ImageJ, you may find the set-up guide on the new user help site\(^\text{21}\) useful for getting you started with both plugins at the same time.

Once you download\(^\text{22}\) and install ImageJ, you can install the Bio-Formats plugin by going to the Bio-Formats download page\(^\text{23}\) and saving the `bioformats_package.jar` to the Plugins directory within ImageJ.

![ImageJ Plugin Directory](image.png)

Figure 5.1: Plugin Directory for ImageJ: Where in ImageJ’s file structure you should place the file once you downloaded it.

You may have to quit and restart ImageJ. Once you restart it, you will find Bio-Formats in the Bio-Formats option under the Plugins menu:

![ImageJ Plugins Menu](image.png)

5.4. Installing Bio-Formats in ImageJ

\(^{21}\)http://help.openmicroscopy.org/imagej.html

\(^{22}\)http://rsbweb.nih.gov/ij/download.html

\(^{23}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/
You are now ready to start using Bio-Formats.

5.5 Using Bio-Formats to load images into ImageJ

This section will explain how to use Bio-Formats to import files into ImageJ and how to use the settings on the Bio-Formats Import Options screen.

5.5.1 Opening files

There are three ways you can open a file using Bio-Formats:

1. Select the Bio-Formats Importer under the Bio-Formats plugins menu.
2. Drag and drop it onto the Bio-Formats Plugins Shortcut window.
3. Use the Open command in the File menu.

Unless you used the Bio-Formats Plugins Configuration dialog to open the file type windowlessly, you know you used Bio-Formats to open a file when you see a screen like this:

If you used the File > Open command and did not see the Bio-Formats Import Options screen, ImageJ/Fiji probably used another plugin instead of Bio-Formats to open the file. If this happens and you want to open a file using Bio-Formats, use one of the other two methods instead.

5.5.2 Opening files windowlessly

When you open a file with Bio-Formats, the Import Options Screen automatically recalls the settings you last used to open a file with that specific format (e.g. JPG, TIF, LSM, etc.). If you always choose the same options whenever you open files in a specific file format, you can save yourself time by bypassing the Bio-Formats Import Options screen. You can accomplish this two ways:

1. You can select the Bio-Formats Windowless Importer, located in the Bio-Formats menu under ImageJ’s Plugin menu. When you select this option, Bio-Formats will import the file using the same settings you used the last time you imported a file with the same format.

2. If you invariably use the same settings when you open files in a specific format, you can always bypass the Import Options Screen by changing the settings in the Bio-Formats Plugins Configuration option, which is also located in the Bio-Formats menu under ImageJ’s Plugin menu.
Once you select this option, select the file format you are interested in from the list on the left side of the screen. Check both the Enabled and Windowless boxes. Once you do this, whenever you open a file using the Bio-Formats Windowless Importer, the Bio-Formats Importer, or the drag-and-drop method described in the previous section, the file will always open the same way using the last setting used.

Please note that if you want to change any of the import settings once you enable this windowless option, you will have to go back to the Bio-Formats Plugins Configuration screen, unselect the windowless option, open a file using the regular Bio-Formats Importer, select your settings, and re-select the windowless option.

5.5.3 Group files with similar names

Note: The functionality described below is also available outside ImageJ, by using a pattern file to tell Bio-Formats how to group the files. See Grouping files using a pattern file for more information.

One of the most important features of Bio-Formats is to combine multiple files from a data set into one coherent, multi-dimensional image.

To demonstrate how to use the **Group files with similar names** feature, you can use the dub24 data set available under LOCI’s Sample Data25 page. You will notice that it is a large dataset: each of the 85 files shows the specimen at 33 optical sections along the z-plane at a specific time.

If you open just one file in ImageJ/Fiji using the Bio-Formats Importer, you will get an image incorporating three dimensions (x, y, z). However, if you select **Group files with similar names** from the Bio-Formats Import Options screen, you will be able to create a 4-D image (x, y, z, and t) incorporating the 85 files.

After clicking OK, you will see a screen like this:

This screen allows you to select which files within the 85-file cluster to use to create that 4-D image. Some information will be pre-populated in the fields. Unless you want to change the settings in that field, there is no need to change or delete it. If you click OK at this point, you will load all 85 files.

However, you can specify which files you want to open by adjusting the “axis information”, the file “name contains”, or the “pattern” sections. Even though there are three options, you only need to make changes to one of them. Since Bio-Format’s precedence for processing data is from top to bottom, only the uppermost section that you made changes to will be used. If you change multiple boxes, any information you enter into lower boxes will be ignored.

To return to the example involving the dub data set, suppose you want to open the first image and only every fifth image afterwards (i.e. dub01, dub06, dub11 . . . dub81). This would give you 17 images. There are different ways to accomplish this:

You can use the **Axis Settings** only when your files are numbered in sequential order and you want to open only a subset of the files that have similar names. Since the dub data set is numbered sequentially, you can use this feature.

24http://loci.wisc.edu/sample-data/dub
25http://loci.wisc.edu/software/sample-data
Axis 1 number of images refers to the total number of images you want to open. Since you want to view 17 images, enter 17.

Axis 1 axis first image specifies which image in the set you want to be the first. Since you want to start with dub01, enter 1 in that box. You also want to view only every fifth image, so enter 5 in the **Axis 1 axis increment** box.

The **File name contains** box should be used if all of the files that you want to open have common text. This is especially useful when the files are not numbered. For example, if you have “Image_Red.tif”, “Image_Green.tif”, and “Image_Blue.tif” you could enter “Image_” in the box to group them all.

To continue the example involving the dub data set, you cannot use the **file name contains** box to open every fifth image. However, if you only wanted to open dub10 thorough dub19, you could enter “dub1” in the **file name contains** box.

The **pattern** box can be used to do either of the options listed above or much more. This box can accept a single file name like “dub01.pic”. It can also contain a pattern that use “<” and “>” to specify what numbers or text the file names contain.

There are three basic forms to the “< >” blocks:

- **Text enumeration** - “Image_<Red,Green,Blue>.tif” is the pattern for Image_Red.tif, Image_Green.tif, Image_Blue.tif. (Note that the order you in which you enter the file names is the order in which they will be loaded.)
- **Number range** - “dub<1-85>.pic” is the pattern for “dub1.pic”, “dub2.pic”, “dub3.pic” . . . “dub85.pic”.
- **Number range with step** - “dub<1-85:5>.pic” is the pattern for “dub1.pic”, “dub6.pic”, “dub11.pic”, “dub11.pic” . . . “dub85.pic”.

It can also accept a **Java regular expression**.26

5.5.4 Autoscale

Autoscale helps increase the brightness and contrast of an image by adjusting the range of light intensity within an image to match the range of possible display values. Note that Autoscale does not change your data. It just changes how it is displayed.

Each pixel in an image has a numerical value ascribed to it to describe its intensity. The bit depth—the number of possible values—depends on the number of bits used in the image. Eight bits, for example, gives 256 values to express intensity where 0 is completely black, 255 is completely white, and 1 through 254 display increasingly lighter shades of grey.

ImageJ can collect the intensity information about each pixel from an image or stack and create a histogram (you can see it by selecting Histogram under the Analyze menu). Here is the histogram of a one particular image:

26http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html
Notice that the histogram heavily skews left. Even though there are 256 possible values, only 0 through 125 are being used. Autoscale adjusts the image so the smallest and largest number in that image or stack’s histogram become the darkest and brightest settings. For this image, pixels with the intensity of 125 will be displayed in pure white. The other values will be adjusted too to help show contrast between values that were too insignificant to see before.

Here is one image Bio-Formats imported with and without using Autoscale:
Autoscale readjusts the image based on the highest value in the entire data set. This means if the highest value in your dataset is close to maximum display value, Autoscale’s adjusting may be undetectable to the eye.

ImageJ/Fiji also has its own tools for adjusting the image, which are available by selecting Brightness/Contrast, which is under the Adjust option in the Image menu.

5.6 Managing memory in ImageJ/Fiji using Bio-Formats

When dealing with a large stack of images, you may receive a warning like this:

![Bio-Formats Memory Usage](image)

This means the allotted memory is less than what Bio-Formats needs to load all the images. If you have a very large data set, you may have to:

- View your stack with Data Browser
- Crop the view area
- Open only a subset of images
- Use Virtual Stack
- Increase ImageJ/Fiji’s memory.

If your files contain JPEG or JPEG-2000 images, you may see this memory warning even if your file size is smaller than the amount of allocated memory. This is because compressed images like JPEG need to be decompressed into memory before being displayed and require more memory than their file size suggests. If you are having this issue, try utilizing one of the memory management tools below.
5.6.1 View your stack with Data Browser

Data Browser is another part of Bio-Formats that enables users to view large 3, 4, or 5-D datasets by caching a subset of all the images available. This enables users to view a stack that is bigger than the computer's memory.

You can select Data Browser as an option for View stack with, the leftmost, uppermost option in the Bio-Formats Import Options screen.

Note that when you use Data Browser, other features like cropping and specifying range are not available. You can, however, adjust the size of the image cache in the Data Browser after you open the files. You can read more about it on LOCI’s Data Browser page27.

5.6.2 Cropping the view area

Crop on Import is useful if your images are very large and you are only interested in one specific section of the stack you are importing. If you select this feature, you will see a screen where you can enter the height and width (in pixels) of the part of image you want to see. Note that these measurements are from the top left corner of the image.

5.6.3 Opening only a subset of images

The Specify Range for Each Series option is useful for viewing a portion of a data set where all the plane images are encapsulated into one file (e.g. the Zeiss LSM format). If your file has a large quantity of images, you can specify which channels, Z-planes, and times you want to load.

5.6.4 Use Virtual Stack

Virtual Stack conserves memory by not loading specific images until necessary. Note that unlike Data Browser, Virtual Stack does not contain a buffer and may produce choppy animations.

5.6.5 Increasing ImageJ/Fiji’s memory

Finally, you can also increase the amount of the computer memory devoted to ImageJ/Fiji by selecting Memory & Threads under the Edit menu.

27http://loci.wisc.edu/software/data-browser
Generally, allocating more than 75% of the computer’s total memory will cause ImageJ/Fiji to become slow and unstable. Please note that unlike the other three features, ImageJ/Fiji itself provides this feature and not Bio-Formats. You can find out more about this feature by looking at ImageJ’s documentation28.

28http://rsbweb.nih.gov/ij/docs/menus/edit.html#options
6.1 Command line tools introduction

There are several scripts for using Bio-Formats on the command line.

6.1.1 Installation

Download bftools.zip, unzip it into a new folder.

Note: As of Bio-Formats 5.0.0, this zip now contains the bundled jar and you no longer need to download loci_tools.jar or the new bioformats_package.jar separately.

The zip file contains both Unix scripts and Windows batch files.

6.1.2 Tools available

Currently available tools include:

- **showinf** Prints information about a given image file to the console, and displays the image itself in the Bio-Formats image viewer (see Displaying images and metadata for more information).

- **ijview** Displays the given image file in ImageJ using the Bio-Formats Importer plugin. See Display file in ImageJ for details.

- **bfconvert** Converts an image file from one format to another. Bio-Formats must support writing to the output file (see Converting a file to different format for more information).

- **formatlist** Displays a list of supported file formats in HTML, plaintext or XML. See List supported file formats for details.

- **xmlindent** A simple XML prettifier similar to xmllint –format but more robust in that it attempts to produce output regardless of syntax errors in the XML. See Format XML data for details.

- **xmlvalid** A command-line XML validation tool, useful for checking an OME-XML document for compliance with the OME-XML schema.

- **tiffcomment** Dumps the comment from the given TIFF file’s first IFD entry; useful for examining the OME-XML block in an OME-TIFF file (also see Editing XML in an OME-TIFF).

- **domainlist** Displays a list of imaging domains and the supported formats associated with each domain. See List formats by domain for more information.

- **mkfake** Creates a “fake” high-content screen with configurable dimensions. This is useful for testing how HCS metadata is handled, without requiring real image data from an acquired screen. See Create a high-content screen for testing for more information.

1http://downloads.openmicroscopy.org/latest/bio-formats5.2/artifacts/bftools.zip
Some of these tools also work in combination, for example \textit{Validating XML in an OME-TIFF} uses both \texttt{tiffcomment} and \texttt{xmlvalid}.

Running any of these commands without any arguments will print usage information to help you. When run with the \texttt{-version} argument, \texttt{showinf} and \texttt{bfconvert} will display the version of Bio-Formats that is being used (version number, build date, and Git commit reference).

\subsection*{6.1.3 Using the tools directly from source}

Firstly, obtain a copy of the sources and build them (see \textit{Obtaining and building Bio-Formats}). You can configure the scripts to use your source tree instead of \texttt{bioformats_package.jar} in the same directory by following these steps:

1. Point your \texttt{CLASSPATH} to the checked-out directory and the JAR files in the \texttt{jar} folder.
 - E.g. on Windows with Java 1.7 or later, if you have checked out the source at \texttt{C:\code\bio-formats}, set your \texttt{CLASSPATH} environment variable to the value \texttt{C:\code\bio-formats\jar*;C:\code\bio-formats}.
 You can access the environment variable configuration area by right-clicking on My Computer, choosing Properties, Advanced tab, Environment Variables button.

2. Compile the source with \texttt{ant compile}.

3. Set the \texttt{BF_DEVEL} environment variable to any value (the variable just needs to be defined).

\subsection*{6.1.4 Version checker}

If you run \texttt{bf tools} outside of the OMERO environment, you may encounter an issue with the automatic version checker causing a tool to crash when trying to connect to \url{upgrade.openmicroscopy.org.uk}. The error message will look something like this:

```
Failed to compare version numbers
java.io.IOException: Server returned HTTP response code: 400 for URL:
http://upgrade.openmicroscopy.org.uk?version=4.4.8;os.name=Linux;os.version=2.6.32-358.6.2.el6.x86_64;os.arch=amd64;java.runtime.version=1.6.0_24-b24;java.vm.vendor=Sun Microsystems Inc.;bioformats.caller=Bio-Formats+utilities
```

To avoid this issue, call the tool with the \texttt{-no-upgrade} parameter.

\subsection*{6.1.5 Profiling}

For debugging errors or investigating performance issues, it can be useful to use profiling tools while running Bio-Formats. The command-line tools can invoke the \texttt{HPROF}2 agent library to profile Heap and CPU usage. Setting the \texttt{BF_PROFILE} environment variable allows to turn profiling on, e.g.:

```
BF_PROFILE=true showinf -nopix -no-upgrade myfile
```

\section*{6.2 Displaying images and metadata}

The \texttt{showinf} command line tool can be used to show the images and metadata contained in a file.

If no options are specified, \texttt{showinf} displays a summary of available options.

To simply display images:

```
showinf /path/to/file
```

\footnote{\url{http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html}}
All of the images in the first ‘series’ (or 5 dimensional stack) will be opened and displayed in a simple image viewer. The number of series, image dimensions, and other basic metadata will be printed to the console.

- **series** SERIES
 Displays a different series, for example the second one:

  ```
  showinf -series 1 /path/to/file
  ```

 Note that series numbers begin with 0.

- **omexml**
 Displays the OME-XML metadata for a file on the console:

  ```
  showinf -omexml /path/to/file
  ```

- **nopix**
 Image reading can be suppressed if only the metadata is needed:

  ```
  showinf -nopix /path/to/file
  ```

- **range** START END
 A subset of images can also be opened instead of the entire stack, by specifying the start and end plane indices (inclusive):

  ```
  showinf -range 0 0 /path/to/file
  ```

 That opens only the first image in first series in the file.

- **crop** X,Y,WIDTH,HEIGHT
 For very large images, it may also be useful to open a small tile from the image instead of reading everything into memory. To open the upper-left-most 512x512 tile from the images:

  ```
  showinf -crop 0,0,512,512 /path/to/file
  ```

 The parameter to **crop** is of the format x,y,width,height. The (x, y) coordinate (0, 0) is the upper-left corner of the image; x + width must be less than or equal to the image width and y + height must be less than or equal to the image height.

- **no-upgrade**
 By default, **showinf** will check for a new version of Bio-Formats. This can take several seconds (especially on a slow internet connection); to save time, the update check can be disabled:

  ```
  showinf -no-upgrade /path/to/file
  ```

- **no-valid**
 Similarly, if OME-XML is displayed then it will automatically be validated. On slow or missing internet connections, this can take some time, and so can be disabled:

  ```
  showinf -novalid /path/to/file
  ```

- **no-core**
 Most output can be suppressed:

  ```
  showinf -nocore /path/to/file
  ```
-omexml-only
Displays the OME-XML alone:

showinf -omexml-only /path/to/file

This is particularly helpful when there are hundreds or thousands of series.

-debug
Enables debugging output if more information is needed:

showinf -debug /path/to/file

-fast
Displays an image as quickly as possible. This is achieved by converting the raw data into a 8 bit RGB image:

showinf -fast /path/to/file

Note: Due to the data conversion to a RGB image, using this option results in a loss of precision.

-autoscale
Adjusts the display range to the minimum and maximum pixel values:

showinf -autoscale /path/to/file

Note: This option automatically sets the -fast option and suffers from the same limitations.

-cache
Caches the reader under the same directory as the input file after initialization:

showinf -cache /path/to/file

-cache-dir DIR
Specifies the base directory under which the reader should be cached:

showinf -cache-dir /tmp/cachedir /path/to/file

6.3 Converting a file to different format

The bfconvert command line tool can be used to convert files between supported formats. bfconvert with no options displays a summary of available options.

To convert a file to single output file (e.g. TIFF):

bfconvert /path/to/input output.tiff

The output file format is determined by the extension of the output file, e.g. .tiff for TIFF files, .ome.tiff for OME-TIFF, .png for PNG.

-series SERIES
All images in the input file are converted by default. To convert only one series:
bfconvert -series 0 /path/to/input output-first-series.tiff

-timepoint TIMEPOINT
To convert only one timepoint:

```
bfconvert -timepoint 0 /path/to/input output-first-timepoint.tiff
```

-channel CHANNEL
To convert only one channel:

```
bfconvert -channel 0 /path/to/input output-first-channel.tiff
```

-z Z
To convert only one Z section:

```
bfconvert -z 0 /path/to/input output-first-z.tiff
```

-range START END
To convert images between certain indices (inclusive):

```
bfconvert -range 0 2 /path/to/input output-first-3-images.tiff
```

-tilex TILEX, **-tiley** TILEY
All images larger than 4096x4096 will be saved as a set of tiles if the output format supports doing so. The default tile size is determined by the input format, and can be overridden like this:

```
bfconvert -tilex 512 -tiley 512 /path/to/input output-512x512-tiles.tiff
```

-tilex is the width in pixels of each tile; **-tiley** is the height in pixels of each tile. The last row and column of tiles may be slightly smaller if the image width and height are not multiples of the specified tile width and height. Note that specifying **-tilex** and **-tiley** will cause tiles to be written even if the image is smaller than 4096x4096.

Also note that the specified tile size will affect performance. If large amounts of data are being processed, it is a good idea to try converting a single tile with a few different tile sizes using the **-crop** option. This gives an idea of what the most performant size will be.

Images can also be written to multiple files by specifying a pattern string in the output file. For example, to write one series, timepoint, channel, and Z section per file:

```
bfconvert /path/to/input output_series_%s_Z%z_C%c_T%t.tiff
```

%**s** is the series index, %**z** is the Z section index, %**c** is the channel index, and %**t** is the timepoint index (all indices begin at 0).

For large images in particular, it can also be useful to write each tile to a separate file:

```
bfconvert -tilex 512 -tiley 512 /path/to/input output_tile_%x_%y_%m.jpg
```

%**x** is the row index of the tile, %**y** is the column index of the tile, and %**m** is the overall tile index. As above, all indices begin at 0. Note that if %**x** or %**y** is included in the file name pattern, then the other must be included too. The only exception is if %**m** was also included in the pattern.

-compression COMPRESSION
By default, all images will be written uncompressed. Supported compression modes vary based upon the output format, but when multiple modes are available the compression can be changed using the **-compression** option. For example, to use LZW compression in a TIFF file:

```
bfconvert -tilex 512 -tiley 512 -compression LZW /path/to/input output_tile_%x_%y_%m.jpg
```
Bio-Formats Documentation, Release 5.2.3

```
bfconvert -compression LZW /path/to/input output-lzw.tiff
```

-overwrite
If the specified output file already exists, `bfconvert` will prompt to overwrite the file. When running `bfconvert` non-interactively, it may be useful to always allow `bfconvert` to overwrite the output file:

```
bfconvert -overwrite /path/to/input /path/to/output
```

-nooverwrite
To always exit without overwriting:

```
bfconvert -nooverwrite /path/to/input /path/to/output
```

-nolookup
To disable the conversion of lookup tables, leaving the output file without any lookup tables:

```
bfconvert -nolookup /path/to/input /path/to/output
```

New in version 5.2.1.

-bigtiff
This option forces the writing of a BigTiff file:

```
bfconvert -bigtiff /path/to/input output.ome.tiff
```

New in version 5.1.2.

The `-bigtiff` option is not necessary if a BigTiff extension is used for the output file, e.g.:

```
bfconvert /path/to/input output.ome.btf
```

-padded
This option is used alongside a pattern string when writing an image to multiple files. When set this will enforce zero padding on the filename indexes set in the provided pattern string:

```
bfconvert /path/to/input output_xy%sz%zc%ct%t.ome.tif -padded
```

New in version 5.2.2.

6.4 Validating XML in an OME-TIFF

The XML stored in an OME-TIFF file can be validated using the `command line tools`. Both the `tiffcomment` and `xmlvalid` commands are used; `tiffcomment` extracts the XML from the file and `xmlvalid` validates the XML and prints any errors to the console.

For example:

```
tiffcomment /path/to/file.ome.tiff | xmlvalid -
```

will perform the extraction and validation all at once.

Typical successful output is:
If any errors are found they are reported. When correcting errors it is usually best to work from the top of the file as errors higher up can cause extra errors further down. In this example the output shows 3 errors but there are only 2 mistakes in the file:

```
[~/Work/bftools]$ ./xmlvalid broken.ome
Parsing schema path
http://www.openmicroscopy.org/Schemas/OME/2010-06/ome.xsd
Validating broken.ome

cvc-complex-type.4: Attribute ‘SizeY’ must appear on element ‘Pixels’.
cvc-enumeration-valid: Value ‘Non Zero’ is not facet-valid with respect
to enumeration ‘[EvenOdd, NonZero]’. It must be a value from the enumeration.
cvc-attribute.3: The value ‘Non Zero’ of attribute ‘FillRule’ on element
‘ROI:Shape’ is not valid with respect to its type, ‘null’.
Error validating document: 3 errors found
[~/Work/bftools]$
```

If the XML is found to have validation errors, the `tiffcomment` command can be used to overwrite the XML in the OME-TIFF file with corrected XML. The XML can be displayed in an editor window:

```
tiffcomment -edit /path/to/file.ome.tiff
```

or the new XML can be read from a file:

```
tiffcomment -set new-comment.xml /path/to/file.ome.tiff
```

6.5 Editing XML in an OME-TIFF

To edit the XML in an OME-TIFF file you can use `tiffcomment`, one of the Bio-Formats tools.

Note: The `tiffcomment` tool requires that the `ImageDescription` tag is present in the TIFF file and will error otherwise.

To use the built in editor run:

```
tiffcomment -edit sample.ome.tif
```

To extract or view the XML run:

```
tiffcomment sample.ome.tif
```

To inject replacement XML into a file run:

```
tiffcomment -set ‘newmetadata.xml’ sample.ome.tif
```
6.6 List formats by domain

Each supported file format has one or more imaging domains associated with it. To print the list of formats associated with each imaging domain:

domainlist

The command does not accept any arguments. The known image domains are defined by:

- ASTRONOMY_DOMAIN
- EM_DOMAIN
- FLIM_DOMAIN
- GEL_DOMAIN
- GRAPHICS_DOMAIN
- HCS_DOMAIN
- HISTOLOGY_DOMAIN
- LM_DOMAIN
- MEDICAL_DOMAIN
- SEM_DOMAIN
- SPM_DOMAIN
- UNKNOWN_DOMAIN

6.7 List supported file formats

A detailed list of supported formats can be displayed using the formatlist command.

The default behavior is to print a plain-text list of formats:

formatlist

-txt
Prints the list of formats as plain-text:

formatlist -txt

-html
Prints the list of formats as HTML:

formatlist -html

3 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#ASTRONOMY_DOMAIN
4 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#EM_DOMAIN
5 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#FLIM_DOMAIN
6 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#GEL_DOMAIN
7 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#GRAPHICS_DOMAIN
8 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#HCS_DOMAIN
9 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#HISTOLOGY_DOMAIN
10 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#LM_DOMAIN
11 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#MEDICAL_DOMAIN
12 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#SEM_DOMAIN
13 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#SPM_DOMAIN
14 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#UNKNOWN_DOMAIN
-xml
Prints the list of formats as XML:

formatlist -xml

-help
Displays the usage information:

formatlist -help

6.8 Display file in ImageJ

Files can be displayed from the command line in ImageJ. The Bio-Formats importer plugin for ImageJ is used to open the file. The command takes a single argument:

ijview /file/to/open

If the input file is not specified, ImageJ will show a file chooser window. The Bio-Formats import options window will then appear, after which the image(s) will be displayed. If the BF_DEVEL environment variable is set, the ImageJ jar <jars/ij.jar> must be included in the classpath.

6.9 Format XML data

The xmlindent command formats and adds indenting to XML so that it is easier to read. Indenting is currently set to 3 spaces. If an XML file name is not specified, the XML to indent will be read from standard output. Otherwise, one or more file names can be specified:

xmlindent /path/to/xml
xmlindent /path/to/first-xml /path/to/second-xml

The formatted XML from each file will be printed in the order in which the files were specified. By default, extra whitespace may be added to CDATA elements. To preserve the contents of CDATA elements:

xmlindent -valid /path/to/xml

6.10 Create a high-content screen for testing

The mkfake command creates a high-content screen for testing. The image data will be meaningless, but it allows testing of screen, plate, and well metadata without having to find appropriately-sized screens from real acquisitions. If no arguments are specified, mkfake prints usage information.

To create a single screen with default plate dimensions:

mkfake default-screen.fake
This will create a directory that represents one screen with a single plate containing one well, one field, and one acquisition of the plate (see PlateAcquisition\(^{15}\)).

-plates PLATES

To change the number of plates in the screen:

```
mkfake -plates 3 three-plates.fake
```

-runs RUNS

To change the number of acquisitions for each plate:

```
mkfake -runs 4 four-plate-acquisitions.fake
```

-rows ROWS

To change the number of rows of wells in each plate:

```
mkfake -rows 8 eight-row-plate.fake
```

-columns COLUMNS

To change the number of columns of wells in each plate:

```
mkfake -columns 12 twelve-column-plate.fake
```

-fields FIELDS

To change the number of fields per well:

```
mkfake -fields 2 two-field-plate.fake
```

It is often most useful to use the arguments together to create a realistic screen, for example:

```
mkfake -rows 16 -columns 24 -plates 2 -fields 3 two-384-well-plates.fake
```

-debug DEBUG

As with other command line tools, debugging output can be enabled if necessary:

```
mkfake -debug debug-screen.fake
```

\(^{15}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2015-01/SPW_xsd.html#PlateAcquisition_ID
OMERO 5 uses Bio-Formats to read original files from over 140 file formats. Please refer to the OMERO documentation\(^1\) for further information.

\(^1\)http://www.openmicroscopy.org/site/support/omero5.1/
8.1 BISQUE

The BISQUE\(^1\) (Bio-Image Semantic Query User Environment) Database, developed at the Center for Bio-Image Informatics at UCSB, was developed for the exchange and exploration of biological images. The Bisque system supports several areas useful for imaging researchers from image capture to image analysis and querying. The bisque system is centered around a database of images and metadata. Search and comparison of datasets by image data and content is supported. Novel semantic analyses are integrated into the system allowing high level semantic queries and comparison of image content.

Bisque integrates with Bio-Formats by calling the *showinf command line tool*.

8.2 OME Server

OME\(^2\) is a set of software that interacts with a database to manage images, image metadata, image analysis and analysis results. The OME system is capable of leveraging Bio-Formats to import files.

Please note - the OME server is no longer maintained and has now been superseded by the **OMERO server**\(^3\). Support for the OME server has been entirely removed in the 5.0.0 version of Bio-Formats; the following instructions can still be used with the 4.4.x versions.

8.2.1 Installation

For OME Perl v2.6.1\(^4\) and later, the command line installer automatically downloads the latest `loci_tools.jar` and places it in the proper location. This location is configurable, but is `/OME/java/loci_tools.jar` by default.

For a list of what was recognized for a particular import into the OME server, go to the Image details page in the web interface, and click the “Image import” link in the upper right hand box.

Bio-Formats is capable of parsing original metadata for supported formats, and standardizes what it can into the OME data model. For the rest, it expresses the metadata in OME terms as key/value pairs using an OriginalMetadata custom semantic type. However, this latter method of metadata representation is of limited utility, as it is not a full conversion into the OME data model.

Bio-Formats is enabled in OME v2.6.1 for all formats except:

- OME-TIFF
- Metamorph HTD
- Deltavision DV
- Metamorph STK
- Bio-Rad PIC
- Zeiss LSM
- TIFF

\(^1\)http://www.bioimage.ucsb.edu/bisque
\(^2\)http://openmicroscopy.org/site/support/legacy/ome-server
\(^3\)http://www.openmicroscopy.org/site/support/omero5.1/
\(^4\)http://downloads.openmicroscopy.org/ome/2.6.1/
The above formats have their own Perl importers that override Bio-Formats, meaning that Bio-Formats is not used to process them by default. However, you can override this behavior (except for Metamorph HTD, which Bio-Formats does not support) by editing an OME database configuration value:

% psql ome

toseethecurrentfileformatreaderlist:

ome=# select value from configuration where name='import_formats';

value
--
["OME::ImportEngine::OMETIFFreader","OME::ImportEngine::MetamorphHTDFormat",
 "OME::ImportEngine::DVreader","OME::ImportEngine::STKreader",
 "OME::ImportEngine::BioradReader","OME::ImportEngine::LSMreader",
 "OME::ImportEngine::TIFFreader","OME::ImportEngine::BMPreader",
 "OME::ImportEngine::DICOMreader","OME::ImportEngine::XMLreader",
 "OME::ImportEngine::BioFormats"]
(1 row)

Toremoveextraneousreadersfromthelist:

ome=# update configuration set value='["OME::ImportEngine::MetamorphHTDFormat",
 "OME::ImportEngine::XMLreader","OME::ImportEngine::BioFormats"]' where
name='import_formats';
UPDATE 1
ome=# select value from configuration where name='import_formats';

value
--
["OME::ImportEngine::MetamorphHTDFormat","OME::ImportEngine::XMLreader",
 "OME::ImportEngine::BioFormats"]
(1 row)

Toresetthingsbacktohowtheywere:

ome=# update configuration set value='["OME::ImportEngine::OMETIFFreader",
 "OME::ImportEngine::MetamorphHTDFormat","
 "OME::ImportEngine::DVreader","OME::ImportEngine::STKreader",
 "OME::ImportEngine::BioradReader","OME::ImportEngine::LSMreader",
 "OME::ImportEngine::TIFFreader","OME::ImportEngine::BMPreader",
 "OME::ImportEngine::DICOMreader","OME::ImportEngine::XMLreader",
 "OME::ImportEngine::BioFormats"]' where
name='import_formats';

Lastly, please note that Li-Cor L2D files cannot be imported into an OME server. Since the OME perl server has been discontinued, we have no plans to fix this limitation.

8.2.2 Upgrading

OME server is not supported by Bio-Formats versions 5.0.0 and above. To take advantage of more recent improvements to Bio-Formats, you must switch to OMERO server5.

8.2.3 Source Code

The source code for the Bio-Formats integration with OME server spans three languages, using piped system calls in both directions to communicate, with imported pixels written to OMEIS pixels files. The relevant source files are:

5http://www.openmicroscopy.org/site/support/omero5.1/

8.2. OME Server
• OmeisImporter.java\(^6\) – omebf Java command line tool
• BioFormats.pm\(^7\) – Perl module for OME Bio-Formats importer
• omeis.c\(^8\) – OMEIS C functions for Bio-Formats (search for “bioformats” case insensitivity to find relevant sections)

\(^6\)http://github.com/openmicroscopy/bioformats/tree/v4.4.10/components/scifio/src/loci/formats/ome/OmeisImporter.java
\(^7\)http://downloads.openmicroscopy.org/ome/code/BioFormats.pm
\(^8\)http://downloads.openmicroscopy.org/ome/code/omeis.c
CHAPTER NINE

LIBRARIES AND SCRIPTING APPLICATIONS

9.1 FARSIGHT

FARSIGHT\(^1\) is a collection of modules for image analysis created by LOCI’s collaborators at the University of Houston\(^2\). These open source modules are built on the ITK library and thus can take advantage of ITK’s support for Bio-Formats to process otherwise unsupported image formats.

The principal FARSIGHT module that benefits from Bio-Formats is the Nucleus Editor\(^3\), though in principle any FARSIGHT-based code that reads image formats via the standard ITK mechanism will be able to leverage Bio-Formats.

See also:

FARSIGHT Downloads page\(^4\)
FARSIGHT HowToBuild tutorial\(^5\)

9.2 i3dcore

i3dcore\(^6\), also known as the CBIA 3D image representation library, is a 3D image processing library developed at the Centre for Biomedical Image Analysis\(^7\). Together with i3dalgo\(^8\) and i4dcore\(^9\), i3dcore forms a continuously developed templated cross-platform C++ suite of libraries for multidimensional image processing and analysis.

i3dcore is capable of reading images with Bio-Formats using Java for C++ (java4cpp).

See also:

Download i3dcore\(^10\)
CBIA Software Development\(^11\)

9.3 ImgLib

ImgLib\(^12\) is a multidimensional image processing library. It provides a general mechanism for writing image analysis algorithms, without writing case logic for bit depth\(^13\), or worrying about the source of the pixel data (arrays in memory, files on disk, etc.).

The SCIFIO\(^14\) project provides an ImgOpener\(^15\) utility class for reading data into ImgLib2 data structures using Bio-Formats.

\(^1\)http://www.farsight-toolkit.org/
\(^2\)http://www.uh.edu/
\(^3\)http://www.farsight-toolkit.org/wiki/NucleusEditor
\(^4\)http://www.farsight-toolkit.org/wiki/Special:FarsightDownloads
\(^5\)http://www.farsight-toolkit.org/wiki/FARSIGHT_HowToBuild
\(^6\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html
\(^7\)http://cbia.fi.muni.cz/software-development.html
\(^8\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dalgo/index.html
\(^9\)http://cbia.fi.muni.cz/user_dirs/i4d_doc/i4dcore.html
\(^10\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html#download
\(^12\)http://imglib2.net/
\(^13\)http://en.wikipedia.org/wiki/Color_depth
\(^14\)http://scif.io/
\(^15\)https://github.com/scifio/scifio/blob/master/src/main/java/io/scif/img/ImgOpener.java
9.4 ITK

The Insight Toolkit16 (ITK) is an open-source, cross-platform system that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional data.

ITK provides an ImageIO plug-in structure that works via discovery through a dependency injection scheme. This allows a program built on ITK to load plug-ins for reading and writing different image types without actually linking to the ImageIO libraries required for those types. Such encapsulation automatically grants two major boons: firstly, programs can be easily extended just by virtue of using ITK (developers do not have to specifically accommodate or anticipate what plug-ins may be used). Secondly, the architecture provides a distribution method for open source software, like Bio-Formats, which have licenses that might otherwise exclude them from being used with other software suites.

The SCIFIO ImageIO17 plugin provides an ITK imageIO base that uses Bio-Formats to read and write supported life sciences file formats. This plugin allows any program built on ITK to read any of the image types supported by Bio-Formats.

9.5 Qu for MATLAB

Qu for MATLAB18 is a MATLAB toolbox for the visualization and analysis of multi-channel 4-dimensional datasets targeted to the field of biomedical imaging, developed by Aaron Ponti.

- Uses Bio-Formats to read files
- Open source software available under the Mozilla Public License

See also:

Qu for MATLAB download page19

16http://itk.org/
17https://github.com/scifio/scifio-imageio
18http://www.scs2.net/home/index.php?option=com_content&view=article&id=46%3Aqu-for-matlab&catid=34%3Aqu&Itemid=55
19http://www.scs2.net/home/index.php?option=com_content&view=article&id=46%3Aqu-for-matlab&catid=34%3Aqu&Itemid=55&limitstart=3
10.1 GNU Octave

GNU Octave\(^1\) is a high-level interpreted language, primarily intended for numerical computations. Being an array programming language, it is naturally suited for image processing and handling of N dimensional datasets. Octave is distributed under the terms of the GNU General Public License.

The Octave language is Matlab compatible so that programs are easily portable. Indeed, the Octave bioformats package is exactly the same as Matlab’s, the only difference being the installation steps.

10.1.1 Requirements

The bioformats package requires Octave version 4.0.0 or later with support for java:

```octave
$ octave
>> OCTAVE_VERSION
ans = 4.0.0
>> octave_config_info ("features").JAVA
ans = 1
```

10.1.2 Installation

1. Download bioformats_package.jar\(^2\) and place it somewhere sensible for your system (in Linux, this will probably be /usr/local/share/java or ~/.local/share/java for a system-wide or user installation respectively).
2. Add bioformats_package.jar to Octave’s static javaclasspath (see Octave’s documentation\(^3\)).
3. Download the Octave package from the downloads page\(^4\).
4. Start octave and install the package with:

   ```octave
   >> pkg install path-to-bioformats-octave-version.tar.gz
   ```

10.1.3 Usage

Usage instructions are the same as Matlab. The only difference is that you need to explicitly load the package. This is done by running at the Octave prompt:

```octave
>> pkg load bioformats
```

\(^1\)http://www.octave.org
\(^2\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/artifacts/bioformats_package.jar
\(^3\)https://www.gnu.org/software/octave/doc/interpreter/How-to-make-Java-classes-available_003f.html
\(^4\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/
10.1.4 Upgrading

To use a newer version of Bio-Formats, repeat the install instructions. Do not follow the Matlab instructions.

10.2 IDL

IDL\(^5\) (Interactive Data Language) is a popular data visualization and analysis platform used for interactive processing of large amounts of data including images.

IDL possesses the ability to interact with Java applications via its IDL-Java bridge. Karsten Rodenacker has written a script that uses Bio-Formats to read in image files to IDL.

10.2.1 Installation

Download the \texttt{ij_read_bio_formats.pro}\(^6\) script from Karsten Rodenacker’s IDL goodies \(^7\) web site. See the comments at the top of the script for installation instructions and caveats.

10.2.2 Upgrading

To use a newer version of Bio-Formats, overwrite the requisite JAR files with the newer version\(^8\) and restart IDL.

10.3 KNIME

KNIME\(^9\) (Konstanz Information Miner) is a user-friendly and comprehensive open-source data integration, processing, analysis, and exploration platform. KNIME supports image import using Bio-Formats using the KNIME Image Processing\(^10\) (a.k.a. KNIP) plugin.

10.4 MATLAB

MATLAB\(^11\) is a high-level language and interactive environment that facilitates rapid development of algorithms for performing computationally intensive tasks.

Calling Bio-Formats from MATLAB is fairly straightforward, since MATLAB has built-in interoperability with Java. We have created a set of scripts\(^12\) for reading image files. Note the minimum supported MATLAB version is R2007b (7.5).

10.4.1 Installation

Download the MATLAB toolbox from the Bio-Formats downloads page\(^13\). Unzip \texttt{bfmatlab.zip} and add the unzipped \texttt{bf-matlab} folder to your MATLAB path.

\textbf{Note:} As of Bio-Formats 5.0.0, this zip now contains the bundled jar and you no longer need to download \texttt{loci_tools.jar} or the new \texttt{bioformats_package.jar} separately.

\(^5\) http://www.exelisvis.com/ProductsServices/IDL.aspx
\(^6\) http://karo03.bplaced.net/karo/IDL/_pro/ij_read_bio_formats.pro
\(^7\) http://karo03.bplaced.net/karo/ro_embed.php?file=IDL/index.html
\(^8\) http://downloads.openmicroscopy.org/latest/bio-formats5.2/
\(^9\) http://www.knime.org/
\(^10\) http://tech.knime.org/community/image-processing
\(^11\) http://www.mathworks.com/products/matlab/
\(^12\) https://github.com/openmicroscopy/bioformats/tree/v5.2.3/components/formats-gpl/matlab
\(^13\) http://downloads.openmicroscopy.org/latest/bio-formats5.2/
10.4.2 Usage

Please see *Using Bio-Formats in MATLAB* for usage instructions. If you intend to extend the existing .m files, please also see the developer page for more information on how to use Bio-Formats in general.

10.4.3 Performance

In our tests (MATLAB R14 vs. java 1.6.0_20), the script executes at approximately half the speed of our *showinf command line tool*, due to overhead from copying arrays.

10.4.4 Upgrading

To use a newer version of Bio-Formats, overwrite the content of the *bfmatlab* folder with the newer version14 of the toolbox and restart MATLAB.

10.4.5 Alternative scripts

Several other groups have developed their own MATLAB scripts that use Bio-Formats, including the following:

- https://github.com/prakatmac/bf-tools/
- [imread for multiple life science image file formats](http://www.mathworks.com/matlabcentral/fileexchange/32920-imread-for-multiple-life-science-image-file-formats)

10.5 VisAD

The VisAD16 visualization toolkit is a Java component library for interactive and collaborative visualization and analysis of numerical data. VisAD uses Bio-Formats to read many image formats, notably TIFF.

10.5.1 Installation

The *visad.jar* file has Bio-Formats bundled inside, so no further installation is necessary.

10.5.2 Upgrading

It should be possible to use a newer version of Bio-Formats by putting the latest *bioformats_package.jar*17 or *formats-gpl.jar*18 before *visad.jar* in the class path. Alternately, you can create a “VisAD Lite” using the *make lite* command from VisAD source, and use the resultant *visad-lite.jar*, which is a stripped down version of VisAD without sample applications or Bio-Formats bundled in.

16 http://www.ssec.wisc.edu/~billh/visad.html
11.1 Bitplane Imaris

Imaris\(^1\) is Bitplane’s core scientific software module that delivers all the necessary functionality for data visualization, analysis, segmentation and interpretation of 3D and 4D microscopy datasets. Combining speed, precision and ease-of-use, Imaris provides a complete set of features for working with three- and four-dimensional multi-channel images of any size, from a few megabytes to multiple gigabytes in size.

As of version 7.2\(^2\), Imaris integrates with Fiji overview, which includes Bio-Formats. See this page\(^3\) for a detailed list of Imaris’ features.

11.2 CellProfiler

CellProfiler\(^4\)—developed by the Broad Institute Imaging Platform\(^5\)—is free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automatically. CellProfiler uses Bio-Formats to read images from disk, as well as write movies.

11.2.1 Installation

The CellProfiler distribution comes with Bio-Formats included, so no further installation is necessary.

11.2.2 Upgrading

It should be possible to use a newer version of Bio-Formats by replacing the bundled loci_tools.jar with a newer version.

- For example, on Mac OS X, Ctrl+click the CellProfiler icon, choose Show Package Contents, and replace the following files:
 - Contents/Resources/bioformats/loci_tools.jar
 - Contents/Resources/lib/python2.5/bioformats/loci_tools.jar

See also:

- CellProfiler\(^6\) Website of the CellProfiler software
- Using Bio-Formats in Python Section of the developer documentation describing the Python wrapper for Bio-Formats used by CellProfiler

\(^1\)http://www.bitplane.com/
\(^2\)http://www.bitplane.com/releasenotes.aspx?product=Imaris&version=7.2&patch=0
\(^3\)http://www.bitplane.com/imaris/imaris
\(^4\)http://www.cellprofiler.org
\(^5\)http://www.broadinstitute.org/science/platforms/imaging/imaging-platform
11.3 Comstat2

Comstat2 is a Java-based computer program for the analysis and treatment of biofilm images in 3D. It is the Master’s project of Martin Vorregaard.

Comstat2 uses the Bio-Formats Importer plugin for ImageJ to read files in TIFF and Leica LIF formats.

11.4 Endrov

Endrov (or https://github.com/mahogny/Endrov) (EV) is a multi-purpose image analysis program developed by the Thomas Burglin group at Karolinska Institute, Department of Biosciences and Nutrition.

11.4.1 Installation

The EV distribution comes bundled with the core Bio-Formats library (bio-formats.jar), so no further installation is necessary.

11.4.2 Upgrading

It should be possible to use a newer version of Bio-Formats by downloading the latest formats-gpl.jar and putting it into the libs folder of the EV distribution, overwriting the old file.

You could also include some optional libraries, to add support for additional formats, if desired.

11.5 FocalPoint

FocalPoint is an image browser, similar to Windows Explorer or other file manager application, specifically designed to work with more complex image types. FocalPoint uses Bio-Formats to generate thumbnails for some formats.

11.5.1 Installation

FocalPoint is bundled with Bio-Formats, so no further installation is necessary.

11.5.2 Upgrading

It should be possible to use a newer version of Bio-Formats by overwriting the old loci_tools.jar within the FocalPoint distribution. For Mac OS X, you will have to control click the FocalPoint program icon, choose “Show Package Contents” and navigate into Contents/Resources/Javat to find the loci_tools.jar file.

11.6 Graphic Converter

Graphic Converter is a Mac OS application for opening, editing, and organizing photos. Versions 6.4.1 and later use Bio-Formats to open all file formats supported by Bio-Formats.

7 http://www.comstat.dk/
8 https://github.com/mahogny/Endrov
9 http://www.biosci.ki.se/groups/tbu
10 http://www.ki.se/
11 http://downloads.openmicroscopy.org/latest/bio-formats5.2/artifacts/formats-gpl.jar
12 http://www.bioinformatics.bbsrc.ac.uk/projects/focalpoint/
14 http://en.wikipedia.org/wiki/File_manager
15 http://downloads.openmicroscopy.org/latest/bio-formats5.2/
16 http://www.lemkesoft.com
11.7 Icy

Icy17 is an open-source image analysis and visualization software package that combines a user-friendly graphical interface with the ability to write scripts and plugins that can be uploaded to a centralized website. It uses Bio-Formats internally to read images and acquisition metadata, so no further installation is necessary.

11.8 imago

Mayachitra imago18 is an advanced desktop image management package that enables scientists to easily store, manage, search, and analyze 5D biological images and their analysis results. imago integrates flexible annotation and metadata management with advanced image analysis tools.

imago uses Bio-Formats to read files in some formats, including Bio-Rad PIC, Image-Pro Workspace, Metamorph TIFF, Leica LCS LEI, Olympus Fluoview FV1000, Nikon NIS-Elements ND2, and Zeiss LSM.

A free 30-day trial version of imago is available here19.

11.9 Iqm

Iqm20 is an image processing application written in Java. It is mainly constructed around the Java JAI library and furthermore it incorporates the functionality of the popular ImageJ image processing software.

Because iqm integrates with ImageJ, it can take advantage of the Bio-Formats ImageJ plugin to read image data.

11.10 Macnification

Macnification21 is a Mac OS X application for organizing, editing, analyzing and annotating microscopic images, designed for ease of use. It is being developed by Orbicule22.

Macnification uses Bio-Formats to read files in some formats, including Gatan DM3, ICS, ImagePro SEQ, ImagePro IPW, Metamorph STK, OME-TIFF and Zeiss LSM.

See also:
Free trial download23

11.11 Micro-Manager

Micro-Manager24 is a software framework for implementing advanced and novel imaging procedures, extending functionality, customization and rapid development of specialized imaging applications.

Micro-Manager offers the functionality for saving the acquired images in TIFF/OME-TIFF format. Based on the mode of saving and the configuration settings, the acquired image can be saved with or without a companion file (*metadata.txt):

\begin{footnotesize}
\begin{itemize}
\item \url{http://icy.bioimageanalysis.org/}
\item \url{http://mayachitra.com/imago/index.html}
\item \url{http://mayachitra.com/imago/download-trial.php}
\item \url{http://code.google.com/p/iqm/}
\item \url{http://www.orbicule.com/macnification/}
\item \url{http://www.orbicule.com}
\item \url{http://www.orbicule.com/macnification/download}
\item \url{https://www.micro-manager.org/wiki/Micro-Manager}
\end{itemize}
\end{footnotesize}
Saving Options within Micro-Manager

<table>
<thead>
<tr>
<th>Format</th>
<th>Companion File</th>
<th>Bio-Formats Reading</th>
<th>Reader Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save as separate image files</td>
<td>TIFF</td>
<td>Yes</td>
<td>Full Support</td>
</tr>
<tr>
<td>Save as image stack file</td>
<td>OME-TIFF</td>
<td>No</td>
<td>Pixel data plus minimal metadata*</td>
</tr>
<tr>
<td></td>
<td>OME-TIFF</td>
<td>Yes**</td>
<td>Full Support</td>
</tr>
</tbody>
</table>

* Not all acquisition metadata is converted to OME-XML.

** A small change in the acquisition side facilitates better handling of the metadata from the Bio-Formats side: Tools → Options... and then select “Create metadata.txt file with Image Stack Files” in the text box.

See also:

Micro-Manager User’s Guide - Files on Disk\(^25\)

11.12 MIPAV

The MIPAV\(^26\) (Medical Image Processing, Analysis, and Visualization) application—developed at the Center for Information Technology\(^27\) at the National Institutes of Health\(^28\)—enables quantitative analysis and visualization of medical images of numerous modalities such as PET, MRI, CT, or microscopy. You can use Bio-Formats as a plugin for MIPAV to read images in the formats it supports.

\(^25\)https://micro-manager.org/wiki/Micro-Manager_User%27s_Guide#Files_on_Disk
\(^26\)http://mipav.cit.nih.gov/
\(^27\)http://cit.nih.gov/
\(^28\)http://nih.gov/
11.12.1 Installation

Follow these steps to install the Bio-Formats plugin for MIPAV:

1. Download `bioformats_package.jar` and drop it into your MIPAV folder.
2. Download the plugin source code into your user `mipav/plugins` folder.
3. From the command line, compile the plugin with:

   ```
   cd mipav/plugins
   javac -cp $MIPAV:$MIPAV/bioformats\_package.jar PlugInBioFormatsImporter.java
   ```

4. where $MIPAV is the location of your MIPAV installation.
5. Add `bioformats_package.jar` to MIPAV’s class path:

 - How to do so depends on your platform.
 - E.g., in Mac OS X, edit the `mipav.app/Contents/Info.plist` file.

See the readme file for more information.

To upgrade, just overwrite the old `bioformats_package.jar` with the latest one. You may want to download the latest version of MIPAV first, to take advantage of new features and bug-fixes.

11.13 Vaa3D

Vaa3D, developed by the Peng Lab at the HHMI Janelia Farm Research Campus, is a handy, fast, and versatile 3D/4D/5D Image Visualization & Analysis System for Bioimages & Surface Objects.

Vaa3D can use Bio-Formats via the Bio-Formats C++ bindings to read images.

11.14 VisBio

VisBio is a biological visualization tool designed for easy visualization and analysis of multidimensional image data. VisBio uses Bio-Formats to import files as the Bio-Formats library originally grew out of our efforts to continually expand the file format support within VisBio.

11.14.1 Installation

VisBio is bundled with Bio-Formats, so no further installation is necessary.

11.14.2 Upgrading

It should be possible to use a newer version of Bio-Formats by overwriting the old `bio-formats.jar` and optional libraries within the VisBio distribution. For Mac OS X, you’ll have to control click the VisBio program icon, choose “Show Package Contents” and navigate into Contents/Resources/Java to find the JAR files.

30.https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/utils/mipav/PlugInBioFormatsImporter.java
31.https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/utils/mipav/readme.txt
33.http://vaa3d.org
34.http://penglab.janelia.org/
37.http://loci.wisc.edu/software/visbio

11.13. Vaa3D
XuvTools is automated 3D stitching software for biomedical image data. As of release 1.8.0, XuvTools uses Bio-Formats to read image data.

39http://www.xuvtools.org
Part III

Developer Documentation
The following sections describe various things that are useful to know when working with Bio-Formats. It is recommended that you obtain the Bio-Formats source by following the directions in the *Source code* section. Referring to the *Javadoc*\(^{40}\) as you read over these pages should help, as the notes will make more sense when you see the API.

For a complete list of supported formats, see the Bio-Formats *supported formats table*.

For a few working examples of how to use Bio-Formats, see these Github pages\(^{41}\).

\(^{40}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/

\(^{41}\)https://github.com/openmicroscopy/bioformats/tree/v5.2.3/components/formats-gpl/utils
CHAPTER TWELVE

INTRODUCTION TO BIO-FORMATS

12.1 Overview for developers

From the rest of the Bio-Formats developer documentation one may piece together a correct and useful understanding of what Bio-Formats does and how it does it. This section gives a high-level tour of these technical details, for those new to working on Bio-Formats itself, making it easier to understand how the information from the other sections fits into the big picture.

12.1.1 Terms and concepts

Bio-Formats can read image data from files for many formats, and can write image data to files for some formats. An image may have many two-dimensional “planes” of pixel intensity values. Each pixel on a plane is identified by its \(x, y \) values. Planes within an image may be identified by various dimensions including \(z \) (third spatial dimension), \(c \) (channel, e.g. wavelength) or \(t \) (time). Planes may be divided into tiles, which are rectangular subsections of a plane; this is helpful in handling very large planes. A file (or set of related files) on disk may contain multiple images: each image is identified by a unique series number.

An image is more than a set of planes: it also has metadata. Bio-Formats distinguishes core metadata, such as the \(x, y, z, c, t \) dimensions of the image, from format-specific original metadata, e.g. information about the microscope and its settings, which is represented as a dictionary of values indexed by unique keys. Metadata apply to the image data as a whole, or separately to specific series within it.

Bio-Formats is able to translate the above metadata into a further form, OME metadata. The translation may be partial or incomplete, but remains very useful for allowing the metadata of images from different file formats to be used and compared in a common format defined by the OME data model.

12.1.2 Implementation

Bio-Formats is primarily a Java project. It can be used from MATLAB, and there are C++ bindings and an ongoing C++ implementation effort. The source code is available for download and sometimes the user community contributes code back into Bio-Formats by opening a pull request on GitHub. Bio-Formats is built from source with Ant or Maven and some of the Bio-Formats source code is generated from other files during the build process. The resulting JARs corresponding to official Bio-Formats releases are available for download.

Readers and writers for different image file formats are implemented in separate Java classes. Readers for related formats may reflect that relationship in the Java class hierarchy. Simple standalone command-line tools are provided with Bio-Formats, but it is more commonly used as a third-party library by other applications. Various examples show how one may use Bio-Formats in different ways in writing a new application that reads or writes image data. A common pattern is to initialize a reader based on the image data’s primary file, then query that reader for the metadata and planes of interest.

The set of readers is easily modified. The readers.txt\(^1\) file lists the readers to try in determining an image file’s format, and there are many useful classes and methods among the Bio-Formats Java code to assist in writing new readers and writers.

\(^1\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-api/src/loci/formats/readers.txt
12.2 Obtaining and building Bio-Formats

12.2.1 Source code

The source code for this Bio-Formats release is available from the download page\(^2\). This release and the latest Bio-Formats source code are also available from the Git repository. This may be accessed using the repository path:

```
git@github.com:openmicroscopy/bioformats.git
```

More information about Git and client downloads are available from the Git project website\(^3\). You can also browse the Bio-Formats source on GitHub\(^4\).

Note: Windows users must set git to use `core.autocrlf=input` to ensure that Bio-Formats uses LF rather than CRLF line endings, otherwise the build will fail (Genshi can’t process code templates with CRLF line endings, leading to broken sources being generated). This can be set globally in the registry when installing `msysgit` or by editing `etc/gitconfig` in the git installation directory. Annoyingly, these settings appear to override per-user and per-repository configuration values, requiring these to be set globally.

Lastly, you can browse the Bio-Formats Javadocs online\(^5\), or generate them yourself using the “docs” Ant target.

12.2.2 Source code structure

The Bio-Formats code is divided into several projects. Core components are located in subfolders of the `components`\(^6\) folder, with some components further classified into `components/forks`\(^7\) or `components/stubs`\(^8\), depending on the nature of the project. See the Component overview for more information, including associated build targets for each component.

Each project has a corresponding Maven POM file, which can be used to work with the project in your favorite IDE, or from the command line, once you have cloned the source.

12.2.3 Building from source

Instructions for several popular options follow. In all cases, make sure that the prerequisites are installed before you begin.

If you are interested in working on the Bio-Formats source code itself, you can load it into your favorite IDE, or develop with your favorite text editor.

Prerequisites

In addition to the Bio-Formats source code, the following programs and packages are also required:

- Python\(^9\), version 2.6 or later (note: not version 3)
- Genshi\(^10\) 0.5 or later (0.7 recommended)

Note: Genshi may be installed (in order of decreasing preference) with some Linux distributions’ package managers, pip (pip install genshi), by downloading a compatible .egg for your system from the Genshi download page\(^11\), or from source. If using a .egg, make sure it is added to your PYTHONPATH environment variable.

\(^2\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/
\(^3\)http://git-scm.com/
\(^4\)https://github.com/openmicroscopy/bioformats
\(^5\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/
\(^6\)https://github.com/openmicroscopy/bioformats/tree/v5.2.3/components/
\(^7\)https://github.com/openmicroscopy/bioformats/tree/v5.2.3/components/forks/
\(^8\)https://github.com/openmicroscopy/bioformats/tree/v5.2.3/components/stubs/
\(^9\)http://python.org
\(^10\)http://genshi.edgewall.org
\(^11\)http://genshi.edgewall.org/wiki/Download
NetBeans

NetBeans comes with Maven support built in. To import the Bio-Formats source, perform the following steps:

1. Select *File → Open Project* from the menu - choose the top-level path to bioformats.git and click *Open Project*
2. In the ‘Projects’ tab on the left-hand side, expand the ‘Bio-Formats projects’ entry - you should now have a series of folders including ‘Other Sources’, ‘Modules’ and ‘Dependencies.’
3. Expand the ‘Modules’ folder to give a list of components and then double-click the desired project(s) to work with them.

Alternately, you can clone the source directly from NetBeans into a project by selecting *Team → Git → Clone Other...* from the menu.

Eclipse

Eclipse uses the “Maven Integration for Eclipse” (m2e) plugin to work with Maven projects. It is more flexible than Eclipse’s built-in project management because m2e transparently converts between project dependencies and JAR dependencies (stored in the Maven repository in ~/.m2/repository) on the build path, depending on which projects are currently open.

We recommend using Eclipse 4.3 (Kepler) or later, specifically - “Eclipse IDE for Java developers”. It comes with m2e installed (http://eclipse.org/downloads/compare.php?release=kepler).

You can import the Bio-Formats source by choosing *File → Import → Existing Maven Projects* from the menu and browsing to the top-level folder of your Bio-Formats working copy. Alternatively, run the Eclipse Maven target with `mvn eclipse:eclipse` to create the Eclipse project files, then use *File → Import → Existing Projects into Workspace*.

To remove post-import errors, either close the *ome-xml* project or run:

```
ant jars && mvn generate-sources
```

See also:

[ome-devel] Importing source into eclipse

Command line

If you prefer developing code with a text editor such as vim or emacs, you can use the Ant or Maven command line tools to compile Bio-Formats. The Bio-Formats source tree provides parallel build systems for both Ant and Maven, so you can use either one to build the code.

For a list of Ant targets, run:

```
ant -p
```

In general, `ant jars` or `ant tools` is the correct command.

When using Maven, Bio-Formats is configured to run the “install” target by default, so all JARs will be copied into your local Maven repository in `~/.m2/repository`. Simply run:

```
mvn
```

With either Ant or Maven, you can use similar commands in any subproject folder to build just that component.

12.2.4 Using Gradle, Maven or Ivy

All released .jar artifacts may be obtained through the OME Artifactory server\(^\text{13}\). The “Client Settings” section of the Artifactory main page provides example code snippets for inclusion into your Gradle, Maven or Ivy project, which will enable the use of this repository.

Example snippets for using the Bio-Formats $\{release.major\}.\{release.minor\}-SNAPSHOT formats-gpl artifact are available for Gradle and for Maven. These may be copied into your project to enable the use of the Bio-Formats library components, and may be adjusted to use different components or different release or development versions of Bio-Formats.

12.3 Component overview

The Bio-Formats code repository is divided up into separate components.

The Ant targets to build each component from the repository root are noted in the component descriptions below. Unless otherwise noted, each component can also be built with Maven by running `mvn` in the component’s subdirectory. The Maven module name for each component (as it is shown in most IDEs) is also noted in parenthesis.

12.3.1 Core components

The most commonly used and actively modified components.

- `formats-common`
- `formats-api`
- `formats-bsd`
- `formats-gpl`
- `specification`
- `ome-xml`

12.3.2 Internal testing components

These components are used heavily during continuous integration testing, but are less relevant for active development work.

- `autogen`
- `test-suite`

\(^{13}\)http://artifacts.openmicroscopy.org/artifactory
12.3.3 Forks of existing projects

- mdbtools
- jai
- turbojpeg
- poi

12.3.4 All components

autogen (Bio-Formats code generator)\(^{14}\):

Ant: jar-autogen

Contains everything needed to automatically generate documentation for supported file formats. format-pages.txt\(^{15}\) should be updated for each new file format reader or writer, but otherwise manual changes should be unnecessary. The following Ant targets are used to regenerate the documentation for all formats:

- gen-format-pages
- gen-meta-support
- gen-original-meta-support

bio-formats-plugins (Bio-Formats Plugins for ImageJ)\(^{16}\):

Ant: jar-bio-formats-plugins

Everything pertaining to the Bio-Formats plugins for ImageJ lives in this component. Note that when built, this component produces bio-formats_plugins.jar (instead of bio-formats-plugins.jar) to be in keeping with ImageJ plugin naming conventions. bio-formats-tools (Bio-Formats command line tools)\(^{17}\):

Ant: jar-bio-formats-tools

The classes that implement the showinf, bfconvert, and mkfake command line tools are contained in this component. Note that this is built with the jar-bio-formats-tools Ant target, and not the tools target (which is the Ant equivalent of bundles). bundles (bioformats_package bundle, LOCI Tools bundle, OME Tools bundle)\(^{18}\):

Ant: tools

This is only needed by the Maven build system, and is used to aggregate all of the individual .jar files into bioformats_package.jar. There should not be any code here, just build system files. forks/jai (JAI Image I/O Tools)\(^{19}\):

Ant: jar-jai

This is a fork of JAI ImageIO\(^{20}\) which adds support for decoding YCbCr JPEG-2000 data. This is primarily needed for reading images from histology/pathology formats in formats-gpl. There are no dependencies on other components. forks/mdbtools (MDB Tools (Java port))\(^{21}\):

Ant: jarmdbtools

This is a fork of the mdbtools-java\(^{22}\) project. There are numerous bug fixes, as well as changes to reduce the memory required for large files. There are no dependencies on other components. forks/poi (Apache Jakarta POI)\(^{23}\):

Ant: jar-ome-poi

\(^{14}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/autogen

\(^{15}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/autogen/src/format-pages.txt

\(^{16}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-plugins

\(^{17}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-tools

\(^{18}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bundles

\(^{19}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/forks/jai

\(^{20}\)http://java.net/projects/jai-imageio-core

\(^{21}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/forks/mdbtools

\(^{22}\)http://mdbtools.cvs.sourceforge.net/viewcvs/mdbtools/mdbtools-java

\(^{23}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/forks/poi
This is a fork of Apache POI, which allows reading of Microsoft OLE document files. We have made substantial changes to support files larger than 2GB and reduce the amount of memory required to open a file. I/O is also handled by classes from formats-common, which allows OLE files to be read from memory. forks/turbojpeg (libjpeg-turbo Java bindings):

Ant: jar-turbojpeg

This is a fork of libjpeg-turbo. There are not any real code changes, but having this as a separate component allows us to package the libjpeg-turbo Java API together with all of the required binaries into a single .jar file using native-lib-loader. There are no dependencies on other components. formats-api (Bio-Formats API):

Ant: jar-formats-api

This defines all of the high level interfaces and abstract classes for reading and writing files. There are no file format readers or writers actually implemented in this component, but it does contain the majority of the API that defines Bio-Formats. formats-bsd and formats-gpl implement this API to provide file format readers and writers. formats-common and ome-xml are both required as part of the interface definitions. formats-common (Common):

Ant: jar-formats-common

Provides I/O classes that unify reading from files on disk, streams or files in memory, compressed streams, and non-file URLs. The primary entry points are Location, RandomAccessInputStream (for reading), and RandomAccessOutputStream (for writing).

In addition to I/O, there are several classes to assist in working with XML (XMLTools), date/timestamps (DateTools), logging configuration (DebugTools), and byte arithmetic (DataTools).

This does not depend on any other components, so can be used anywhere independent of the rest of the Bio-Formats API.

formats-bsd (BSD Bio-Formats readers and writers):

Ant: jar-formats-bsd, jar-formats-bsd-tests

This contains readers and writers for formats which have a publicly available specification, e.g. TIFF. Everything in the component is BSD-licensed. formats-gpl (Bio-Forms library):

Ant: jar-formats-gpl

The majority of the file format readers and some file format writers are contained in this component. Everything in the component is GPL-licensed (in contrast with formats-bsd). Most file formats represented in this component do not have a publicly available specification. metakit (Metakit):

Ant: jar-metakit

Java implementation of the Metakit database specification. This uses classes from formats-common and is used by formats-gpl, but is otherwise independent of the main Bio-Formats API. ome-xml (OME-XML Java library):

Ant: jar-ome-xml

This component contains classes that represent the OME-XML schema. Some classes are committed to the Git repository, but the majority are generated at build time by using xsd-fu to parse the OME-XML schema files. Classes from this component are used by Bio-Formats to read and write OME-XML, but they can also be used independently. specification (Specification):
All released and in-progress OME-XML schema files are contained in this component. The specification component is also the location of all XSLT stylesheets for converting between OME-XML schema versions, as well as example OME-XML files in each of the released schema versions. stubs (Luratech LuraWave stubs, MIPAV stubs)\(^3\):

Ant: jar-lwf-stubs, jar-mipav-stubs

This component provides empty classes that mirror third-party dependencies which are required at compile time but cannot be included in the build system (usually due to licensing issues). The build succeeds since required class names are present with the correct method signatures; the end user is then expected to replace the stub .jar files at runtime. test-suite (Bio-Formats testing framework)\(^4\):

Ant: jar-tests

All tests that operate on files from our data repository (i.e. integration tests) are included in this component. These tests are primarily run by the continuous integration jobs\(^5\), and verify that there are no regressions in reading images or metadata. xsd-fu (XSD-FU)\(^6\):

Ant: no target

xsd-fu is a Python framework for turning the schema files in the specification component into the classes that represent the OME-XML schema in the ome-xml component.

12.4 Reading files

12.4.1 Basic file reading

Bio-Formats provides several methods for retrieving data from files in an arbitrary (supported) format. These methods fall into three categories: raw pixels, core metadata, and format-specific metadata. All methods described here are present and documented in loci.formats.IFormatReader\(^7\). In general, it is recommended that you read files using an instance of loci.formats.ImageReader\(^8\). While it is possible to work with readers for a specific format, ImageReader contains additional logic to automatically detect the format of a file and delegate subsequent calls to the appropriate reader.

Prior to retrieving pixels or metadata, it is necessary to call setId(java.lang.String)\(^9\) on the reader instance, passing in the name of the file to read. Some formats allow multiple series (5D image stacks) per file; in this case you may wish to call setSeries(int)\(^10\) to change which series is being read.

Raw pixels are always retrieved one plane at a time. Planes are returned as raw byte arrays, using one of the openBytes methods.

Core metadata is the general term for anything that might be needed to work with the planes in a file. A list of core metadata fields is given in the table below together with the appropriate accessor method:

<table>
<thead>
<tr>
<th>Core metadata field</th>
<th>API method</th>
</tr>
</thead>
<tbody>
<tr>
<td>image width</td>
<td>getSizeX()(^{11})</td>
</tr>
<tr>
<td>image height</td>
<td>getSizeY()(^{12})</td>
</tr>
<tr>
<td>number of series per file</td>
<td>getSeriesCount()(^{13})</td>
</tr>
<tr>
<td>total number of images per series</td>
<td>getZDimensionCount()(^{14})</td>
</tr>
<tr>
<td>number of slices in the current series</td>
<td>getZOrder()(^{15})</td>
</tr>
<tr>
<td>number of timepoints in the current series</td>
<td>isRGB()(^{16})</td>
</tr>
<tr>
<td>number of actual channels in the current series</td>
<td>isLittleEndian()(^{17})</td>
</tr>
<tr>
<td>number of channels per image</td>
<td>isInterleaved()(^{18})</td>
</tr>
<tr>
<td>the ordering of the images within the current series</td>
<td>getPixelType()(^{19})</td>
</tr>
<tr>
<td>whether each image is RGB</td>
<td></td>
</tr>
<tr>
<td>whether the pixel bytes are in little-endian order</td>
<td></td>
</tr>
<tr>
<td>whether the channels in an image are interleaved</td>
<td></td>
</tr>
<tr>
<td>the type of pixel data in this file</td>
<td></td>
</tr>
</tbody>
</table>

\(^{11}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html
\(^{12}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html
\(^{13}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html
\(^{14}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html
\(^{15}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html
\(^{16}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html
\(^{17}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html
\(^{18}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html
\(^{19}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html
All file formats are guaranteed to accurately report core metadata.

Bio-Formats also converts and stores additional information which can be stored and retrieved from the OME-XML Metadata. These fields can be accessed in a similar way to the core metadata above. An example of such values would be the physical size of dimensions X, Y and Z. The accessor methods for these properties return a `Length` object which contains both the value and unit of the dimension. These lengths can also be converted to other units using `value(ome.units.unit.Unit)` An example of reading and converting these physical sizes values can be found in `ReadPhysicalSize.java`.

Format-specific metadata refers to any other data specified in the file - this includes acquisition and hardware parameters, among other things. This data is stored internally in a `java.util.Hashtable`, and can be accessed in one of two ways: individual values can be retrieved by calling `getMetadataValue(java.lang.String)` which gets the value of the specified key. Note that the keys in this Hashtable are different for each format, hence the name “format-specific metadata”.

See [Bio-Formats metadata processing](#) for more information on the metadata capabilities that Bio-Formats provides.

See also:

IFormatReader Source code of the `loci.formats.IFormatReader` interface

12.4.2 File reading extras

The previous section described how to read pixels as they are stored in the file. However, the native format is not necessarily convenient, so Bio-Formats provides a few extras to make file reading more flexible.

- The `loci.formats.ReaderWrapper` API that implements `loci.formats.IFormatReader` allows to define “wrapper” readers that take a reader in the constructor, and manipulate the results somehow, for convenience. Using them is similar to the java.io.InputStream/OutputStream model: just layer whichever functionality you need by nesting the wrappers.

The table below summarizes a few wrapper readers of interest:

<table>
<thead>
<tr>
<th>Wrapper reader</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>loci.formats.BufferedImageReader</code></td>
<td>Allows pixel data to be returned as BufferedImages instead of raw byte arrays</td>
</tr>
<tr>
<td><code>loci.formats.FileStitcher</code></td>
<td>Uses advanced pattern matching heuristics to group files that belong to the same dataset</td>
</tr>
<tr>
<td><code>loci.formats.ChannelSeparator</code></td>
<td>Makes sure that all planes are grayscale - RGB images are split into 3 separate grayscale images</td>
</tr>
<tr>
<td><code>loci.formats.ChannelMerger</code></td>
<td>Merges grayscale images to RGB if the number of channels is greater than 1</td>
</tr>
<tr>
<td><code>loci.formats.ChannelFiller</code></td>
<td>Converts indexed color images to RGB images</td>
</tr>
<tr>
<td><code>loci.formats.MinMaxCalculator</code></td>
<td>Provides an API for retrieving the minimum and maximum pixel values for each channel</td>
</tr>
<tr>
<td><code>loci.formats.DimensionSwapper</code></td>
<td>Provides an API for changing the dimension order of a file</td>
</tr>
<tr>
<td><code>loci.formats.Memoizer</code></td>
<td>Caches the state of the reader into a memoization file</td>
</tr>
<tr>
<td><code>loci.formats.ImageTools</code> and <code>loci.formats.gui.AWTImageTools</code> provide a number of methods for manipulating BufferedImages and primitive type arrays. In particular, there are methods to split and merge channels in a BufferedImage/array, as well as converting to a specific data type (e.g. convert short data to byte data).</td>
<td></td>
</tr>
</tbody>
</table>

53 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#getSeriesCount()
54 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#getImageCount()
55 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#getValue()
56 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#getValue(ome.units.unit.Unit)
58 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#isInterleaved()
59 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#isRGB()
12.4.3 Troubleshooting

- Importing multi-file formats (Leica LEI, PerkinElmer, FV1000 OIF, ICS, and Prairie TIFF, to name a few) can fail if any of the files are renamed. There are “best guess” heuristics in these readers, but they are not guaranteed to work in general. So please do not rename files in these formats.

- If you are working on a Macintosh, make sure that the data and resource forks of your image files are stored together. Bio-Formats does not handle separated forks (the native QuickTime reader tries, but usually fails).

- Bio-Formats file readers are not thread-safe. If files are read within a parallelized environment, a new reader must be fully initialized in each parallel session. See Improving reading performance about ways to improve file reading performance in multi-threaded mode.

12.5 Writing files

The loci.formats.IFormatWriter API is very similar to the reader API, in that files are written one plane at time (rather than all at once).

The file formats which can be written using Bio-Formats are marked in the supported formats table with a green tick in the ‘export’ column. These include, but are not limited to:

- TIFF (uncompressed, LZW, JPEG, or JPEG-2000)
- OME-TIFF (uncompressed, LZW, JPEG, or JPEG-2000)
- JPEG
- PNG
- AVI (uncompressed)
- QuickTime (uncompressed is supported natively; additional codecs use QTJava)
- Encapsulated PostScript (EPS)
- OME-XML (not recommended)

All writers allow the output file to be changed before the last plane has been written. This allows you to write to any number of output files using the same writer and output settings (compression, frames per second, etc.), and is especially useful for formats that do not support multiple images per file.

See also:

IFormatWriter Source code of the loci.formats.IFormatWriter interface

loci.formats.tools.ImageConverter Source code of the loci.formats.tools.ImageConverter class

Further details on exporting raw pixel data to OME-TIFF files Examples of OME-TIFF writing

13.1 Using Bio-Formats as a Java library

13.1.1 Bio-Formats as a Maven dependency

If you wish to make use of Bio-Formats within your own software it can be included as a dependency in any Maven project. The dependency can be added to the project pom file and should include the desired Bio-Formats version. Using `bioformats_package` as the artifactId will include the complete Bio-Formats package, or individual components can be chosen as desired.

```xml
<dependency>
  <groupId>ome</groupId>
  <artifactId>bioformats_package</artifactId>
  <version>5.2.0</version>
</dependency>
```

In order to include this Bio-Formats dependency a custom repository must also be added to the project pom or `$USER_HOME/.m2/settings.xml`. The repositories element is inherited so for a group of projects the repositories element can be defined at the top of your inheritance chain.

```xml
<repositories>
  <repository>
    <id>ome</id>
    <name>Bio-Formats Repo</name>
    <url>http://artifacts.openmicroscopy.org/artifactory/maven</url>
  </repository>
</repositories>
```

13.1.2 Bio-Formats as a Java library

Alternatively Bio-Formats can be used by including its component jar files. You can download `formats-gpl.jar`¹ to use it as a library. Just add `formats-gpl.jar` to your CLASSPATH or build path. You will also need `common.jar` for common I/O functions, `ome-xml.jar` for metadata standardization, and `SLF4J`² for Logging.

See the list in the Bio-Formats `toplevel build file`³ for a complete and up-to-date list of all optional libraries, which can all be found in our Git repository⁴.

Dependencies

The complete list of current dependencies is as follows:

²http://slf4j.org/
³https://github.com/openmicroscopy/bioformats/blob/v5.2.3/build.xml
⁴https://github.com/openmicroscopy/bioformats/tree/v5.2.3/jar
Package
- Logback Classic v1.1.1
- Logback Core v1.1.1
- JHDF5 v1.4.12.0
- XMP Library for Java v5.1.2
- JCommander v1.27
- metadata-extractor v2.6.2
- Kryo v2.24.0
- MinLog v1.2
- Guava v1.7.0
- JGoodies Common v1.7.0
- JGoodies Forms v1.7.2
- Commons Collections v3.2.1
- Commons Lang v2.4
- Commons Logging v1.1.1
- NetCDF-Java Library v4.3.19
- Joda time v2.3
- JUnit v4.10
- Apache Log4j v1.2.17
- ImageJ v1.48.4
- Assume NG v1.2.4
- Apache Velocity v1.6.4
- BeanShell v2.0b4

Maven name
- ch.qos.logback:logback-classic:1.1.1
- ch.qos.logback:logback-core:1.1.1
- com.adobe.xmp:xmpcore:5.1.2
- com.esotericsoftware.kryo:kryo:2.24.0
- com.google.google:guava:17.0
- com.jgoodies:jgoodies-common:1.7.0
- com.jgoodies:jgoodies-forms:1.7.2
- commons-collections:commons-collections:3.2.1
- commons-lang:commons-lang:2.4
- edu.ucar.netcdf:netcdf:4.3.19
- joda-time:joda-time:2.2
- junit:junit:4.10
- log4j:log4j:1.2
- net.imagej:ij:1.48
- nl.javadude.assumeng:assumeng:1.2.4
- org.apache.velocity:velocity:1.6.4
- org.beanshell:bs:2.0b4

License
- Eclipse Public License
- Eclipse Public License
- Apache License v2.0
- BSD License
- Apache License v2.0
- MIT-Style License
- Apache License v2.0

Link
5 http://logback.qos.ch
6 http://opensource.org/licenses/EPL-1.0
7 http://logback.qos.ch
8 http://opensource.org/licenses/EPL-1.0
9 https://wiki-bsse.ethz.ch/display/JHDF5
10 http://www.apache.org/licenses/LICENSE-2.0.txt
11 http://www.adobe.com/devnet/xmp.html
12 http://opensource.org/licenses/BSD-2-Clause
13 http://beust.com/jcommander
14 http://www.apache.org/licenses/LICENSE-2.0.txt
15 https://github.com/drewnoakes/metadata-extractor
16 http://www.apache.org/licenses/LICENSE-2.0.txt
17 http://github.com/EsotericSoftware/kryo
18 http://opensource.org/licenses/BSD-2-Clause
19 https://github.com/EsotericSoftware/minlog
20 http://github.com/google/guava
21 http://github.com/jgoodies/assumeNG
22 http://www.apache.org/licenses/LICENSE-2.0.txt
23 http://www.jgoodies.com/downloads/libraries/
24 http://opensource.org/licenses/LICENSE-2.0.txt
26 http://opensource.org/licenses/BSD-2-Clause
27 http://commons.apache.org/collections/
28 http://www.apache.org/licenses/LICENSE-2.0.txt
29 http://commons.apache.org/logging/
30 http://www.apache.org/licenses/LICENSE-2.0.txt
31 http://commons.apache.org/logging/
32 http://www.apache.org/licenses/LICENSE-2.0.txt
33 http://www.unidata.ucar.edu/software/netcdf-java/documentation.htm
34 https://github.com/Unidata/thredds/blob/v4.3.19/cdm/license.txt
35 http://github.com/JodaOrg/joda-time
36 http://www.apache.org/licenses/LICENSE-2.0.txt
37 http://www.junit.org
38 http://www.opensource.org/licenses/cpl1.0.txt
39 http://logging.apache.org/log4j-1.2
40 http://www.apache.org/licenses/LICENSE-2.0.txt
41 http://imagej.net
42 http://github.com/hierynomus/assumeNG
43 http://www.apache.org/licenses/LICENSE-2.0.txt
44 http://velocity.apache.org
45 http://www.apache.org/licenses/LICENSE-2.0.txt
46 http://www.beanshell.org
47 http://www.beanshell.org/license.html

13.1. Using Bio-Formats as a Java library
As described in Versioning policy, the minor version number of a Bio-Formats release will always be increased if the version of a non-OME/external dependency is bumped.

13.1.3 Examples of usage

File reading and performance:

MultiFileExample[^76] - Simple example of how to open multiple files simultaneously.

ParallelRead[^77] - Reads all files in given directory in parallel, using a separate thread for each.

ReadWriteInMemory[^78] - Tests the Bio-Formats I/O logic to and from byte arrays in memory.

File writing:

MinimumWriter[^79] - A command line utility demonstrating the minimum amount of metadata needed to write a file.

[^76]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/MultiFileExample.java
[^77]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/ParallelRead.java
[^78]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/ReadWriteInMemory.java
[^79]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/MinimumWriter.java

Table 13.1 – continued from previous page

<table>
<thead>
<tr>
<th>Package</th>
<th>Maven name</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamcrest Core v1.1[^48]</td>
<td>org.hamcrest:hamcrest-core:1.1</td>
<td>BSD-3-Clause[^49]</td>
</tr>
<tr>
<td>Objenesis v2.1[^50]</td>
<td>org.objenesis:objenesis:2.1</td>
<td>Apache License v2.0[^51]</td>
</tr>
<tr>
<td>Perf4J v0.9.13[^52]</td>
<td>org.perf4j:perf4j:0.9.13</td>
<td>BSD License[^53]</td>
</tr>
<tr>
<td>Native Library Loader v2.1.4[^54]</td>
<td>org.scijava:native-lib-loader:2.1.4</td>
<td>MIT License[^57]</td>
</tr>
<tr>
<td>SLF4J API v1.7.4[^56]</td>
<td>org.slf4j:slf4j-api:1.7.6</td>
<td>MIT License[^59]</td>
</tr>
<tr>
<td>SLF4J LOG4J-12 Binding v1.7.6[^58]</td>
<td>org.slf4j:slf4j-log4j12:1.7.6</td>
<td>Apache License v2.0[^60]</td>
</tr>
<tr>
<td>TestNG v6.8[^60]</td>
<td>org.testng:testng:6.8</td>
<td>Apache License v2.0[^62]</td>
</tr>
<tr>
<td>SnakeYAML v1.6[^62]</td>
<td>org.yaml:snakeyaml:1.6</td>
<td>Apache License v2.0[^62]</td>
</tr>
<tr>
<td>Jakarta ORO v2.0.8[^64]</td>
<td>oro:oro:2.0.8</td>
<td>Apache License v2.0[^66]</td>
</tr>
<tr>
<td>Woolz v1.4[^66]</td>
<td>woolz:JWlz:1.4.0</td>
<td>Apache License v2.0[^66]</td>
</tr>
<tr>
<td>Xalan Java Serializer v2.7.2[^68]</td>
<td>xalan:serializer:2.7.2</td>
<td>Apache License v2.0[^68]</td>
</tr>
<tr>
<td>Xalan Java v2.7.2[^70]</td>
<td>xalan:xalan:2.7.2</td>
<td>Apache License v2.0[^68]</td>
</tr>
<tr>
<td>Xerces2 Java Parser v2.8.1[^72]</td>
<td>xerces:xercesImpl:2.8.1</td>
<td>Apache License v2.0[^68]</td>
</tr>
<tr>
<td>XML Commons External Components XML APIs v1.3.04[^74]</td>
<td>xml-apis:xml-apis:1.3.04</td>
<td>Apache License v2.0[^70]</td>
</tr>
</tbody>
</table>

[^48]: http://hamcrest.org/JavaHamcrest
[^49]: http://opensource.org/licenses/BSD-3-Clause
[^50]: http://objenesis.org
[^51]: http://www.apache.org/licenses/LICENSE-2.0.txt
[^52]: http://www.perf4j.org
[^53]: http://www.apache.org/licenses/LICENSE-2.0.txt
[^54]: http://github.com/scijava/native-lib-loader
[^55]: http://www.apache.org/licenses/LICENSE-2.0.txt
[^56]: http://www.slf4j.org
[^57]: http://www.apache.org/licenses/LICENSE-2.0.txt
[^58]: http://opensource.org/licenses/MIT
[^59]: http://testng.org
[^60]: http://testing.org
[^61]: http://www.apache.org/licenses/LICENSE-2.0.txt
[^62]: https://bitbucket.org/asomov/snakeyaml
[^63]: http://www.apache.org/licenses/LICENSE-2.0.txt
[^64]: https://jakarta.apache.org/oro
[^65]: http://www.apache.org/licenses/LICENSE-2.0.txt
[^66]: http://www.emouseatlas.org/emap/analysis_tools_resources/software/woolz.html
[^67]: http://opensource.org/licenses/GPL-2.0
[^68]: http://xml.apache.org/xalan-j
[^69]: http://www.apache.org/licenses/LICENSE-2.0.txt
[^70]: http://xml.apache.org/xalan-j
[^71]: http://www.apache.org/licenses/LICENSE-2.0.txt
[^72]: http://xerces.apache.org/xerces2-j
[^73]: http://www.apache.org/licenses/LICENSE-2.0.txt
[^74]: http://xml.apache.org/licenses/external
[^75]: http://www.apache.org/licenses/LICENSE-2.0.txt
[^76]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/MultiFileExample.java
[^77]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/ParallelRead.java
[^78]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/ReadWriteInMemory.java
[^79]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/MinimumWriter.java
TiledExport — Shows how to convert a file one tile at a time, instead of one plane at a time (needed for very large images).

File compression:

makeLZW — Converts the given image file to an LZW-compressed TIFF.

Metadata extract/print:

GetPhysicalMetadata — Uses Bio-Formats to extract some basic standardized (format-independent) metadata.

ImageInfo — A more involved command line utility for thoroughly reading an input file, printing some information about it, and displaying the pixels onscreen using the Bio-Formats viewer.

PrintTimestamps — A command line example demonstrating how to extract timestamps from a file.

PrintLensNA — Uses Bio-Formats to extract lens numerical aperture in a format-independent manner from a dataset.

PrintROIs — A simple example of how to retrieve ROI data parsed from a file.

SubResolutionExample — Demonstration of the sub-resolution API.

Metadata add/edit:

EditImageName — Edits the given file’s image name (but does not save back to disk).

EditTiffComment — Allows raw user TIFF comment editing for the given TIFF files.

writeMapAnnotations — Example method to write MapAnnotations to the ome-xml.

CommentSurgery — Edits a TIFF ImageDescription comment, particularly the OME-XML comment found in OME-TIFF files.

Image converters:

ImageConverter — A simple command line tool for converting between formats.

ConvertToOmeTiff — Converts the given files to OME-TIFF format.

WritePreCompressedPlanes — Writes the pixels from a set of JPEG files to a single TIFF. The pixel data is used as-is, so no decompression or re-compression is performed.

ImageJ plugins:

Simple_Read — A simple ImageJ plugin demonstrating how to use Bio-Formats to read files into ImageJ (see ImageJ overview).

Read_Image — An ImageJ plugin that uses Bio-Formats to build up an image stack, reading image planes one by one (see ImageJ overview).

[80] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/TiledExportExample.java
[81] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/MakeLZW.java
[84] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/PrintTimestamps.java
[85] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/PrintLensNA.java
[86] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/PrintROIs.java
[87] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/SubResolutionExample.java
[88] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/EditImageName.java
[89] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/EditTiffComment.java
[90] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/writeMapAnnotationsExample.java
[91] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/CommentSurgery.java
[93] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/ConvertToOmeTiff.java
[94] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/WritePreCompressedPlanes.java
[95] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-plugins/utils/Simple_Read.java
[96] https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-plugins/utils/Read_Image.java

13.1. Using Bio-Formats as a Java library 91
Mass_Importer\footnote{https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-plugins/utils/Mass_Importer.java} - A simple plugin for ImageJ that demonstrates how to open all image files in a directory using Bio-Formats, grouping files with similar names to avoiding opening the same dataset more than once (see ImageJ overview).

Image processing utilities:

SewTiffs\footnote{https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/SewTiffs.java} - Stitches the first plane from a collection of TIFFs into a single file.

SumPlanes\footnote{https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/utils/SumPlanes.java} - Sums together the image planes from the given file, and saves the result to a 16-bit TIFF.

13.1.4 A Note on Java Web Start (bioformats_package.jar vs. formats-gpl.jar)

To use Bio-Formats with your Java Web Start application, we recommend using \texttt{formats-gpl.jar} rather than \texttt{bioformats_package.jar}—the latter is merely a bundle of \texttt{formats-gpl.jar} plus all its optional dependencies.

The \texttt{bioformats_package.jar} bundle is intended as a convenience (e.g. to simplify installation as an ImageJ plugin), but is by no means the only solution for developers. We recommend using \texttt{formats-gpl.jar} as a separate entity depending on your needs as a developer.

The bundle is quite large because we have added support for several formats that need large helper libraries (e.g. Imaris’ HDF-based format). However, these additional libraries are optional; Bio-Formats has been coded using reflection so that it can both compile and run without them.

When deploying a JNLP-based application, using \texttt{bioformats_package.jar} directly is not the best approach, since every time Bio-Formats is updated, the server would need to feed another 15+ MB JAR file to the client. Rather, Web Start is a case where you should keep the JARs separate, since JNLP was designed to make management of JAR dependencies trivial for the end user. By keeping \texttt{formats-gpl.jar} and the optional dependencies separate, only a <1 MB JAR needs to be updated when \texttt{formats-gpl.jar} changes.

As a developer, you have the option of packaging \texttt{formats-gpl.jar} with as many or as few optional libraries as you wish, to cut down on file size as needed. You are free to make whatever kind of “stripped down” version you require. You could even build a custom \texttt{formats-gpl.jar} that excludes certain classes, if you like.

For an explicit enumeration of all the optional libraries included in \texttt{bioformats_package.jar}, see the \texttt{package.libraries} variable of the \texttt{ant/toplevel.properties} file of the distribution. You can also read our notes about each in the source distribution’s Ant build.xml\footnote{https://github.com/openmicroscopy/bioformats/blob/v5.2.3/build.xml#L240} script.

13.2 Units of measurement

Since Bio-Formats 5.1 and the adoption of the 2015-01 OME Data Model, the data model and the corresponding Bio-Formats model and metadata APIs have added support for units of measurement. Previously, the units for various properties such as the physical size of an image, stage position, confocal pinhole size, light wavelengths etc. were fixed in the model. This was however somewhat inflexible, and not appropriate for imaging modalities at widely different scales. The solution to this was to add a unit of measurement to each of these properties. The image size, for example, was previously specified to be stored in micrometers but may now be specified in any SI length unit of choice, or one of the supported non-SI length units. This permits the preservation of the unit used by a proprietary file format or used at acquisition time, for example nanometers, millimeters, meters, or inches or thousandths of an inch could be used instead.

At the OME-XML level, the properties continue to use the old attribute names. They are supplemented by an additional attribute with a Unit suffix, for example the PhysicalSizeX attribute and its companion PhysicalSizeXUnit attribute.

At the API level, two classes are used:

- **Unit<T>** represents a unit system for a given dimension such as length, pressure or time.
- **Quantity** represents a value and unit in a given unit system; this is subclassed for each of the supported dimensions such as Length, Pressure etc. For example the Length class could represent the value and unit of 5.3 \(\mu\)m and the Pressure class 956 mbar.

All of the model and metadata APIs pass `Quantity` objects in place of raw numerical values. Updating your code will require replacing the use of raw values with quantities. Where your code needs to deal with the quantity in a specific unit, for example µm, you will need to perform an explicit unit conversion to transform the value to the required unit.

The three situations you will need to deal with are:

- getting a quantity from a `get` method in the API
- converting a quantity to a desired unit
- setting a quantity with a `set` method in the API (possibly also requiring the creation of a quantity)

Examples of how to use units and quantities for these purposes are shown in the sections *Reading files* (ReadPhysicalSize example which uses `getPixelsPhysicalSize` and also demonstrates unit conversion) and *Further details on exporting raw pixel data to OME-TIFF files* (`setPixelsPhysicalSize`).

13.3 Exporting files using Bio-Formats

This guide pertains to version 4.2 and later.

13.3.1 Basic conversion

The first thing we need to do is set up a reader:

```java
// create a reader that will automatically handle any supported format
IFormatReader reader = new ImageReader();
// tell the reader where to store the metadata from the dataset
MetadataStore metadata;

try {
    ServiceFactory factory = new ServiceFactory();
    OMEXMLService service = factory.getInstance(OMEXMLService.class);
    metadata = service.createOMEXMLMetadata();
} catch (DependencyException exc) {
    throw new FormatException("Could not create OME-XML store.", exc);
} catch (ServiceException exc) {
    throw new FormatException("Could not create OME-XML store.", exc);
}

reader.setMetadataStore(metadata);
// initialize the dataset
reader.setId("/path/to/file");
```

Now, we set up our writer:

```java
// create a writer that will automatically handle any supported output format
IFormatWriter writer = new ImageWriter();
// give the writer a MetadataRetrieve object, which encapsulates all of the
// dimension information for the dataset (among many other things)
OMEXMLService service = factory.getInstance(OMEXMLService.class);
writer.setMetadataRetrieve(service.asRetrieve(reader.getMetadataStore()));
// initialize the writer
writer.setId("/path/to/output/file");
```

Note that the extension of the file name passed to `writer.setId(…)` determines the file format of the exported file.

Now that everything is set up, we can start writing planes:
for (int series=0; series<reader.getSeriesCount(); series++) {
 reader.setSeries(series);
 writer.setSeries(series);
 for (int image=0; image<reader.getImageCount(); image++) {
 writer.saveBytes(image, reader.openBytes(image));
 }
}

Finally, make sure to close both the reader and the writer. Failure to do so can cause:

- file handle leaks
- memory leaks
- truncated output files

Fortunately, closing the files is very easy:

reader.close();
writer.close();

13.3.2 Converting to multiple files

The recommended method of converting to multiple files is to use a single IFormatWriter, like so:

// you should have set up a reader as in the first example
ImageWriter writer = new ImageWriter();
OMEXMLService service = factory.getInstance(OMEXMLService.class);
writer.setMetadataRetrieve(service.asRetrieve(reader.getMetadataStore()));
// replace this with your own filename definitions
// in this example, we’re going to write half of the planes to one file
// and half of the planes to another file
String[] outputFiles =
 new String[] {"/path/to/file/1.tiff", "/path/to/file/2.tiff"};
writer.setId(outputFiles[0]);

int planesPerFile = reader.getImageCount() / outputFiles.length;
for (int file=0; file<outputFiles.length; file++) {
 writer.changeOutputFile(outputFiles[file]);
 for (int image=0; image<planesPerFile; image++) {
 int index = file * planesPerFile + image;
 writer.saveBytes(image, reader.openBytes(index));
 }
}
reader.close();
writer.close();

The advantage here is that the relationship between the files is preserved when converting to formats that support multi-file datasets internally (namely OME-TIFF). If you are only converting to graphics formats (e.g. JPEG, AVI, MOV), then you could also use a separate IFormatWriter for each file, like this:

OMEXMLService service = factory.getInstance(OMEXMLService.class);
// again, you should have set up a reader already
String[] outputFiles = new String[] {"/path/to/file/1.avi", "/path/to/file/2.avi"};
int planesPerFile = reader.getImageCount() / outputFiles.length;
for (int file=0; file<outputFiles.length; file++) {
 ImageWriter writer = new ImageWriter();
 writer.setMetadataRetrieve(service.asRetrieve(reader.getMetadataStore()));
 writer.setId(outputFiles[file]);
 for (int image=0; image<planesPerFile; image++) {
 writer.saveBytes(image, reader.openBytes(index));
 }
 writer.close();
}
13.3.3 Known issues

List of Trac tickets

13.4 Further details on exporting raw pixel data to OME-TIFF files

This document explains how to export pixel data to OME-TIFF using Bio-Formats version 4.2 and later.

The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows:

```java
ServiceFactory factory = new ServiceFactory();
OMEXMLService service = factory.getInstance(OMEXMLService.class);
IMetadata omexml = service.createOMEXMLMetadata();
```

The ‘omexml’ object can now be used in our code to store OME-XML metadata, and by the file format writer to retrieve OME-XML metadata.

Now that we have somewhere to put metadata, we need to populate as much metadata as we can. The minimum amount of metadata required is:

- endianness of the pixel data
- the order in which dimensions are stored
- the bit depth of the pixel data
- the number of channels
- the number of timepoints
- the number of Z sections
- the width (in pixels) of an image
- the height (in pixels) of an image
- the number of samples per channel (3 for RGB images, 1 otherwise)

We populate that metadata as follows:

```java
omexml.setImageID("Image:0", 0);
omexml.setPixelsID("Pixels:0", 0);

// specify that the pixel data is stored in big-endian order
// replace 'TRUE' with 'FALSE' to specify little-endian order
omexml.setPixelsBinDataBigEndian(Boolean.TRUE, 0, 0);

omexml.setPixelsDimensionOrder(DimensionOrder.XYCZT, 0);
omexml.setPixelsType(PixelType.UINT16, 0);
omexml.setPixelsSizeX(new PositiveInteger(width), 0);
omexml.setPixelsSizeY(new PositiveInteger(height), 0);
```

omexml.setPixelsSizeZ(new PositiveInteger(zSectionCount), 0);
omexml.setPixelsSizeC(new PositiveInteger(channelCount * samplesPerChannel), 0);
omexml.setPixelsSizeT(new PositiveInteger(timepointCount), 0);

for (int channel=0; channel<channelCount; channel++) {
 omexml.setChannelID("Channel:0:" + channel, 0, channel);
 omexml.setChannelSamplesPerPixel(new PositiveInteger(samplesPerChannel), 0, channel);
}

Unit<Length> unit = UNITS.MICROMETER;
Length physicalSizeX = new Length(1.0, unit);
Length physicalSizeY = new Length(1.5, unit);
Length physicalSizeZ = new Length(2, unit);
omexml.setPixelsPhysicalSizeX(physicalSizeX, 0);
omexml.setPixelsPhysicalSizeY(physicalSizeY, 0);
omexml.setPixelsPhysicalSizeZ(physicalSizeZ, 0);

There is much more metadata that can be stored; please see the Javadoc for loci.formats.meta.MetadataStore for a complete list.

Now that we have defined all of the metadata, we need to create a file writer:

ImageWriter writer = new ImageWriter();

Now we must associate the ‘omexml’ object with the file writer:

writer.setMetadataRetrieve(omexml);

The writer now knows to retrieve any metadata that it needs from ‘omexml’.

We now tell the writer which file it should write to:

writer.setId("output-file.ome.tiff");

It is critical that the file name given to the writer ends with ".ome.tiff" or ".ome.tif", as it is the file name extension that determines which format will be written.

Now that everything is set up, we can save the image data. This is done plane by plane, and we assume that the pixel data is stored in a 2D byte array ‘pixelData’:

int sizeC = omexml.getPixelsSizeC(0).getValue();
int sizeZ = omexml.getPixelsSizeZ(0).getValue();
int sizeT = omexml.getPixelsSizeT(0).getValue();
int samplesPerChannel = omexml.getChannelSamplesPerPixel(0).getValue();
sizeC /= samplesPerChannel;
int imageCount = sizeC * sizeZ * sizeT;

for (int image=0; image<imageCount; image++) {
 writer.saveBytes(image, pixelData[image]);
}

Finally, we must tell the writer that we are finished, so that the output file can be properly closed:

writer.close();

There should now be a complete OME-TIFF file at whichever path was specified above.
13.5 Logging

13.5.1 Logging frameworks

Bio-Formats uses SLF4J\(^{103}\) as a logging API. SLF4J is a facade and needs to be bound to a logging framework at deployment time. Two underlying logging frameworks are currently supported by Bio-Formats:

- logback\(^{104}\) is the recommended framework and natively implements the SL4J API,
- log4j\(^{105}\) is the other logging framework supported by Bio-Formats and is mainly used in the MATLAB toolbox.

13.5.2 Initialization

The DebugTools\(^{106}\) class contains a series of framework-agnostic methods for the initialization and control of the logging system. This class uses reflection to detect the underlying logging framework and delegate the method calls to either Log4jTools\(^{107}\) or LogbackTools\(^{108}\).

The main methods are described below:

- DebugTools.enableLogging() will initialize the underlying logging framework. This call will result in a no-op if logging has been initialized either via a binding-specific configuration file (see logback configuration\(^{109}\)) or via a prior call to DebugTools.enableLogging().
- DebugTools.enableLogging(level) will initialize the logging framework under the same conditions as described above and set the root logger level if the initialization was successful.
- DebugTools.setRootLevel(level) will override the level of the root logger independently of how the logging system was initialized.
- DebugTools.enableIJLogging() (logback-only) will add an ImageJ-specific appendertothelogger.

Changed in version 5.2.0: Prior to Bio-Formats 5.2.0, DebugTools.enableLogging(level) unconditionally set the logging and root logger level. Use DebugTools.setRootLevel(level) to restore this behavior.

13.6 Converting files from FV1000 OIB/OIF to OME-TIFF

This document explains how to convert a file from FV1000 OIB/OIF to OME-TIFF using Bio-Formats version 4.2 and later.

The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows:

ServiceFactory factory = new ServiceFactory();
OMEXMLService service = factory.getInstance(OMEXMLService.class);
IMetadata omexml = service.createOMEXMLMetadata();

The ‘omexml’ object can now be used by both a file format reader and a file format writer for storing and retrieving OME-XML metadata.

Now that have somewhere to put metadata, we need to create a file reader and writer:

ImageReader reader = new ImageReader();
ImageWriter writer = new ImageWriter();

Now we must associate the ‘omexml’ object with the file reader and writer:

\(^{103}\)http://www.slf4j.org
\(^{104}\)http://logback.qos.ch/
\(^{105}\)http://logging.apache.org/log4j
\(^{106}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/DebugTools.html
\(^{107}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/Log4jTools.html
\(^{108}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/LogbackTools.html
\(^{109}\)http://logback.qos.ch/manual/configuration.html
reader.setMetadataStore(omexml);
writer.setMetadataRetrieve(omexml);

The reader now knows to store all of the metadata that it parses into ‘omexml’, and the writer knows to retrieve any metadata that it needs from ‘omexml’.

We now tell the reader and writer which files will be read from and written to, respectively:

reader.setId("input-file.oib");
writer.setId("output-file.ome.tiff");

It is critical that the file name given to the writer ends with "*.ome.tif" or "*.ome.tiff", as it is the file name extension that determines which format will be written.

Now that everything is set up, we can convert the image data. This is done plane by plane:

for (int series=0; series<reader.getSeriesCount(); series++) {
 reader.setSeries(series);
 writer.setSeries(series);
 byte[] plane = new byte[FormatTools.getPlaneSize(reader)];
 for (int image=0; image<reader.getImageCount(); image++) {
 reader.openBytes(image, plane);
 writer.saveBytes(image, plane);
 }
}

The body of the outer ‘for’ loop may also be replaced with the following:

reader.setSeries(series);
writer.setSeries(series);

for (int image=0; image<reader.getImageCount(); image++) {
 byte[] plane = reader.openBytes(image);
 writer.saveBytes(image, plane);
}

But note that this will be a little slower.

Finally, we must tell the reader and writer that we are finished, so that the input and output files can be properly closed:

reader.close();
writer.close();

There should now be a complete OME-TIFF file at whichever path was specified above.

13.7 Using Bio-Formats in MATLAB

This section assumes that you have installed the MATLAB toolbox as instructed in the [MATLAB user information page](http://uk.mathworks.com/help/matlab/matlab_external/product-overview.html). Note the minimum supported MATLAB version is R2007b (7.5).

As described in [Using Java Libraries](http://uk.mathworks.com/help/matlab/matlab_external/product-overview.html), every installation of MATLAB includes a JVM allowing use of the Java API and third-party Java libraries. All the helper functions included in the MATLAB toolbox make use of the Bio-Formats Java API. Please refer to the [Javadocs](http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/) for more information.

11http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/
13.7.1 Increasing JVM memory settings

The default JVM settings in MATLAB can result in `java.lang.OutOfMemoryError: Java heap space exceptions` when opening large image files using Bio-Formats. Information about the Java heap space usage in MATLAB can be retrieved using:

```java
java.lang.Runtime.getRuntime.maxMemory
```

Default JVM settings can be increased by creating a `java.opts` file in the startup directory and overriding the default memory settings. We recommend using `-Xmx512m` in your `java.opts` file. Calling:

```java
bfCheckJavaMemory()
```

will also throw a warning if the runtime memory is lower than the recommended value.

If errors of type `java.lang.OutOfMemoryError: PermGen space` are thrown while using Bio-Formats with the Java bundled with MATLAB (Java 7), you may try to increase the default values of `-XX:MaxPermSize` and `-XX:PermSize` via the `java.opts` file.

See also:

http://www.mathworks.com/matlabcentral/answers/92813 How do I increase the heap space for the Java VM in MATLAB 6.0 (R12) and later versions?

[ome-users] Release of OMERO & Bio-Formats 5.1.1

13.7.2 Opening an image file

The first thing to do is initialize a file with the `bfopen` function:

```matlab
data = bfopen('C:/path/to/data/file');
```

This function returns an n-by-4 cell array, where n is the number of series in the dataset. If s is the series index between 1 and n:

- The `data{s, 1}` element is an m-by-2 cell array, where m is the number of planes in the s-th series. If t is the plane index between 1 and m:
 - The `data{s, 1}{t, 1}` element contains the pixel data for the t-th plane in the s-th series.
 - The `data{s, 1}{t, 2}` element contains the label for the t-th plane in the s-th series.
- The `data{s, 2}` element contains original metadata key/value pairs that apply to the s-th series.
- The `data{s, 3}` element contains color lookup tables for each plane in the s-th series.
- The `data{s, 4}` element contains a standardized OME metadata structure, which is the same regardless of the input file format, and contains common metadata values such as physical pixel sizes - see OME metadata below for examples.

Accessing planes

Here is an example of how to unwrap specific image planes for easy access:

```matlab
seriesCount = size(data, 1);
series1 = data{1, 1};
series2 = data{2, 1};
series3 = data{3, 1};
metadataList = data{1, 2};
```

113 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/matlab/bfopen.m
Displaying images

If you want to display one of the images, you can do so as follows:

```matlab
series1_colorMaps = data{1, 3};
figure('Name', series1_label1);
if (isempty(series1_colorMaps{1}))
    colormap(gray);
else
    colormap(series1_colorMaps{1}(1,:));
end
imagesc(series1_plane1);
```

This will display the first image of the first series with its associated color map (if present). If you would prefer not to apply the color maps associated with each image, simply comment out the calls to `colormap`.

If you have the image processing toolbox, you could instead use:

```matlab
imshow(series1_plane1, []);
```

You can also create an animated movie (assumes 8-bit unsigned data):

```matlab
cmap = gray(256);
for p = 1 : size(series1, 1)
    M(p) = im2frame(uint8(series1{p, 1}), cmap);
end
if feature('ShowFigureWindows')
    movie(M);
end
```

Retrieving metadata

There are two kinds of metadata:

- **Original metadata** is a set of key/value pairs specific to the input format of the data. It is stored in the `data{s, 2}` element of the data structure returned by `bfopen`.

- **OME metadata** is a standardized metadata structure, which is the same regardless of input file format. It is stored in the `data{s, 4}` element of the data structure returned by `bfopen`, and contains common metadata values such as physical pixel sizes, instrument settings, and much more. See the OME Model and Formats documentation for full details.

Original metadata

To retrieve the metadata value for specific keys:

114http://www.openmicroscopy.org/site/support/ome-model/
% Query some metadata fields (keys are format-dependent)
metadata = data{1, 2};
subject = metadata.get('Subject');
title = metadata.get('Title');

To print out all of the metadata key/value pairs for the first series:

metadataKeys = metadata.keySet().iterator();
for i=1:metadata.size()
 key = metadataKeys.nextElement();
 value = metadata.get(key);
 fprintf('%s = %s
', key, value)
end

OME metadata

Conversion of metadata to the OME standard is one of Bio-Formats’ primary features. The OME metadata is always stored the same way, regardless of input file format.

To access physical voxel and stack sizes of the data:

omeMeta = data{1, 4};
stackSizeX = omeMeta.getPixelsSizeX(0).getValue(); % image width, pixels
stackSizeY = omeMeta.getPixelsSizeY(0).getValue(); % image height, pixels
stackSizeZ = omeMeta.getPixelsSizeZ(0).getValue(); % number of Z slices

voxelSizeXdefaultValue = omeMeta.getPixelsPhysicalSizeX(0).value(); % returns value in default unit
voxelSizeXdefaultUnit = omeMeta.getPixelsPhysicalSizeX(0).unit().getSymbol(); % returns the default unit type
voxelSizeXdoubleValue = voxelSizeX.doubleValue(); % The numeric value represented by this object after conversion to type double

voxelSizeY = omeMeta.getPixelsPhysicalSizeY(0).value(ome.units.UNITS.MICROMETER); % in µm
voxelSizeYdoubleValue = voxelSizeY.doubleValue(); % The numeric value represented by this object after conversion to type double

voxelSizeZ = omeMeta.getPixelsPhysicalSizeZ(0).value(ome.units.UNITS.MICROMETER); % in µm
voxelSizeZdoubleValue = voxelSizeZ.doubleValue(); % The numeric value represented by this object after conversion to type double

For more information about the methods to retrieve the metadata, see the MetadataRetrieve115 Javadoc page.

To convert the OME metadata into a string, use the dumpXML() method:

omeXML = char(omeMeta.dumpXML());

13.7.3 Changing the logging level

By default, bfopen uses bfInitLogging to initialize the logging system at the WARN level. To change the root logging level, use the DebugTools116 methods as described in the Logging section.

% Set the logging level to DEBUG
loci.common.DebugTools.setRootLevel('DEBUG');

115http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/meta/MetadataRetrieve.html
116http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/DebugTools.html
13.7.4 Reading from an image file

The main inconvenience of the `bfopen.m` function is that it loads all the content of an image regardless of its size. To access the file reader without loading all the data, use the low-level `bfGetReader.m` function:

```matlab
reader = bfGetReader('path/to/data/file');
```

You can then access the OME metadata using the `getMetadataStore()` method:

```matlab
omeMeta = reader.getMetadataStore();
```

Individual planes can be queried using the `bfGetPlane.m` function:

```matlab
series1_plane1 = bfGetPlane(reader, 1);
```

To switch between series in a multi-image file, use the `setSeries(int)` method. To retrieve a plane given a set of \((z, c, t)\) coordinates, these coordinates must be linearized first using `getIndex(int, int, int)`

```matlab
% Read plane from series iSeries at Z, C, T coordinates (iZ, iC, iT)
% All indices are expected to be 1-based
reader.setSeries(iSeries - 1);
iPlane = reader.getIndex(iZ - 1, iC - 1, iT - 1) + 1;
I = bfGetPlane(reader, iPlane);
```

13.7.5 Saving files

The basic code for saving a 5D array into an OME-TIFF file is located in the `bfsave.m` function.

For instance, the following code will save a single image of 64 pixels by 64 pixels with 8 unsigned bits per pixels:

```matlab
plane = zeros(64, 64, 'uint8');
bfsave(plane, 'single-plane.ome.tiff');
```

And the following code snippet will produce an image of 64 pixels by 64 pixels with 2 channels and 2 timepoints:

```matlab
plane = zeros(64, 64, 1, 2, 2, 'uint8');
bfsave(plane, 'multiple-planes.ome.tiff');
```

By default, `bfsave` will create a minimal OME-XML metadata object containing basic information such as the pixel dimensions, the dimension order and the pixel type. To customize the OME metadata, it is possible to create a metadata object from the input array using `createMinimalOMEXMLMetadata.m`, add custom metadata and pass this object directly to `bfsave`:

```matlab
plane = zeros(64, 64, 1, 2, 2, 'uint8');
metadata = createMinimalOMEXMLMetadata(plane);
pixelSize = ome.units.quantity.Length(java.lang.Double(.05), ome.units.UNITS.MICROMETER);
metadata.setPixelsPhysicalSizeX(pixelSize, 0);
metadata.setPixelsPhysicalSizeY(pixelSize, 0);
```

117) https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/matlab/bfopen.m
118) https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/matlab/bfGetReader.m
119) https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/matlab/bfGetPlane.m
120) http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#setSeries(int)
121) http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#getIndex(int, int, int)
122) https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/matlab/bfsave.m
123) https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/matlab/createMinimalOMEXMLMetadata.m
For more information about the methods to store the metadata, see the MetadataStore124 Javadoc page.

13.7.6 Improving reading performance

Initializing a Bio-Formats reader can consume substantial time and memory. Most of the initialization time is spent in the \texttt{setId(java.lang.String)}125 call. Various factors can impact the performance of this step including the file size, the amount of metadata in the image and also the file format itself.

One solution to improve reading performance is to use Bio-Formats memoization functionalities with the \texttt{loci.formats.Memoizer}126 reader wrapper. By essence, the speedup gained from memoization will only happen after the first initialization of the reader for a particular file.

The simplest way to make use the \texttt{Memoizer} functionalities in MATLAB is illustrated by the following example:

```matlab
% Construct an empty Bio-Formats reader
r = bfGetReader();
% Decorate the reader with the Memoizer wrapper
r = loci.formats.Memoizer(r);
% Initialize the reader with an input file
% If the call is longer than a minimal time, the initialized reader will
% be cached in a file under the same directory as the initial file
% name .large_file.bfmemo
r.setId(pathToFile);
% Perform work using the reader

% Close the reader
r.close()
% If the reader has been cached in the call above, re-initializing the
% reader will use the memo file and complete much faster especially for
% large data
r.setId(pathToFile);
% Perform additional work

% Close the reader
r.close()
```

If the time required to call \texttt{setId(java.lang.String)}127 method is larger than \texttt{DEFAULT_MINIMUM_ELAPSED}128 or the minimum value passed in the constructor, the initialized reader will be cached in a memo file under the same folder as the input file. Any subsequent call to \texttt{setId()} with a reader decorated by the \texttt{Memoizer} on the same input file will load the reader from the memo file instead of performing a full reader initialization.

More constructors are described in the \texttt{Memoizer javadocs}129 allowing to control the minimal initialization time required before caching the reader and/or to define a root directory under which the reader should be cached.

As Bio-Formats is not thread-safe, reader memoization offers a new solution to increase reading performance when doing parallel work. For instance, the following example shows how to combine memoization and MATLAB parfor to do work on a single file in a parallel loop:

124\url{http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/meta/MetadataStore.html}
125\url{http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatHandler.html#setId(java.lang.String)}
126\url{http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/Memoizer.html}
127\url{http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/Memoizer.html#setId(java.lang.String)}
128\url{http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/Memoizer.html#DEFAULT_MINIMUM_ELAPSED}
129\url{http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/Memoizer.html}
$ Construct a Bio-Formats reader decorated with the Memoizer wrapper
r = loci.formats.Memoizer(bfGetReader(), 0);
$ Initialize the reader with an input file to cache the reader
r.setId(pathToFile);
$ Close reader
r.close()

nWorkers = 4;

$ Enter parallel loop
parfor i = 1 : nWorkers
 $ Initialize logging at INFO level
 bfInitLogging('INFO');
 $ Initialize a new reader per worker as Bio-Formats is not thread safe
 r2 = javaObject('loci.formats.Memoizer', bfGetReader(), 0);
 $ Initialization should use the memo file cached before entering the
 $ parallel loop
 r2.setId(pathToFile);
 $ Perform work

$ Close the reader
r2.close()
end

13.8 Using Bio-Formats in Python

OME does not currently provide a Python implementation for Bio-Formats.

The CellProfiler project has implemented a Python wrapper around Bio-Formats used by the CellProfiler software which can be installed using pip:

```
pip install python-bioformats
```

See also:

https://pypi.python.org/pypi/python-bioformats Source code of the CellProfiler Python wrapper for Bio-Formats

13.9 Interfacing with Bio-Formats from non-Java code

Bio-Formats is written in Java, and is easiest to use with other Java code. However, it is possible to call Bio-Formats from a program written in another language. But how to do so depends on your program’s needs.

Technologically, there are two broad categories of solutions: in-process approaches, and inter-process communication.

For details, see LOCI’s article Interfacing from non-Java code\(^{130}\).

Example in-process solution: Bio-Formats JACE C++ bindings\(^{131}\) (note that this is a legacy project and no longer actively maintained).

\(^{130}\)http://loci.wisc.edu/software/interfacing-non-java-code
\(^{131}\)https://github.com/ome/bio-formats-jace
CHAPTER
FOURTEEN

USING BIO-FORMATS AS A NATIVE C++ LIBRARY

Note: See the OME-Files C++ downloads page¹ for more information.

¹http://downloads.openmicroscopy.org/latest/ome-files-cpp/
15.1 Code formatting

Note, these guidelines do not cover:

- third-party code imported into the source tree, which is covered by the guidelines for the upstream projects
- released schema files which would require re-releasing if changed by reindenting

15.1.1 All languages

- Use spaces to indent; do not ever use tabs

15.1.2 Java

All Java code is formatted with:

- an indentation size of two spaces
- braces use the Java variant of K&R style

15.1.3 XML

All XML code is formatted with:

- an indentation size of two spaces
- attributes on multiple lines aligned vertically after the element name.

15.2 Testing code changes

15.2.1 Automated tests

The Bio-Formats testing framework component contains most of the infrastructure to run automated tests against the data repository.

After checking out source code and building all the JAR files (see Obtaining and building Bio-Formats), switch to the test-suite component and run the tests using the ant test-automated target:

```bash
$ cd components/test-suite
$ ant -Dtestng.directory=$DATA/metamorph test-automated
```

2. https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/test-suite
where $DATA is the path to the full data repository.

Multiple options can be passed to the ant test-automated target by setting the testng.${option} option via the command line. Useful options are described below.

testng.directory Mandatory option. Specifies the root of the data directory to be tested:

```
$ ant -Dtestng.directory=$DATA/metamorph test-automated
```

On Windows, the arguments to the test command must be quoted:

```
> ant "-Dtestng.directory=$DATA\metamorph" test-automated
```

testng.configDirectory Specifies the root of the directory containing the configuration files. This directory must have the same hierarchy as the one specified by testng.directory and contain .bioformats configuration files:

```
$ ant -Dtestng.directory=/path/to/data -Dtestng.configDirectory=/path/to/config test-automated
```

If no configuration directory is passed, the assumption is that it is the same as the data directory.

testng.configSuffix Specifies an optional suffix for the configuration files:

```
$ ant -Dtestng.directory=/path/to/data -Dtestng.configSuffix=win test-automated
```

testng.memory Specifies the amount of memory to be allocated to the JVM:

```
$ ant -Dtestng.directory=$DATA -Dtestng.memory=4g test-automated
```

Default: 512m.

testng.threadCount Specifies the number of threads to use for testing:

```
$ ant -Dtestng.directory=$DATA -Dtestng.threadCount=4 test-automated
```

Default: 1.

You should now see output similar to this:

Buildfile: build.xml

init-title:
[echo] --------------------- bio-formats-testing-framework ---------------------
...

test-automated:

[testsng] 17:05:28,876 |INFO in ch.qos.logback.classic.joran.action.LoggerAction - Setting level of logger [loci.tests.testng] to DEBUG
[testsng] 17:05:28,891 |INFO in ch.qos.logback.classic.joran.action.LoggerAction - Setting level of ROOT logger to INFO
and then eventually:

```
[testng] [2015-08-18 17:05:32,258] [main] Building list of tests...
```

```
[testng] [2015-08-18 17:05:32,258] [main] Total files: 480
```

```
[testng] [2015-08-18 17:05:32,258] [main] Scan time: 3.293 s (6 ms/file)
```

```
[testng] [2015-08-18 17:05:32,258] [main] ----------------------------------------
```

```
[BUILD SUCCESSFUL]
Total time: 16 minutes 42 seconds
```

In most cases, test failures should be logged in the main console output as:

```
[testng] [2015-08-18 17:13:13,625] [pool-1-thread-1] SizeZ: FAILED (Series 0 (expected 2, actual 1))
```

To identify the file, look for the initialization line preceding the test failures under the same thread:

```
[testng] [2015-08-18 17:13:12,376] [pool-1-thread-1] Initializing /ome/data_repo/test_per_commit/ome-tiff/img_bk_20110701.ome.tif:
```

The console output is also recorded under components/test-suite/target as bio-formats-software-test-main-$DATE.log where “$DATE” is the date on which the tests started in “yyyy-MM-dd_hh-mm-ss” format. The detailed report of each thread is recorded under bio-formats-software-pool-$POOL-thread-$THREAD-main-$DATE.log

Configuration files can be generated for files or directories using the ant gen-config target. This generation target supports the same options as ant test-automated:

```
$ ant -Dtestng.directory=/path/to/data -Dtestng.configDirectory=/path/to/config -Dtestng.memory=4g -Dtestng.threadCount=6 gen-config
```

15.2.2 MATLAB tests

Tests for the Bio-Formats MATLAB toolbox are written using the xunit framework and are located under components/formats-gpl/test/matlab.

To run these tests, you will need to download or clone [matlab-xunit](https://github.com/psexton/matlab-xunit), a xUnit framework with JUnit-compatible XML output. Then add this package together with the Bio-Formats MATLAB to your MATLAB path:

```
3 https://github.com/openmicroscopy/bioformats/tree/v5.2.3/components/formats-gpl/test/matlab
4 https://github.com/psexton/matlab-xunit
```
% Add the matlab-xunit toolbox to the MATLAB path
addpath('/path/to/matlab-xunit');
% Add the Bio-Formats MATLAB source to the MATLAB path
% For developers working against the source code
addpath('/path/to/bioformats/components/formats-gpl/matlab');
addpath('/path/to/bioformats/artifacts');
% For developers working against a built artifact, e.g. a release
% addpath('/path/to/bfmatlab');

You can run all the MATLAB tests using runxunit:

cd /path/to/bioformats/components/formats-gpl/test/matlab
runxunit

Individual test classes can be run by passing the name of the class:

cd /path/to/bioformats/components/formats-gpl/test/matlab
runxunit TestBfsave

Individual test methods can be run by passing the name of the class and the name of the method:

cd /path/to/bioformats/components/formats-gpl/test/matlab
runxunit TestBfsave:testLZW

Finally to output the test results under XML format, you can use the \texttt{-xmlfile} option:

cd /path/to/bioformats/components/formats-gpl/test/matlab
runxunit -xmlfile test-output.xml

\section*{15.3 Generating test images}

Sometimes it is nice to have a file of a specific size or pixel type for testing. To generate an image file (that contains a gradient image):

touch "my-special-test-file\&pixelType=uint8\&sizeX=8192\&sizeY=8192.fake"

Whatever is before the first \& is the image name; the remaining key-value pairs, each preceded with \&, set the pixel type and image dimensions. Just replace the values with whatever you need for testing.

Additionally, you can put such values in a separate UTF-8 encoded \texttt{.ini} file:

touch my-special-test-file.fake
echo "\$pixelType=uint8" \> my-special-test-file.fake.ini
echo "\$sizeX=8192" \> my-special-test-file.fake.ini
echo "\$sizeY=8192" \> my-special-test-file.fake.ini

In fact, just the \texttt{.fake.ini} file alone suffices:

echo "\$pixelType=uint8" \> my-special-test-file.fake.ini
echo "\$sizeX=8192" \> my-special-test-file.fake.ini
echo "\$sizeY=8192" \> my-special-test-file.fake.ini
If you include a “[GlobalMetadata]” section to the ini file, then all the included values will be accessible from the global metadata map:

```bash
echo "[GlobalMetadata]" >> my-special-test-file.fake.ini
echo "my.key=some.value" >> my-special-test-file.fake.ini
```

Several keys have support for units and can be expressed as KEY=VALUE UNIT where UNIT is the symbol of the desired unit:

```bash
touch "physicalSizesUnits&physicalSizeX=1nm&physicalSizeY=1nm&physicalSizeZ=1.5km.fake"
touch "physicalSizeX=1 nm" >> physicalSizes.fake.ini
touch "physicalSizeY=10 pm" >> physicalSizes.fake.ini
touch "physicalSizeZ=.002 mm" >> physicalSizes.fake.ini
```

15.3.1 High-content screening

To generate a simple plate file:

```bash
touch "simple-plate&plates=1&plateAcqs=1&plateRows=1&plateCols=1&fields=1.fake"
touch "default-plate&plates=1.fake"
touch "default-plate&screens=0&plates=1.fake"
```

These will each create a single plate without a containing screen, by default in the first two cases. In the third case setting `screens` to zero is used to document the lack of a screen. As above a `.fake.ini` file can be used.

To generate a simple screen file:

```bash
touch "default-screen&screens=1.fake"
```

This will create a screen containing a single simple plate.

To generate a valid plate at least one of `screens`, `plates`, `plateAcqs`, `plateRows`, `plateCols` and `fields` must be greater than zero. If this condition is met then any other plate-specific values set to zero will be ignored and the defaults used. So, for example, the file:

```bash
one-key-set&screens=0&plates=0&plateRows=0&plateCols=0&plateAcqs=0&fields=1.fake
```

will create a simple plate with no screen.

15.3.2 Regions

To generate a fake file containing regions of interest:

```bash
touch "regions&points=10.fake"
touch "regions&ellipses=20.fake"
touch "regions&rectangles=5&lines=25.fake"
```

Replace `regions` in the above examples with the desired image or plate which will contain the regions, e.g.

```bash
touch "HCSanalysis&plates=1&plateRows=16&plateCols=24&rectangles=100.fake"
```

For each shape type, the value will specify the number of regions of interest to create where each region of interest contains a single shape of the input type. By convention, all generated regions of interests are not associated to any given Z, C or T plane.
15.3.3 Key-value pairs

There are several other keys that can be added, a complete list of these, with their default values, is shown below.

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>sizeX</td>
<td>number of pixels wide</td>
<td>512</td>
</tr>
<tr>
<td>sizeY</td>
<td>number of pixels tall</td>
<td>512</td>
</tr>
<tr>
<td>sizeZ</td>
<td>number of Z sections</td>
<td>1</td>
</tr>
<tr>
<td>sizeC</td>
<td>number of channels</td>
<td>1</td>
</tr>
<tr>
<td>sizeT</td>
<td>number of timepoints</td>
<td>1</td>
</tr>
<tr>
<td>thumbSizeX</td>
<td>number of pixels wide, for the thumbnail</td>
<td>0</td>
</tr>
<tr>
<td>thumbSizeY</td>
<td>number of pixels tall, for the thumbnail</td>
<td>0</td>
</tr>
<tr>
<td>pixelType</td>
<td>pixel type</td>
<td>uint8</td>
</tr>
<tr>
<td>bitsPerPixel</td>
<td>number of valid bits (<= number of bits implied by pixel type)</td>
<td>0</td>
</tr>
<tr>
<td>rgb</td>
<td>number of channels that are merged together</td>
<td>1</td>
</tr>
<tr>
<td>dimOrder</td>
<td>dimension order (e.g. XYZCT)</td>
<td>XYZCT</td>
</tr>
<tr>
<td>orderCertain</td>
<td>whether or not the dimension order is certain</td>
<td>true</td>
</tr>
<tr>
<td>little</td>
<td>whether or not the pixel data should be little-endian</td>
<td>true</td>
</tr>
<tr>
<td>interleaved</td>
<td>whether or not merged channels are interleaved</td>
<td>false</td>
</tr>
<tr>
<td>indexed</td>
<td>whether or not a color lookup table is present</td>
<td>false</td>
</tr>
<tr>
<td>falseColor</td>
<td>whether or not the color lookup table is just for making the image look pretty</td>
<td>false</td>
</tr>
<tr>
<td>metadataComplete</td>
<td>whether or not CoreMetadata.thumbnail is set</td>
<td>true</td>
</tr>
<tr>
<td>thumbnail</td>
<td>whether or not CoreMetadata.thumbnail is set</td>
<td>false</td>
</tr>
<tr>
<td>series</td>
<td>number of series (images)</td>
<td>1</td>
</tr>
<tr>
<td>lutLength</td>
<td>number of entries in the color lookup table</td>
<td>3</td>
</tr>
<tr>
<td>scaleFactor</td>
<td>the scaling factor for the pixel values on each plane</td>
<td>1</td>
</tr>
<tr>
<td>exposureTime</td>
<td>time of exposure</td>
<td>null</td>
</tr>
<tr>
<td>acquisitionDate</td>
<td>timestamp formatted as “yyyy-MM-dd_HH-mm-ss”</td>
<td>null</td>
</tr>
<tr>
<td>screens</td>
<td>number of screens</td>
<td>0</td>
</tr>
<tr>
<td>plates</td>
<td>number of plates to generate</td>
<td>0</td>
</tr>
<tr>
<td>plateAcqs</td>
<td>number of plate runs</td>
<td>0</td>
</tr>
<tr>
<td>plateRows</td>
<td>number of rows per plate</td>
<td>0</td>
</tr>
<tr>
<td>plateCols</td>
<td>number of rows per plate</td>
<td>0</td>
</tr>
<tr>
<td>fields</td>
<td>number of fields per well</td>
<td>0</td>
</tr>
<tr>
<td>withMicrobeam</td>
<td>whether or not a microbeam should be added to the experiment (HCS only)</td>
<td>false</td>
</tr>
<tr>
<td>annLong, annDouble, annMap, annComment, annBool, annTime, annTag, annTerm, annXml</td>
<td>number of annotations of the given type to generate</td>
<td>0</td>
</tr>
<tr>
<td>physicalSizeX</td>
<td>real width of the pixels, supports units defaulting to microns</td>
<td></td>
</tr>
<tr>
<td>physicalSizeY</td>
<td>real height of the pixels, supports units defaulting to microns</td>
<td></td>
</tr>
<tr>
<td>physicalSizeZ</td>
<td>real depth of the pixels, supports units defaulting to microns</td>
<td></td>
</tr>
<tr>
<td>color</td>
<td>the default color for all channels</td>
<td>null</td>
</tr>
<tr>
<td>color_x</td>
<td>the color for channel x, overrides the default color for that channel</td>
<td></td>
</tr>
<tr>
<td>ellipses, labels, lines, points, polygons, polylines, rectangles</td>
<td>the number of ROIs containing one shape of the given type to generate</td>
<td></td>
</tr>
</tbody>
</table>

For full details of these keys, how unset and default values are handled and further examples see loci.formats.in.FakeReader⁵.

You can often work with the .fake file directly, but in some cases support for those files is disabled and so you will need to convert the file to something else. Make sure that you have Bio-Formats built and the JARs in your CLASSPATH (individual JARs or just bioformats_package.jar):

```
bfconvert test&pixelType=uint8&sizeX=8192&sizeY=8192.fake test.tiff
```

⁵https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/FakeReader.java
If you do not have the command line tools installed, substitute `loci.formats.tools.ImageConverter` for `bfconvert`.

15.4 Writing a new file format reader

This document is a brief guide to writing new Bio-Formats file format readers.

All format readers should extend either `loci.formats.FormatReader` or an existing reader.

15.4.1 Methods to override

- `isSingleFile(java.lang.String)` Whether or not the named file is expected to be the only file in the dataset. This only needs to be overridden for formats whose datasets can contain more than one file.

- `isThisType(loci.common.RandomAccessInputStream)` Check the first few bytes of a file to determine if the file can be read by this reader. You can assume that index 0 in the stream corresponds to the index 0 in the file. Return `true` if the file can be read; false if not (or if there is no way of checking).

- `fileGroupOption(java.lang.String)` Returns an indication of whether or not the files in a multi-file dataset can be handled individually. The return value should be one of the following:
 - `FormatTools.MUST_GROUP`: the files cannot be handled separately
 - `FormatTools.CAN_GROUP`: the files may be handled separately or as a single unit
 - `FormatTools.CANNOT_GROUP`: the files must be handled separately

This method only needs to be overridden for formats whose datasets can contain more than one file.

- `getSeriesUsedFiles(boolean)` You only need to override this if your format uses multiple files in a single dataset. This method should return a list of all files associated with the given file name and the current series (i.e. every file needed to display the current series). If the `noPixels` flag is set, then none of the files returned should contain pixel data. See an example of how this works, see `loci.formats.in.PerkinElmerReader`. It is recommended that the first line of this method be `FormatTools.assertId(currentId, true, 1)` - this ensures that the file name is non-null.

- `openBytes(int, byte[], int, int, int, int)` Returns a byte array containing the pixel data for a specified subimage from the given file. The dimensions of the subimage (upper left X coordinate, upper left Y coordinate, width, and height) are specified in the final four int parameters. This should throw a `FormatException` if the image number is invalid (less than 0 or >= the number of images). The ordering of the array returned by `openBytes` should correspond to the values returned by `isLittleEndian` and `isInterleaved`. Also, the length of the byte array should be [image width * image height * bytes per pixel]. Extra bytes will generally be truncated. It is recommended that the first line of this method be `FormatTools.checkPlaneParameters(this, no, buf.length, x, y, w, h)` - this ensures that all of the parameters are valid.

- `initFile(java.lang.String)` The majority of the file parsing logic should be placed in this method. The idea is to call this method once (and only once!) when the file is first opened. Generally, you will want to start by calling `super.initFile(String)`. You will also need to set up the stream for reading the file, as well as initializing any dimension information and metadata. Most of this logic is up to you; however, you should populate the `core` variable (see `loci.formats.CoreMetadata`).

8. http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#isThisType(loci.common.RandomAccessInputStream)
11. http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#isLittleEndian()
Note that each variable is initialized to 0 or null when super:initFile(String) is called. Also, super:initFile(String) constructs a Hashtable called metadata\(^{24}\) where you should store any relevant metadata.

The most common way to set up the OME-XML metadata for the reader is to initialize the MetadataStore using the makeFilterMetadata()\(^{25}\) method and populate the Pixels elements of the metadata store from the core variable using the MetadataTools.populatePixels(MetadataStore, FormatReader)\(^{26}\) method:

```java
# Initialize the OME-XML metadata from the core variable
MetadataStore store = makeFilterMetadata();
MetadataTools.populatePixels(store, this);
```

If the reader includes metadata at the plane level, you can initialize the Plane elements under the Pixels using MetadataTools.populatePixels(MetadataStore, FormatReader, doPlane)\(^{27}\):

```java
MetadataToolspopulatePixels(store, this, true);
```

Once the metadata store has been initialized with the core properties, additional metadata can be added to it using the setter methods. Note that for each of the model components, the setObjectID() method should be called before any of the setObjectProperty() methods, e.g.:

```java
# Add an oil immersion objective with achromat
String objectiveID = MetadataTools.createLSID("Objective", 0, 0);
store.setObjectID(objectiveID, 0, 0);
store.setObjectiveImmersion(getImmersion("Oil"), 0, 0);
```

- close(boolean)\(^{28}\) Cleans up any resources used by the reader. Global variables should be reset to their initial state, and any open files or delegate readers should be closed.

Note that if the new format is a variant of a format currently supported by Bio-Formats, it is more efficient to make the new reader a subclass of the existing reader (rather than subclassing loci.formats.FormatReader\(^{29}\)). In this case, it is usually sufficient to override initFile(java.lang.String)\(^{30}\) and isThisType(byte[])\(^{31}\).

Every reader also has an instance of loci.formats.CoreMetadata\(^{32}\). All readers should populate the fields in CoreMetadata, which are essential to reading image planes.

If you read from a file using something other than loci.common.RandomAccessInputStream\(^{33}\) or loci.common.Location\(^{34}\), you must use the file name returned by Location.getMappedId(String), not the file name passed to the reader. Thus, a stub for initFile(String) might look like this:

```java
protected void initFile(String id) throws FormatException, IOException {
    super.initFile(id);
    RandomAccessInputStream in = new RandomAccessInputStream(id);
    // alternatively,
    // FileInputStream in = new FileInputStream(Location.getMappedId(id));
    // read basic file structure and metadata from stream
}
```

\(^{24}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#metadata
\(^{25}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#makeFilterMetadata()
\(^{26}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/MetadataTools.html#populatePixels(loci.formats.meta.MetadataStore, loci.formats.IFormatReader)
\(^{27}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/MetadataTools.html#populatePixels(loci.formats.meta.MetadataStore, loci.formats.IFormatReader, boolean)
\(^{28}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#close(boolean)
\(^{29}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html
\(^{31}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#isThisType(byte[])
\(^{32}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/CoreMetadata.html
\(^{34}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/Location.html
15.4.2 Variables to populate

There are a number of global variables defined in `loci.formats.FormatReader` that should be populated in the constructor of any implemented reader. These variables are:

- `suffixNecessary`\(^{38}\): Indicates whether or not a file name suffix is required; true by default
- `suffixSufficient`\(^{39}\): Indicates whether or not a specific file name suffix guarantees that this reader can open a particular file; true by default
- `hasCompanionFiles`\(^{40}\): Indicates whether or not there is at least one file in a dataset of this format that contains only metadata (no images); false by default
- `datasetDescription`\(^{41}\): A brief description of the layout of files in datasets of this format; only necessary for multi-file datasets
- `domains`\(^{42}\): An array of imaging domains for which this format is used. Domains are defined in `loci.formats.FormatTools`\(^{43}\).

15.4.3 Other useful things

- `loci.common.RandomAccessInputStream`\(^{44}\) is a hybrid RandomAccessFile/InputStream class that is generally more efficient than either RandomAccessFile or InputStream, and implements the DataInput interface. It is recommended that you use this for reading files.
- `loci.common.Location`\(^{45}\) provides an API similar to java.io.File, and supports File-like operations on URLs. It is highly recommended that you use this instead of File. See the [Javadocs](http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/Location.html) for additional information.
- `loci.common.DataTools`\(^{46}\) provides a number of methods for converting bytes to shorts, ints, longs, etc. It also supports reading most primitive types directly from a RandomAccessInputStream (or other DataInput implementation).
- `loci.formats.ImageTools`\(^{47}\) provides several methods for manipulating primitive type arrays that represent images. Consult the source or Javadocs for more information.
- If your reader relies on third-party code which may not be available to all users, it is strongly suggested that you make a corresponding service class that interfaces with the third-party code. Please see [Bio-Formats service and dependency infrastructure](http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/services/package-summary.html) for a description of the service infrastructure, as well as the `loci.formats.services` package\(^{49}\).
- Several common image compression types are supported through subclasses of `loci.formats.codec.BaseCodec`\(^{50}\). These include JPEG, LZW, LZO, Base64, ZIP and RLE (PackBits).
- If you wish to convert a file’s metadata to OME-XML (strongly encouraged), please see [Bio-Formats metadata processing](http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/codec/BaseCodec.html) for further information.
- Once you have written your file format reader, add a line to the `readers.txt` file with the fully qualified name of the reader, followed by a ‘#’ and the file extensions associated with the file format. Note that `loci.formats.ImageReader`\(^{52}\), the master for more details, see `loci.common.Location.mapId(java.lang.String, java.lang.String)`\(^{35}\) and `loci.common.Location.getMappedId(java.lang.String)`\(^{36}\).

15.4. Writing a new file format reader

\(^{35}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/Location.html#mapId(java.lang.String, java.lang.String)

\(^{36}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/Location.html#getMappedId(java.lang.String)

\(^{37}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html

\(^{38}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#suffixNecessary

\(^{39}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#suffixSufficient

\(^{40}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#hasCompanionFiles

\(^{41}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#datasetDescription

\(^{42}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#domains

\(^{43}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/services/package-summary.html

\(^{44}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/RandomAccessInputStream.html

\(^{45}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/Location.html

\(^{46}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/

\(^{47}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/DataTools.html

\(^{49}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/services/package-summary.html

\(^{50}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/codec/BaseCodec.html

\(^{51}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-api/src/loci/formats/readers.txt

\(^{52}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/ImageReader.html
file format reader, tries to identify which format reader to use according to the order given in readers.txt\(^\text{53}\), so be sure to place your reader in an appropriate position within the list.

- The easiest way to test your new reader is by calling “java loci.formats.tools.ImageInfo <file name>”. If all goes well, you should see all of the metadata and dimension information, along with a window showing the images in the file. loci.formats.ImageReader\(^\text{54}\) can take additional parameters; a brief listing is provided below for reference, but it is recommended that you take a look at the contents of loci.formats.tools.ImageInfo\(^\text{55}\) to see exactly what each one does.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>-version</td>
<td>print the library version and exit</td>
</tr>
<tr>
<td>file</td>
<td>the image file to read</td>
</tr>
<tr>
<td>-nopix</td>
<td>read metadata only, not pixels</td>
</tr>
<tr>
<td>-nocore</td>
<td>do not output core metadata</td>
</tr>
<tr>
<td>-nometa</td>
<td>do not parse format-specific metadata table</td>
</tr>
<tr>
<td>-nfilter</td>
<td>do not filter metadata fields</td>
</tr>
<tr>
<td>-thumbs</td>
<td>read thumbnails instead of normal pixels</td>
</tr>
<tr>
<td>-minmax</td>
<td>compute min/max statistics</td>
</tr>
<tr>
<td>-merge</td>
<td>combine separate channels into RGB image</td>
</tr>
<tr>
<td>-nogroup</td>
<td>force multi-file datasets to be read as individual files</td>
</tr>
<tr>
<td>-stitch</td>
<td>stitch files with similar names</td>
</tr>
<tr>
<td>-separate</td>
<td>split RGB image into separate channels</td>
</tr>
<tr>
<td>-expand</td>
<td>expand indexed color to RGB</td>
</tr>
<tr>
<td>-omexml</td>
<td>populate OME-XML metadata</td>
</tr>
<tr>
<td>-normalize</td>
<td>normalize floating point images*</td>
</tr>
<tr>
<td>-fast</td>
<td>paint RGB images as quickly as possible*</td>
</tr>
<tr>
<td>-debug</td>
<td>turn on debugging output</td>
</tr>
<tr>
<td>-range</td>
<td>specify range of planes to read (inclusive)</td>
</tr>
<tr>
<td>-series</td>
<td>specify which image series to read</td>
</tr>
<tr>
<td>-swap</td>
<td>override the default input dimension order</td>
</tr>
<tr>
<td>-shuffle</td>
<td>override the default output dimension order</td>
</tr>
<tr>
<td>-map</td>
<td>specify file on disk to which name should be mapped</td>
</tr>
<tr>
<td>-preload</td>
<td>pre-read entire file into a buffer; significantly reduces the time required to read the images, but requires more memory</td>
</tr>
<tr>
<td>-crop</td>
<td>crop images before displaying; argument is ‘x,y,w,h’</td>
</tr>
<tr>
<td>-autoscale</td>
<td>used in combination with ‘-fast’ to automatically adjust brightness and contrast</td>
</tr>
<tr>
<td>-novalid</td>
<td>do not perform validation of OME-XML</td>
</tr>
<tr>
<td>-omexml-</td>
<td>only output the generated OME-XML</td>
</tr>
<tr>
<td>only</td>
<td>format read file with a particular reader (e.g., ZeissZVI)</td>
</tr>
</tbody>
</table>

* = may result in loss of precision

- If you wish to test using TestNG, loci.tests.testng.FormatReaderTest\(^\text{56}\) provides several basic tests that work with all Bio-Formats readers. See the FormatReaderTest source code for additional information.

- For more details, please look at the source code and Javadocs\(^\text{57}\). Studying existing readers is probably the best way to get a feel for the API; we would recommend first looking at loci.formats.in.ImarisReader\(^\text{58}\) (this is the most straightforward one), loci.formats.in.LIFReader\(^\text{59}\) and InCellReader\(^\text{60}\) are also good references that show off some of the nicer features of Bio-Formats.

If you have questions about Bio-Formats, please contact the OME team\(^\text{61}\).

\(^{53}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-api/src/loci/formats/readers.txt
\(^{54}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/ImageReader.html
\(^{55}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/bio-formats-tools/src/loci/formats/tools/ImageInfo.java
\(^{56}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/tests/testng/FormatReaderTest.html
\(^{57}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/
\(^{58}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/ImarisReader.java
\(^{59}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/LIFReader.java
\(^{60}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/InCellReader.java
\(^{61}\)http://www.openmicroscopy.org/site/community
15.5 Adding format/reader documentation pages

Most documentation pages for the supported formats and readers are auto-generated. These pages should not be modified directly. This page explains how to amend/extend this part of the Bio-Formats documentation.

The Bio-Formats testing framework\(^2\) component contains most of the infrastructure to run automated tests against the data repository.

15.5.1 Formats

After checking out source code and building all the JAR files (see *Obtaining and building Bio-Formats*), the supported formats pages can be generated using the `ant gen-format-pages` target under the autogen component:

```
$ ant -f components/autogen/build.xml gen-format-pages
```

This target will read the metadata for each format stored under `format-pages.txt`\(^3\) and generate a reStructuredText file for each format stored under `formats/<formatname>.txt` as well as an index page for all supported formats using Velocity\(^4\).

The `format-pages.txt` is an INI file where each section corresponds to a particular format given by the section header. Multiple key/values should be defined for each section:

- **pagename** The name of the output reStructuredText file. If unspecified, the section header will be used to generate the filename.
- **extensions** The list of extensions supported for the format
- **owner** The owner of the file format
- **developer** The developer of the file format
- **bsd** A `yes/no` flag specifying whether the format readers/writers are under the BSD license
- **versions** A comma-separated list of all versions supported for this format
- **weHave** A bullet-point list describing the supporting material we have for this format including specification and sample datasets
- **weWant** A bullet-point list describing the supporting material we would like to have for this format
- **pixelRating**, **metadataRating**, **opennessRating**, **presenceRating**, **utilityRating** See Ratings legend and definitions. Available choices are: Poor, Fair, Good, Very Good, Outstanding
- **reader** A string or a comma-separated list of all readers for this format
- **notes** Additional relevant information e.g. that we cannot distribute specification documents to third parties

15.5.2 Dataset structure table

After checking out source code and building all the JAR files (see *Obtaining and building Bio-Formats*), the summary table listing the extensions for each reader can be generated using the `ant gen-structure-table` target under the autogen component:

```
$ ant -f components/autogen/build.xml gen-structure-table
```

This target will loop through all Bio-Formats readers (BSD and GPL), read their extensions and descriptions and create a reStructuredText file with a table summary of all file extensions.

15.5.3 Readers

After checking out source code and building all the JAR files (see *Obtaining and building Bio-Formats*), the metadata pages for each reader can be generated using the `ant gen-meta-support` target under the autogen component:

\(^2\)https://github.com/openmicroscopy/bioformats/tree/v5.2.3/components/autogen
\(^3\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/autogen/src/format-pages.txt
\(^4\)http://velocity.apache.org/
This target will loop through all Bio-Formats readers (BSD and GPL), parse their metadata support and create an intermediate `meta-support.txt` file. In a second step, this `meta-support.txt` file is converted into one reStructuredText page for each reader stored under `metadata/<reader>.txt` as well as a metadata summary reStructuredText file using Velocity.55

15.6 Bio-Formats service and dependency infrastructure

15.6.1 Description

The Bio-Formats service infrastructure is an interface driven pattern for dealing with external and internal dependencies. The design goal was mainly to avoid the cumbersome usage of `ReflectedUniverse` where possible and to clearly define both service dependency and interface between components. This is generally referred to as dependency injection, dependency inversion or component based design.

It was decided, at this point, to forgo the usage of potentially more powerful but also more complicated solutions such as:

- Spring (http://spring.io)
- Guice (http://code.google.com/p/google-guice/)
- ...

The Wikipedia page for dependency injection contains many other implementations in many languages.

An added benefit is the potential code reuse possibilities as a result of decoupling of dependency and usage in Bio-Formats readers. Implementations of the initial Bio-Formats services were completed as part of BioFormatsCleanup and tickets #463 and #464.

15.6.2 Writing a service

- Interface – The basic form of a service is an interface which inherits from `loci.common.services.Service`. Here is a very basic example using the (now removed) OMENotesService

```java
public interface OMENotesService extends Service {

    /**
     * Creates a new OME Notes instance.
     * @param filename Path to the file to create a Notes instance for.
     */
    public void newNotes(String filename);
}
```

- Implementation – This service then has an implementation, which is usually located in the Bio-Formats component or package which imports classes from an external, dynamic or other dependency. Again looking at the OMENotesService:

```java
public class OMENotesServiceImpl extends AbstractService
    implements OMENotesService {

    /**
     * Default constructor.
     */
}
```

65http://velocity.apache.org/
70https://trac.openmicroscopy.org/ome/ticket/463
71https://trac.openmicroscopy.org/ome/ticket/464
72http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/services/Service.html
*/
public OMENotesServiceImpl() {
 checkClassDependency(Notes.class);
}

/* (non-Javadoc)
* @see loci.formats.dependency.OMENotesService#newNotes()
*/
public void newNotes(String filename) {
 new Notes(null, filename);
}

• Style
 – Extension of AbstractService to enable uniform runtime dependency checking is recommended. Java does not check class dependencies until classes are first instantiated so if you do not do this, you may end up with ClassNotFound or the like exceptions being emitted from your service methods. This is to be strongly discouraged. If a service has unresolvable classes on its CLASSPATH instantiation should fail, not service method invocation.
 – Service methods should not burden the implementer with numerous checked exceptions. Also external dependency exception instances should not be allowed to directly leak from a service interface. Please wrap these using a ServiceException.
 – By convention both the interface and implementation are expected to be in a package named loci.*.services. This is not a hard requirement but should be followed where possible.

• Registration – A service’s interface and implementation must finally be registered with the loci.common.services.ServiceFactory via the services.properties file. Following the OMENotesService again, here is an example registration:

```
# OME notes service (implementation in legacy ome-notes component)
loci.common.services.OMENotesService=loci.ome.notes.services.OMENotesServiceImpl
```

See also:
loci.common.services.Service Source code for loci.common.services.Service interface
loci.common.services.ServiceFactory Source code for loci.common.services.Service interface

15.6.3 Using a service

```
OMENotesService service = null;
try {
    ServiceFactory factory = new ServiceFactory();
    service = factory.getInstance(OMENotesService.class);
} catch (DependencyException de) {
    LOGGER.info("", de);
}
```

73http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/services/ServiceFactory.html
15.7 Code generation with xsd-fu

xsd-fu is a Python application designed to digest OME XML schema and produce an object-oriented Java infrastructure to ease work with an XML DOM tree. It is usually run automatically when building from source (see Building from source) and so running it by hand should not be needed. xsd-fu is primarily used to generate the OME-XML model objects, enums and enum handlers, plus the MetadataStore and MetadataRetrieve interfaces and implementations.

15.7.1 Available options

-d, --dry-run
Run all source generation processing, but don’t write output files. In combination with --print-depends or --print-generated, this option may be used to dynamically introspect command dependencies and output to create build rules on the fly for e.g. make.

--debug
Enable xsd-fu debugging messages and template debugging. The code templates contain diagnostic messages to debug the template processing, which are normally suppressed in the code output; enabling debugging will add these diagnostic messages to the generated code.

-l language, --language=language
Generate code for the specified language. Currently supported options are C++ and Java.

--metadata-package=package
Package or namespace for the metadata store and retrieve classes.

--ome-xml-metadata-package=package
Package or namespace for the OME-XML metadata classes.

--ome-xml-model-package=package
Package or namespace for the OME-XML model classes.

--ome-xml-model-enums-package=package
Package or namespace for the OME-XML model enum classes.

--ome-xml-model-enum-handlers-package=package
Package or namespace for the OME-XML model enum handler classes.

-o dir, --output-directory=dir
Output generated code into the specified directory. The directory will be created if it does not already exist. Note that the directory is the root of the source tree; generated classes will be placed into the appropriate module-specific locations under this root.

--print-depends
Print a list of the files required during template processing, including schema files, templates and custom template fragments. Particularly useful with --dry-run to introspect command dependencies.

--print-generated
Print a list of the files generated during template processing. Particularly useful with --dry-run to determine what a given command would generate.

-q, --quiet
Do not print names of generated files.

-t path, --template-path=path
Path to search for Genshi template files. Defaults to the language-specific template directory in components/xsd-fu.

-n, --xsd-namespace
XML schema namespace to use. Defaults to xsd:.

-v, --verbose
Print names of generated files as they are processed.

15.7.2 Available commands

• doc_gen
• metadata
• omero_metadata
• omero_model
• omexml_metadata
• omexml_metadata_all
• omexml_model
• omexml_model_all
• omexml_model Enums
• omexml_model_enum_handlers
• omexml_model_enum_includeall
• tab_gen

15.7.3 Running the code generator

Run xsd-fu script with no arguments to examine the syntax:

```
./components/xsd-fu/xsd-fu
Error: Missing subcommand
```

xsd-fu: Generate classes from an OME-XML schema definition
Usage: ./components/xsd-fu/xsd-fu command [options...] -o output_dir schema_files...

Options:
- d, --dry-run
 Do not create output files
- d, --debug
 Enable xsd-fu and template debugging
- l, --language=lang
 Generated language
- m, --metadata-package=pkg
 Metadata package
- o, --omexml-metadata-package=pkg
 OME-XML metadata class package
- p, --omexml-model-package=pkg
 OME-XML model package
- e, --omexml-model-enum-package=pkg
 OME-XML model enum package
- h, --omexml-model-enum-handlers-package=pkg
 OME-XML model enum handler package
- o, --output-directory=dir
 Generated output directory
- q, --quiet
 Do not output file names
- t, --template-path=path
 Genshi template path
- v, --verbose
 Output generated file names
- n, --xsd-namespace
 XML schema namespace

Available subcommands:
debug
doc_gen
omexml_model_enum_handlers
omexml_model Enums
omexml_model
metadata
omero_metadata
omero_model
omexml_metadata
tab_gen

Default XSD namespace: "xsd:"

Default Java OME-XML package: "ome.xml.model"
Default Java OME-XML enum package: "ome.xml.model.enums"
Default Java OME-XML enum handler package: "ome.xml.model.enums.handlers"
Default Java metadata package: "loci.formats.meta"
Default Java OME-XML metadata package: "loci.formats.ome"
Default C++ OME-XML package: "ome::xml::model"
Default C++ OME-XML enum package: "ome::xml::model::enums"
Default C++ metadata package: "ome::xml::meta"
Default C++ OME-XML metadata package: "ome::xml::meta"

Examples:
./components/xsd-fu/xsd-fu -l Java -n 'xsd:' --ome-xml-model-package=ome.xml.model -o omexml /path/to/schemas/ome.xsd
./components/xsd-fu/xsd-fu -l C++ -n 'xsd:' --ome-xml-model-package=ome::xml::model -o omexml /path/to/schemas/ome.xsd

Report bugs to OME Devel <ome-devel@lists.openmicroscopy.org.uk>

Note: It should not be necessary to run it by hand for a normal Bio-Formats build. xsd-fu is run automatically as part of the main Bio-Formats build from version 5.0 when building the ome-xml and scifio components. It is still useful to run by hand when debugging, or using non-standard targets.

15.7.4 Generating the OME-XML Java model and metadata classes

The following sections outline how to generate parts of the OME-XML Java interfaces and implementations for the object model and metadata store, which are composed of:

- OME model objects
- enumerations for OME model properties
- enumeration handlers for regular expression matching of enumeration strings
- Metadata store and Metadata retrieve interfaces for all OME model properties
- various implementations of Metadata store and/or Metadata retrieve interfaces

All of the above can be generated by this Ant command:

$ cd components/ome-xml
$ ant generate-source

Run:

$ ant generate-source -v

to see the command-line options used.

15.7.5 Working with Enumerations and Enumeration Handlers

XsdFu code generates enumeration regular expressions using a flexible configuration file76. Each enumeration has a key-value listing of regular expression to exact enumeration value matches. For example:

[Correction]
".*Pl.*Apo.*" = "PlanApo"
".*Pl.*Flu.*" = "PlanFluor"
".*\s*Vio.*Corr.*" = "VioletCorrected"
".*S.*Flu.*" = "SuperFluor"
".*Neo.*flu.*" = "NeoFluar"
".*Flu.*tar.*" = "Fluotar"
".*Fluo.*" = "Fluar"
".*Flua.*" = "Fluar"
".*Apo.*" = "Apo"

76https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/xsd-fu/cfg/enum_handler.cfg

15.7. Code generation with xsd-fu
15.7.6 Generate OMERO model specification files

Run `xsd-fu` with the `omero_model` subcommand.

15.7.7 Special thanks

A special thanks goes out to Dave Kuhlman\(^77\) for his fabulous work on `generateDS`\(^78\) which `xsd-fu` makes heavy use of internally.

15.8 Scripts for performing development tasks

The `tools` directory contains several scripts which are useful for building and performing routine updates to the code base.

15.8.1 `bump_maven_version.py`

This updates the Maven POM version numbers for all pom.xml files that set `groupId` to `ome`. The script takes a single argument, which is the new version. For example, to update the POM versions prior to release:

`./tools/bump_maven_version.py 5.1.0`

and to switch back to snapshot versions immediately after release:

`./tools/bump_maven_version.py 5.1.1-SNAPSHOT`

15.8.2 `test-build`

This is the script used by Travis to test each commit. It compiles and runs tests on each of the components in the Bio-Formats repository according to the arguments specified. Valid arguments are:

- `clean`: cleans the Maven build directories
- `maven`: builds all Java components using Maven and runs unit tests
- `cpp`: builds the native C++ code alone
- `sphinx`: builds the Sphinx documentation alone
- `ant`: builds all Java components using Ant and runs unit tests
- `all`: equivalent of `clean maven sphinx ant`

15.8.3 `update_copyright`

This updates the end year in the copyright blocks of all source code files. The command takes no arguments, and sets the end year to be the current year. As `update_copyright` is a Bash script, it is not intended to be run on Windows.

See open Trac tickets for Bio-Formats\(^79\) for information on work currently planned or in progress.

For more general guidance about how to contribute to OME projects, see the Contributing developers documentation\(^80\).

\(^77\)http://www.davekuhlman.org/

\(^78\)http://www.davekuhlman.org/generateDS.html

\(^79\)https://trac.openmicroscopy.org/ome/report/44

\(^80\)http://www.openmicroscopy.org/site/support/contributing/index.html
Part IV

Formats
Bio-Formats supports over 140 different file formats. The *Dataset Structure Table* explains the file extension you should choose to open/import a dataset in any of these formats, while the *Supported Formats* table lists all of the formats and gives an indication of how well they are supported and whether Bio-Formats can write, as well as read, each format. The *Summary of supported metadata fields* table shows an overview of the *OME data model* fields populated for each format.

We are always looking for examples of files to help us provide better support for different formats. If you would like to help, you can upload files using our QA system uploader\(^1\). If you have any questions, or would prefer not to use QA, please email the *ome-users mailing list*\(^2\). If your format is already supported, please refer to the ‘we would like to have’ section on the individual page for that format, to see if your dataset would be useful to us.

All the example files we have permission to share publicly are freely available from our sample image downloads site\(^3\).

\(^2\)http://www.openmicroscopy.org/site/community/mailing-lists

\(^3\)http://downloads.openmicroscopy.org/images/
This table shows the extension of the file that you should choose if you want to open/import a dataset in a particular format.

<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM</td>
<td>.aim</td>
<td>Single file</td>
</tr>
<tr>
<td>ARF</td>
<td>.arf</td>
<td>Single file</td>
</tr>
<tr>
<td>Adobe Photoshop</td>
<td>.psd</td>
<td>Single file</td>
</tr>
<tr>
<td>Adobe Photoshop TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Alcon a AL3D</td>
<td>.al3d</td>
<td>Single file</td>
</tr>
<tr>
<td>Amersham Biosciences GEL</td>
<td>.gel</td>
<td>Single file</td>
</tr>
<tr>
<td>Amira</td>
<td>.am, .amiramesh, .grey, .hx, .labels</td>
<td>Single file</td>
</tr>
<tr>
<td>Analyze 7.5</td>
<td>.img, .hdr</td>
<td>One .img file and one similarly-named .hdr file</td>
</tr>
<tr>
<td>Andor SIF</td>
<td>.sif</td>
<td>Single file</td>
</tr>
<tr>
<td>Animated PNG</td>
<td>.png</td>
<td>Single file</td>
</tr>
<tr>
<td>Aperio AFI</td>
<td>.afi</td>
<td>One .afi file and several similarly-named .svs files</td>
</tr>
<tr>
<td>Aperio SVS</td>
<td>.svs</td>
<td>Single file</td>
</tr>
<tr>
<td>Audio Video Interleave</td>
<td>.avi</td>
<td>Single file</td>
</tr>
<tr>
<td>BD Pathway</td>
<td>.exp, .tiff</td>
<td>Multiple files (.exp, .dye, .ltp, …) plus one or more directories containing .tif and .bmp files</td>
</tr>
<tr>
<td>Bio-Rad GEL</td>
<td>.1sc</td>
<td>Single file</td>
</tr>
<tr>
<td>Bio-Rad PIC</td>
<td>.pic, .xml, .raw</td>
<td>One or more .pic files and an optional .lsc.xml file</td>
</tr>
<tr>
<td>Bio-Rad SCN</td>
<td>.scn</td>
<td>Single file</td>
</tr>
<tr>
<td>Bitplane Imaris</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bitplane Imaris 3 (TIFF)</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bitplane Imaris 5.5 (HDF)</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bruker</td>
<td>(no extension)</td>
<td>One ‘fid’ and one ‘acqp’ plus several other metadata files and a ‘pdata’ directory</td>
</tr>
<tr>
<td>Burleigh</td>
<td>.img</td>
<td>Single file</td>
</tr>
<tr>
<td>Canon RAW</td>
<td>.cr2, .crw, .jpg, .thm, .wav</td>
<td>Single file</td>
</tr>
<tr>
<td>CellH5 (HDF)</td>
<td>.ch5</td>
<td>Single file</td>
</tr>
<tr>
<td>CellSens VSI</td>
<td>.vsi, .ets</td>
<td>One .vsi file and an optional directory with a similar name that contains at least one subdirectory with .ets files</td>
</tr>
<tr>
<td>CellVoyager</td>
<td>.tif, .xml</td>
<td>Directory with 2 master files ‘MeasurementResult.xml’ and ‘MeasurementResult.ome.xml’, used to stitch together several TIF files.</td>
</tr>
<tr>
<td>CellWorx</td>
<td>.pnl, .htd, .log</td>
<td>One .htd file plus one or more .pnl or .tif files and optionally one or more .log files</td>
</tr>
<tr>
<td>Cellomics C01</td>
<td>.c01, .dib</td>
<td>One or more .c01 files</td>
</tr>
<tr>
<td>Compix Simple-PCI</td>
<td>.cxd</td>
<td>Single file</td>
</tr>
<tr>
<td>DICOM</td>
<td>.dic, .dcm, .dicom, .jp2, .j2ki, .j2kr, .raw, .ima</td>
<td>One or more .dcm or .dicom files</td>
</tr>
<tr>
<td>DNG</td>
<td>.cr2, .crw, .jpg, .thm, .wav, .tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Format name</td>
<td>File to choose</td>
<td>Structure of files</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Deltavision</td>
<td>.dv, .r3d, .r3d_d3d, .dv.log, .r3d.log</td>
<td>One .dv, .r3d, or .d3d file and up to two optional .log files</td>
</tr>
<tr>
<td>ECAT7</td>
<td>.v</td>
<td>Single file</td>
</tr>
<tr>
<td>Encapsulated PostScript</td>
<td>.eps, .epsi, .ps</td>
<td>Single file</td>
</tr>
<tr>
<td>Evotec Flex</td>
<td>.flex, .mea, .res</td>
<td>One directory containing one or more .flex files, and an optional directory containing an .mea and .res file. The .mea and .res files may also be in the same directory as the .flex file(s).</td>
</tr>
<tr>
<td>FEI TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>FEI/Philips</td>
<td>.img</td>
<td>Single file</td>
</tr>
<tr>
<td>Flexible Image Transport System</td>
<td>.fits, .fts</td>
<td>Single file</td>
</tr>
<tr>
<td>FlowSight</td>
<td>.cif</td>
<td>Single file</td>
</tr>
<tr>
<td>Fuji LAS 3000</td>
<td>.img, .inf</td>
<td>Single file</td>
</tr>
<tr>
<td>Gatan DM2</td>
<td>.dm2</td>
<td>Single file</td>
</tr>
<tr>
<td>Gatan Digital Micrograph</td>
<td>.dm3, .dm4</td>
<td>Single file</td>
</tr>
<tr>
<td>Graphics Interchange Format</td>
<td>.gif</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu Aquacosmos</td>
<td>.naf</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu HIS</td>
<td>.his</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu NDPI</td>
<td>.ndpi</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu NDPIS</td>
<td>.ndpis</td>
<td>One .ndpis file and at least one .ndpi file</td>
</tr>
<tr>
<td>Hamamatsu VMS</td>
<td>.vms</td>
<td>One .vms file plus several .jpg files</td>
</tr>
<tr>
<td>Hitachi</td>
<td>.txt</td>
<td>One .txt file plus one similarly-named .tif, .bmp, or .jpg file</td>
</tr>
<tr>
<td>I2I</td>
<td>.i2i</td>
<td>Single file</td>
</tr>
<tr>
<td>IMAGIC</td>
<td>.hed, .img</td>
<td>One .hed file plus one similarly-named .img file</td>
</tr>
<tr>
<td>IMOD</td>
<td>.mod</td>
<td>Single file</td>
</tr>
<tr>
<td>INR</td>
<td>.inr</td>
<td>Single file</td>
</tr>
<tr>
<td>IPLab</td>
<td>.ipl</td>
<td>Single file</td>
</tr>
<tr>
<td>IVision</td>
<td>.ipm</td>
<td>Single file</td>
</tr>
<tr>
<td>Imacon</td>
<td>.iff</td>
<td>Single file</td>
</tr>
<tr>
<td>Image Cytometry Standard</td>
<td>.ics, .ids</td>
<td>One .ics and possibly one .ids with a similar name</td>
</tr>
<tr>
<td>Image-Pro Sequence</td>
<td>.seq</td>
<td>Single file</td>
</tr>
<tr>
<td>Image-Pro Workspace</td>
<td>.ipw</td>
<td>Single file</td>
</tr>
<tr>
<td>Improvision TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>InCell 1000/2000</td>
<td>.xdce, .xml, .tiff, .tif, .xlog</td>
<td>One .xdce file with at least one .tif/.tiff or .im file</td>
</tr>
<tr>
<td>InCell 3000</td>
<td>.frm</td>
<td>Single file</td>
</tr>
<tr>
<td>Inveon</td>
<td>.hdr</td>
<td>One .hdr file plus one similarly-named file</td>
</tr>
<tr>
<td>JEOL</td>
<td>.dat, .img, .par</td>
<td>A single .dat file or an .img file with a similarly-named .par file</td>
</tr>
<tr>
<td>JPEG</td>
<td>.jpg, .jpeg, .jpe</td>
<td>Single file</td>
</tr>
<tr>
<td>JPEG-2000</td>
<td>.jp2, .j2k, .jpf</td>
<td>Single file</td>
</tr>
<tr>
<td>JPK Instruments</td>
<td>.jpk</td>
<td>Single file</td>
</tr>
<tr>
<td>JFX</td>
<td>.jpx</td>
<td>Single file</td>
</tr>
<tr>
<td>Khoros XV</td>
<td>.xv</td>
<td>Single file</td>
</tr>
<tr>
<td>Kodak Molecular Imaging</td>
<td>.bip</td>
<td>Single file</td>
</tr>
<tr>
<td>LEO</td>
<td>.sxm, .tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>LI-FLIM</td>
<td>.fli</td>
<td>Single file</td>
</tr>
<tr>
<td>Laboratory Imaging</td>
<td>.lim</td>
<td>Single file</td>
</tr>
<tr>
<td>Lavision Inspector</td>
<td>.msr</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica</td>
<td>.lei, .tif, .tiff, .raw</td>
<td>One .lei file with at least one .tif/.tiff file and an optional .txt file</td>
</tr>
<tr>
<td>Leica Image File Format</td>
<td>.tif</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica SCN</td>
<td>.scn</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica TCS TIFF</td>
<td>.tif, .tiff, .xml</td>
<td>Single file</td>
</tr>
</tbody>
</table>

Continued on next page
Table 16.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-Cor L2D</td>
<td>.l2d, .scn, .tif</td>
<td>One .l2d file with one or more directories containing .tif/.tiff files</td>
</tr>
<tr>
<td>MIAS</td>
<td>.tif, .tiff, .txt</td>
<td>One directory per plate containing one directory per well, each with one or more .tif/.tiff files</td>
</tr>
<tr>
<td>MINC MRI</td>
<td>.mnc</td>
<td>Single file</td>
</tr>
<tr>
<td>Medical Research Council</td>
<td>.mrc, .st, .ali, .map, .rec, .mrcs</td>
<td>Single file</td>
</tr>
<tr>
<td>Metamorph STK</td>
<td>.stk, .nd, .tif, .tiff</td>
<td>One or more .stk or .tif/.tiff files plus an optional .nd file</td>
</tr>
<tr>
<td>Metamorph TIFF</td>
<td>.tif, .tiff</td>
<td>One or more .tif/.tiff files</td>
</tr>
<tr>
<td>Micro-Manager</td>
<td>.tif, .tiff, .txt, .xml</td>
<td>A file ending in ‘metadata.txt’ plus one or more .tif files</td>
</tr>
<tr>
<td>Minolta MRW</td>
<td>.mrw</td>
<td>Single file</td>
</tr>
<tr>
<td>Molecular Imaging</td>
<td>.stp</td>
<td>Single file</td>
</tr>
<tr>
<td>Multiple-image Network Graphics</td>
<td>.mng</td>
<td>Single file</td>
</tr>
<tr>
<td>NIHITI</td>
<td>.nii, .img, .hdr, .nii.gz</td>
<td>A single .nii file or a single .nii.gz file or one .img file and a similarly-named .hdr file</td>
</tr>
<tr>
<td>NOAA-HRD Gridded Data Format</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>NRRD</td>
<td>.nrrd, .nhdr</td>
<td>A single .nrrd file or one .nhdr file and one other file containing the pixels</td>
</tr>
<tr>
<td>Nikon Elements TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon ND2</td>
<td>.nd2</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon NEF</td>
<td>.nef, .tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>OBF</td>
<td>.obf, .msr</td>
<td>OBFile</td>
</tr>
<tr>
<td>OME-TIFF</td>
<td>.ome.tif, .ome.tiff, .ome.tf2, .ome.tf8, .ome.tif, .ome.tif, .ome.tif, .ome.tif, .ome.tif, .ome.tif</td>
<td>One or more .ome.tif files</td>
</tr>
<tr>
<td>OME-XML</td>
<td>.ome, .ome.xml</td>
<td>Single file</td>
</tr>
<tr>
<td>Olympus APL</td>
<td>.apl, .tnb, .mtb, .tif</td>
<td>One .apl file, one .mtb file, one .tab file, and a directory containing one or more .tif files</td>
</tr>
<tr>
<td>Olympus FV1000</td>
<td>.oib, .oif, .pty, .lut</td>
<td>Single .oib file or one .oif file and a similarly-named directory containing .tif/.tiff files</td>
</tr>
<tr>
<td>Olympus Fluoview/ABD TIFF</td>
<td>.tif, .tiff</td>
<td>One or more .tif/.tiff files, and an optional .txt file</td>
</tr>
<tr>
<td>Olympus SIS TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Olympus ScanR</td>
<td>.dat, .xml, .tif</td>
<td>One .xml file, one ‘data’ directory containing .tif/.tiff files, and optionally two .dat files</td>
</tr>
<tr>
<td>Olympus Slidebook</td>
<td>.sld, .spl</td>
<td>Single file</td>
</tr>
<tr>
<td>Openlab LIFF</td>
<td>.iff</td>
<td>Single file</td>
</tr>
<tr>
<td>Openlab RAW</td>
<td>.raw</td>
<td>Single file</td>
</tr>
<tr>
<td>Oxford Instruments</td>
<td>.top</td>
<td>Single file</td>
</tr>
<tr>
<td>PCO-RAW</td>
<td>.pcoraw, .rec</td>
<td>A single .pcoraw file with a similarly-named .rec file</td>
</tr>
<tr>
<td>PCX</td>
<td>.pex</td>
<td>Single file</td>
</tr>
<tr>
<td>PICT</td>
<td>.pict, .pct</td>
<td>Single file</td>
</tr>
<tr>
<td>POV-Ray</td>
<td>.df3</td>
<td>Single file</td>
</tr>
<tr>
<td>Perkin Elmer Densitometer</td>
<td>.hdr, .img</td>
<td>One .hdr file and a similarly-named .img file</td>
</tr>
<tr>
<td>Perkin-Elmer Nuance IM3</td>
<td>.im3</td>
<td>Single file</td>
</tr>
<tr>
<td>PerkinElmer</td>
<td>.ano, .cfg, .csv, .htm, .rec, .tim, .zpo, .tiff</td>
<td>One .htm file, several other metadata files (.tim, .ano, .csv, …) and either .tif files or .2, .3, .4, etc. files</td>
</tr>
<tr>
<td>PerkinElmer Operetta</td>
<td>.tif, .tiff, .xml</td>
<td>Directory with XML file and one .tif/.tiff file per plane</td>
</tr>
<tr>
<td>PicoQuant Bin</td>
<td>.bin</td>
<td>Single file</td>
</tr>
<tr>
<td>Portable Any Map</td>
<td>.pbm, .pgm, .ppm</td>
<td>Single file</td>
</tr>
<tr>
<td>Prairie TIFF</td>
<td>.tif, .tiff, .cfg, .env, .xml</td>
<td>Single file</td>
</tr>
<tr>
<td>Princeton Instruments SPE</td>
<td>.spe</td>
<td>Single file</td>
</tr>
<tr>
<td>Pyramid TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
</tbody>
</table>

Continued on next page
Table 16.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quesant AFM</td>
<td>.afm</td>
<td>Single file</td>
</tr>
<tr>
<td>QuickTime</td>
<td>.mov</td>
<td>Single file</td>
</tr>
<tr>
<td>RHK Technologies</td>
<td>.sm2, .sm3</td>
<td>Single file</td>
</tr>
<tr>
<td>SBIG</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>SM Camera</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>SPC FIFO Data</td>
<td>.spc, .set</td>
<td>One .spc file and similarly named .set file</td>
</tr>
<tr>
<td>SPCImage Data</td>
<td>.sdt</td>
<td>Single file</td>
</tr>
<tr>
<td>SPIDER</td>
<td>.spi</td>
<td>Single file</td>
</tr>
<tr>
<td>Seiko</td>
<td>.xqd, .xqf</td>
<td>Single file</td>
</tr>
<tr>
<td>SimplePCI TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Simulated data</td>
<td>.fake</td>
<td>Single file</td>
</tr>
<tr>
<td>Slidebook TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Tagged Image File Format</td>
<td>.tif, .tiff2, .tif8, .btf</td>
<td>Single file</td>
</tr>
<tr>
<td>Text</td>
<td>.txt, .csv</td>
<td>Single file</td>
</tr>
<tr>
<td>TillVision</td>
<td>.vws, .pst, .inf</td>
<td>One .vws file and possibly one similarly-named directory</td>
</tr>
<tr>
<td>TopoMetrix</td>
<td>.tfr, .frr, .zfr, .zpf, .zfl</td>
<td>Single file</td>
</tr>
<tr>
<td>Trestle</td>
<td>.tif</td>
<td>One .tif file plus several other similarly-named files (e.g. .FocalPlane-, .sld, .slx, .ROI)</td>
</tr>
<tr>
<td>Truevision Targa</td>
<td>.tga</td>
<td>Single file</td>
</tr>
<tr>
<td>UBM</td>
<td>.pr3</td>
<td>Single file</td>
</tr>
<tr>
<td>Unisoku STM</td>
<td>.hdr, .dat</td>
<td>One .HDR file plus one similarly-named .DAT file</td>
</tr>
<tr>
<td>VG SAM</td>
<td>.dtt</td>
<td>Single file</td>
</tr>
<tr>
<td>Varian FDF</td>
<td>.fdf</td>
<td>Single file</td>
</tr>
<tr>
<td>Veeco</td>
<td>.hdf</td>
<td>Single file</td>
</tr>
<tr>
<td>Visitech XYS</td>
<td>.xys, .html</td>
<td>One .html file plus one or more .xys files</td>
</tr>
<tr>
<td>Volocity Library</td>
<td>.mvd2, .aisf, .aiix, .dat, .atsf</td>
<td>One .mvd2 file plus a ‘Data’ directory</td>
</tr>
<tr>
<td>Volocity Library Clipping</td>
<td>.acff</td>
<td>Single file</td>
</tr>
<tr>
<td>WA Technology TOP</td>
<td>.wat</td>
<td>Single file</td>
</tr>
<tr>
<td>Windows Bitmap</td>
<td>.bmp</td>
<td>Single file</td>
</tr>
<tr>
<td>Woolz</td>
<td>.wlz</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss AxioVision TIFF</td>
<td>.tif, .xml</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss CZI</td>
<td>.czi</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss LMS</td>
<td>.lms</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss Laser-Scanning Microscopy</td>
<td>.lsm, .mdb</td>
<td>One or more .lsm files; if multiple .lsm files are present, an .mdb file should also be present</td>
</tr>
<tr>
<td>Zeiss Vision Image (ZVI)</td>
<td>.zvi</td>
<td>Single file</td>
</tr>
<tr>
<td>Zip</td>
<td>.zip</td>
<td>Single file</td>
</tr>
</tbody>
</table>

16.1 Flex Support

OMERO.importer supports importing analyzed Flex files from an Opera system.

Basic configuration is done via the importer.ini. Once the user has run the Importer once, this file will be in the following location:

- C:\Documents and Settings\<username>\omero\importer.ini

The user will need to modify or add the [FlexReaderServerMaps] section of the INI file as follows:

```
[FlexReaderServerMaps]
CIA-1 = \\hostname1\mount;\\archivehost1\mount
CIA-2 = \\hostname2\mount;\\archivehost2\mount
```

where the key of the INI file line is the value of the “Host” tag in the .mea measurement XML file (here: <Host name="CIA-1">) and the value is a semicolon-separated list of escaped UNC path names to the Opera workstations where the Flex files reside.
Once this resolution has been encoded in the configuration file and you have restarted the importer, you will be able to select the .mea measurement XML file from the Importer user interface as the import target.
SUPPORTED FORMATS

Ratings legend and definitions

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>BSD</th>
<th>Multiple Images</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>3i SlideBook</td>
<td>.sld</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andor Bio-Imaging Division (ABD) TIFF</td>
<td>.tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM</td>
<td>.aim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alicona 3D</td>
<td>.al3d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amersham Biosciences Gel</td>
<td>.gel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amira Mesh</td>
<td>.am, .ami, .rashem, .grey, .hx, .labels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amnis FlowSight</td>
<td>.cif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyze 7.5</td>
<td>.img, .hdr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animated PNG</td>
<td>.png</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aperio AFI</td>
<td>.afi, .svs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aperio SVS TIFF</td>
<td>.svs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Precision CellWorX</td>
<td>.htd, .pnl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVI (Audio Video Interleave)</td>
<td>.avi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axon Raw Format</td>
<td>.arf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD Pathway</td>
<td>.exp, .tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Becker & Hickl SPC FIFO</td>
<td>.spc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Becker & Hickl SPCImage</td>
<td>.sdt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-Rad Gel</td>
<td>.1sc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-Rad PIC</td>
<td>.pic, .raw, .xml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-Rad SCN</td>
<td>.scn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitplane Imaris</td>
<td>.ims</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruker MRI</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>BSD</th>
<th>Multiple Images</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burleigh</td>
<td>.img</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canon DNG</td>
<td>.cr2, .crw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CellH5</td>
<td>.ch5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellomics</td>
<td>.c01, .dib</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cellSens VSI</td>
<td>.vsi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CellVoyager</td>
<td>.xml, .tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeltaVision</td>
<td>.dv, .r3d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DICOM</td>
<td>.dcm, .dicom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECAT7</td>
<td>.v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS (Encapsulated</td>
<td>.eps, .eps,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostScript)</td>
<td>.ps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evotec/PerkinElmer</td>
<td>.flex, .mea,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opera Flex</td>
<td>.res</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEI</td>
<td>.img</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEI TIFF</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FITS (Flexible Image</td>
<td>.fits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport System)</td>
<td></td>
</tr>
<tr>
<td>Gatan Digital</td>
<td>.dm3, .dm4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micrograph</td>
<td></td>
</tr>
<tr>
<td>Gatan Digital</td>
<td>.dm2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micrograph 2</td>
<td></td>
</tr>
<tr>
<td>GIF (Graphics</td>
<td>.gif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interchange Format)</td>
<td></td>
</tr>
<tr>
<td>Hamamatsu Aquacosmos</td>
<td>.naf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAF</td>
<td></td>
</tr>
<tr>
<td>Hamamatsu HIS</td>
<td>.his</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamamatsu ndpi</td>
<td>.ndpi, .ndpis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamamatsu VMS</td>
<td>.vms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hitachi S-4800</td>
<td>.txt, .tif, .bmp, .jpg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2I</td>
<td>.i2i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICS (Image Cytometry</td>
<td>.ics, .ids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard)</td>
<td></td>
</tr>
<tr>
<td>Imacon</td>
<td>.fff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ImagePro Sequence</td>
<td>.seq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ImagePro Workspace</td>
<td>.ipw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMAGIC</td>
<td>.hed, .img</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMOD</td>
<td>.mod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improvision Openlab</td>
<td>.liff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFF</td>
<td></td>
</tr>
<tr>
<td>Improvision Openlab</td>
<td>.raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Table 17.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>BSD</th>
<th>Multiple Images</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvision TIFF</td>
<td>.tif</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Inspector OBF</td>
<td>.obf, .msr</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>InCell 1000/2000</td>
<td>.xdce, .tif</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>InCell 3000</td>
<td>.frm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>INR</td>
<td>.inr</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Inveon</td>
<td>.hdr</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IPLab</td>
<td>.ipl</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IVision</td>
<td>.ipm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>JEOL</td>
<td>.dat, .img, .par</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>JPEG</td>
<td>.jpg</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>JPEG 2000</td>
<td>.jp2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>JPK</td>
<td>.jp2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>JPX</td>
<td>.jpx</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Khoros VIFF (Visualization Image File Format) Bitmap</td>
<td>.xv</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Kodak BIP</td>
<td>.bip</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lambert Instruments FLIM</td>
<td>.fli</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LaVision Inspector</td>
<td>.msr</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Leica LCS LEI</td>
<td>.lei, .tif</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Leica LAS AF LIF (Leica Image File Format)</td>
<td>.lif</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Leica SCN</td>
<td>.scn</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LEO</td>
<td>.sxm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Li-Cor L2D</td>
<td>.l2d, .tif, .scn</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LIM (Laboratory Imaging/Nikon)</td>
<td>.lim</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MetaMorph 7.5 TIFF</td>
<td>.tiff</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MetaMorph Stack (STK)</td>
<td>.stk, .nd</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MIAS (Maia Scientific)</td>
<td>.tif</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Micro-Manager</td>
<td>.tif, .txt, .xml</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MINC MRI</td>
<td>.mnc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Minolta MRW</td>
<td>.mrw</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MNG (Multiple-image Network Graphics)</td>
<td>.mng</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Molecular Imaging</td>
<td>.stp</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MRC (Medical Research Council)</td>
<td>.mrc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Continued on next page
Table 17.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>BSD</th>
<th>Multiple Images</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEF (Nikon Electronic Format)</td>
<td>.nef, .tiff</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>NIJTI</td>
<td>.img, .hdr, .nii, .nii.gz</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Nikon Elements TIFF</td>
<td>.tiff</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Nikon EZ-C1 TIFF</td>
<td>.tiff</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Nikon NIS-Elements ND2</td>
<td>.nd2</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>NRRD (Nearly Raw Raster Data)</td>
<td>.nrrd, .nhdr, .raw, .txt</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Olympus CellR/APL</td>
<td>.apl, .mtb, .tnb, .tif, .obsep</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Olympus FluoView FV1000</td>
<td>.oib, .oif</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Olympus FluoView TIFF</td>
<td>.tif</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Olympus ScanR</td>
<td>.xml, .dat, .tiff</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Olympus SIS TIFF</td>
<td>.tiff</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>OME-TIFF</td>
<td>.ome.tiff, .ome.tif, .ome.tif2, .ome.tif8, .ome.btf</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>OME-XML</td>
<td>.ome, .ome.xml</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Oxford Instruments</td>
<td>.top</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PCORAW</td>
<td>.pcoraw, .rec</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PCX (PC Paintbrush)</td>
<td>.pcx</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Perkin Elmer Densitometer</td>
<td>.pds</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PerkinElmer Nuance</td>
<td>.im3</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PerkinElmer Opereata</td>
<td>.tif, .xml</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PerkinElmer UltraVIEW</td>
<td>.tif, .2, .3, .4, etc.</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Portable Any Map</td>
<td>.pdm, .pgm, .ppm</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Adobe Photoshop PSD</td>
<td>.psd</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Photoshop TIFF</td>
<td>.tif, .tiff</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PicoQuant Bin</td>
<td>.bin</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>BSD</th>
<th>Multiple Images</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICT (Macintosh Picture)</td>
<td>.pict</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>PNG (Portable Network Graphics)</td>
<td>.png</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Prairie Technologies TIFF</td>
<td>.tif, .xml, .cfg</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Princeton Instruments SPE</td>
<td>.spe</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Quesant</td>
<td>.afm</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>QuickTime Movie</td>
<td>.mov</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>RHK</td>
<td>.sm2, .sm3</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>SBIG</td>
<td></td>
</tr>
<tr>
<td>Seiko</td>
<td>.xqd, .xqf</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>SimplePCI & HCImage TIFF</td>
<td>.exd</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>SimplePCI & HCImage TIFF</td>
<td>.tiff</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>SM Camera</td>
<td></td>
</tr>
<tr>
<td>SPIDER</td>
<td>.spi, .stk</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Targa</td>
<td>.tga</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Text</td>
<td>.txt</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>TIFF (Tagged Image File Format)</td>
<td>.tiff, .tif, .tif2, .tif8, .btf</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>TillPhotonics TillVision</td>
<td>.vws</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Topometrix</td>
<td>.tfr, .ffr, .zfr, .zfp, .zfl</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Trestle</td>
<td>.tiff, .sid, .jpg</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>UBM</td>
<td>.pr3</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Unisoku</td>
<td>.dat, .hdr</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Varian FDF</td>
<td>.fdf</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Veeco AFM</td>
<td>.hdf</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>VG SAM</td>
<td>.dki</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>VisiTech XYS</td>
<td>.xys, .html</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Volocity</td>
<td>.mvd2</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Volocity Library Clipping</td>
<td>.acff</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>WA-TOP</td>
<td>.wat</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Windows Bitmap</td>
<td>.bmp</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Woolz</td>
<td>.wlz</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Zeiss Axio CSM</td>
<td>.ims</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Zeiss AxioVision TIFF</td>
<td>.xml, .tif</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
</tbody>
</table>

Continued on next page
Table 17.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>BSD</th>
<th>Multiple Images</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeiss AxioVision ZVI (Zeiss Vision Image)</td>
<td>.zvi</td>
<td>▲▲▲</td>
<td>▲▲</td>
<td>▲</td>
<td>▲</td>
<td>▲▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲▲</td>
</tr>
<tr>
<td>Zeiss CZI</td>
<td>.czi</td>
<td>▲▲▲</td>
<td>▲</td>
<td>▲</td>
<td>▲▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲▲</td>
</tr>
<tr>
<td>Zeiss LSM (Laser Scanning Microscope) 510/710</td>
<td>.lsm,.mdb</td>
<td>▲▲▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

Bio-Formats currently supports 144 formats

Ratings legend and definitions

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲▲▲</td>
<td>Outstanding</td>
</tr>
<tr>
<td>▲▲</td>
<td>Very good</td>
</tr>
<tr>
<td>▲</td>
<td>Good</td>
</tr>
<tr>
<td>▼</td>
<td>Fair</td>
</tr>
<tr>
<td>▼▼▼</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Pixels Our estimation of Bio-Formats’ ability to reliably extract complete and accurate pixel values from files in that format. The better this score, the more confident we are that Bio-Formats will successfully read your file without displaying an error message or displaying an erroneous image.

Metadata Our certainty in the thoroughness and correctness of Bio-Formats’ metadata extraction and conversion from files of that format into standard OME-XML. The better this score, the more confident we are that all meaningful metadata will be parsed and populated as OME-XML.

Openness This is not a direct expression of Bio-Formats’ performance, but rather indicates the level of cooperation the format’s controlling interest has demonstrated toward the scientific community with respect to the format. The better this score, the more tools (specification documents, source code, sample files, etc.) have been made available.

Presence This is also not directly related to Bio-Formats, but instead represents our understanding of the format’s popularity, and is also as a measure of compatibility between applications. The better this score, the more common the format and the more software packages include support for it.

Utility Our opinion of the format’s suitability for storing metadata-rich microscopy image data. The better this score, the wider the variety of information that can be effectively stored in the format.

Export This indicates whether Bio-Formats is capable of writing the format (Bio-Formats can read every format on this list).

BSD This indicates whether format is BSD-licensed. By default, format readers and writers are GPL-licensed.

Multiple Images This indicates whether the format can store multiple Images (in OME-XML terminology) or series (in Bio-Formats API terminology).

Pyramid This indicates whether the format can store a single image at multiple resolutions, typically referred to as an image pyramid.

17.1 3i SlideBook

Extensions: .sld

Developer: Intelligent Imaging Innovations

Owner: Intelligent Imaging Innovations

3http://www.zeiss.com/czi
Support

BSD-licensed: ❌

Export: ❌

Officially Supported Versions: 4.1, 4.2, 5.0, 5.5, 6.0

Reader: SlidebookReader (Source Code\(^6\), Supported Metadata Fields)

We currently have:

- Numerous SlideBook datasets

We would like to have:

- A SlideBook specification document
- More SlideBook datasets (preferably acquired with the most recent SlideBook software)

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▲

Utility: ▼

Additional Information

We strongly encourage users to export their .sld files to OME-TIFF using the SlideBook software. Bio-Formats is not likely to support the full range of metadata that is included in .sld files, and so exporting to OME-TIFF from SlideBook is the best way to ensure that all metadata is preserved. Free software from 3i can export the files to OME-TIFF post-acquisition, see https://www.slidebook.com/reader.php.

3i also develops a native SlideBook reader which works with Bio-Formats. See http://www.openmicroscopy.org/info/slidebook for details.

See also:

Slidebook software overview\(^7\)

17.2 Andor Bio-Imaging Division (ABD) TIFF

Extensions: .tif

Developer: Andor Bioimaging Department

Owner: Andor Technology\(^8\)

Support

BSD-licensed: ❌

Export: ❌

Officially Supported Versions:

Reader: FluoviewReader (Source Code\(^9\), Supported Metadata Fields)

We currently have:

- an ABD-TIFF specification document (from 2005 November, in PDF)

\(^7\)https://www.slidebook.com

\(^8\)http://www.andor.com/

• a few ABD-TIFF datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

With a few minor exceptions, the ABD-TIFF format is identical to the Fluoview TIFF format.

17.3 AIM

Extensions: .aim

Developer: SCANCO Medical AG

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: AIMReader (Source Code, Supported Metadata Fields)

We currently have:

• one .aim file

We would like to have:

• an .aim specification document
• more .aim files

Ratings

Pixels: ▼
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

17.4 Alicona 3D

Extensions: .al3d

Owner: Alicona Imaging

Support

10http://www.scanco.ch
11https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/AIMReader.java
12http://www.alicona.com/
Bio-Formats Documentation, Release 5.2.3

 BSD-licensed: ❌
 Export: ❌

 Officially Supported Versions: 1.0

 Reader: AliconaReader (Source Code13, Supported Metadata Fields)

 We currently have:

 - an AL3D specification document (v1.0, from 2003, in PDF)
 - a few AL3D datasets

 We would like to have:

 - more AL3D datasets (Z series, T series, 16-bit)

 Ratings

 Pixels: ▲
 Metadata: ▲
 Openness: ▲
 Presence: ▼
 Utility: △

 Additional Information

 Known deficiencies:

 - Support for 16-bit AL3D images is present, but has never been tested.
 - Texture data is currently ignored.

 17.5 Amersham Biosciences Gel

 Extensions: .gel

 Developer: Molecular Dynamics

 Owner: GE Healthcare Life Sciences14

 Support

 BSD-licensed: ❌
 Export: ❌

 Officially Supported Versions:

 Reader: GelReader (Source Code15, Supported Metadata Fields)

 We currently have:

 - a GEL specification document (Revision 2, from 2001 Mar 15, in PDF)
 - a few GEL datasets

 We would like to have:

 Ratings

 Pixels: ▲
 Metadata: ▲

13https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/AliconaReader.java

14http://www.gelifesciences.com/

15https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/GelReader.java
Openness:
Presence:
Utility:

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:

GEL Technical Overview\(^\text{16}\)

17.6 Amira Mesh

Extensions: .am, .amiramesh, .grey, .hx, .labels

Developer: Visage Imaging\(^\text{17}\)

Support

- BSD-licensed: ❌
- Export: ❌

Officially Supported Versions:

Reader: AmiraReader ([Source Code]\(^\text{18}\), [Supported Metadata Fields](http://www.awaresystems.be/imaging/tiff/tifftags/docs/gel.html))

We currently have:

- a few Amira Mesh datasets

We would like to have:

- more Amira Mesh datasets

Ratings

- Pixels: ★★★
- Metadata:
- Openness: ●
- Presence: ●
- Utility: ●

17.7 Amnis FlowSight

Extensions: .cif

Owner: Amnis\(^\text{19}\)

Support

- BSD-licensed: ✔
- Export: ❌

Officially Supported Versions:

Reader: FlowSightReader ([Source Code]\(^\text{20}\), [Supported Metadata Fields](http://www.amnis.com/))

\(^\text{16}\)http://www.awaresystems.be/imaging/tiff/tifftags/docs/gel.html

\(^\text{17}\)http://www.amiravis.com/

\(^\text{18}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/AmiraReader.java

\(^\text{19}\)http://www.amnis.com/

\(^\text{20}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/FlowSightReader.java
We currently have:

- a few sample datasets

We would like to have:

Ratings

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17.8 Analyze 7.5

Extensions: .img, .hdr

Developer: Mayo Foundation Biomedical Imaging Resource²¹

Support

- BSD-licensed: ❌
- Export: ❌

Officially Supported Versions:

Reader: AnalyzeReader (Source Code²², Supported Metadata Fields)

We currently have:

- an Analyze 7.5 specification document²³
- several Analyze 7.5 datasets

We would like to have:

Ratings

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲</td>
<td></td>
<td>▲</td>
<td></td>
<td>▼</td>
</tr>
</tbody>
</table>

17.9 Animated PNG

Extensions: .png

Developer: The Animated PNG Project²⁴

Support

- BSD-licensed: ✔️
- Export: ✔️

²¹http://www.mayo.edu/bir
²²https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/AnalyzeReader.java
²⁴http://www.animatedpng.com/
Officially Supported Versions:

Reader: APNGReader (Source Code\(^{25}\), Supported Metadata Fields)

Writer: APNGWriter (Source Code\(^{26}\))

Freely Available Software:

- Firefox 3+\(^{27}\)
- Opera 9.5+\(^{28}\)
- K_Squirrel\(^{29}\)

We currently have:

- a specification document\(^{30}\)
- several APNG files

We would like to have:

Ratings

Pixels: ★

Metadata: ★

Openness: ★

Presence:

Utility: ❌

17.10 Aperio AFI

Extensions: .afi, .svs

Owner: Aperio\(^{31}\)

Support

BSD-licensed: ✗

Export: ✗

Officially Supported Versions:

Reader: AFIReader (Source Code\(^{32}\), Supported Metadata Fields)

We currently have:

- several AFI datasets

We would like to have:

Ratings

Pixels: ★

Metadata: ★

Openness: ★

Presence:

\(^{25}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/APNGReader.java

\(^{26}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/out/APNGWriter.java

\(^{27}\)http://www.mozilla.com/firefox

\(^{28}\)http://www.opera.com/download

\(^{29}\)http://ksquirrel.sourceforge.net/download.php

\(^{30}\)http://wiki.mozilla.org/APNG_Specification

\(^{31}\)http://www.aperio.com/

\(^{32}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/AFIReader.java
17.11 Aperio SVS TIFF

Extensions: .svs
Owner: Aperio

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions: 8.0, 8.2, 9.0

Reader: SVSReader (Source Code, Supported Metadata Fields)

We currently have:
- many SVS datasets
- public sample images
- an SVS specification document
- the ability to generate additional SVS datasets

We would like to have:

Ratings

Pixels: ➠
Metadata: ➠
Openness: ➠
Presence: ▲
Utility: ▲

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:
Aperio ImageScope

17.12 Applied Precision CellWorX

Extensions: .htd, .pnl
Developer: Applied Precision

Support

33http://www.leicabiosystems.com/index.php?id=8991
34http://www.aperio.com/
35https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/SVSReader.java
36http://downloads.openmicroscopy.org/images/SVS/
37http://www.leicabiosystems.com/index.php?id=8991
38http://www.api.com
17.13 AVI (Audio Video Interleave)

Extensions: .avi
Developer: Microsoft

Support

BSD-licensed: ✔
Export: ✔

Officially Supported Versions:
Reader: AVIReader (Source Code, Supported Metadata Fields)

We currently have:

- several AVI datasets

We would like to have:

- AVI Reader plugin for Image
- AVI Writer plugin for Image

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.13 AVI (Audio Video Interleave)
Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▲
Utility: ▼

Additional Information

- Bio-Formats can save image stacks as AVI (uncompressed).
- The following codecs are supported for reading:
 - Microsoft Run-Length Encoding (MSRLE)
 - Microsoft Video (MSV1)
 - Raw (uncompressed)
 - JPEG

See also:

AVI RIFF File Reference\(^{45}\) AVI on Wikipedia\(^{46}\)

17.14 Axon Raw Format

Extensions: .arf

Owner: INDECBioSystems\(^{47}\)

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: ARFReader (Source Code\(^{48}\), Supported Metadata Fields)

We currently have:

- one ARF dataset
- a specification document\(^{49}\)

We would like to have:

- more ARF datasets

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

\(^{46}\)http://en.wikipedia.org/wiki/Audio_Video_Interleave
\(^{47}\)http://www.indecbiosystems.com/
\(^{48}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/ARFReader.java
17.15 BD Pathway

Extensions: .exp, .tif
Owner: BD Biosciences

Support

BSD-licensed:
Export:

Officially Supported Versions:

Reader: BDReader (Source Code, Supported Metadata Fields)

We currently have:
 • a few BD Pathway datasets

We would like to have:
 • more BD Pathway datasets

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

17.16 Becker & Hickl SPC FIFO

Extensions: .spc
Owner: Becker-Hickl

Support

BSD-licensed:
Export:

Officially Supported Versions:

Reader: SPCReader (Source Code, Supported Metadata Fields)

We currently have:
 • an SPC specification document
 • public sample images

We would like to have:
 • more SPC sample files

50http://wwwbdbiosciences.com
51https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/BDReader.java
52http://www.becker-hickl.de/
53https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/SPCReader.java
54http://www.becker-hickl.com/handbookphp.htm
55http://downloads.openmicroscopy.org/images/SPC-FIFO/
Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

- Only files containing frame, line and pixel clock information are currently supported

17.17 Becker & Hickl SPImage

Extensions: .sdt
Owner: Becker-Hickl

Support

BSD-licensed:
Export:

Officially Supported Versions:

Reader: SDTReader (Source Code, Supported Metadata Fields)

We currently have:

- an SDT specification document (from 2008 April, in PDF)
- an SDT specification document (from 2006 June, in PDF)
- Becker & Hickl’s SPImage software
- a large number of SDT datasets
- the ability to produce new datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

56http://www.becker-hickl.de/
57https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/SDTReader.java
58http://www.becker-hickl.de/software/tcspc/softwaretcpcspecial.htm
17.18 Bio-Rad Gel

Extensions: .1sc
Owner: Bio-Rad

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: BioRadGelReader (Source Code, Supported Metadata Fields)

We currently have:
• software that can read Bio-Rad Gel files
• several Bio-Rad Gel files

We would like to have:
• a Bio-Rad Gel specification
• more Bio-Rad Gel files

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

17.19 Bio-Rad PIC

Extensions: .pic, .raw, .xml
Developer: Bio-Rad
Owner: Carl Zeiss, Inc.

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: BioRadReader (Source Code, Supported Metadata Fields)

Freely Available Software:
• Bio-Rad PIC reader plugin for ImageJ

We currently have:
• a PIC specification document (v4.5, in PDF)
• an older PIC specification document (v4.2, from 1996 December 16, in DOC)

59 http://www.bio-rad.com
60 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/BioRadGelReader.java
61 http://www.zeiss.com/
• a large number of PIC datasets
• the ability to produce new datasets

We would like to have:

Ratings

Pixels: ⬆️
Metadata: ⬆️
Openness: ⬆️
Presence: ⬆️
Utility: ⬆️

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

• Commercial applications that support this format include:
 – Bitplane Imaris
 – SVI Huygens

17.20 Bio-Rad SCN

Extensions: .scn
Developer: Bio-Rad
Owner: Bio-Rad

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: BioRadSCNReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/BioRadSCNReader.java), [Supported Metadata Fields](#))

We currently have:

• a few Bio-Rad .scn files

We would like to have:

Ratings

Pixels: ⬆️
Metadata: ❌
Openness: ❌
Presence: ❌
Utility: ❌

65 http://svi.nl/
17.21 Bitplane Imaris

Extensions: .ims
Owner: Bitplane

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions: 2.7, 3.0, 5.5

Readers:
- ImarisHDFReader (Source Code, Supported Metadata Fields)
- ImarisTiffReader (Source Code, Supported Metadata Fields)
- ImarisReader (Source Code, Supported Metadata Fields)

We currently have:
- an Imaris (RAW) specification document (from no later than 1997 November 11, in HTML)
- an Imaris 5.5 (HDF) specification document
- Bitplane's bitFileReaderImaris3N code (from no later than 2005, in C++)
- several older Imaris (RAW) datasets
- one Imaris 3 (TIFF) dataset
- several Imaris 5.5 (HDF) datasets

We would like to have:
- an Imaris 3 (TIFF) specification document
- more Imaris 3 (TIFF) datasets

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

- There are three distinct Imaris formats:
 1. the old binary format (introduced in Imaris version 2.7)
 2. Imaris 3, a TIFF variant (introduced in Imaris version 3.0)
 3. Imaris 5.5, an HDF variant (introduced in Imaris version 5.5)

68http://www.bitplane.com/
69https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/ImarisHDFReader.java
70https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/ImarisTiffReader.java
71https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/ImarisReader.java
72http://flash.bitplane.com/wda/interfaces/public/faq/faqview.cfm?inCat=0&inQuestionID=104
17.22 Bruker MRI

Developer: Bruker

Support

BSD-licensed:

Export:

Officially Supported Versions:

Reader: BrukerReader (Source Code, Supported Metadata Fields)

Freely Available Software:

• Bruker plugin for ImageJ

We currently have:

• a few Bruker MRI datasets

We would like to have:

• an official specification document

Ratings

Pixels:

Metadata: ▲

Openness: ▼

Presence:

Utility: ▼

17.23 Burleigh

Extensions: .img

Owner: Burleigh Instruments

Support

BSD-licensed:

Export:

Officially Supported Versions:

Reader: BurleighReader (Source Code, Supported Metadata Fields)

We currently have:

• Pascal code that can read Burleigh files (from ImageSXM)

• a few Burleigh files

We would like to have:

• a Burleigh file format specification

• more Burleigh files

74 http://www.bruker.com/
75 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/BrukerReader.java
76 http://rsbweb.nih.gov/ij/plugins/bruker.html
77 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/BurleighReader.java
Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.24 Canon DNG

Extensions: .cr2, .crw
Developer: Canon

Support

BSD-licensed: ×
Export: ×

Officially Supported Versions:

Reader: DNGReader (Source Code79, Supported Metadata Fields)

Freely Available Software:

• IrfanView80

We currently have:

• a few example datasets

We would like to have:

• an official specification document

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.25 CellH5

Extensions: .ch5
Developer: CellH5

Support

BSD-licensed: ×
Export: ✔

Officially Supported Versions:

78http://canon.com
79https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/DNGReader.java
80http://www.irfanview.com/
81http://cellh5.org/
Reader: CellH5Reader (Source Code\(^82\), Supported Metadata Fields)

Writer: CellH5Writer (Source Code\(^83\))

Freely Available Software:
- CellH5\(^84\)

We currently have:
- a few CellH5 datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

17.26 Cellomics

Extensions: .c01, .dib

Developer: Thermo Fisher Scientific\(^85\)

Support

BSD-licensed:
Export:

Officially Supported Versions:

Reader: CellomicsReader (Source Code\(^86\), Supported Metadata Fields)

We currently have:
- a few Cellomics .c01 datasets
- public .dib sample images\(^87\)

We would like to have:
- a Cellomics .c01 specification document
- more Cellomics .c01 datasets

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

\(^82\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/CellH5Reader.java
\(^83\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/out/CellH5Writer.java
\(^84\)http://cellh5.org/
\(^85\)http://www.thermofisher.com/
\(^86\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/CellomicsReader.java
\(^87\)http://downloads.openmicroscopy.org/images/HCS/BBBC/
17.27 cellSens VSI

Extensions: .vsi
Developer: Olympus

Support
BSD-licensed:
Export:

Officially Supported Versions:
Reader: CellSensReader (Source Code, Supported Metadata Fields)

We currently have:
- a few example datasets

We would like to have:
- an official specification document

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

17.28 CellVoyager

Extensions: .xml, .tif
Owner: Yokogawa

Support
BSD-licensed:
Export:

Officially Supported Versions:
Reader: CellVoyagerReader (Source Code, Supported Metadata Fields)

We currently have:
- a few example datasets

We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:

88 http://www.olympus.com/
89 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/CellSensReader.java
90 http://www.yokogawa.com/
91 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/CellVoyagerReader.java
17.29 DeltaVision

Extensions: .dv,.r3d
Owner: GE Healthcare (formerly Applied Precision)92

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: DeltavisionReader (Source Code93, Supported Metadata Fields)

Freely Available Software:
• DeltaVision Opener plugin for ImageJ94

We currently have:
• a DV specification document (v2.10 or newer, in HTML)
• numerous DV datasets
• public sample images95

We would like to have:

Ratings
Pixels: 🟢
Metadata: 🟢
Openness: 🟢
Presence: 🟢
Utility: 🟢

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

• The Deltavision format is based on the Medical Research Council (MRC) file format.
• Commercial applications that support DeltaVision include:
 – Bitplane Imaris96
 – SVI Huygens97
 – Image-Pro Plus98

93https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/DeltavisionReader.java
95http://downloads.openmicroscopy.org/images/DV/
96http://www.bitplane.com/
97http://svi.nl/
98http://www.mediacy.com/
17.30 DICOM

Extensions: .dcm, .dicom

Developer: National Electrical Manufacturers Association

Support

BSD-licensed: ✅

Export: ❌

Officially Supported Versions:

Reader: DicomReader (Source Code, Supported Metadata Fields)

Freely Available Software:

- OsiriX Medical Imaging Software
- ezDICOM
- Wikipedia’s list of freeware health software

Sample Datasets:

- MRI Chest from FreeVol-3D website
- Medical Image Samples from Sebastien Barre’s Medical Imaging page
- DICOM sample image sets from OsiriX website

We currently have:

- DICOM specification documents (PS 3 - 2007, from 2006 December 28, in DOC and PDF)
- numerous DICOM datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▲

Openness: ▲

Presence: ▻

Utility: ▼

Additional Information

- DICOM stands for “Digital Imaging and Communication in Medicine”.
- Bio-Formats supports both compressed and uncompressed DICOM files.

If you have a problematic DICOM file which you cannot send us for privacy reasons, please send us the exact error message and be aware that it may take several attempts to fix the problem blind.

See also:

DICOM homepage

http://medical.nema.org/

http://www.nema.org/

http://www.osirix-viewer.com/

http://medical.nema.org/

http://medical.nema.org/
17.31 ECAT7

Extensions: .v
Developer: Siemens109

Support

BSD-licensed: \textxmark
Export: \textxmark

Officially Supported Versions:

Reader: \textit{Ecat7Reader} (Source Code110, \textit{Supported Metadata Fields})

We currently have:

- a few ECAT7 files

We would like to have:

- an ECAT7 specification document
- more ECAT7 files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

17.32 EPS (Encapsulated PostScript)

Extensions: .eps, .epsi, .ps
Developer: Adobe111

Support

BSD-licensed: \textcheckmark
Export: \textcheckmark

Officially Supported Versions:

Reader: \textit{EPSReader} (Source Code112, \textit{Supported Metadata Fields})

Writer: \textit{EPSWriter} (Source Code113)

Freely Available Software:

- EPS Writer plugin for Image114

We currently have:

- a few EPS datasets
- the ability to produce new datasets

109\url{http://www.siemens.com}
110\url{https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/Ecat7Reader.java}
111\url{http://www.adobe.com/}
112\url{https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/EPSReader.java}
113\url{https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/out/EPSWriter.java}
114\url{http://rsb.info.nih.gov/ij/plugins/eps-writer.html}
We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence: ▲
Utility:

Additional Information

- Bio-Formats can save individual planes as EPS.
- Certain types of compressed EPS files are not supported.

17.33 Evotec/PerkinElmer Opera Flex

Extensions: .flex, .mea, .res

Developer: Evotec Technologies, now PerkinElmer\(^{115}\)

Support

- BSD-licensed: ×
- Export: ×

Officially Supported Versions:

Reader: FlexReader ([Source Code]\(^{116}\), [Supported Metadata Fields](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/FlexReader.java))

We currently have:

- many Flex datasets

We would like to have:

- a freely redistributable LuraWave LWF decoder

Ratings

Pixels: ▲
Metadata: ▲
Openness:
Presence:
Utility:

Additional Information

The LuraWave LWF decoder library (i.e. lwf_jsdk2.6.jar) with license code is required to decode wavelet-compressed Flex files.

See also:

LuraTech (developers of the proprietary LuraWave LWF compression used for Flex image planes)\(^{117}\)

\(^{115}\)http://www.perkinelmer.com/

\(^{116}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/FlexReader.java

\(^{117}\)http://www.luratech.com/
17.34 FEI

Extensions: .img
Developer: FEI

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: FEIReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/FEIReader.java), [Supported Metadata Fields](http://www.fei.com))

We currently have:
- a few FEI files

We would like to have:
- a specification document
- more FEI files

Ratings
Pixels: 🗑
Metadata: 🗑
Openness: 🗑
Presence: 🗑
Utility: 🗑

17.35 FEI TIFF

Extensions: .tiff
Developer: FEI

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: FEITiffReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/FEITiffReader.java), [Supported Metadata Fields](http://www.fei.com))

We currently have:
- a few FEI TIFF datasets

We would like to have:

Ratings
Pixels: 🌟
Metadata: 🌟
Openness: 🌟

118) http://www.fei.com
119) https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/FEIReader.java
120) http://www.fei.com
121) https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/FEITiffReader.java
17.36 FITS (Flexible Image Transport System)

Extensions: .fits

Developer: National Radio Astronomy Observatory\(^\text{122}\)

Support

BSD-licensed: ✔️

Export: ✗

Officially Supported Versions:

Reader: FitsReader (Source Code\(^\text{123}\), Supported Metadata Fields)

We currently have:

- a FITS specification document\(^\text{124}\) (NOST 100-2.0, from 1999 March 29, in HTML)
- several FITS datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▲

Presence: ▼

Utility: ▼

Additional Information

See also:

MAST: FITS homepage\(^\text{125}\) FITS Support Office\(^\text{126}\)

17.37 Gatan Digital Micrograph

Extensions: .dm3, .dm4

Owner: Gatan\(^\text{127}\)

Support

BSD-licensed: ✗

Export: ✗

Officially Supported Versions: 3, 4

Reader: GatanReader (Source Code\(^\text{128}\), Supported Metadata Fields)

Freely Available Software:

\(^\text{122}\)http://www.nrao.edu/

\(^\text{123}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/FitsReader.java

\(^\text{124}\)http://archive.stsci.edu/fits/fits_standard/

\(^\text{125}\)http://archive.stsci.edu/fits/

\(^\text{126}\)http://fits.gsfc.nasa.gov/

\(^\text{127}\)http://www.gatan.com/

\(^\text{128}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/GatanReader.java
• DM3 Reader plugin for ImageJ129
• EMAN130

We currently have:
• Gatan’s ImageReader2003 code (from 2003, in C++)
• numerous DM3 datasets

We would like to have:
• a DM3 specification document

\textbf{Ratings}

Pixels:	▶
Metadata:	▼
Openness:	▼
Presence:	▼
Utility:	▼

\textbf{Additional Information}

Commercial applications that support .dm3 files include \textit{Datasqueeze}131.

Note that the Gatan Reader does not currently support stacks.

\section*{17.38 Gatan Digital Micrograph 2}

Extensions: .dm2
Developer: Gatan132

\textbf{Support}

BSD-licensed: \xmark
Export: \xmark

Officially Supported Versions: 2

Reader: GatanDM2Reader (Source Code133, Supported Metadata Fields)

We currently have:
• Pascal code that can read DM2 files (from ImageSXM)
• a few DM2 files

We would like to have:
• an official DM2 specification document
• more DM2 files

\textbf{Ratings}

Pixels:	▼
Metadata:	▼
Openness:	▼

129http://rsb.info.nih.gov/ij/plugins/DM3_Reader.html
130http://blakebcm.edu/EMAN/
131http://www.datasqueezesoftware.com/
132http://www.gatan.com
133https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/GatanDM2Reader.java
17.39 GIF (Graphics Interchange Format)

Extensions: .gif
Developer: CompuServe134
Owner: Unisys135

Support

BSD-licensed: ✔
Export: ✗

Officially Supported Versions:
Reader: GIFReader (Source Code136, Supported Metadata Fields)

Freely Available Software:
- Animated GIF Reader plugin for ImageJ137
- GIF Stack Writer plugin for ImageJ138

We currently have:
- a GIF specification document139 (Version 89a, from 1990, in HTML)
- numerous GIF datasets
- the ability to produce new datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼

Presence: ▲
Utility: ▼

17.40 Hamamatsu Aquacosmos NAF

Extensions: .naf
Developer: Hamamatsu140

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:

134http://www.compuserve.com/
135http://www.unisys.com/
136https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/GIFReader.java
137http://rsb.info.nih.gov/ij/plugins/agr.html
138http://rsb.info.nih.gov/ij/plugins/gif-stack-writer.html
139http://tronche.com/computer-graphics/gif/
140http://www.hamamatsu.com/
Reader: NAFReader *(Source Code141, Supported Metadata Fields)*

We currently have:

- a few NAF files

We would like to have:

- a specification document
- more NAF files

Ratings

- Pixels: ▼
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

17.41 Hamamatsu HIS

Extensions: .his

Owner: Hamamatsu142

Support

- BSD-licensed: ✗
- Export: ✗

Officially Supported Versions:

Reader: HISReader *(Source Code143, Supported Metadata Fields)*

We currently have:

- Pascal code that can read HIS files (from ImageXXM)
- several HIS files

We would like to have:

- an HIS specification
- more HIS files

Ratings

- Pixels: ▼
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

141https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/NAFReader.java

142http://www.hamamatsu.com

143https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/HISReader.java
17.42 Hamamatsu ndpi

Extensions: .ndpi, .ndpis

Developer: Hamamatsu

Support

BSD-licensed: ✗

Export: ✗

Officially Supported Versions:

Readers:
- NDPIReader (Source Code, Supported Metadata Fields)
- NDPISReader (Source Code, Supported Metadata Fields)

Freely Available Software:
- NDP.view

Sample Datasets:
- OpenSlide

We currently have:
- many example datasets

We would like to have:
- an official specification document

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

17.43 Hamamatsu VMS

Extensions: .vms

Developer: Hamamatsu

Support

BSD-licensed: ✗

Export: ✗

Officially Supported Versions:

Reader: HamamatsuVMSReader (Source Code, Supported Metadata Fields)

Sample Datasets:

144http://www.hamamatsu.com
145https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/NDPIReader.java
146https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/NDPISReader.java
147http://www.olympusamerica.com/seg_section/seg_vm_downloads.asp
148http://openslide.cs.cmu.edu/download/openslide-testdata/Hamamatsu/
149http://www.hamamatsu.com
150https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/HamamatsuVMSReader.java
Bio-Formats Documentation, Release 5.2.3

• OpenSlide

We currently have:
• a few example datasets
• developer documentation from the OpenSlide project

We would like to have:
• an official specification document
• more example datasets

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

17.44 Hitachi S-4800

Extensions: .txt, .tif, .bmp, .jpg
Developer: Hitachi

Support

BSD-licensed:
Export:

Officially Supported Versions:
Reader: HitachiReader (Source Code, Supported Metadata Fields)

We currently have:
• several Hitachi S-4800 datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

151 http://openslide.cs.cmu.edu/download/openslide-testdata/Hamamatsu-vms/
152 http://openslide.org/Hamamatsu%20format/
154 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/HitachiReader.java
17.45 I2I

Extensions: .i2i
Developer: Biomedical Imaging Group, UMass Medical School

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: I2IReader (Source Code, Supported Metadata Fields)

We currently have:
• several example datasets
• a specification document
• an ImageJ plugin that can read I2I data

We would like to have:

Ratings
Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

17.46 ICS (Image Cytometry Standard)

Extensions: .ics, .ids
Developer: P. Dean et al.

Support
BSD-licensed: ✔
Export: ✔

Officially Supported Versions: 1.0, 2.0
Reader: ICSReader (Source Code, Supported Metadata Fields)
Writer: ICSWriter (Source Code)

Freely Available Software:
• Libics (ICS reference library)
• ICS Opener plugin for ImageJ
• IrfanView

We currently have:

155 http://invitro.umassmed.edu/
156 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/I2IReader.java
157 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/ICSReader.java
158 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/out/ICSWriter.java
159 http://libics.sourceforge.net/
160 http://valelab.ucsf.edu/%7Enstuurman/IJplugins/Ics_Opener.html
161 http://www.irfanview.com/
• numerous ICS datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▲
Utility: ▲

Additional Information

• ICS version 1.0 datasets have two files - an .ics file that contains all of the metadata in plain-text format, and an .ids file that contains all of the pixel data.

• ICS version 2.0 datasets are a single .ics file that contains both pixels and metadata.

Commercial applications that can support ICS include:

• Bitplane Imaris\(^{162}\)
• SVI Huygens\(^{163}\)

17.47 Imacon

Extensions: .fff
Owner: Hasselblad\(^{164}\)

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: ImaconReader ([Source Code\(^{165}\), Supported Metadata Fields])

We currently have:

• one Imacon file

We would like to have:

• more Imacon files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

\(^{162}\)http://www.bitplane.com/

\(^{163}\)http://svi.nl/

\(^{164}\)http://www.hasselbladusa.com/

\(^{165}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/ImaconReader.java
17.48 ImagePro Sequence

Extensions: .seq
Owner: Media Cybernetics

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: SEQReader (Source Code, Supported Metadata Fields)

We currently have:
- the Image-Pro Plus software
- a few SEQ datasets
- the ability to produce more datasets

We would like to have:
- an official SEQ specification document

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

17.49 ImagePro Workspace

Extensions: .ipw
Owner: Media Cybernetics

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: IPWReader (Source Code, Supported Metadata Fields)

We currently have:
- the Image-Pro Plus software
- a few IPW datasets
- the ability to produce more datasets

We would like to have:

166 http://www.mediacy.com/
167 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/SEQReader.java
169 http://www.mediacy.com/
170 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/IPWReader.java
• an official IPW specification document
• more IPW datasets:
 – multiple datasets in one file
 – 2+ GB files

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Bio-Formats uses a modified version of the Apache Jakarta POI172 library to read IPW files.

\subsection*{17.50 IMAGIC}

Extensions: .hed, .img
Developer: Image Science173

Support
BSD-licensed: ×
Export: ×

Officially Supported Versions:
Reader: ImagicReader (Source Code174, Supported Metadata Fields)

Freely Available Software:
• em2em175

We currently have:
• one example dataset
• official file format documentation

We would like to have:
• more example datasets

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information
See also:
172http://jakarta.apache.org/poi/
173http://www.imagescience.de
174https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/ImagicReader.java
175http://www.imagescience.de/em2em.html
IMAGIC specification

17.51 IMOD

Extensions: .mod

Developer: Boulder Laboratory for 3-Dimensional Electron Microscopy of Cells

Owner: Boulder Laboratory for 3-Dimensional Electron Microscopy of Cells

Support

BSD-licensed: ✗

Export: ✗

Officially Supported Versions:

Reader: IMODReader (Source Code, Supported Metadata Fields)

Freely Available Software:

• IMOD

We currently have:

• a few sample datasets

• official documentation

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

17.52 Improvision Openlab LIFF

Extensions: .liff

Developer: Improvision

Owner: PerkinElmer

Support

BSD-licensed: ✗

Export: ✗

Officially Supported Versions: 2.0, 5.0

Reader: OpenlabReader (Source Code, Supported Metadata Fields)
We currently have:

- an Openlab specification document (from 2000 February 8, in DOC)
- Improvision’s XLIFFFileImporter code for reading Openlab LIFF v5 files (from 2006, in C++)
- several Openlab datasets

We would like to have:

- more Openlab datasets (preferably with 32-bit integer data)

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

17.53 Improvision Openlab Raw

Extensions: .raw

Developer: Improvision\(^{185}\)
Owner: PerkinElmer\(^{186}\)

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:

Reader: OpenlabRawReader ([Source Code]\(^{187}\), [Supported Metadata Fields]\(^{187}\))

We currently have:

- an Openlab Raw specification document\(^{188}\) (from 2004 November 09, in HTML)
- a few Openlab Raw datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

\(^{185}\)http://www.perkinelmer.com/cellular-imaging
\(^{186}\)http://www.perkinelmer.com/
\(^{188}\)http://cellularimaging.perkinelmer.com/support/technical_notes/detail.php?id=344
17.54 Improvision TIFF

Extensions: .tif
Developer: Improvision
Owner: PerkinElmer

Support

BSD-licensed:
Export:

Officially Supported Versions:
Reader: ImprovisionTiffReader (Source Code, Supported Metadata Fields)

We currently have:
 - an Improvision TIFF specification document
 - a few Improvision TIFF datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

17.55 Imspector OBF

Extensions: .obf, .msr
Developer: Department of NanoBiophotonics, MPI-BPC
Owner: MPI-BPC

Support

BSD-licensed:
Export:

Officially Supported Versions:
Reader: OBFReader (Source Code, Supported Metadata Fields)

We currently have:
 - a few .msr datasets
 - a specification document

[192]https://imspector.mpibpc.mpg.de/index.html
[194]https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/OBFReader.java
[195]https://imspector.mpibpc.mpg.de/documentation/fileformat.html
We would like to have:

Ratings

 Pixels: ▲
 Metadata: ▼
 Openness: ▲
 Presence: ▼
 Utility: ▼

17.56 InCell 1000/2000

Extensions: .xdce, .tif

Developer: GE

Support

BSD-licensed: ✗

Export: ✗

Officially Supported Versions:

Reader: InCellReader (*Source Code*, *Supported Metadata Fields*)

We currently have:

- a few InCell 1000 datasets
- public InCell 2000 sample images

We would like to have:

- an InCell 1000 specification document
- more InCell 1000 datasets

Ratings

 Pixels: ▲
 Metadata: ▲
 Openness: ▼
 Presence: ▼
 Utility: ▼

17.57 InCell 3000

Extensions: .frm

Developer: GE

Support

BSD-licensed: ✗

Export: ✗

Officially Supported Versions:

Reader: InCell3000Reader (Source Code[^200], Supported Metadata Fields)

Sample Datasets:

- Broad Bioimage Benchmark Collection[^201]

We currently have:

- a few example datasets

We would like to have:

- an official specification document

Ratings

- Pixels: ▼
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

17.58 INR

Extensions: .inr

Support

- BSD-licensed: ❌
- Export: ❌

Officially Supported Versions:

Reader: INRReader (Source Code[^202], Supported Metadata Fields)

We currently have:

- several sample .inr datasets

We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▲
- Openness: ▼
- Presence: ▼
- Utility: ▼

17.59 Inveon

Extensions: .hdr

Support

[^200]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/InCell3000Reader.java

[^201]: http://www.broadinstitute.org/bbbc/BBBC013/

[^202]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/INRReader.java
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: **InveonReader** *(Source Code[^203], Supported Metadata Fields)*

We currently have:
a few Inveon datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

17.60 IPLab

Extensions: .ipl

Developer: Scanalytics

Owner: was BD Biosystems[^204], now BioVision Technologies[^205]

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: **IPLabReader** *(Source Code[^206], Supported Metadata Fields)*

Freely Available Software:

- IPLab Reader plugin for ImageJ[^207]

We currently have:

- an IPLab specification document (v3.6.5, from 2004 December 1, in PDF)
- several IPLab datasets

We would like to have:

- more IPLab datasets (preferably with 32-bit integer or floating point data)

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲

 Presence: ▼

[^203]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/InveonReader.java
[^204]: http://wwwbdbiosciences.com/
[^205]: http://www.biovis.com/iplab.htm
[^206]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/IPLabReader.java
Utility: ▼

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Commercial applications that support IPLab include:

- Bitplane Imaris208
- SVI Huygens209

See also:

IPLab software review210

17.61 IVision

Extensions: .ipm

Owner: BioVision Technologies211

Support

BSD-licensed: ×

Export: ×

Officially Supported Versions:

Reader: IvisionReader (Source Code212, Supported Metadata Fields)

We currently have:

- a few iVision-Mac datasets
- a specification document

We would like to have:

- more iVision-Mac datasets

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▲

Presence: ▼

Utility: ▼

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

iVision-Mac was formerly called IPLab for Macintosh.

208http://www.bitplane.com/

209http://svi.nl/

210http://www.biovis.com/iplab.htm

211http://biovis.com/

212https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/IvisionReader.java
17.62 JEOL

Extensions: .dat, .img, .par
Owner: JEOL

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: JEOLReader (Source Code, Supported Metadata Fields)
We currently have:
• Pascal code that reads JEOL files (from ImageSXM)
• a few JEOL files
We would like to have:
• an official specification document
• more JEOL files

Ratings
Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.63 JPEG

Extensions: .jpg
Developer: Independent JPEG Group

Support
BSD-licensed: ✔
Export: ✔

Officially Supported Versions:
Reader: JPEGReader (Source Code, Supported Metadata Fields)
Writer: JPEGWriter (Source Code)
We currently have:
• a JPEG specification document (v1.04, from 1992 September 1, in PDF)
• numerous JPEG datasets
• the ability to produce more datasets

http://www.jeol.com
https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/JEOLReader.java
http://www.ijg.org/
https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/JPEGReader.java
https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/out/JPEGWriter.java
http://www.w3.org/Graphics/JPEG/jfif3.pdf
We would like to have:

Ratings

- **Pixels:** 🔺
- **Metadata:** 🔻
- **Openness:** 🔺
- **Presence:** 🔺
- **Utility:** 🔻

Additional Information

Bio-Formats can save individual planes as JPEG. Bio-Formats uses the Java Image I/O API to read and write JPEG files. JPEG stands for “Joint Photographic Experts Group”.

See also:

JPEG homepage

17.64 JPEG 2000

Extensions: .jp2

Developer: Independent JPEG Group

Support

- **BSD-licensed:** ✔
- **Export:** ✔

Officially Supported Versions:

- Reader: JPEG2000Reader (Source Code, Supported Metadata Fields)
- Writer: JPEG2000Writer (Source Code)

Freely Available Software:

- JJ2000 (JPEG 2000 library for Java)

We currently have:

- a JPEG 2000 specification document (free draft from 2000, no longer available online)
- a few .jp2 files

We would like to have:

Ratings

- **Pixels:** 🔺
- **Metadata:** 🔻
- **Openness:** 🔺
- **Presence:** 🔻
- **Utility:** 🔻

Additional Information

- http://docs.oracle.com/javase/7/docs/technotes/guides/imageio/
- http://www.ijg.org/
Bio-Formats uses the JAI Image I/O Tools225 library to read JP2 files. JPEG stands for “Joint Photographic Experts Group”.

17.65 JPK

Extensions: .jpk
Developer: JPK Instruments226

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: JPKReader (Source Code227, Supported Metadata Fields)
We currently have:
- Pascal code that can read JPK files (from ImageSXM)
- a few JPK files

We would like to have:
- an official specification document
- more JPK files

Ratings
Pixels:
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.66 JPX

Extensions: .jpx
Developer: JPEG Committee228

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: JPXReader (Source Code229, Supported Metadata Fields)
We currently have:
- a few .jpx files

225https://java.net/projects/jai-imageio
226http://www.jpk.com
227https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/JPKReader.java
228http://www.jpeg.org/jpeg2000/
229https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/JPXReader.java
We would like to have:

Ratings

Pixels: ⬆
Metadata: ⬆
Openness: ⬆
Presence: ❌
Utility: ⬇

17.67 Khoros VIFF (Visualization Image File Format) Bitmap

Extensions: .xv
Developer: Khoral
Owner: AccuSoft

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: KhorosReader (Source Code[^232], Supported Metadata Fields)

Sample Datasets:
- VIFF Images

We currently have:
- several VIFF datasets

We would like to have:

Ratings

Pixels: ❌
Metadata: ❌
Openness: ❌
Presence: ❌
Utility: ❌

17.68 Kodak BIP

Extensions: .bip
Developer: Kodak/Carestream

Support

BSD-licensed: ❌

[^230]: http://www.khoral.com/company/
[^231]: http://www.accusoft.com/company/
[^232]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/KhorosReader.java
[^234]: http://carestream.com
Export: ✗

Officially Supported Versions:

Reader: KodakReader (Source Code235, Supported Metadata Fields)

We currently have:

• a few .bip datasets

We would like to have:

• an official specification document

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

See also:

Information on Image Station systems236

17.69 Lambert Instruments FLIM

Extensions: .fli
Developer: Lambert Instruments237

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:

Reader: LiFlimReader (Source Code238, Supported Metadata Fields)

We currently have:

• an LI-FLIM specification document
• several example LI-FLIM datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

235https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/KodakReader.java
236http://carestream.com/PublicContent.aspx?langType=1033&id=448953
237http://www.lambert-instruments.com
238https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/LiFlimReader.java
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

17.70 LaVision Imspector

Extensions: .msr
Developer: LaVision BioTec \(^{239}\)

Support

BSD-licensed:
Export:

Officially Supported Versions: 4.0, 4.1

Reader: InspectorReader (Source Code \(^{240}\), Supported Metadata Fields)

We currently have:
- a few .msr files

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

17.71 Leica LCS LEI

Extensions: .lei, .tif
Developer: Leica Microsystems CMS GmbH \(^{241}\)

Owner: Leica \(^{242}\)

Support

BSD-licensed:
Export:

Officially Supported Versions:

Reader: LeicaReader (Source Code \(^{243}\), Supported Metadata Fields)

Freely Available Software:
- Leica LCS Lite \(^{244}\)

We currently have:
- an LEI specification document (beta 2.000, from no later than 2004 February 17, in PDF)
- many LEI datasets

\(^{239}\)http://www.lavisionbiotec.com/
\(^{240}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/ImspectorReader.java
\(^{241}\)http://www.leica-microsystems.com/
\(^{242}\)http://www.leica.com/
\(^{243}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/LeicaReader.java
\(^{244}\)ftp://ftp.lit.de/soft/lib/LCS/LCSLite/Final1537.exe
We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▲
- Openness: ▲
- Presence: ▲
- Utility: ▲

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

LCS stands for “Leica Confocal Software”. LEI presumably stands for “Leica Experimental Information”.

Commercial applications that support LEI include:

- Bitplane Imaris
- SVI Huygens
- Image-Pro Plus

17.72 Leica LAS AF LIF (Leica Image File Format)

Extensions: .lif

Developer: Leica Microsystems CMS GmbH

Owner: Leica

Support

- BSD-licensed: ❌
- Export: ❌

Officially Supported Versions: 1.0, 2.0

Reader: LIFReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/LIFReader.java), [Supported Metadata Fields](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/LIFReader.java))

Freely Available Software:

- Leica LAS AF Lite ([links at bottom of page](http://www.leica-microsystems.com/products/microscope-software/software-for-life-science-research/las-x/))

We currently have:

- a LIF specification document (version 2, from no later than 2007 July 26, in PDF)
- a LIF specification document (version 1, from no later than 2006 April 3, in PDF)
- numerous LIF datasets

We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▲

246 http://svi.nl/
250 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/LIFReader.java
Openness: ▲
Presence: ▼
Utility: ▲

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

LAS stands for “Leica Application Suite”. AF stands for “Advanced Fluorescence”.

Commercial applications that support LIF include:

- Bitplane Imaris\(^{252}\)
- SVI Huygens\(^{253}\)
- Amira\(^{254}\)

17.73 Leica SCN

Extensions: .scn
Developer: Leica Microsystems\(^{255}\)

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions: 2012-03-10
Reader: LeicaSCNReader (Source Code\(^{256}\), Supported Metadata Fields)

We currently have:

- a few sample datasets

We would like to have:

- an official specification document
- sample datasets that cannot be opened

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.74 LEO

Extensions: .sxm
Owner: Zeiss\(^{257}\)

\(^{252}\)http://www.bitplane.com/
\(^{253}\)http://svi.nl/
\(^{254}\)http://www.amira.com/
\(^{255}\)http://www.leica-microsystems.com/
\(^{256}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/LeicaSCNReader.java
\(^{257}\)http://www.zeiss.de
Support

BSD-licensed: x

Export: x

Officially Supported Versions:

Reader: LEOReader (Source Code258, Supported Metadata Fields)

We currently have:
 - Pascal code that can read LEO files (from ImageSXM)
 - a few LEO files

We would like to have:
 - an official specification document
 - more LEO files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

17.75 Li-Cor L2D

Extensions: .l2d, .tif, .scn

Owner: LiCor Biosciences259

Support

BSD-licensed: x

Export: x

Officially Supported Versions:

Reader: L2DReader (Source Code260, Supported Metadata Fields)

We currently have:
 - a few L2D datasets

We would like to have:
 - an official specification document
 - more L2D datasets

Ratings

Pixels:

Metadata:

Openness:

Presence:

258https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/LEOReader.java

259http://www.licor.com/

260https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/L2DReader.java

17.75. Li-Cor L2D
Utility:

Additional Information

L2D datasets cannot be imported into OME using server-side import. They can, however, be imported from ImageJ, or using the omeul utility.

17.76 LIM (Laboratory Imaging/Nikon)

Extensions: .lim

Owner: Laboratory Imaging

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: LiMReader (Source Code, Supported Metadata Fields)

We currently have:

• several LIM files
• the ability to produce more LIM files

We would like to have:

• an official specification document

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Bio-Formats only supports uncompressed LIM files.

Commercial applications that support LIM include:

• NIS Elements

17.77 MetaMorph 7.5 TIFF

Extensions: .tiff

Owner: Molecular Devices

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

http://www.lim.cz/
https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/LIMReader.java
http://www.nis-elements.com/
http://www.moleculardevices.com/

261http://www.lim.cz/
262https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/LIMReader.java
263http://www.nis-elements.com/
264http://www.moleculardevices.com/
Reader: MetamorphTiffReader (Source Code\(^{265}\), Supported Metadata Fields)

We currently have:

- a few Metamorph 7.5 TIFF datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▲

Openness: ▲

Presence: ▼

Utility: ▲

17.78 MetaMorph Stack (STK)

Extensions: .stk, .nd

Owner: Molecular Devices\(^{266}\)

Support

BSD-licensed: ❌

Export: ❌

Officially Supported Versions:

Reader: MetamorphReader (Source Code\(^{267}\), Supported Metadata Fields)

We currently have:

- an STK specification document (from 2006 November 21, in DOC)
- an older STK specification document (from 2005 March 25, in DOC)
- an ND specification document (from 2002 January 24, in PDF)
- a large number of datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▲

Openness: ▲

Presence: ▲

Utility: ▲

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Commercial applications that support STK include:

- Bitplane Imaris\(^{268}\)

\(^{265}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/MetamorphTiffReader.java

\(^{266}\)http://www.moleculardevices.com/

\(^{267}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/MetamorphReader.java

\(^{268}\)http://www.bitplane.com/
• SVI Huygens269
• DIMIN270

See also:
Metamorph imaging system overview271

17.79 MIAS (Maia Scientific)

Extensions: .tif
Developer: Maia Scientific272

Support

BSD-licensed: \xmark
Export: \xmark

Officially Supported Versions:
Reader: MIASReader (Source Code273, Supported Metadata Fields)
We currently have:
• several MIAS datasets
We would like to have:

Ratings

Pixels: \scalebox{0.8}{\textcolor{green}{\Huge\uparrow}}
Metadata: \scalebox{0.8}{\textcolor{red}{\Huge\downarrow}}
Openness: \scalebox{0.8}{\textcolor{orange}{\Huge\downarrow}}
Presence: \scalebox{0.8}{\textcolor{red}{\Huge\downarrow}}
Utility: \scalebox{0.8}{\textcolor{red}{\Huge\downarrow}}

17.80 Micro-Manager

Extensions: .tif, .txt, .xml
Developer: Vale Lab274

Support

BSD-licensed:
Export: \xmark

Officially Supported Versions: Up to 1.4.22
Reader: MicromanagerReader (Source Code275, Supported Metadata Fields)
Freely Available Software:
• Micro-Manager276

269\url{http://svi.nl/}
270\url{http://dimin.net/}
271\url{http://www.metamorph.com/}
272\url{http://www.selectscience.net/supplier/maia-scientific/?compID=6088}
273\url{https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/MIASReader.java}
274\url{http://valelab.ucsf.edu/}
275\url{https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/MicromanagerReader.java}
276\url{http://micro-manager.org/}
We currently have:

- many Micro-manager datasets
- public sample images\(^{277}\)

We would like to have:

Ratings

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>▲</td>
<td>▼</td>
<td></td>
</tr>
</tbody>
</table>

Additional Information

- Bio-Formats will recognize a `*metadata.txt` file as part of a Micro-Manager fileset if pointed at it and will load the fileset including the companion TIFF files.

- If pointed at a companion `.ome.tif` file, Bio-Formats will recognize an OME-TIFF format instead. This means it may load the fileset if there are multiple `.ome.tif` but it will not include `*metadata.txt` in this fileset and therefore the extended Micro-Manager metadata will be skipped.

- See *Micro-Manager* for more information.

17.81 MINC MRI

Extensions: `.mnc`

Developer: McGill University\(^{278}\)

Support

BSD-licensed: \(\times\)

Export: \(\times\)

Officially Supported Versions:

Reader: MINCReader (Source Code\(^{279}\), Supported Metadata Fields)

Freely Available Software:

- MINC\(^{280}\)

We currently have:

- a few MINC files

We would like to have:

Ratings

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17.82 Minolta MRW

Extensions: .mrw
Developer: Minolta

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: MRWReader (Source Code, Supported Metadata Fields)

Freely Available Software:
 • dcraw

We currently have:
 • several .mrw files

We would like to have:

Ratings
Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.83 MNG (Multiple-image Network Graphics)

Extensions: .mng
Developer: MNG Development Group

Support

BSD-licensed: ✔
Export: ❌

Officially Supported Versions:
Reader: MNGReader (Source Code, Supported Metadata Fields)

Freely Available Software:
 • libmng (MNG reference library)

Sample Datasets:
 • MNG sample files

We currently have:

281 http://www.konicaminolta.com/
282 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/MRWReader.java
283 http://www.cybercom.net/~dcoffin/dcraw/
284 http://www.libpng.org/pub/mng/mngnews.html
285 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/MNGReader.java
286 http://sourceforge.net/projects/libmng/
287 http://sourceforge.net/projects/libmng/files/libmng-testsuites/MNGsuite-1.0/MNGsuite.zip/download
• the libmng-testsuites288 package (from 2003 March 05, in C)
• a large number of MNG datasets

We would like to have:

Ratings

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
</tr>
</thead>
</table>

Additional Information

See also:
MNG homepage289 MNG specification290

17.84 Molecular Imaging

Extensions: .stp

Owner: Molecular Imaging Corp, San Diego CA (closed)

Support

BSD-licensed: \xmark

Export: \xmark

Officially Supported Versions:

Reader: MolecularImagingReader (\textit{Source Code}291, \textit{Supported Metadata Fields})

We currently have:

• Pascal code that reads Molecular Imaging files (from ImageSXM)
• a few Molecular Imaging files

We would like to have:

• an official specification document
• more Molecular Imaging files

Ratings

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
</tr>
</thead>
</table>

288http://downloads.sourceforge.net/libmng/MNGsuite-20030305.zip
289http://www.libpng.org/pub/mng/
290http://www.libpng.org/pub/mng/spec
291https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/MolecularImagingReader.java
17.85 MRC (Medical Research Council)

Extensions: .mrc
Developer: MRC Laboratory of Molecular Biology

Support
BSD-licensed:
Export:

Officially Supported Versions:
Reader: MRCReader (Source Code, Supported Metadata Fields)

Sample Datasets:
- golgi.mrc

We currently have:
- an MRC specification document (in TXT)
- a few MRC datasets

We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▲
Utility: ▲

Additional Information
Commercial applications that support MRC include:
- Bitplane Imaris

See also:
MRC on Wikipedia

17.86 NEF (Nikon Electronic Format)

Extensions: .nef, .tif
Developer: Nikon

Support
BSD-licensed:
Export:

Officially Supported Versions:
Reader: NikonReader *(Source Code*[^299], *Supported Metadata Fields*)

Sample Datasets:
- neffile1.zip[^300]
- Sample NEF images[^301]

We currently have:
- a NEF specification document (v0.1, from 2003, in PDF)
- several NEF datasets

We would like to have:

Ratings

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔺</td>
<td>🔺</td>
<td>🔻</td>
<td>🔻</td>
<td>🔻</td>
</tr>
</tbody>
</table>

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:
- NEF Conversion[^302]

17.87 NIfTI

Extensions: .img, .hdr, .nii, .nii.gz

Developer: National Institutes of Health[^303]

Support

BSD-licensed: ❌

Export: ❌

Officially Supported Versions:

Reader: NiftiReader *(Source Code*[^304], *Supported Metadata Fields*)

Sample Datasets:
- Official test data[^305]

We currently have:
- NIfTI specification documents[^306]
- several NIfTI datasets
- public sample images[^307]

[^299]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/NikonReader.java
[^300]: http://www.outbackphoto.com/workshop/NEF_conversion/neffile1.zip
[^301]: http://www.nikondigital.org/articles/library/nikon_d2x_first_impressions.htm
[^304]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/NiftiReader.java
[^305]: http://afni.nimh.nih.gov/pub/dist/data/
[^307]: http://downloads.openmicroscopy.org/images/NIfTI/
We would like to have:

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

17.88 Nikon Elements TIFF

Extensions: .tiff
Developer: Nikon

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: NikonElementsTiffReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/NikonElementsTiffReader.java), [Supported Metadata Fields](http://www.nikon.com))

We currently have:

- a few Nikon Elements TIFF files

We would like to have:

- more Nikon Elements TIFF files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.89 Nikon EZ-C1 TIFF

Extensions: .tiff
Developer: Nikon

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: NikonTiffReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/NikonTiffReader.java), [Supported Metadata Fields](http://www.nikon.com))
We currently have:

- a few Nikon EZ-C1 TIFF files

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

17.90 Nikon NIS-Elements ND2

Extensions: .nd2

Developer: Nikon USA\(^{312}\)

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:

Readers:

- NativeND2Reader (Source Code\(^{313}\), Supported Metadata Fields)
- LegacyND2Reader (Source Code\(^{314}\), Supported Metadata Fields)

Freely Available Software:

- NIS-Elements Viewer from Nikon\(^ {315}\)

We currently have:

- many ND2 datasets

We would like to have:

- an official specification document

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▲
Utility: ▲

Additional Information

There are two distinct versions of ND2: an old version, which uses JPEG-2000 compression, and a new version which is either uncompressed or Zip-compressed. We are not aware of the version number or release date for either format.

Bio-Formats uses the JAI Image I/O Tools\(^{316}\) library to read ND2 files compressed with JPEG-2000.

\(^{312}\)http://www.nikonusa.com/
\(^{313}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/NativeND2Reader.java
\(^{314}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/LegacyND2Reader.java
\(^{315}\)http://www.nikoninstruments.com/Products/Software/NIS-Elements-Advanced-Research/NIS-Elements-Viewer
\(^{316}\)http://java.net/projects/jai-imageio
There is also a legacy ND2 reader that uses Nikon’s native libraries. To use it, you must be using Windows 32-bit and have Nikon’s ND2 reader plugin for ImageJ installed. Additionally, you will need to download LegacyND2Reader.dll and place it in your ImageJ plugin folder. Note that this reader is unmaintained and no additional support effort will be made.

17.91 NRRD (Nearly Raw Raster Data)

Extensions: .nrrd, .nhdr, .raw, .txt

Developer: Teem developers

Support

BSD-licensed: ✔

Export: ❌

Officially Supported Versions:

Reader: NRRDReader (Source Code, Supported Metadata Fields)

Freely Available Software:

- nrrd (NRRD reference library)

Sample Datasets:

- Diffusion tensor MRI datasets

We currently have:

- an nrrd specification document (v1.9, from 2005 December 24, in HTML)
- a few nrrd datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▲

Openness: ▲

Presence: ◀

Utility: ▲

17.92 Olympus CellR/APL

Extensions: .apl, .mtb, .tnb, .tif, .obsep

Owner: Olympus

Support

BSD-licensed: ❌

Export: ❌

Officially Supported Versions:

https://github.com/openmicroscopy/bioformats/blob/v5.2.3/lib/LegacyND2Reader.dll?raw=true

http://teem.sourceforge.net/

https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/NRRDReader.java

http://teem.sourceforge.net/nrrd/

http://www.sci.utah.edu/~gk/DTI-data/

http://teem.sourceforge.net/nrrd/format.html

http://www.olympus.com/
Reader: APLReader *(Source Code*[^325], *Supported Metadata Fields*)

We currently have:

- a few CellR datasets

We would like to have:

- more CellR datasets
- an official specification document

Ratings

- **Pixels:** ![▲](image)
- **Metadata:** ![▼](image)
- **Openness:** ![▼](image)
- **Presence:** ![▼](image)
- **Utility:** ![▼](image)

17.93 Olympus FluoView FV1000

Extensions: .oib, .oif

Owner: Olympus[^326]

Support

- **BSD-licensed:** ![✗](image)
- **Export:** ![✗](image)

Officially Supported Versions: 1.0, 2.0

Reader: FV1000Reader *(Source Code*[^327], *Supported Metadata Fields*)

Freely Available Software:

- FV-Viewer from Olympus[^328]

We currently have:

- an OIF specification document (v2.0.0.0, from 2008, in PDF)
- an FV1000 specification document (v1.0.0.0, from 2004 June 22, in PDF)
- older FV1000 specification documents (draft, in DOC and XLS)
- many FV1000 datasets

We would like to have:

- more OIB datasets (especially 2+ GB files)
- more FV1000 version 2 datasets

Ratings

- **Pixels:** ![▲](image)
- **Metadata:** ![▲](image)
- **Openness:** ![☐](image)
- **Presence:** ![☐](image)

[^325]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/APLReader.java
[^326]: http://www.olympus.com/
[^327]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/FV1000Reader.java
[^328]: http://www.olympus.co.uk/microscopy/22_FluoView_FV1000__Confocal_Microscope.htm
Utility: ▲

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Bio-Formats uses a modified version of the Apache Jakarta POI\(^{329}\) library to read OIB files. OIF stands for “Original Imaging Format”. OIF stands for “Olympus Image Binary”. OIF is a multi-file format that includes an .oif file and a directory of .tif, .roi, .pty, .lut, and .bmp files. OIB is a single file format.

Commercial applications that support this format include:

- Bitplane Imaris\(^{330}\)
- SVI Huygens\(^{331}\)

See also:

Olympus FluoView Resource Center\(^{332}\)

17.94 Olympus FluoView TIFF

Extensions: .tif

Owner: Olympus\(^{333}\)

Support

BSD-licensed:

Export:

Officially Supported Versions:

Reader: FluoviewReader (Source Code\(^{334}\), Supported Metadata Fields)

Freely Available Software:

- DIMIN\(^{335}\)

We currently have:

- a FluoView specification document (from 2002 November 14, in DOC)
- Olympus’ FluoView Image File Reference Suite (from 2002 March 1, in DOC)
- several FluoView datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▲

Openness: ▲

Presence: ▲

Utility: ▲

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

\(^{329}\)http://jakarta.apache.org/poi/
\(^{330}\)http://www.bitplane.com/
\(^{331}\)http://svi.nl/
\(^{332}\)http://www.olympusfluview.com
\(^{333}\)http://www.olympus.com/
\(^{334}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/FluoviewReader.java
\(^{335}\)http://www.dimin.net/
Commercial applications that support this format include:

- Bitplane Imaris
- SVI Huygens

17.95 Olympus ScanR

Extensions: .xml, .dat, .tif

Developer: Olympus

Owner: Olympus

Support

BSD-licensed: ✗

Export: ✗

Officially Supported Versions: Up to 2.5.1

Reader: ScanRReader (Source Code, Supported Metadata Fields)

We currently have:

- several ScanR datasets

We would like to have:

Ratings

Pixels: ☑

Metadata: ☑

Openness: ☑

Presence: ❌

Utility: ❌

17.96 Olympus SIS TIFF

Extensions: .tiff

Developer: Olympus

Support

BSD-licensed: ✗

Export: ✗

Officially Supported Versions:

Reader: SISReader (Source Code, Supported Metadata Fields)

We currently have:

- a few example SIS TIFF files

336 http://www.bitplane.com/
337 http://svi.nl/
338 http://www.olympus.com/
339 http://www.olympus.com/
341 http://www.olympus-sis.com/
342 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/SISReader.java
We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▲

17.97 OME-TIFF

Extensions: `.ome.tiff`, `.ome.tif`, `.ome.tf2`, `.ome.tf8`, `.ome.btf`

Developer: Open Microscopy Environment

Support

BSD-licensed: ✔
Export: ✔

Reader: OMETiffReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/OMETiffReader.java), [Supported Metadata Fields](http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/specification.html))

Writer: OMETiffWriter ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/out/OMETiffWriter.java))

We currently have:

- an OME-TIFF specification document
- many OME-TIFF datasets
- public sample images
- the ability to produce additional datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▲

Additional Information

Bio-Formats can save image stacks as OME-TIFF.

Commercial applications that support OME-TIFF include:

- Bitplane Imaris

345 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/OMETiffReader.java
• SVI Huygens

See also:
OME-TIFF technical overview

17.98 OME-XML

Extensions: .ome, .ome.xml
Developer: Open Microscopy Environment

Support
BSD-licensed: ✔
Export: ✔

Reader: OMEXMLReader (Source Code, Supported Metadata Fields)
Writer: OMEXMLWriter (Source Code)

We currently have:
• OME-XML specification documents
• many OME-XML datasets
• public sample images
• the ability to produce more datasets

We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Bio-Formats uses the OME-XML Java library to read OME-XML files.

Commercial applications that support OME-XML include:
• Bitplane Imaris
• SVI Huygens

http://svi.nl/
http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/index.html
http://www.openmicroscopy.org/site/support/ome-model/ome-xml/index.html
http://www.openmicroscopy.org/
https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/OMEXMLReader.java
https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/out/OMEXMLWriter.java
http://www.openmicroscopy.org/Schemas/
http://downloads.openmicroscopy.org/images/OME-XML/
http://www.bitplane.com/
http://svi.nl/
17.99 Oxford Instruments

Extensions: .top
Owner: Oxford Instruments

Support

BSD-licensed:
Export:

Officially Supported Versions:

Reader: OxfordInstrumentsReader (Source Code, Supported Metadata Fields)

We currently have:

• Pascal code that can read Oxford Instruments files (from ImageSXM)
• a few Oxford Instruments files

We would like to have:

• an official specification document
• more Oxford Instruments files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

17.100 PCORAW

Extensions: .pcoraw, .rec
Developer: PCO

Support

BSD-licensed:
Export:

Officially Supported Versions:

Reader: PCORAWReader (Source Code, Supported Metadata Fields)

We currently have:

• a few example datasets

We would like to have:

Ratings

Pixels:
Metadata:

361 http://www.oxinst.com
363 http://www.pco.de/
364 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/PCORAWReader.java
Openness:
Presence:
Utility:

17.101 PCX (PC Paintbrush)

Extensions: .pcx
Developer: ZSoft Corporation

Support
BSD-licensed: ✔
Export: ✗
Officially Supported Versions:
Reader: PCXReader (Source Code365, Supported Metadata Fields)
We currently have:
• several .pcx files
• the ability to generate additional .pcx files
We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Commercial applications that support PCX include Zeiss LSM Image Browser366.

17.102 Perkin Elmer Densitometer

Extensions: .pds
Developer: Perkin Elmer367

Support
BSD-licensed: ✗
Export: ✗
Officially Supported Versions:
Reader: PDSReader (Source Code368, Supported Metadata Fields)
We currently have:
• a few PDS datasets

365https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/PCXReader.java
367http://www.perkinelmer.com
368https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/PDSReader.java
We would like to have:

- an official specification document
- more PDS datasets

Ratings

- Pixels: ▢
- Metadata: ▢
- Openness: ▢
- Presence: ▧
- Utility: ▧

17.103 PerkinElmer Nuance

Extensions: .im3

Developer: PerkinElmer

Support

- BSD-licensed: ✅
- Export: ✗

Officially Supported Versions:

We currently have:

- a few sample datasets

We would like to have:

Ratings

- Pixels: ▢
- Metadata: ▧
- Openness: ▧
- Presence: ▧
- Utility: ▧

17.104 PerkinElmer Operetta

Extensions: .tiff, .xml

Developer: PerkinElmer

Support

- BSD-licensed: ✗
- Export: ✗

Officially Supported Versions:
Reader: OperettaReader (Source Code372, Supported Metadata Fields)

We currently have:

 - a few sample datasets
 - public sample images373

We would like to have:

 - an official specification document
 - more sample datasets

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

\textbf{17.105 PerkinElmer UltraVIEW}

Extensions: .tif, .2, .3, .4, etc.

Owner: PerkinElmer374

Support

BSD-licensed: ✗

Export: ✗

Officially Supported Versions:

Reader: PerkinElmerReader (Source Code375, Supported Metadata Fields)

We currently have:

 - several UltraVIEW datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

Additional Information

Other associated extensions include: .tim, .zpo, .csv, .htm, .cfg, .ano, .rec

Commercial applications that support this format include:

 - Bitplane Imaris376

372\url{https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/OperettaReader.java}

373\url{http://downloads.openmicroscopy.org/images/HCS/Operetta/}

374\url{http://www.perkinelmer.com/}

375\url{https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/PerkinElmerReader.java}

376\url{http://www.bitplane.com/}
• Image-Pro Plus

See also:
PerkinElmer UltraVIEW system overview

17.106 Portable Any Map

Extensions: .pbm, .pgm, .ppm
Developer: Netpbm developers

Support

BSD-licensed: ✔
Export: ❌

Officially Supported Versions:
Reader: PGMReader (Source Code, Supported Metadata Fields)

Freely Available Software:
 • Netpbm graphics filter

We currently have:
 • a PGM specification document (from 2003 October 3, in HTML)
 • a few PBM, PPM and PGM files

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

17.107 Adobe Photoshop PSD

Extensions: .psd
Developer: Adobe

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions: 1.0

Reader: PSDReader (Source Code, Supported Metadata Fields)

We currently have:
• a PSD specification document (v3.0.4, 16 July 1995)
• a few PSD files

We would like to have:
• more PSD files

Ratings
Pixels: □
Metadata: □
Openness: □
Presence: □
Utility: ▼

17.108 Photoshop TIFF

Extensions: .tif, .tiff
Developer: Adobe

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: PhotoshopTiffReader (Source Code, Supported Metadata Fields)

We currently have:
• a Photoshop TIFF specification document
• a few Photoshop TIFF files

We would like to have:

Ratings
Pixels: □
Metadata: □
Openness: □
Presence: □
Utility: □

17.109 PicoQuant Bin

Extensions: .bin
Developer: PicoQuant

Support
BSD-licensed: ❌

384 http://www.adobe.com
385 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/PhotoshopTiffReader.java
386 http://www.picoquant.com/
Export:
Officially Supported Versions:
Reader: PQBinReader (Source Code387, Supported Metadata Fields)
Freely Available Software:
 • SymphoTime64388
We currently have:
 • a few example datasets
We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

17.110 PICT (Macintosh Picture)

Extensions: .pict
Developer: Apple Computer389

Support
BSD-licensed:
Export:
Officially Supported Versions:
Reader: PictReader (Source Code390, Supported Metadata Fields)
We currently have:
 • many PICT datasets
We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
QuickTime for Java is required for reading vector files and some compressed files but note that this is no longer available from Apple.

See also:
387https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/PQBinReader.java
388http://www.picoquant.com/products/category/software/symphotime-64-fluorescence-lifetime-imaging-and-correlation-software
389http://www.apple.com
390https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/PictReader.java

17.110. PICT (Macintosh Picture)
17.111 PNG (Portable Network Graphics)

Extensions: .png
Developer: PNG Development Group

Support

BSD-licensed: ✔
Export: ✔

Officially Supported Versions:
Reader: APNGReader (Source Code, Supported Metadata Fields)
Writer: APNGWriter (Source Code)

Freely Available Software:
• PNG Writer plugin for ImageJ

We currently have:
• a PNG specification document (W3C/ISO/IEC version, from 2003 November 10, in HTML)
• several PNG datasets

We would like to have:

Ratings

Pixels: ↑
Metadata: ↓
Openness: ↑
Presence: ↑
Utility: ↓

Additional Information

Bio-Formats uses the Java Image I/O API to read and write PNG files.

See also:
PNG technical overview

17.112 Prairie Technologies TIFF

Extensions: .tif, .xml, .cfg
Developer: Prairie Technologies

Support

http://www.libpng.org/pub/png/pngnews.html
http://www.libpng.org/pub/png/spec/iso/
http://docs.oracle.com/javase/7/docs/technotes/guides/imageio/
http://www.prairie-technologies.com/
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:

Reader: PrairieReader (Source Code\(^{401}\), Supported Metadata Fields)

We currently have:
- many Prairie datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.113 Princeton Instruments SPE

Extensions: .spe
Developer: Princeton Instruments\(^{402}\)

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions: 3.0

Reader: SPEReader (Source Code\(^{403}\), Supported Metadata Fields)

We currently have:
- An official specification document\(^{404}\)
- two SPE files

We would like to have:
- more SPE files

Ratings

Pixels: ▼
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

\(^{401}\) https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/PrairieReader.java

\(^{402}\) http://www.princetoninstruments.com

\(^{403}\) https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/SPEReader.java

17.114 Quesant

Extensions: .afm
Developer: Quesant Instrument Corporation
Owner: KLA-Tencor Corporation

Support
BSD-licensed:
Export:

Officially Supported Versions:
Reader: QuesantReader (Source Code, Supported Metadata Fields)

We currently have:
- Pascal code that can read Quesant files (from ImageSXM)
- several Quesant files

We would like to have:
- an official specification document
- more Quesant files

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

17.115 QuickTime Movie

Extensions: .mov
Owner: Apple Computer

Support
BSD-licensed: ✓
Export: ✓

Officially Supported Versions:
Readers:
- NativeQTReader (Source Code, Supported Metadata Fields)
- LegacyQTReader (Source Code, Supported Metadata Fields)

Writer: QTWriter (Source Code)

Freely Available Software:
• **QuickTime Player**\(^{411}\)

We currently have:

• a [QuickTime specification document](https://support.apple.com/downloads/quicktime)\(^{412}\) (from 2001 March 1, in HTML)
• several QuickTime datasets
• the ability to produce more datasets

We would like to have:

• more QuickTime datasets, including:
 – files compressed with a common, unsupported codec
 – files with audio tracks and/or multiple video tracks

Ratings

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
</tr>
</thead>
</table>

Additional Information

Bio-Formats has two modes of operation for QuickTime:

• The legacy QTJava mode requires QuickTime for Java which will only run with a 32-bit JVM and is no longer available from Apple.
• Native mode works on systems with no QuickTime (e.g. Linux).

Bio-Formats can save image stacks as QuickTime movies. The following table shows supported codecs:

<table>
<thead>
<tr>
<th>Codec</th>
<th>Description</th>
<th>Native</th>
<th>Legacy QTJava</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw</td>
<td>Full Frames (Uncompressed)</td>
<td>read & write</td>
<td>read & write</td>
</tr>
<tr>
<td>iraw</td>
<td>Intel YUV Uncompressed Animation (run length encoded RGB)</td>
<td>read only</td>
<td>read & write</td>
</tr>
<tr>
<td>rle</td>
<td>Still Image JPEG DIB</td>
<td>read only</td>
<td>read only</td>
</tr>
<tr>
<td>jpeg</td>
<td>Apple Video 16 bit “road pizza”</td>
<td>read only (partial)</td>
<td>read only</td>
</tr>
<tr>
<td>rpza</td>
<td>Motion JPEG codec Cinepak</td>
<td>read only</td>
<td>read only</td>
</tr>
<tr>
<td>mjpb</td>
<td>Sorenson Video</td>
<td>•</td>
<td>read & write</td>
</tr>
<tr>
<td>cvid</td>
<td>Sorenson Video 3</td>
<td>•</td>
<td>read & write</td>
</tr>
<tr>
<td>mp4v</td>
<td>MPEG-4</td>
<td>•</td>
<td>read & write</td>
</tr>
<tr>
<td>h263</td>
<td>H.263</td>
<td>•</td>
<td>read & write</td>
</tr>
</tbody>
</table>

See also:

[QuickTime software overview](http://developer.apple.com/documentation/Quicktime/QTFF/)

\(^{411}\)https://support.apple.com/downloads/quicktime

\(^{412}\)http://developer.apple.com/documentation/Quicktime/QTFF/

\(^{413}\)http://www.apple.com/quicktime/
17.116 RHK

Extensions: .sm2, .sm3
Owner: RHK Technologies

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: RHKReader (Source Code, Supported Metadata Fields)

We currently have:

• Pascal code that can read RHK files (from ImageSXM)
• a few RHK files

We would like to have:

• an official specification document
• more RHK files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

17.117 SBIG

Owner: Santa Barbara Instrument Group (SBIG)

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: SBIGReader (Source Code, Supported Metadata Fields)

We currently have:

• an official SBIG specification document
• a few SBIG files

We would like to have:

• more SBIG files
Ratings
Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

17.118 Seiko

Extensions: .xqd, .xqf
Owner: Seiko

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: SeikoReader (Source Code[^420], Supported Metadata Fields)

We currently have:
• Pascal code that can read Seiko files (from ImageSXM)
• a few Seiko files

We would like to have:
• an official specification document
• more Seiko files

Ratings
Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.119 SimplePCI & HCImage

Extensions: .cxd
Developer: Compix

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
[^420]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/SeikoReader.java
[^421]: http://hcimage.com

We currently have:

- several SimplePCI files

We would like to have:

Ratings

Pixels: ▲

Metadata: ★

Openness: ▲

Presence: ▼

Utility: ▼

Additional Information

Bio-Formats uses a modified version of the Apache Jakarta POI library\footnote{http://jakarta.apache.org/poi/} to read CXD files.

See also:

SimplePCI software overview\footnote{http://hcimage.com/simple-pci-legacy/}

17.120 SimplePCI & HClmage TIFF

Extensions: .tiff

Developer: Hamamatsu\footnote{http://hcimage.com/simple-pci-legacy/}

Support

BSD-licensed: ❌

Export: ❌

Officially Supported Versions:

We currently have:

- a few SimplePCI TIFF datasets

We would like to have:

- more SimplePCI TIFF datasets

Ratings

Pixels: ▲

Metadata: ★

Openness: ▲

Presence: ▼

Utility: ★

\footnote{https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/SimplePCITiffReader.java}
17.121 SM Camera

Support

BSD-licensed:

Export:

Offically Supported Versions:

Reader: SMCameraReader (Source Code, Supported Metadata Fields)

We currently have:

• Pascal code that can read SM-Camera files (from ImageXM)
• a few SM-Camera files

We would like to have:

• an official specification document
• more SM-Camera files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

17.122 SPIDER

Extensions: .spi, .stk

Developer: Wadsworth Center

Support

BSD-licensed:

Export:

Offically Supported Versions:

Reader: SpiderReader (Source Code, Supported Metadata Fields)

Freely Available Software:

• SPIDER

We currently have:

• a few example datasets
• official file format documentation

We would like to have:

Ratings

Pixels:
17.123 Targa

Extensions: .tga
Developer: Truevision

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: TargaReader (Source Code, Supported Metadata Fields)

We currently have:

• a Targa specification document
• a few Targa files

We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: □
Utility: ▼

17.124 Text

Extensions: .txt

Support
BSD-licensed: ✔
Export: ❌

Officially Supported Versions:
Reader: TextReader (Source Code, Supported Metadata Fields)

We currently have:

We would like to have:

Ratings
Pixels: □

432 http://www.truevision.com
433 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/TargaReader.java
434 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/TextReader.java
Metadata: 🔻
Openness: 🔻
Presence: 🔻
Utility: 🔻

Additional Information
Reads tabular pixel data produced by a variety of software.

17.125 TIFF (Tagged Image File Format)

Extensions: .tiff, .tif, .tf2, .tf8, .btf
Developer: Aldus and Microsoft
Owner: Adobe

Support
BSD-licensed: ✅
Export: ✅

Officially Supported Versions:
Reader: TiffReader (Source Code, Supported Metadata Fields)
Writer: TiffWriter (Source Code)

Sample Datasets:
• LZW TIFF data gallery
• Big TIFF

We currently have:
• a TIFF specification document (v6.0, from 1992 June 3, in PDF)
• many TIFF datasets
• a few BigTIFF datasets

We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▲
Utility: 🔻

Additional Information
Bio-Formats can also read BigTIFF files (TIFF files larger than 4 GB). Bio-Formats can save image stacks as TIFF or BigTIFF.

See also:
435 http://www.adobe.com
436 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/TiffReader.java
437 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/out/TiffWriter.java
438 http://marlin.life.utsa.edu/Data_Gallery.html
439 http://www.awaresystems.be/imaging/tiff/bigtiff.html#samples
17.126 TillPhotonics TillVision

Extensions: .vws
Developer: TILL Photonics

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: TillVisionReader (Source Code, Supported Metadata Fields)

We currently have:
• several TillVision datasets

We would like to have:
• an official specification document

Ratings
Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.127 Topometrix

Extensions: .tfr, .ffr, .zfr, .zfp, .2fl
Owner: TopoMetrix (now Veeco)

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: TopometrixReader (Source Code, Supported Metadata Fields)

We currently have:
• Pascal code that reads Topometrix files (from ImageSXM)
 • a few Topometrix files

We would like to have:
• an official specification document

441 http://www.awaresystems.be/imaging/tiff/faq.html#q3
442 http://www.awaresystems.be/imaging/tiff/bigtiff.html
443 http://www.till-photonics.com/
444 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/TillVisionReader.java
445 http://www.veeco.com/
446 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/TopometrixReader.java
• more Topometrix files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

17.128 Trestle

Extensions: .tif, .sld, .jpg

Support

BSD-licensed: ❌

Export: ❌

Officially Supported Versions:

Reader: TrestleReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/TrestleReader.java), [Supported Metadata Fields](http://openslide.cs.cmu.edu/download/openslide-testdata/Trestle/))

Sample Datasets:

• [OpenSlide](http://openslide.org/Trestle%20format/)

We currently have:

• a few example datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

17.129 UBM

Extensions: .pr3

Support

BSD-licensed: ❌

Export: ❌

Officially Supported Versions:

Reader: UBMReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/UBMReader.java), [Supported Metadata Fields](http://openslide.cs.cmu.edu/download/openslide-testdata/Trestle/))

447https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/TrestleReader.java

448http://openslide.cs.cmu.edu/download/openslide-testdata/Trestle/

449http://openslide.org/Trestle%20format/

450https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/UBMReader.java
We currently have:

- Pascal code that can read UBM files (from ImageSXM)
- one UBM file

We would like to have:

- an official specification document
- more UBM files

Ratings

- Pixels: ▼
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

17.130 Unisoku

Extensions: .dat, .hdr

Owner: Unisoku[^451]

Support

- BSD-licensed: ❌
- Export: ❌

Officially Supported Versions:

Reader: UnisokuReader ([Source Code][^452], [Supported Metadata Fields](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/UnisokuReader.java))

We currently have:

- Pascal code that can read Unisoku files (from ImageSXM)
- a few Unisoku files

We would like to have:

- an official specification document
- more Unisoku files

Ratings

- Pixels: ▼
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

[^451]: http://www.unisoku.com
[^452]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/UnisokuReader.java
17.131 Varian FDF

Extensions: .fd
Developer: Varian, Inc.
Owner: Agilent Technologies

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: VarianFDFReader (Source Code, Supported Metadata Fields)

We currently have:
• a few Varian FDF datasets

We would like to have:
• an official specification document
• more Varian FDF datasets

Ratings
Pixels: 🔴
Metadata: 🔴
Openness: 🔴
Presence: 🔴
Utility: 🔴

17.132 Veeco AFM

Extensions: .hdf
Developer: Veeco

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: VeecoReader (Source Code, Supported Metadata Fields)

We currently have:
• a few sample datasets

We would like to have:

Ratings
Pixels: 🔴
Metadata: 🔴

453 http://www.agilent.com/home
454 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/VarianFDFReader.java
455 http://www.veeco.com
456 https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/VeecoReader.java
17.133 VG SAM

Extensions: .dti

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: VGSAMReader (Source Code[^457], Supported Metadata Fields)

We currently have:
• a few VG-SAM files

We would like to have:
• an official specification document
• more VG-SAM files

Ratings
Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.134 VisiTech XYS

Extensions: .xys, .html

Developer: VisiTech International[^458]

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: VisitechReader (Source Code[^459], Supported Metadata Fields)

We currently have:
• several VisiTech datasets

We would like to have:
• an official specification document

[^457]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/VGSAMReader.java
[^458]: http://www.visitech.co.uk/
[^459]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/VisitechReader.java
17.135 Volocity

Extensions: .mvd2
Developer: PerkinElmer

Support

BSD-licensed:
Export:

Officially Supported Versions:
Reader: VolocityReader (Source Code, Supported Metadata Fields)

Sample Datasets:
• PerkinElmer Downloads

We currently have:
• many example Volocity datasets

We would like to have:
• an official specification document
• any Volocity datasets that do not open correctly

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

.mvd2 files are Metakit database files.

17.136 Volocity Library Clipping

Extensions: .acff
Developer: PerkinElmer

Support

http://www.perkinelmer.com/cellular-imaging/
https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/VolocityReader.java
http://cellularimaging.perkinelmer.com/downloads/
http://equi4.com/metakit/
http://www.perkinelmer.com/cellular-imaging/
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: VolocityClippingReader (Source Code[^65], Supported Metadata Fields)

We currently have:
• several Volocity library clipping datasets

We would like to have:
• any datasets that do not open correctly
• an official specification document

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

RGB .aef files are not yet supported. See #6413[^66].

17.137 WA-TOP

Extensions: .wat
Developer: WA Technology
Owner: Oxford Instruments[^467]

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: WATOPReader (Source Code[^468], Supported Metadata Fields)

We currently have:
• Pascal code that can read WA-TOP files (from ImageSXM)
• a few WA-TOP files

We would like to have:
• an official specification document
• more WA-TOP files

Ratings

Pixels: ▼
Metadata: ▼

[^65]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/VolocityClippingReader.java
[^66]: https://trac.openmicroscopy.org/ome/ticket/6413
[^467]: http://www.oxinst.com
[^468]: https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/WATOPReader.java
17.138 Windows Bitmap

Extensions: .bmp
Developer: Microsoft and IBM

Support

BSD-licensed: ✔
Export: ✗

Officially Supported Versions:

Reader: BMPReader (Source Code469, Supported Metadata Fields)

Freely Available Software:

• BMP Writer plugin for ImageJ470

We currently have:

• many BMP datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▲
Utility: ▼

Additional Information

Compressed BMP files are currently not supported.

See also:

Technical Overview471

17.139 Woolz

Extensions: .wlz
Developer: MRC Human Genetics Unit472

Support

BSD-licensed: ✗
Export: ✔

Officially Supported Versions:

469http://rsb.info.nih.gov/iij/plugins/bmp-reader.html
470http://www.faqs.org/faqs/graphics/fileformats-faq/part3/section-18.html
471http://www.emouseatlas.org/emap/analysis_tools_resources/software/woolz.html
472http://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-bsd/src/loci/formats/in/BMPReader.java

17.138. Windows Bitmap
Reader: WlzReader (Source Code473, Supported Metadata Fields)

Writer: WlzWriter (Source Code474)

Freely Available Software:
- Woolz475

We currently have:
- a few Woolz datasets

We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▼
- Openness: ▲
- Presence: ▼
- Utility: ▼

17.140 Zeiss Axio CSM

Extensions: .lms

Developer: Carl Zeiss Microscopy GmbH476

Owner: Carl Zeiss Microscopy GmbH477

Support

- BSD-licensed: ✗
- Export: ✗

Officially Supported Versions:

Reader: ZeissLMSReader (Source Code478, Supported Metadata Fields)

We currently have:
- one example dataset

We would like to have:

Ratings

- Pixels: ▼
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

Additional Information

This should not be confused with the more common Zeiss LSM format, which has a similar extension. As far as we know, the Axio CSM 700 system is the only one which saves files in the .lms format.

473https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/WlzReader.java
474https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/out/WlzWriter.java
475http://www.emouseatlas.org/emap/analysis_tools_resources/software/woolz.html
476http://www.zeiss.com/microscopy/
477http://www.zeiss.com/microscopy/
478https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/ZeissLMSReader.java
17.141 Zeiss AxioVision TIFF

Extensions: .xml, .tiff
Developer: Carl Zeiss Microscopy GmbH
Owner: Carl Zeiss Microscopy GmbH

Support

BSD-licensed: ☒
Export: ☒

Officially Supported Versions:
Reader: ZeissTIFFReader (Source Code, Supported Metadata Fields)

Freely Available Software:

• Zeiss ZEN Lite

We currently have:

• many example datasets

We would like to have:

• an official specification document

Ratings

Pixels: ▲
Metadata: ▲
Openness:
Presence: ▼
Utility: ▼

17.142 Zeiss AxioVision ZVI (Zeiss Vision Image)

Extensions: .zvi
Developer: Carl Zeiss Microscopy GmbH (AxioVision)
Owner: Carl Zeiss Microscopy GmbH

Support

BSD-licensed: ☒
Export: ☒

Officially Supported Versions: 1.0, 2.0
Reader: ZeissZVIReader (Source Code, Supported Metadata Fields)

Freely Available Software:

• Zeiss Axiovision LE

http://www.zeiss.com/microscopy/
http://www.zeiss.com/microscopy/
https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/ZeissTIFFReader.java
http://www.zeiss.com/microscopy/
https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/ZeissZVIReader.java
We currently have:

- a ZVI specification document (v2.0.5, from 2010 August, in PDF)
- an older ZVI specification document (v2.0.2, from 2006 August 23, in PDF)
- an older ZVI specification document (v2.0.1, from 2005 April 21, in PDF)
- an older ZVI specification document (v1.0.26.01.01, from 2001 January 29, in DOC)
- Zeiss’ ZvImageReader code (v1.0, from 2001 January 25, in C++)
- many ZVI datasets

We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▲
- Openness: ▲
- Presence: ❌
- Utility: ❌

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Bio-Formats uses a modified version of the Apache Jakarta POI library to read ZVI files. ImageJ/FIJI will use the ZVI reader plugin in preference to Bio-Formats if both are installed. If you have a problem which is solved by opening the file using the Bio-Formats Importer plugin, you can just remove the ZVI_Reader.class from the plugins folder.

Commercial applications that support ZVI include Bitplane Imaris.

17.143 Zeiss CZI

Extensions: .czi

Developer: Carl Zeiss Microscopy GmbH

Support

- BSD-licensed: ❌
- Export: ❌

Officially Supported Versions:

Reader: ZeissCZIReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/ZeissCZIReader.java), [Supported Metadata Fields](http://www.zeiss.com/czi))

Freely Available Software:

- Zeiss ZEN

We currently have:

- many example datasets
- official specification documents

489 http://www.zeiss.com/czi
490 http://www.zeiss.com/czi
We would like to have:

Ratings

- **Pixels:** [▲](#)
- **Metadata:** [▲](#)
- **Openness:** [▲](#)
- **Presence:** [▼](#)
- **Utility:** [■](#)

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties. Bio-Formats does not support CZI files generated using JPEG-XR compression.

17.144 Zeiss LSM (Laser Scanning Microscope) 510/710

Extensions: .lsm, .mdb

Owner: Carl Zeiss Microscopy GmbH

Support

- **BSD-licensed:** ✗
- **Export:** ✗

Officially Supported Versions:

Reader: ZeissLSMReader ([Source Code](http://www.zeiss.com/microscopy/) [Supported Metadata Fields](https://github.com/openmicroscopy/bioformats/blob/v5.2.3/components/formats-gpl/src/loci/formats/in/ZeissLSMReader.java)

Freely Available Software:

- Zeiss LSM Image Browser
- LSM Toolbox plugin for ImageJ
- LSM Reader plugin for ImageJ
- DIMIN

We currently have:

- LSM specification v3.2, from 2003 March 12, in PDF
- LSM specification v5.5, from 2009 November 23, in PDF
- LSM specification v6.0, from 2010 September 28, in PDF
- many LSM datasets

We would like to have:

Ratings

- **Pixels:** [▲](#)
- **Metadata:** [▲](#)
- **Openness:** [▲](#)
- **Presence:** [▲](#)
Utility:

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties. Bio-Formats uses the [MDB Tools Java port](http://mdbtools.sourceforge.net/)

Commercial applications that support this format include:

- SVI Huygens[^500]
- Bitplane Imaris[^501]
- Amira[^502]
- Image-Pro Plus[^503]

[^500]: https://svi.nl/HomePage
[^501]: http://www.bitplane.com/
[^502]: http://www.amira.com/
[^503]: http://www.mediacy.com/
18.1 Format readers

<table>
<thead>
<tr>
<th>Reader</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFIReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>AIMReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>APLReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>APNGReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>ARFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>AVIReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>AliconaReader</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>AmiraReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>AnalyzeReader</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>BDReader</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>419</td>
</tr>
<tr>
<td>BFormatReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>BMPReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>BaseTiffReader</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>448</td>
</tr>
<tr>
<td>BaseZeissReader</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>393</td>
</tr>
<tr>
<td>BioRadGelReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>BioRadReader</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>436</td>
</tr>
<tr>
<td>BioRadSCNReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>447</td>
</tr>
<tr>
<td>BrukerReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>BurleighReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>CanonRawReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>CellH5Reader</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>435</td>
</tr>
<tr>
<td>CellSensReader</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>430</td>
</tr>
<tr>
<td>CellVoyagerReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>CellWorxReader</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>431</td>
</tr>
<tr>
<td>CellomicsReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>DNGReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>DeltavisionReader</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>424</td>
</tr>
<tr>
<td>DicomReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>EPSReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>Ecat7Reader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>FEIReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>FEITiffReader</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>437</td>
</tr>
<tr>
<td>FVI000Reader</td>
<td>113</td>
<td>0</td>
<td>0</td>
<td>363</td>
</tr>
<tr>
<td>FakeReader</td>
<td>84</td>
<td>0</td>
<td>0</td>
<td>392</td>
</tr>
<tr>
<td>FilePatternReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>FitsReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>FlexReader</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>407</td>
</tr>
<tr>
<td>FlowSightReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>FluoviewReader</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>427</td>
</tr>
<tr>
<td>FujiReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>GIFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>GatanDM2Reader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Reader</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>GatanReader</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>440</td>
</tr>
<tr>
<td>GelReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>HISReader</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>HRDGDFReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>HamamatsuVMSReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>HitachiReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>I2IReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>ICSReader</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>404</td>
</tr>
<tr>
<td>IM3Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>IMODReader</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>INRReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>IPLabReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>IPWReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ImaconReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>ImageIOReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>ImagicReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>ImarisHDFReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>ImarisReader</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td>ImarisTiffReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>ImprovisionTiffReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>InspectorReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>InCell3000Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>InCellReader</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>409</td>
</tr>
<tr>
<td>InveonReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>IvisionReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>JEOLReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>JPEG2000Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>JPEGReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>JPKReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>JPXReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>KhorosReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>KodakReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>L2DReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>447</td>
</tr>
<tr>
<td>LEOReader</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>LIFReader</td>
<td>85</td>
<td>0</td>
<td>0</td>
<td>391</td>
</tr>
<tr>
<td>LIMReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>LegacyND2Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>LegacyQTReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>LeicaReader</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>420</td>
</tr>
<tr>
<td>LeicaSCNReader</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>LiFilmReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>MIASReader</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>411</td>
</tr>
<tr>
<td>MINCReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>MINRReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>MRCReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>MRWReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>MetamorphReader</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>430</td>
</tr>
<tr>
<td>MetamorphTiffReader</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>438</td>
</tr>
<tr>
<td>MicromanagerReader</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>435</td>
</tr>
<tr>
<td>MinimaTiffReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>MolecularImagingReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>NAFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>ND2Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>NDIReader</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>448</td>
</tr>
<tr>
<td>NDPISReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>NRRDReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>NativeND2Reader</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>424</td>
</tr>
<tr>
<td>NativeQTReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
</tbody>
</table>
Table 18.1 – continued from previous page

<table>
<thead>
<tr>
<th>Reader</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiftiReader</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>NikonElementsTiffReader</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>426</td>
</tr>
<tr>
<td>NikonReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>NikonTiffReader</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>429</td>
</tr>
<tr>
<td>OBFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>OMETiffReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>OMEXMLReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>OpenlabRawReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>OpenlabReader</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td>OperettaReader</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>433</td>
</tr>
<tr>
<td>OxfordInstrumentsReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>PCIReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>447</td>
</tr>
<tr>
<td>PCORAWReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>PCXReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>PDSReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>PGMReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>PQBinReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>PSDReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>PerkinElmerReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>PhotoshopTiffReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>PictReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>PovrayReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>PrairieReader</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>430</td>
</tr>
<tr>
<td>PyramidTiffReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>QTReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>QuesantReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>RHKReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>SBIGReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>SDSLReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>SEQReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>SIFReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>SISReader</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>SMCameraReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>SPCReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>SPEReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>SVSReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>447</td>
</tr>
<tr>
<td>ScanrReader</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>433</td>
</tr>
<tr>
<td>ScreenReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>SeikoReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>SimplePCITiffReader</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>SlidebookReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>SlidebookTiffReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>SpiderReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>TCSReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>TargaReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>TextReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>TiffDelegateReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>TiffJAIReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>TiffReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>TileJPEGReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>TillVisionReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>TopometrixReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>TrentleReader</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>UBMReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>UnisokuReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>VGSAMReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>VarianFDFReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>VeecoReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
</tbody>
</table>

Continued on next page
Table 18.1 – continued from previous page

<table>
<thead>
<tr>
<th>Reader</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisitechReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>VolocityClippingReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>VolocityReader</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>438</td>
</tr>
<tr>
<td>WATOPReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>WlReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>ZeissCZIReader</td>
<td>158</td>
<td>0</td>
<td>0</td>
<td>318</td>
</tr>
<tr>
<td>ZeissLMSReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>ZeissLSMReader</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>375</td>
</tr>
<tr>
<td>ZeissTIFFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>ZeissZVIReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>ZipReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
</tbody>
</table>

18.2 Metadata fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Arc - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Arc - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Arc - Model</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Arc - Power</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Arc - SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Arc - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>BooleanAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>BooleanAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>BooleanAnnotation - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>BooleanAnnotation - Namespace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>BooleanAnnotation - Value</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Channel - AcquisitionMode</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Channel - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Channel - Color</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Channel - ContrastMethod</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Channel - EmissionWavelength</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

2. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
7. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Arc_Type
11. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace
17. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel - Excitation-Wavelength</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>152</td>
</tr>
<tr>
<td>Channel - FilterSetRef</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Channel - Fluor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Channel - ID</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel - IlluminationType</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsAttenuation</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsWavelength</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Channel - NDFilter</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Channel - Name</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>136</td>
</tr>
<tr>
<td>Channel - PinholeSize</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Channel - PockelCellSetting</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Channel - SamplesPerPixel</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CommentAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>CommentAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>CommentAnnotation - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>CommentAnnotation - Namespace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>CommentAnnotation - Value</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Dataset - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Dataset - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Dataset - ExperimenterGroupRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset - Experi-(\text{m})(\text{e})nterRef(^39)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Dataset - ID(^{40})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Dataset - ImageRef(^{41})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Dataset - Name(^{42})</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Detector - AmplificationGain(^{43})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Detector - AnnotationRef(^{44})</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Detector - Gain(^{45})</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>134</td>
</tr>
<tr>
<td>Detector - ID(^{46})</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Detector - Manufacturer(^{48})</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>Detector - Model(^{49})</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>Detector - Offset(^{50})</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Detector - Serial-(\text{N})umber(^{51})</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Detector - Type(^{52})</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Detector - Voltage(^{53})</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Detector - Zoom(^{54})</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>DetectorSettings - Binning(^{55})</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>DetectorSettings - Gain(^{56})</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>DetectorSettings - ID(^{57})</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>136</td>
</tr>
<tr>
<td>DetectorSettings - Offset(^{58})</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>DetectorSettings - ReadOutRate(^{59})</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>DetectorSettings - Voltage(^{60})</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Dichroic - AnnotationRef(^{61})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Dichroic - ID(^{62})</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
</tbody>
</table>

Continued on next page

\(^{39}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID
\(^{40}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Dataset_ID
\(^{41}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
\(^{42}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Dataset_Name
\(^{43}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_AmplificationGain
\(^{44}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
\(^{45}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Gain
\(^{46}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
\(^{47}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
\(^{48}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
\(^{49}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
\(^{50}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Offset
\(^{51}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
\(^{52}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
\(^{53}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Voltage
\(^{54}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
\(^{55}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
\(^{56}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Settings_ID
\(^{57}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
\(^{58}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ReadOutRate
\(^{59}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Voltage
\(^{60}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
\(^{61}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
\(^{62}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Dichroic_ID
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichroic - LotNum-ber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Dichroic - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Dichroic - Model</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Dichroic - Serial-Number</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>DoubleAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>DoubleAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>DoubleAnnotation - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>DoubleAnnotation - Namespace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Ellipse - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Ellipse - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - ID</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Ellipse - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - RadiusX</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Ellipse - RadiusY</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Ellipse - StrokeColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - StrokeDashArray</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - StrokeWidth</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Ellipse - Text</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Ellipse - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - TheT</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Ellipse - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
</tbody>
</table>

Continued on next page

63 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
64 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
65 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
66 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
67 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
68 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Description
69 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DoubleAnnotation_ID
70 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace
71 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DoubleAnnotation_Value
72 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillColor
73 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillRule
74 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontFamily
75 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
76 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontStyle
77 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
78 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Locked
79 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_RadiusX
80 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_RadiusY
81 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor
82 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray
83 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
84 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
85 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheC
86 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
87 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ

18.2. Metadata fields
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellipse-Transform</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Ellipse-XY</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Ellipse-Y</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Experiment - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Experiment - Description</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Experiment - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Experiment - ID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>Experiment - Type</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>Experimenter - AnnotationRef</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Experimenter - FirstName</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>Experimenter - ID</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Experimenter - Institution</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Experimenter - LastName</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>Experimenter - MiddleName</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Experimenter - UserName</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>ExperimenterGroup - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ExperimenterGroup - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ExperimenterGroup - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ExperimenterGroup - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ExperimenterGroup - Leader</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ExperimenterGroup - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page

88. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
89. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_X
90. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_Y
91. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
92. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Description
93. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID
94. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_ID
95. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Type
96. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
97. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterEmail
98. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterFirstName
100. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterInstitution
101. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterLastName
102. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterMiddleName
103. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterUserName
104. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterGroup_Description
105. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament-ID</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filament-LotNumber</td>
<td>111</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filament-Manufacturer</td>
<td>112</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filament-Model</td>
<td>113</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filament-Power</td>
<td>114</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filament-SerialNumber</td>
<td>115</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filament-Type</td>
<td>116</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FileAnnotation-AnnotationRef</td>
<td>117</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FileAnnotation-Description</td>
<td>118</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FileAnnotation-ID</td>
<td>119</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FileAnnotation-Namespace</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filter-AnnotationRef</td>
<td>121</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filter-FilterWheel</td>
<td>122</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filter-ID</td>
<td>123</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filter-LotNumber</td>
<td>124</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filter-Manufacturer</td>
<td>125</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filter-Model</td>
<td>126</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filter-SerialNumber</td>
<td>127</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Filter-Type</td>
<td>128</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FilterSet-DichroicRef</td>
<td>129</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FilterSet-EmissionFilterRef</td>
<td>130</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FilterSet-ExcitationFilterRef</td>
<td>131</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FilterSet-ID</td>
<td>132</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

110 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_ID]
111 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber]
112 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer]
113 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model]
114 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power]
115 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber]
116 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FIlament_Type]
117 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID]
118 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Description]
119 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID]
120 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace]
121 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID]
122 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_FilterWheel]
123 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_ID]
124 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber]
125 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer]
126 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model]
127 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber]
128 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_Type]
129 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DichroicRef_ID]
130 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterRef_ID]
131 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterRef_ID]
132 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterSet_ID]

18.2. Metadata fields 239
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>FilterSet - LotNumber133</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>FilterSet - Manufacture134</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>FilterSet - Model135</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>FilterSet - SerialNumber136</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Folder - AnnotationRef137</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Folder - Description138</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Folder - FolderRef139</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Folder - ID140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Folder - ImageRef141</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Folder - Name142</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Folder - ROIRef143</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Image - AcquisitionDate144</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - AnnotationRef145</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Image - Description146</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>Image - ExperimenterRef147</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Image - ExperimenterGroupRef148</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Image - ExperimenterRef149</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Image - ID150</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - InstrumentRef151</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>124</td>
</tr>
<tr>
<td>Image - MicrobeamManipulationRef152</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Image - Name153</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - ROIRef154</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>ImagingEnvironment - AirPressure155</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
</tbody>
</table>

Continued on next page

133 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
134 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
135 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
136 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
137 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
138 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Folder_Description
139 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FolderRef_ID
140 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Folder_ID
141 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
142 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Folder_Name
143 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID
144 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
145 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
146 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
147 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimentRef_ID
148 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterGroupRef_ID
149 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID
150 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
151 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#MicrobeamManipulationRef_ID
152 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
153 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID
154 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_AirPressure

18.2. Metadata fields
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImagingEnvironment - CO2Percent</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>ImagingEnvironment - Humidity</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>ImagingEnvironment - Temperature</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Instrument - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Instrument - ID</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td>118</td>
</tr>
<tr>
<td>Label - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Label - Color</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Laser - Frequency-Multiplication</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Laser - ID</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>Laser - Laser-Medium</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
</tbody>
</table>

Continued on next page
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser - LotNumber181</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Laser - Manufacturer182</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Laser - Model183</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Laser - PockelCell184</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Laser - Power185</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Laser - Pulse186</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Laser - Pump187</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Laser - Repetition-Rate188</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Laser - SerialNumber189</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Laser - Tuneable190</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Laser - Type191</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Laser - Wavelength192</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>162</td>
</tr>
<tr>
<td>LightEmittingDiode - ID193</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>LightEmittingDiode - LotNumber194</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>LightEmittingDiode - Manufacturer195</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>LightEmittingDiode - Model196</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>LightEmittingDiode - Power197</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>LightPath - AnnotationRef199</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>LightPath - DichroicRef200</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>LightPath - EmissionFilterRef201</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>LightPath - ExcitationFilterRef202</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Line - FillColor203</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page

181 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
182 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
183 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
184 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_PockelCell
185 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
186 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Pulse
187 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pump_ID
188 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_RepetitionRate
189 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
190 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Type
191 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
192 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Wavelength
193 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_ID
194 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
195 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
196 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
197 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
198 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
199 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
200 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DichroicRef_ID
201 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterRef_ID
202 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterRef_ID
203 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillColor
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Line - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - ID</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Line - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - MarkerEnd</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - MarkerStart</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - StrokeColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - StrokeDashArray</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Line - StrokeWidth</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Line - Text</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - TheC</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Line - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Line - TheZ</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Line - Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Line - X1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Line - X2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Line - Y1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Line - Y2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>ListAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ListAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ListAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ListAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>LongAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>LongAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>LongAnnotation - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>LongAnnotation - Namespace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>LongAnnotation - Value</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Mask - BinData</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Mask - BinDataBigEndian</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Mask - BinDataBigLength</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - BinDataCompression</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - FontSize</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - Height</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Mask - ID</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Mask - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Mask - StrokeDashArray</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - StrokeWidth</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - Text</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - TheT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - TheZ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - Transform</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - Width</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Mask - X</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Mask - Y</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
</tbody>
</table>

Continued on next page
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicrobeamManipulation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>- ExperimenterRef</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicrobeamManipulation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>- ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicrobeamManipulation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>- ROIRef</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicrobeamManipulation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>- Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicrobeamManipulationLightSourceSettings</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>- Attenuation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicrobeamManipulationLightSourceSettings</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>- ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microscope - Lot-Number</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Manufacturer</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Model</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Serial-Number</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Type</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Objective - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Objective - CalibratedMagnification</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>Objective - Correction</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Objective - ID</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>132</td>
</tr>
<tr>
<td>Objective - Immersion</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Objective - Iris</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Objective - LensNA</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Objective - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Objective - Manufacturer</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
</tbody>
</table>

Continued on next page

255 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID
256 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#MicrobeamManipulation_ID
257 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID
258 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#MicrobeamManipulation_Type
259 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_Attenuation
260 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_ID
261 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_Wavelength
262 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
263 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
264 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
265 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
266 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Microscope_Type
267 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
268 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_CalibratedMagnification
269 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
270 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
271 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
272 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Iris
273 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
274 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LotNumber
275 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer

18.2. Metadata fields
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective - Model</td>
<td>276</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Objective - Nominal-Magnification</td>
<td>277</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Objective - Serial-Number</td>
<td>278</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Objective - WorkingDistance</td>
<td>279</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ObjectiveSettings - CorrectionCollar</td>
<td>280</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ObjectiveSettings - ID</td>
<td>281</td>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ObjectiveSettings - Medium</td>
<td>282</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ObjectiveSettings - RefractiveIndex</td>
<td>283</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - AnnotationRef</td>
<td>284</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - BigEndian</td>
<td>285</td>
<td>169</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - DimensionOrder</td>
<td>286</td>
<td>169</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - ID</td>
<td>287</td>
<td>169</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - Interleaved</td>
<td>288</td>
<td>169</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - Physical-SizeX</td>
<td>289</td>
<td>87</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - Physical-SizeY</td>
<td>290</td>
<td>87</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - Physical-SizeZ</td>
<td>291</td>
<td>43</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - Significant-Bits</td>
<td>292</td>
<td>169</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeX</td>
<td>293</td>
<td>169</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeX</td>
<td>294</td>
<td>169</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeX</td>
<td>295</td>
<td>169</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeY</td>
<td>296</td>
<td>169</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeY</td>
<td>297</td>
<td>169</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - TimeIncrement</td>
<td>298</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page.
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels-Type</td>
<td>299</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane - Annotation-Ref</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Plane - DeltaT</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>Plane - Exposure-Time</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>138</td>
</tr>
<tr>
<td>Plane - HashSHA1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Plane - PositionX</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>Plane - PositionY</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>Plane - PositionZ</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>Plane - TheC</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane - TheT</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane - TheZ</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plate - Annotation-Ref</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Plate - ColumnNamingConvention</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Plate - Columns</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Plate - Description</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Plate - ExternalIdentifier</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Plate - ID</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Plate - Name</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Plate - RowNamingConvention</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Plate - Rows</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Plate - Status</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Plate - WellOriginX</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Plate - WellOriginY</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>PlateAcquisition - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>PlateAcquisition - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page

299 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
300 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
301 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
302 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
303 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_HashSHA1
304 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
305 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
306 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
307 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
308 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
309 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
310 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ExternalIdentifier
311 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Col
312 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Rows
313 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ExternalIdentifier
314 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
315 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
316 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ColumnNamingConvention
317 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_WellOriginX
318 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_WellOriginY
319 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ExternalIdentifier
320 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Status
321 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Acquisition_Description
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlateAcquisition - EndTime</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>PlateAcquisition - ID</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>PlateAcquisition - MaximumField-Count</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>PlateAcquisition - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>PlateAcquisition - StartTime</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>PlateAcquisition - WellSampleRef</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>162</td>
</tr>
<tr>
<td>Point - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - FontSize</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Point - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - ID</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Point - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Point - StrokeDashArray</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Point - StrokeWidth</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Point - Text</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Point - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Point - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Point - Transform</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - X</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Point - Y</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Polygon - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polygon - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page

324 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_EndTime
325 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
326 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
327 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_Name
328 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_StartTime
329 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSampleRef_ID
330 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillColor
331 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillRule
332 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontFamily
333 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
334 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontStyle
335 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
336 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Locked
337 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor
338 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray
339 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
340 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
341 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheC
342 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
343 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
344 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
345 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_X
346 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_Y
347 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillColor
348 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillRule
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygon - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polygon - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Polygon - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polygon - ID</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Polygon - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polygon - Points</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Polygon - StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Polygon - StrokeDashArray</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Polygon - StrokeWidth</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Polygon - Text</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Polygon - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polygon - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Polygon - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Polygon - Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Polyline - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Polyline - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - ID</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Polyline - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - MarkerEnd</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - MarkerStart</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - Points</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
</tbody>
</table>

349 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontFamily
350 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
351 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontStyle
352 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
353 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Locked
354 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polygon_Points
355 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor
356 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray
357 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
358 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
359 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheC
360 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
361 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
362 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
363 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillColor
364 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillRule
365 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontFamily
366 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
367 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontStyle
368 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
369 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Locked
370 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_MarkerEnd
371 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_MarkerStart
372 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_Points

18.2. Metadata fields
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyline - Stroke-Color</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Polyline - StrokeDashArray</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Polyline - StrokeWidth</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Polyline - Text</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Polyline - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Polyline - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Polyline - Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Project - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Project - DatasetRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Project - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Project - ExperimenterGroupRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Project - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Project - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Project - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ROI - AnnotationRef</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>ROI - ID</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>ROI - Name</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Reagent - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Reagent - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Reagent - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Reagent - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Reagent - ReagentIdentifier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page

373http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor
374http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray
375http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
376http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
377http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheC
378http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
379http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
380http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
381http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
382http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DatasetRef_ID
383http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Project_Description
384http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterGroupRef_ID
385http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID
386http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Project_ID
387http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Project_Name
388http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
389http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_Description
390http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
391http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_Name
392http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
393http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Reagent_Description
394http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Reagent_ID
395http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Reagent_Name
396http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Reagent_ReagentIdentifier
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle - Fill-Color</td>
<td>397</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Rectangle - Fill-Rule</td>
<td>398</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Rectangle - FontFamily</td>
<td>399</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Rectangle - Font-Size</td>
<td>400</td>
<td>2</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Rectangle - FontStyle</td>
<td>401</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Rectangle - Height</td>
<td>402</td>
<td>10</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Rectangle - ID</td>
<td>403</td>
<td>10</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Rectangle - Locked</td>
<td>404</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Rectangle - Stroke-Color</td>
<td>405</td>
<td>1</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Rectangle - StrokeDashArray</td>
<td>406</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Rectangle - StrokeWidth</td>
<td>407</td>
<td>2</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Rectangle - Text</td>
<td>408</td>
<td>3</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Rectangle - TheC</td>
<td>409</td>
<td>1</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Rectangle - TheT</td>
<td>410</td>
<td>2</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Rectangle - TheZ</td>
<td>411</td>
<td>2</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Rectangle - Transform</td>
<td>412</td>
<td>1</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Rectangle - Width</td>
<td>413</td>
<td>10</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Rectangle - X</td>
<td>414</td>
<td>10</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Rectangle - Y</td>
<td>415</td>
<td>10</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Screen - AnnotationRef</td>
<td>416</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Screen - Description</td>
<td>417</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Screen - ID</td>
<td>418</td>
<td>1</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Screen - Name</td>
<td>419</td>
<td>1</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Screen - PlateRef</td>
<td>420</td>
<td>1</td>
<td>0</td>
<td>168</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/ Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen - ProtocolDescription</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Screen - ProtocolIdentifier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Screen - ReagentSetDescription</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Screen - ReagentSetIdentifier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Screen - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>StageLabel - Name</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>StageLabel - X</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>StageLabel - Y</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>StageLabel - Z</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>TagAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>TagAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>TagAnnotation - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TagAnnotation - Namespace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TagAnnotation - Value</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TermAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>TermAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>TermAnnotation - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TermAnnotation - Namespace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TermAnnotation - Value</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TiffData - FirstC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>TiffData - FirstT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>TiffData - FirstZ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>TiffData - IFD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiffData - PlaneCount</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>TimestampAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>TimestampAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>TimestampAnnotation - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TimestampAnnotation - Namespace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TimestampAnnotation - Value</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TransmittanceRange - CutIn</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>TransmittanceRange - CutInTolerance</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TransmittanceRange - CutOut</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>TransmittanceRange - CutOutTolerance</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TransmittanceRange - Transmittance</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>UUID - FileName</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>UUID - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Well - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Well - Color</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Well - Column</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Well - ExternalDescription</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Well - ExternalIdentifier</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Well - ID</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Well - ReagentRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Well - Row</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Well - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>WellSample - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page

446. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Description
448. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TimestampAnnotation_Value
449. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutIn
454. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_TiffData_UUID_FileName
463. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Type
18.2.1 AFIReader

This page lists supported metadata fields for the Bio-Formats Aperio AFI format reader. These fields are from the [OME data model](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 30 of them (6%).
- Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Aperio AFI format reader:

- **Channel**: EmissionWavelength
- **Channel**: ExcitationWavelength
- **Channel**: ID
- **Channel**: Name
- **Channel**: SamplesPerPixel

Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>WellSample - ID</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>WellSample - ImageRef</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>WellSample - Index</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>WellSample - PositionX</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>WellSample - PositionY</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>WellSample - Timepoint</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>XMLAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>XMLAnnotation - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>XMLAnnotation - Namespace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>XMLAnnotation - Value</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
</tbody>
</table>

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Timepoint

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#XMLAnnotation_Value

http://www.openmicroscopy.org/site/support/ome-model/

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Objective: ID
• Objective: NominalMagnification
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 30
Total unknown or missing: 446
18.2.2 AIMReader

This page lists supported metadata fields for the Bio-Formats AIM format reader.

These fields are from the OME data model\(^{508}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats AIM format reader:

- Channel: ID\(^{509}\)
- Channel: SamplesPerPixel\(^{510}\)
- Image: AcquisitionDate\(^{511}\)
- Image: ID\(^{512}\)
- Image: Name\(^{513}\)
- Pixels: BigEndian\(^{514}\)
- Pixels: DimensionOrder\(^{515}\)
- Pixels: ID\(^{516}\)
- Pixels: Interleaved\(^{517}\)
- Pixels: PhysicalSizeX\(^{518}\)
- Pixels: PhysicalSizeY\(^{519}\)
- Pixels: PhysicalSizeZ\(^{520}\)
- Pixels: SignificantBits\(^{521}\)
- Pixels: SizeC\(^{522}\)
- Pixels: SizeT\(^{523}\)
- Pixels: SizeX\(^{524}\)
- Pixels: SizeY\(^{525}\)
- Pixels: SizeZ\(^{526}\)
- Pixels: Type\(^{527}\)

\(^{508}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{509}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID

\(^{510}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{511}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

\(^{512}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID

\(^{513}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name

\(^{514}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian

\(^{515}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder

\(^{516}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID

\(^{517}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved

\(^{518}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX

\(^{519}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY

\(^{520}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ

\(^{521}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits

\(^{522}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC

\(^{523}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT

\(^{524}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX

\(^{525}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

\(^{526}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ

\(^{527}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
18.2.3 APLReader

This page lists supported metadata fields for the Bio-Formats Olympus APL format reader.

These fields are from the OME data model\(^\text{531}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus APL format reader:

- Channel: ID\(^\text{532}\)
- Channel: SamplesPerPixel\(^\text{533}\)
- Image: AcquisitionDate\(^\text{534}\)
- Image: ID\(^\text{535}\)
- Image: Name\(^\text{536}\)
- Pixels: BigEndian\(^\text{537}\)
- Pixels: DimensionOrder\(^\text{538}\)
- Pixels: ID\(^\text{539}\)
- Pixels: Interleaved\(^\text{540}\)
- Pixels: PhysicalSizeX\(^\text{541}\)
- Pixels: PhysicalSizeY\(^\text{542}\)
- Pixels: SignificantBits\(^\text{543}\)
- Pixels: SizeC\(^\text{544}\)
- Pixels: SizeT\(^\text{545}\)

\(^\text{528}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^\text{529}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^\text{530}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^\text{531}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^\text{532}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^\text{533}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^\text{534}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^\text{535}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^\text{536}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^\text{537}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^\text{538}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^\text{539}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^\text{540}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^\text{541}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^\text{542}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^\text{543}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^\text{544}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^\text{545}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
18.2.4 APNGReader

This page lists supported metadata fields for the Bio-Formats Animated PNG format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Animated PNG format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits

546 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
547 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
548 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
549 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
550 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
551 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
552 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
553 http://www.openmicroscopy.org/site/support/ome-model/
554 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
555 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
556 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
557 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
558 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
559 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
560 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
561 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
562 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
563 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.5 ARFReader

This page lists supported metadata fields for the Bio-Formats ARF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats ARF format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
18.2.6 AVIReader

This page lists supported metadata fields for the Bio-Formats Audio Video Interleave format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Audio Video Interleave format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian

Resources:

- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
- http://www.openmicroscopy.org/site/support/ome-model/
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
• Pixels: DimensionOrder600
• Pixels: ID601
• Pixels: Interleaved602
• Pixels: SignificantBits603
• Pixels: SizeC604
• Pixels: SizeT605
• Pixels: SizeX606
• Pixels: SizeY607
• Pixels: SizeZ608
• Pixels: Type609
• Plane: TheC610
• Plane: TheT611
• Plane: TheZ612

Total supported: 19
Total unknown or missing: 457

18.2.7 AliconaReader

This page lists supported metadata fields for the Bio-Formats Alicona AL3D format reader. These fields are from the OME data model613. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 33 of them (6%).
• Of those, Bio-Formats fully or partially converts 33 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Alicona AL3D format reader:

• Channel: ID614
• Channel: SamplesPerPixel615
• Detector: ID616
• Detector: Type617

600http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
601http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
602http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
603http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
604http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
605http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
606http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
607http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
608http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
609http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
610http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
611http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
612http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
613http://www.openmicroscopy.org/site/support/ome-model/
614http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
615http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
616http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
617http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
• DetectorSettings : ID
• DetectorSettings : Voltage
• Image : AcquisitionDate
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Objective : CalibratedMagnification
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : WorkingDistance
• ObjectiveSettings : ID
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type

18.2. Metadata fields
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 33

Total unknown or missing: 443

18.2.8 AmiraReader

This page lists supported metadata fields for the Bio-Formats Amira format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Amira format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC

References:

644 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
645 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
646 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
647 http://www.openmicroscopy.org/site/support/ome-model/
648 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
649 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
650 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
651 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
652 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
653 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
654 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
655 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
656 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
657 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
658 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
659 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
660 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
661 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
18.2.9 AnalyzeReader

This page lists supported metadata fields for the Bio-Formats Analyze 7.5 format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 24 of them (5%).
- Of those, Bio-Formats fully or partially converts 24 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Analyze 7.5 format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID

Total supported: 22
Total unknown or missing: 454

[^62]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
[^63]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
[^64]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
[^65]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
[^66]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[^67]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
[^68]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
[^69]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
[^70]: 18.2. Metadata fields
[^71]: 264

[^62]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
[^63]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[^64]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[^65]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
[^66]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
[^67]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
[^68]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
[^69]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
[^70]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
18.2.10 BDReader

This page lists supported metadata fields for the Bio-Formats BD Pathway format reader. These fields are from the OME data model\(^\text{695}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 57 of them (11%).
- Of those, Bio-Formats fully or partially converts 57 (100%).

Supported fields

These fields are fully supported by the Bio-Formats BD Pathway format reader:

- Channel : EmissionWavelength\(^\text{696}\)
- Channel : ExcitationWavelength\(^\text{697}\)

\(^{680}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved

\(^{681}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX

\(^{682}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY

\(^{683}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ

\(^{684}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits

\(^{685}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC

\(^{686}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT

\(^{687}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX

\(^{688}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

\(^{689}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ

\(^{690}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement

\(^{691}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

\(^{692}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC

\(^{693}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT

\(^{694}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

\(^{695}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{696}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength

\(^{697}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
18.2. Metadata fields

- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- DetectorSettings: Binning
- DetectorSettings: Gain
- DetectorSettings: ID
- DetectorSettings: Offset
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Image: ROIRef
- Instrument: ID
- Objective: ID
- Objective: LensNA
- Objective: Manufacturer
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_SettingsID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: ColumnNamingConvention
• Plate: Description
• Plate: ID
• Plate: Name
• Plate: RowNamingConvention
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: WellSampleRef
• ROI: ID
• Rectangle: Height
• Rectangle: ID
• Rectangle: Width
• Rectangle: X
• Rectangle: Y
• Well: Column
• Well: ID
• Well: Row

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ColumnNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_RowNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_Material
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Region
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Width
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row

18.2. Metadata fields
• WellSample : ID
• WellSample : ImageRef
• WellSample : Index

Total supported: 57
Total unknown or missing: 419

18.2.11 BIFormatReader

This page lists supported metadata fields for the Bio-Formats BIFormatReader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats BIFormatReader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 457

18.2.12 BMPReader

This page lists supported metadata fields for the Bio-Formats Windows Bitmap format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Windows Bitmap format reader:
• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SignificantBits

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
18.2.13 BaseTiffReader

This page lists supported metadata fields for the Bio-Formats BaseTiffReader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 28 of them (5%).
- Of those, Bio-Formats fully or partially converts 28 (100%).

Supported fields

These fields are fully supported by the Bio-Formats BaseTiffReader:
- Channel: ID
- Channel: SamplesPerPixel
- Experimenter: Email
- Experimenter: FirstName
- Experimenter: ID
- Experimenter: LastName
- Image: AcquisitionDate
- Image: Description

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 28
Total unknown or missing: 448

18.2.14 BaseZeissReader

This page lists supported metadata fields for the Bio-Formats BaseZeissReader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

18.2. Metadata fields
• The file format itself supports 83 of them (17%).
• Of those, Bio-Formats fully or partially converts 83 (100%).

Supported fields

These fields are fully supported by the Bio-Formats BaseZeissReader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Type
- DetectorSettings: Gain
- DetectorSettings: ID
- DetectorSettings: Offset
- Ellipse: ID
- Ellipse: RadiusX
- Ellipse: RadiusY
- Ellipse: Text
- Ellipse: X
- Ellipse: Y
- Experimenter: FirstName
- Experimenter: ID
- Experimenter: Institution
- Experimenter: LastName
- Image: AcquisitionDate
- Image: Description
- Image: ID
• Image: InstrumentRef
• Image: Name
• Image: ROIRef
• Instrument: ID
• Label: ID
• Label: Text
• Label: X
• Label: Y
• Line: ID
• Line: Text
• Line: X1
• Line: X2
• Line: Y1
• Line: Y2
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: NominalMagnification
• Objective: WorkingDistance
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Point: ID
• Point: Text
• Point: X
• Point: Y
• Polygon: ID
• Polygon: Points
• Polygon: Text
• Polyline: ID
• Polyline: Points
• Polyline: Text

18.2. Metadata fields
• ROI : ID
• ROI : Name
• Rectangle : Height
• Rectangle : ID
• Rectangle : Text
• Rectangle : Width
• Rectangle : X
• Rectangle : Y

Total supported: 83
Total unknown or missing: 393

18.2.15 BioRadGelReader

This page lists supported metadata fields for the Bio-Formats Bio-Rad GEL format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bio-Rad GEL format reader:
• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved

900 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
901 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_Name
902 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Height
903 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
904 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
905 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Width
906 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X
907 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Y
908 http://www.openmicroscopy.org/site/support/ome-model/
909 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
910 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
911 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
912 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
913 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
914 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
915 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
916 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
917 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved

18.2. Metadata fields
18.2.16 BioRadReader

This page lists supported metadata fields for the Bio-Formats Bio-Rad PIC format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 40 of them (8%).
- Of those, Bio-Formats fully or partially converts 40 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bio-Rad PIC format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Detector: Gain
- Detector: ID
- Detector: Offset

918 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
919 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
920 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
921 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
922 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
923 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
924 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
925 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
926 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
927 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
928 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
929 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
930 http://www.openmicroscopy.org/site/support/ome-model/
931 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
932 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
933 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Gain
934 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
935 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Offset
- Detector: Type
- DetectorSettings: Gain
- DetectorSettings: ID
- DetectorSettings: Offset
- Experiment: ID
- Experiment: Type
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: LensNA
- Objective: Model
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
• Pixels: SizeC\[^{962}\]
• Pixels: SizeT\[^{963}\]
• Pixels: SizeX\[^{964}\]
• Pixels: SizeY\[^{965}\]
• Pixels: SizeZ\[^{966}\]
• Pixels: Type\[^{967}\]
• Plane: TheC\[^{968}\]
• Plane: TheT\[^{969}\]
• Plane: TheZ\[^{970}\]

Total supported: 40
Total unknown or missing: 436

18.2.17 BioRadSCNReader

This page lists supported metadata fields for the Bio-Formats Bio-Rad SCN format reader.

These fields are from the OME data model\[^{971}\]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 29 of them (6%).
• Of those, Bio-Formats fully or partially converts 29 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bio-Rad SCN format reader:

• Channel: ID\[^{972}\]
• Channel: SamplesPerPixel\[^{973}\]
• Detector: ID\[^{974}\]
• DetectorSettings: Binning\[^{975}\]
• DetectorSettings: Gain\[^{976}\]
• DetectorSettings: ID\[^{977}\]
• Image: AcquisitionDate\[^{978}\]
• Image: ID\[^{979}\]

\[^{962}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\[^{963}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\[^{964}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\[^{965}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\[^{966}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\[^{967}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\[^{968}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\[^{969}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\[^{970}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\[^{971}\]http://www.openmicroscopy.org/site/support/ome-model/
\[^{972}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\[^{973}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\[^{974}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
\[^{975}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
\[^{976}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
\[^{977}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
\[^{978}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\[^{979}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
• Image: Name
• Instrument: ID
• Microscope: Model
• Microscope: SerialNumber
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 29
Total unknown or missing: 447

18.2.18 BrukerReader

This page lists supported metadata fields for the Bio-Formats Bruker format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

980 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
981 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
982 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
983 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
984 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
985 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
986 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
987 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
988 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
989 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
990 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
991 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
992 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
993 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
994 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
995 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
996 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
997 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
998 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
999 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1000 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1001 http://www.openmicroscopy.org/site/support/ome-model/
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bruker format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Experimenter: ID
- Experimenter: Institution
- Experimenter: LastName
- Image: AcquisitionDate
- Image: ExperimenterRef
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
• Plane: TheZ

Total supported: 23
Total unknown or missing: 453

18.2.19 BurleighReader

This page lists supported metadata fields for the Bio-Formats Burleigh format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Burleigh format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX

1024 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1027 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1028 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1029 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1030 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1031 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1032 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1033 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1034 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1035 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
1036 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
1037 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
1038 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1039 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1040 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1041 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 22
Total unknown or missing: 454

18.2.20 CanonRawReader

This page lists supported metadata fields for the Bio-Formats Canon RAW format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Canon RAW format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC

1042 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1043 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1044 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1045 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1046 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1047 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1048 http://www.openmicroscopy.org/site/support/ome-model/
1049 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1050 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1051 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1052 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1053 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1054 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1055 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1056 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1057 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1058 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1059 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.21 CellH5Reader

This page lists supported metadata fields for the Bio-Formats CellH5 (HDF) format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 41 of them (8%).
• Of those, Bio-Formats fully or partially converts 41 (100%).

Supported fields

These fields are fully supported by the Bio-Formats CellH5 (HDF) format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Image: ROIRef
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID

18.2. Metadata fields
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: ID
• Plate: Name
• ROI: ID
• ROI: Name
• Rectangle: Height
• Rectangle: ID
• Rectangle: StrokeColor
• Rectangle: Text
• Rectangle: TheC
• Rectangle: TheT
• Rectangle: TheZ
• Rectangle: Width
• Rectangle: X
• Rectangle: Y
• Well: Column

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Width
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
Total supported: 41

Total unknown or missing: 435

18.2.22 CellSensReader

This page lists supported metadata fields for the Bio-Formats CellSens VSI format reader.

These fields are from the OME data model\[^{1110}\]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 46 of them (9%).
- Of those, Bio-Formats fully or partially converts 46 (100%).

Supported fields

These fields are fully supported by the Bio-Formats CellSens VSI format reader:

- Channel: EmissionWavelength\[^{1111}\]
- Channel: ID\[^{1112}\]
- Channel: Name\[^{1113}\]
- Channel: SamplesPerPixel\[^{1114}\]
- Detector: Gain\[^{1115}\]
- Detector: ID\[^{1116}\]
- Detector: Manufacturer\[^{1117}\]
- Detector: Model\[^{1118}\]
- Detector: Offset\[^{1119}\]
- Detector: SerialNumber\[^{1120}\]
- Detector: Type\[^{1121}\]

[^1104]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ExternalIdentifier
[^1105]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
[^1106]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row
[^1107]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
[^1108]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
[^1109]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
[^1110]: http://www.openmicroscopy.org/site/support/ome-model/
[^1111]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
[^1112]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
[^1113]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
[^1114]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[^1115]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Gain
[^1116]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
[^1117]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
[^1118]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
[^1119]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Offset
[^1120]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
[^1121]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
• DetectorSettings : Binning
• DetectorSettings : Gain
• DetectorSettings : ID
• DetectorSettings : Offset
• Image : AcquisitionDate
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Objective : ID
• Objective : LensNA
• Objective : Model
• Objective : NominalMagnification
• Objective : WorkingDistance
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX

1122 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
1123 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
1124 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
1125 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
1126 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1127 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1128 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
1129 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1130 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
1131 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
1132 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
1133 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
1134 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
1135 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_WorkingDistance
1136 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
1137 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
1138 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1139 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1140 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1141 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1142 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
1143 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
1144 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1145 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1146 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1147 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX

18.2. Metadata fields
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 46
Total unknown or missing: 430

18.2.23 CellVoyagerReader

This page lists supported metadata fields for the Bio-Formats CellVoyager format reader. These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 34 of them (7%).
• Of those, Bio-Formats fully or partially converts 34 (100%).

Supported fields

These fields are fully supported by the Bio-Formats CellVoyager format reader:
• Channel: ID
• Channel: Name
• Channel: PinholeSize
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian

1148 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1149 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1150 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1151 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
1152 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
1153 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
1154 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1155 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1156 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1157 http://www.openmicroscopy.org/site/support/ome-model/
1158 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1159 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
1160 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_PinholeSize
1161 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1162 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1163 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1164 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1165 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: Columns
• Plate: Rows
• PlateAcquisition: EndTime
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: StartTime
• Well: Column
• Well: ID
• Well: Row
• WellSample: ID
• WellSample: Index
• WellSample: PositionX
• WellSample: PositionY

[1175] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[1180] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Rows
[1181] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_EndTime
[1189] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
Total supported: 34
Total unknown or missing: 442

18.2.24 CellWorxReader

This page lists supported metadata fields for the Bio-Formats CellWorx format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 45 of them (9%).
- Of those, Bio-Formats fully or partially converts 45 (100%).

Supported fields

These fields are fully supported by the Bio-Formats CellWorx format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- DetectorSettings: Gain
- DetectorSettings: ID
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Microscope: SerialNumber
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID

18.2. Metadata fields
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: ID
• Plate: Name
• PlateAcquisition: EndTime
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: StartTime
• PlateAcquisition: WellSampleRef
• Well: Column
• Well: ID
• Well: Row
• WellSample: ID
• WellSample: ImageRef
• WellSample: Index

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_EndTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_StartTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSampleRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index

1210 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1211 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
1212 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
1213 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1214 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1215 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1216 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
1217 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1218 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1219 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1220 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1221 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1222 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1223 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
1224 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
1225 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_EndTime
1226 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
1227 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
1228 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_StartTime
1229 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSampleRef_ID
1230 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
1231 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
1232 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row
1233 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
1234 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
1235 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
18.2.25 CellomicsReader

This page lists supported metadata fields for the Bio-Formats Cellomics C01 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 31 of them (6%).
- Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Cellomics C01 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX

References:
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: Theta
- Plane: TheT
- Plane: TheZ
- Plate: ColumnNamingConvention
- Plate: ID
- Plate: Name
- Plate: RowNamingConvention
- Well: Column
- Well: ID
- Well: Row
- WellSample: ID
- WellSample: ImageRef
- WellSample: Index

Total supported: 31
Total unknown or missing: 445

18.2.26 DNGReader

This page lists supported metadata fields for the Bio-Formats DNG format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats DNG format reader:
- Channel: ID

1254http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1255http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1256http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1257http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1258http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1259http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1260http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ColumnNamingConvention
1261http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
1262http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
1263http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_RowNamingConvention
1264http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
1265http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
1266http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row
1267http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
1268http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
1269http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
1270http://www.openmicroscopy.org/site/support/ome-model/
1271http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
This page lists supported metadata fields for the Bio-Formats Deltavision format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 52 of them (10%).
- Of those, Bio-Formats fully or partially converts 52 (100%).

18.2.27 DeltavisionReader

```markdown
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
```

Total supported: 19
Total unknown or missing: 457

18.2. Metadata fields

1272 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1273 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1274 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1275 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1276 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1277 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1278 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1279 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1280 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1281 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1282 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1283 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
1284 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1285 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1286 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1287 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1288 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1289 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1290 http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Deltavision format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: NDFilter
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Model
- Detector: Type
- DetectorSettings: Binning
- DetectorSettings: Gain
- DetectorSettings: ID
- DetectorSettings: ReadOutRate
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- ImagingEnvironment: Temperature
- Instrument: ID
- Objective: CalibratedMagnification
- Objective: Correction
- Objective: ID
- Objective: Immersion

1291 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
1292 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
1293 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1294 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_NDFilter
1295 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
1296 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1297 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
1298 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
1299 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
1300 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
1301 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
1302 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
1303 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ReadOutRate
1304 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1305 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
1306 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1307 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
1308 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_Name
1309 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_Temperature
1310 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
1311 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_CalibratedMagnification
1312 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
1313 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
1314 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion

18.2. Metadata fields
• Objective : LensNA
• Objective : Manufacturer
• Objective : Model
• Objective : NominalMagnification
• Objective : WorkingDistance
• ObjectiveSettings : ID
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Maker
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_WorkingDistance
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
• Plane: TheT
• Plane: TheZ

Total supported: 52
Total unknown or missing: 424

18.2.28 DicomReader

This page lists supported metadata fields for the Bio-Formats DICOM format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 23 of them (4%).
• Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats DICOM format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
18.2.29 EPSReader

This page lists supported metadata fields for the Bio-Formats Encapsulated PostScript format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Encapsulated PostScript format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved

18.2. Metadata fields
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.30 Ecat7Reader

This page lists supported metadata fields for the Bio-Formats ECAT7 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 23 of them (4%).
• Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats ECAT7 format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
- Pixels : DimensionOrder¹³⁹⁵
- Pixels : ID¹³⁹⁶
- Pixels : Interleaved¹³⁹⁷
- Pixels : PhysicalSizeX¹³⁹⁸
- Pixels : PhysicalSizeY¹³⁹⁹
- Pixels : PhysicalSizeZ¹⁴⁰⁰
- Pixels : SignificantBits¹⁴⁰¹
- Pixels : SizeC¹⁴⁰²
- Pixels : SizeT¹⁴⁰³
- Pixels : SizeX¹⁴⁰⁴
- Pixels : SizeY¹⁴⁰⁵
- Pixels : SizeZ¹⁴⁰⁶
- Pixels : Type¹⁴⁰⁷
- Plane : TheC¹⁴⁰⁸
- Plane : TheT¹⁴⁰⁹
- Plane : TheZ¹⁴¹⁰

Total supported: 23
Total unknown or missing: 453

18.2.31 FEIReader

This page lists supported metadata fields for the Bio-Formats FEI/Philips format reader.

These fields are from the OME data model¹⁴¹¹. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats FEI/Philips format reader:
- Channel : ID¹⁴¹²

¹³⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
¹³⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
¹³⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
¹³⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
¹³⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
¹⁴⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
¹⁴⁰¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
¹⁴⁰²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
¹⁴⁰³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
¹⁴⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
¹⁴⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
¹⁴⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
¹⁴⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
¹⁴⁰⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
¹⁴⁰⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
¹⁴¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
¹⁴¹¹http://www.openmicroscopy.org/site/support/ome-model/
¹⁴¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
Total supported: 19

Total unknown or missing: 457

18.2.32 FEITiffReader

This page lists supported metadata fields for the Bio-Formats FEI TIFF format reader. These fields are from the OME data model[1431]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 39 of them (8%).
- Of those, Bio-Formats fully or partially converts 39 (100%).

Supported fields

These fields are fully supported by the Bio-Formats FEI TIFF format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Model
- Detector: Type
- Experimenter: ID
- Experimenter: LastName
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Microscope: Model
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: NominalMagnification
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY

References:

1433. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1436. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
1438. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
1439. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1446. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
1447. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
1448. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
1450. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
18.2.33 FV1000Reader

This page lists supported metadata fields for the Bio-Formats Olympus FV1000 format reader. These fields are from the OME data model\(^{1471}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 113 of them (23%).
- Of those, Bio-Formats fully or partially converts 113 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus FV1000 format reader:

- Channel : EmissionWavelength\(^{1472}\)
- Channel : ExcitationWavelength\(^{1473}\)

\(^{1456}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{1457}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{1458}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{1459}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{1460}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^{1461}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\(^{1462}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
\(^{1463}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{1464}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{1465}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{1466}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{1467}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Name
\(^{1468}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_X
\(^{1469}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Y
\(^{1470}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Z
\(^{1471}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{1472}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
\(^{1473}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
• Channel: ID
• Channel: IlluminationType
• Channel: LightSourceSettingsID
• Channel: LightSourceSettingsWavelength
• Channel: Name
• Channel: SamplesPerPixel
• Detector: Gain
• Detector: ID
• Detector: Type
• Detector: Voltage
• DetectorSettings: ID
• Dichroic: ID
• Dichroic: Model
• Ellipse: FontSize
• Ellipse: ID
• Ellipse: RadiusX
• Ellipse: RadiusY
• Ellipse: StrokeWidth
• Ellipse: TheT
• Ellipse: TheZ
• Ellipse: Transform
• Ellipse: X
• Ellipse: Y
• Filter: ID
• Filter: Model
• Image: AcquisitionDate

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_IlluminationType
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_Wavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Gain
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Voltage
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Dichroic_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_RadiusX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_RadiusY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
18.2. Metadata fields
• Objective: NominalMagnification
• Objective: WorkingDistance
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Point: FontSize

1526 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
1527 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective WorkingDistance
1528 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
1529 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1530 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1531 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1532 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1533 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
1534 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
1535 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
1536 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1537 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1538 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1539 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
1540 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1541 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1542 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
1543 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1544 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
1545 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
1546 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
1547 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1548 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1549 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1550 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
18.2. Metadata fields

- **Point:** ID
- **Point:** StrokeWidth
- **Point:** TheT
- **Point:** TheZ
- **Point:** X
- **Point:** Y
- **Polygon:** FontSize
- **Polygon:** ID
- **Polygon:** Points
- **Polygon:** StrokeWidth
- **Polygon:** TheT
- **Polygon:** TheZ
- **Polygon:** Transform
- **Polyline:** FontSize
- **Polyline:** ID
- **Polyline:** Points
- **Polyline:** StrokeWidth
- **Polyline:** TheT
- **Polyline:** TheZ
- **Polyline:** Transform
- **ROI:** ID
- **Rectangle:** FontSize
- **Rectangle:** Height
- **Rectangle:** ID
- **Rectangle:** StrokeWidth
- **Rectangle:** TheT
18.2.34 FakeReader

This page lists supported metadata fields for the Bio-Formats Simulated data format reader.

These fields are from the OME data model\[^{1585}\]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 84 of them (17%).
- Of those, Bio-Formats fully or partially converts 84 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Simulated data format reader:

- BooleanAnnotation : ID\[^{1586}\]
- BooleanAnnotation : Namespace\[^{1587}\]
- BooleanAnnotation : Value\[^{1588}\]
- Channel : Color\[^{1589}\]
- Channel : ID\[^{1590}\]
- Channel : SamplesPerPixel\[^{1591}\]
- CommentAnnotation : ID\[^{1592}\]
- CommentAnnotation : Namespace\[^{1593}\]
- CommentAnnotation : Value\[^{1594}\]
- DoubleAnnotation : ID\[^{1595}\]

[^1578]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
[^1579]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
[^1580]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Width
[^1581]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X
[^1582]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Y
[^1583]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutIn
[^1584]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutOut
[^1585]: http://www.openmicroscopy.org/site/support/ome-model/
[^1586]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID
[^1587]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace
[^1588]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#BooleanAnnotation_Value
[^1589]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Color
[^1590]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
[^1591]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[^1592]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID
[^1593]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace
[^1594]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#CommentAnnotation_Value
[^1595]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID
• DoubleAnnotation : Namespace
• DoubleAnnotation : Value
• Ellipse : ID
• Ellipse : RadiusX
• Ellipse : RadiusY
• Ellipse : X
• Ellipse : Y
• Image : AcquisitionDate
• Image : AnnotationRef
• Image : ID
• Image : Name
• Image : ROIRef
• Label : ID
• Label : Text
• Label : X
• Label : Y
• Line : ID
• Line : X1
• Line : X2
• Line : Y1
• Line : Y2
• LongAnnotation : ID
• LongAnnotation : Namespace
• LongAnnotation : Value
• Mask : BinData
• Mask : BinDataBigEndian

1596 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Annotation_Name
1597 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#DoubleAnnotation_Value
1598 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Shape_ID
1599 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Ellipse_RadiusX
1600 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Ellipse_RadiusY
1601 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Ellipse_X
1602 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Ellipse_Y
1603 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Image_AcquisitionDate
1604 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#AnnotationRef_ID
1605 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Image_ID
1606 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Image_Name
1607 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#ROIRef_ID
1608 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Shape_ID
1609 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Shape_Text
1610 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Label_X
1611 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Label_Y
1612 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Shape_ID
1613 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Line_X1
1614 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Line_X2
1615 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Line_Y1
1616 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Line_Y2
1617 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#Annotation_Name
1618 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#LongAnnotation_Value
1619 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#BinData
1620 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsdl#BinData_BigEndian

18.2. Metadata fields
• Mask: Height
• Mask: ID
• Mask: Width
• Mask: X
• Mask: Y
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Point: ID
• Point: X
• Point: Y

1622 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_Height
1623 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
1624 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_Width
1625 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_X
1626 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_Y
1627 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1628 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1629 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1630 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1631 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
1632 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
1633 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
1634 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1635 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1636 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1637 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
1638 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1639 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1640 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1641 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
1642 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1643 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1644 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1645 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_X
1646 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_Y
• Polygon: ID
• Polygon: Points
• Polyline: ID
• Polyline: Points
• ROI: ID
• Rectangle: Height
• Rectangle: ID
• Rectangle: Width
• Rectangle: X
• Rectangle: Y
• TagAnnotation: ID
• TagAnnotation: Namespace
• TagAnnotation: Value
• TermAnnotation: ID
• TermAnnotation: Namespace
• TermAnnotation: Value
• TimestampAnnotation: ID
• TimestampAnnotation: Namespace
• TimestampAnnotation: Value
• XMLAnnotation: ID
• XMLAnnotation: Namespace
• XMLAnnotation: Value

Total supported: 84
Total unknown or missing: 392

18.2.35 FilePatternReader

This page lists supported metadata fields for the Bio-Formats File pattern format reader.

[Links to corresponding sections in the Open Microscopy Environment (OME) schema specifications]
These fields are from the OME data model1670. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats File pattern format reader:

- Channel : ID1671
- Channel : SamplesPerPixel1672
- Image : AcquisitionDate1673
- Image : ID1674
- Image : Name1675
- Pixels : BigEndian1676
- Pixels : DimensionOrder1677
- Pixels : ID1678
- Pixels : Interleaved1679
- Pixels : SignificantBits1680
- Pixels : SizeC1681
- Pixels : SizeT1682
- Pixels : SizeX1683
- Pixels : SizeY1684
- Pixels : SizeZ1685
- Pixels : Type1686
- Plane : TheC1687
- Plane : TheT1688
- Plane : TheZ1689

Total supported: 19
Total unknown or missing: 457

1670http://www.openmicroscopy.org/site/support/ome-model/
1671http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1672http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1673http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1674http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1675http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1676http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1677http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1678http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1679http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1680http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1681http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1682http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1683http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
1684http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1685http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1686http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1687http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1688http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1689http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

18.2. Metadata fields
18.2.36 FitsReader

This page lists supported metadata fields for the Bio-Formats Flexible Image Transport System format reader. These fields are from the OME data model\(^{1690}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Flexible Image Transport System format reader:

- Channel : ID\(^{1691}\)
- Channel : SamplesPerPixel\(^{1692}\)
- Image : AcquisitionDate\(^{1693}\)
- Image : ID\(^{1694}\)
- Image : Name\(^{1695}\)
- Pixels : BigEndian\(^{1696}\)
- Pixels : DimensionOrder\(^{1697}\)
- Pixels : ID\(^{1698}\)
- Pixels : Interleaved\(^{1699}\)
- Pixels : SignificantBits\(^{1700}\)
- Pixels : SizeC\(^{1701}\)
- Pixels : SizeT\(^{1702}\)
- Pixels : SizeX\(^{1703}\)
- Pixels : SizeY\(^{1704}\)
- Pixels : SizeZ\(^{1705}\)
- Pixels : Type\(^{1706}\)
- Plane : TheC\(^{1707}\)
- Plane : TheT\(^{1708}\)

\(^{1690}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{1691}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID

\(^{1692}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{1693}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

\(^{1694}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID

\(^{1695}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name

\(^{1696}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian

\(^{1697}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder

\(^{1698}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID

\(^{1699}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved

\(^{1700}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits

\(^{1701}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC

\(^{1702}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT

\(^{1703}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX

\(^{1704}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

\(^{1705}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ

\(^{1706}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

\(^{1707}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC

\(^{1708}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
18.2.37 FlexReader

This page lists supported metadata fields for the Bio-Formats Evotec Flex format reader.

These fields are from the OME data model[^1710]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 69 of them (14%).
- Of those, Bio-Formats fully or partially converts 69 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Evotec Flex format reader:
- Channel: ID[^1711]
- Channel: LightSourceSettingsID[^1712]
- Channel: Name[^1713]
- Channel: SamplesPerPixel[^1714]
- Detector: ID[^1715]
- Detector: Type[^1716]
- DetectorSettings: Binning[^1717]
- DetectorSettings: ID[^1718]
- Dichroic: ID[^1719]
- Dichroic: Model[^1720]
- Filter: FilterWheel[^1721]
- Filter: ID[^1722]
- Filter: Model[^1723]
- Image: AcquisitionDate[^1724]
- Image: ID[^1725]
- Image: InstrumentRef[^1726]

[^1709]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
[^1710]: http://www.openmicroscopy.org/site/support/ome-model/
[^1711]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
[^1712]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_ID
[^1713]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
[^1714]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[^1715]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
[^1716]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
[^1717]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
[^1718]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
[^1719]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Settings
[^1720]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
[^1721]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_FilterWheel
[^1722]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_ID
[^1723]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
[^1724]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[^1725]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
[^1726]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
• Image: Name
• Instrument: ID
• Laser: ID
• Laser: LaserMedium
• Laser: Type
• Laser: Wavelength
• LightPath: DichroicRef
• LightPath: EmissionFilterRef
• LightPath: ExcitationFilterRef
• Objective: CalibratedMagnification
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: ColumnNamingConvention
• Plate: ExternalIdentifier
• Plate: ID
• Plate: Name
• Plate: RowNamingConvention
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: StartTime
• PlateAcquisition: WellSampleRef
• Well: Column
• Well: ID
• Well: Row
• WellSample: ID
• WellSample: ImageRef
• WellSample: Index
• WellSample: PositionX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ColumnNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ExternalIdentifier
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_RowNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_StartTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSampleRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionX

1753 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1754 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1755 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
1756 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
1757 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
1758 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
1759 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
1760 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1761 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1762 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1763 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ColumnNamingConvention
1764 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ExternalIdentifier
1765 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
1766 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
1767 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_RowNamingConvention
1768 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
1769 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
1770 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_StartTime
1771 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSampleRef_ID
1772 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
1773 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
1774 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row
1775 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
1776 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
1777 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
1778 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionX

18.2. Metadata fields
• WellSample : PositionY

Total supported: 69
Total unknown or missing: 407

18.2.38 FlowSightReader

This page lists supported metadata fields for the Bio-Formats FlowSight format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats FlowSight format reader:

- Channel : ID
- Channel : Name
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ

1779 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionY
1780 http://www.openmicroscopy.org/Site/support/ome-model/
1781 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1782 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
1783 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1784 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1785 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1786 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1787 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1788 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1789 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1790 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1791 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1792 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1793 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1794 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
1795 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1796 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
• Pixels: Type1797
• Plane: TheC1798
• Plane: TheT1799
• Plane: TheZ1800

Total supported: 20
Total unknown or missing: 456

18.2.39 FluoviewReader

This page lists supported metadata fields for the Bio-Formats Olympus Fluoview/ABD TIFF format reader. These fields are from the OME data model1801. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 49 of them (10%).
• Of those, Bio-Formats fully or partially converts 49 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus Fluoview/ABD TIFF format reader:

• Channel: ID1802
• Channel: Name1803
• Channel: SamplesPerPixel1804
• Detector: ID1805
• Detector: Manufacturer1806
• Detector: Model1807
• Detector: Type1808
• DetectorSettings: Gain1809
• DetectorSettings: ID1810
• DetectorSettings: Offset1811
• DetectorSettings: ReadOutRate1812
• DetectorSettings: Voltage1813
• Image: AcquisitionDate1814

1797http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1798http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1799http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1800http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1801http://www.openmicroscopy.org/site/support/ome-model/
1802http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1803http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
1804http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1805http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
1806http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
1807http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
1808http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
1809http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
1810http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
1811http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
1812http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ReadOutRate
1813http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Voltage
1814http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• ImagingEnvironment: Temperature
• Instrument: ID
• Objective: CalibratedMagnification
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ

18.2. Metadata fields

1815 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
1816 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1817 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
1818 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1819 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_Temperature
1820 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
1821 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_CalibratedMagnification
1822 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
1823 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
1824 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
1825 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
1826 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
1827 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
1828 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1829 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1830 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1831 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1832 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
1833 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
1834 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
1835 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1836 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1837 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1838 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
1839 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1840 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 49
Total unknown or missing: 427

18.2.40 FujiReader

This page lists supported metadata fields for the Bio-Formats Fuji LAS 3000 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 23 of them (4%).
• Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Fuji LAS 3000 format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Instrument: ID
• Microscope: Model

1841 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
1842 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1843 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
1844 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
1845 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
1846 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
1847 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
1848 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1849 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1850 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1851 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1852 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1853 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1854 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1855 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
1856 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
18.2.41 GIFReader

This page lists supported metadata fields for the Bio-Formats Graphics Interchange Format format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Graphics Interchange Format format reader:

- Channel: ID

References:

- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 23
Total unknown or missing: 453
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.42 GatanDM2Reader

This page lists supported metadata fields for the Bio-Formats Gatan DM2 format reader.
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 30 of them (6%).
• Of those, Bio-Formats fully or partially converts 30 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Gatan DM2 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Detector: ID
- DetectorSettings: Binning
- DetectorSettings: ID
- Experimenter: FirstName
- Experimenter: ID
- Experimenter: LastName
- Image: AcquisitionDate
- Image: ExperimenterRef
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX

1896 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1897 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1898 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
1899 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
1900 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
1901 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_FirstName
1902 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_ID
1903 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
1904 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1905 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageExperimenterRef_ID
1906 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1907 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
1908 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1909 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
1910 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1911 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1912 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1913 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1914 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
1915 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
1916 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1917 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1918 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1919 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 30
Total unknown or missing: 446

18.2.43 GatanReader

This page lists supported metadata fields for the Bio-Formats Gatan Digital Micrograph format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 36 of them (7%).
• Of those, Bio-Formats fully or partially converts 36 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Gatan Digital Micrograph format reader:

• Channel : AcquisitionMode
• Channel : ID
• Channel : SamplesPerPixel
• Detector : ID
• DetectorSettings : ID
• DetectorSettings : Voltage
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Instrument : ID
• Objective : Correction

References

1920 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1921 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1922 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1923 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1924 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1925 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1926 http://www.openmicroscopy.org/site/support/ome-model/
1927 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_AcquisitionMode
1928 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1929 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1930 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
1931 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
1932 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Voltage
1933 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1934 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1935 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1936 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
- Objective: ID
- Objective: Immersion
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: ExposureTime
- Plane: PositionX
- Plane: PositionY
- Plane: PositionZ
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 36

Total unknown or missing: 440

18.2. Metadata fields
18.2.44 GelReader

This page lists supported metadata fields for the Bio-Formats Amersham Biosciences GEL format reader.

These fields are from the OME data model\(^{1963}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Amersham Biosciences GEL format reader:

- Channel: ID\(^{1964}\)
- Channel: SamplesPerPixel\(^{1965}\)
- Image: AcquisitionDate\(^{1966}\)
- Image: ID\(^{1967}\)
- Image: Name\(^{1968}\)
- Pixels: BigEndian\(^{1969}\)
- Pixels: DimensionOrder\(^{1970}\)
- Pixels: ID\(^{1971}\)
- Pixels: Interleaved\(^{1972}\)
- Pixels: PhysicalSizeX\(^{1973}\)
- Pixels: PhysicalSizeY\(^{1974}\)
- Pixels: SignificantBits\(^{1975}\)
- Pixels: SizeC\(^{1976}\)
- Pixels: SizeT\(^{1977}\)
- Pixels: SizeX\(^{1978}\)
- Pixels: SizeY\(^{1979}\)
- Pixels: SizeZ\(^{1980}\)
- Pixels: Type\(^{1981}\)

\(^{1963}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{1964}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID

\(^{1965}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{1966}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

\(^{1967}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID

\(^{1968}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name

\(^{1969}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian

\(^{1970}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder

\(^{1971}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID

\(^{1972}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved

\(^{1973}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX

\(^{1974}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY

\(^{1975}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits

\(^{1976}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC

\(^{1977}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT

\(^{1978}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX

\(^{1979}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

\(^{1980}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ

\(^{1981}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
• Plane: TheC1982
• Plane: TheT1983
• Plane: TheZ1984

Total supported: 21
Total unknown or missing: 455

18.2.45 HISReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu HIS format reader.

These fields are from the OME data model1985. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 27 of them (5%).
• Of those, Bio-Formats fully or partially converts 27 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu HIS format reader:

• Channel: ID1986
• Channel: SamplesPerPixel1987
• Detector: ID1988
• Detector: Offset1989
• Detector: Type1990
• DetectorSettings: Binning1991
• DetectorSettings: ID1992
• Image: AcquisitionDate1993
• Image: ID1994
• Image: InstrumentRef1995
• Image: Name1996
• Instrument: ID1997
• Pixels: BigEndian1998
• Pixels: DimensionOrder1999

1982http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1983http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1984http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1985http://www.openmicroscopy.org/site/support/ome-model/
1986http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1987http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1988http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
1989http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Offset
1990http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
1991http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
1992http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
1993http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1994http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1995http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
1996http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_Type
1997http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_Name
1998http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1999http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 27
Total unknown or missing: 449

18.2.46 HRDGDFReader

This page lists supported metadata fields for the Bio-Formats NOAA-HRD Gridded Data Format format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats NOAA-HRD Gridded Data Format format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID

18.2. Metadata fields
18.2.47 HamamatsuVMSReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu VMS format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 26 of them (5%).
- Of those, Bio-Formats fully or partially converts 26 (100%).

Total supported: 21
Total unknown or missing: 455
Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu VMS format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Instrument: ID
- Objective: ID
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC

2036 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
2037 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
2038 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
2039 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
2040 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
2041 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
2042 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
2043 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
2044 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
2045 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
2046 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
2047 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
2048 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
2049 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
2050 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
2051 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
2052 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2053 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2054 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2055 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2056 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
2057 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
2058 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
2059 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
18.2. Metadata fields

- Plane: TheT
- Plane: TheZ

Total supported: 26
Total unknown or missing: 450

18.2.48 HitachiReader

This page lists supported metadata fields for the Bio-Formats Hitachi format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 31 of them (6%).
- Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hitachi format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Microscope: Model
- Microscope: SerialNumber
- Objective: ID
- Objective: WorkingDistance
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
Supported fields

These fields are fully supported by the Bio-Formats I2I format reader:

- **Channel : ID**

18.2.49 I2IReader

This page lists supported metadata fields for the Bio-Formats I2I format reader.

These fields are from the [OME data model](http://www.openmicroscopy.org/site/support/ome-model/). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the [metadata summary table](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html):

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats I2I format reader:

- **Channel : ID**

2078 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
2079 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
2080 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
2081 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2082 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2083 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2084 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2085 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
2086 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
2087 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
2088 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
2089 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
2090 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
2091 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
2092 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
2093 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
2094 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
2095 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
• **Channel**: `SamplesPerPixel`\(^{2096}\)
• **Image**: `AcquisitionDate`\(^{2097}\)
• **Image**: `ID`\(^{2098}\)
• **Image**: `Name`\(^{2099}\)
• **Pixels**: `BigEndian`\(^{2100}\)
• **Pixels**: `DimensionOrder`\(^{2101}\)
• **Pixels**: `ID`\(^{2102}\)
• **Pixels**: `Interleaved`\(^{2103}\)
• **Pixels**: `SignificantBits`\(^{2104}\)
• **Pixels**: `SizeC`\(^{2105}\)
• **Pixels**: `SizeT`\(^{2106}\)
• **Pixels**: `SizeX`\(^{2107}\)
• **Pixels**: `SizeY`\(^{2108}\)
• **Pixels**: `SizeZ`\(^{2109}\)
• **Pixels**: `Type`\(^{2110}\)
• **Plane**: `TheC`\(^{2111}\)
• **Plane**: `TheT`\(^{2112}\)
• **Plane**: `TheZ`\(^{2113}\)

Total supported: 19

Total unknown or missing: 457

18.2.50 ICSReader

This page lists supported metadata fields for the Bio-Formats Image Cytometry Standard format reader. These fields are from the [OME data model]^{2114}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 72 of them (15%).
- Of those, Bio-Formats fully or partially converts 72 (100%).

\(^{2096}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{2097}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

\(^{2098}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID

\(^{2099}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name

\(^{2100}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian

\(^{2101}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder

\(^{2102}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID

\(^{2103}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved

\(^{2104}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits

\(^{2105}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC

\(^{2106}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT

\(^{2107}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX

\(^{2108}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

\(^{2109}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ

\(^{2110}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

\(^{2111}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC

\(^{2112}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT

\(^{2113}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

\(^{2114}\)http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Image Cytometry Standard format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: Name
- Channel: PinholeSize
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Manufacturer
- Detector: Model
- Detector: Type
- DetectorSettings: Gain
- DetectorSettings: ID
- Dichroic: ID
- Dichroic: Model
- Experiment: ID
- Experiment: Type
- Experimenter: ID
- Experimenter: LastName
- Filter: ID
- Filter: Model
- FilterSet: DichroicRef
- FilterSet: EmissionFilterRef
- FilterSet: ExcitationFilterRef
- FilterSet: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_PinholeSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Dichroic_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DichroicRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterRef_ID
• FilterSet : Model
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Laser : ID
• Laser : LaserMedium
• Laser : Manufacturer
• Laser : Model
• Laser : Power
• Laser : RepetitionRate
• Laser : Type
• Laser : Wavelength
• Microscope : Manufacturer
• Microscope : Model
• Objective : CalibratedMagnification
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Model
• Objective : WorkingDistance
• ObjectiveSettings : ID
• Pixels : BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 72
Total unknown or missing: 404

18.2.51 IM3Reader

This page lists supported metadata fields for the Bio-Formats Perkin-Elmer Nuance IM3 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

18.2. Metadata fields
data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Perkin-Elmer Nuance IM3 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19

Total unknown or missing: 457
18.2.52 IMODReader

This page lists supported metadata fields for the Bio-Formats IMOD format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 44 of them (9%).
- Of those, Bio-Formats fully or partially converts 44 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IMOD format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Image: ROIRef
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Point: ID
• Point: StrokeColor
• Point: StrokeDashArray
• Point: StrokeWidth
• Point: TheZ
• Point: X
• Point: Y
• Polygon: ID
• Polygon: Points
• Polygon: StrokeColor
• Polygon: StrokeDashArray
• Polygon: StrokeWidth
• Polygon: TheZ
• Polyline: ID
• Polyline: Points
• Polyline: StrokeColor
• Polyline: StrokeDashArray
• Polyline: StrokeWidth
• Polyline: TheZ
• ROI: ID
• ROI: Name

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_Points
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_Name

18.2. Metadata fields 338
Total supported: 44
Total unknown or missing: 432

18.2.53 INRReader

This page lists supported metadata fields for the Bio-Formats INR format reader.

These fields are from the OME data model\(^2^{2252}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats INR format reader:

- Channel: ID\(^\text{2253}\)
- Channel: SamplesPerPixel\(^\text{2254}\)
- Image: AcquisitionDate\(^\text{2255}\)
- Image: ID\(^\text{2256}\)
- Image: Name\(^\text{2257}\)
- Pixels: BigEndian\(^\text{2258}\)
- Pixels: DimensionOrder\(^\text{2259}\)
- Pixels: ID\(^\text{2260}\)
- Pixels: Interleaved\(^\text{2261}\)
- Pixels: PhysicalSizeX\(^\text{2262}\)
- Pixels: PhysicalSizeY\(^\text{2263}\)
- Pixels: PhysicalSizeZ\(^\text{2264}\)
- Pixels: SignificantBits\(^\text{2265}\)
- Pixels: SizeC\(^\text{2266}\)
- Pixels: SizeT\(^\text{2267}\)
- Pixels: SizeX\(^\text{2268}\)
- Pixels: SizeY\(^\text{2269}\)

\(^2^{2252}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^2^{2253}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^2^{2254}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^2^{2255}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^2^{2256}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^2^{2257}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^2^{2258}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^2^{2259}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^2^{2260}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^2^{2261}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^2^{2262}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^2^{2263}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^2^{2264}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
\(^2^{2265}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^2^{2266}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^2^{2267}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^2^{2268}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^2^{2269}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
- Pixels: SizeZ²²⁷⁰
- Pixels: Type²²⁷¹
- Plane: TheC²²⁷²
- Plane: TheT²²⁷³
- Plane: TheZ²²⁷⁴

Total supported: 22

Total unknown or missing: 454

18.2.54 IPLabReader

This page lists supported metadata fields for the Bio-Formats IPLab format reader.

These fields are from the OME data model²²⁷⁵. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 31 of them (6%).
- Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IPLab format reader:

- Channel: ID²²⁷⁶
- Channel: SamplesPerPixel²²⁷⁷
- Image: AcquisitionDate²²⁷⁸
- Image: Description²²⁷⁹
- Image: ID²²⁸⁰
- Image: Name²²⁸¹
- Image: ROIRef²²⁸²
- Pixels: BigEndian²²⁸³
- Pixels: DimensionOrder²²⁸⁴
- Pixels: ID²²⁸⁵
- Pixels: Interleaved²²⁸⁶
- Pixels: PhysicalSizeX²²⁸⁷

²²⁷⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
²²⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
²²⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
²²⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
²²⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
²²⁷⁵http://www.openmicroscopy.org/site/support/ome-model/
²²⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
²²⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
²²⁷⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
²²⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
²²⁸⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
²²⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
²²⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID
²²⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
²²⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
²²⁸⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
²²⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
²²⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX

18.2. Metadata fields
18.2.55 IPWReader

This page lists supported metadata fields for the Bio-Formats Image-Pro Workspace format reader. These fields are from the OME data model\(^2\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

\(^2\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Properties

18.2. Metadata fields
Supported fields

These fields are fully supported by the Bio-Formats Image-Pro Workspace format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 20
Total unknown or missing: 456

18.2.56 ImaconReader

This page lists supported metadata fields for the Bio-Formats Imacon format reader.

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

18.2. Metadata fields
These fields are from the OME data model2328. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:2328

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Image format reader:

- Channel: ID2329
- Channel: SamplesPerPixel2330
- Experimenter: FirstName2331
- Experimenter: ID2332
- Experimenter: LastName2333
- Image: AcquisitionDate2334
- Image: ExperimenterRef2335
- Image: ID2336
- Image: Name2337
- Pixels: BigEndian2338
- Pixels: DimensionOrder2339
- Pixels: ID2340
- Pixels: Interleaved2341
- Pixels: SignificantBits2342
- Pixels: SizeC2343
- Pixels: SizeT2344
- Pixels: SizeX2345
- Pixels: SizeY2346
- Pixels: SizeZ2347
- Pixels: Type2348

2328http://www.openmicroscopy.org/site/support/ome-model/
2329http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
2330http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
2331http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_FirstName
2332http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_ID
2333http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
2334http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
2335http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID
2336http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
2337http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
2338http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
2339http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
2340http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
2341http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
2342http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2343http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2344http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2345http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2346http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
2347http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
2348http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 23
Total unknown or missing: 453

18.2.57 ImageIOReader

This page lists supported metadata fields for the Bio-Formats ImageIOReader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats ImageIOReader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY

2349 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
2350 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
2351 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
2352 http://www.openmicroscopy.org/site/support/ome-model/
2353 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
2354 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
2355 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
2356 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
2357 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
2358 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
2359 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
2360 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
2361 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
2362 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2363 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2364 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2365 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2366 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.58 ImagicReader

This page lists supported metadata fields for the Bio-Formats IMAGIC format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IMAGIC format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ

18.2. Metadata fields
Total supported: 22
Total unknown or missing: 454

18.2.59 ImarisHDFReader

This page lists supported metadata fields for the Bio-Formats Bitplane Imaris 5.5 (HDF) format reader.

These fields are from the OME data model\(^\text{2395}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bitplane Imaris 5.5 (HDF) format reader:

- Channel: Color\(^\text{2396}\)
- Channel: ID\(^\text{2397}\)
- Channel: SamplesPerPixel\(^\text{2398}\)
- Image: AcquisitionDate\(^\text{2399}\)
- Image: ID\(^\text{2400}\)
- Image: Name\(^\text{2401}\)
- Pixels: BigEndian\(^\text{2402}\)

\(^\text{2385}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits

\(^\text{2386}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC

\(^\text{2387}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT

\(^\text{2388}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX

\(^\text{2389}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

\(^\text{2390}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

\(^\text{2391}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC

\(^\text{2392}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT

\(^\text{2393}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

\(^\text{2394}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Color

\(^\text{2395}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID

\(^\text{2396}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel

\(^\text{2397}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

\(^\text{2398}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID

\(^\text{2399}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name

\(^\text{2400}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 23
Total unknown or missing: 453

18.2.60 ImarisReader

This page lists supported metadata fields for the Bio-Formats Bitplane Imaris format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 32 of them (6%).
• Of those, Bio-Formats fully or partially converts 32 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bitplane Imaris format reader:
• Channel : ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html# Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
• Channel: PinholeSize
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Type
• DetectorSettings: Gain
• DetectorSettings: ID
• DetectorSettings: Offset
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ

2421 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_PinholeSize
2422 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
2423 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
2424 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
2425 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
2426 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
2427 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
2428 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
2429 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
2430 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
2431 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
2432 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
2433 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
2434 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
2435 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
2436 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
2437 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
2438 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
2439 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
2440 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2441 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2442 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2443 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2444 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
2445 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
• Pixels : TimeIncrement\(^{2447}\)
• Pixels : Type\(^{2448}\)
• Plane : TheC\(^{2449}\)
• Plane : TheT\(^{2450}\)
• Plane : TheZ\(^{2451}\)

Total supported: 32
Total unknown or missing: 444

18.2.61 ImarisTiffReader

This page lists supported metadata fields for the Bio-Formats Bitplane Imaris 3 (TIFF) format reader.

These fields are from the OME data model\(^{2452}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 23 of them (4%).
• Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bitplane Imaris 3 (TIFF) format reader:
• Channel : EmissionWavelength\(^{2453}\)
• Channel : ExcitationWavelength\(^{2454}\)
• Channel : ID\(^{2455}\)
• Channel : Name\(^{2456}\)
• Channel : SamplesPerPixel\(^{2457}\)
• Image : AcquisitionDate\(^{2458}\)
• Image : Description\(^{2459}\)
• Image : ID\(^{2460}\)
• Image : Name\(^{2461}\)
• Pixels : BigEndian\(^{2462}\)
• Pixels : DimensionOrder\(^{2463}\)
• Pixels : ID\(^{2464}\)

\(^{2447}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
\(^{2448}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{2449}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{2450}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{2451}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{2452}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2453}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
\(^{2454}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
\(^{2455}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{2456}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
\(^{2457}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2458}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{2459}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
\(^{2460}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{2461}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{2462}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{2463}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{2464}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
This page lists supported metadata fields for the Bio-Formats Improvision TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 25 of them (5%).
- Of those, Bio-Formats fully or partially converts 25 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Improvision TIFF format reader:

- Channel : ID
- Channel : Name
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID

2465 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
2466 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2467 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2468 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2469 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2470 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
2471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
2472 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
2473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
2474 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
2475 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
2476 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
2477 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
2478 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
2479 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
2480 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
2481 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
Bio-Formats Documentation, Release 5.2.3

- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: TimeIncrement
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 25
Total unknown or missing: 451

18.2.63 InspectorReader

This page lists supported metadata fields for the Bio-Formats Lavision Inspector format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Lavision Imspector format reader:

- **Channel**: ID
- **Channel**: SamplesPerPixel
- **Image**: AcquisitionDate
- **Image**: ID
- **Image**: Name
- **Pixels**: BigEndian
- **Pixels**: DimensionOrder
- **Pixels**: ID
- **Pixels**: Interleaved
- **Pixels**: SignificantBits
- **Pixels**: SizeC
- **Pixels**: SizeT
- **Pixels**: SizeX
- **Pixels**: SizeY
- **Pixels**: SizeZ
- **Pixels**: Type
- **Plane**: TheC
- **Plane**: TheT
- **Plane**: TheZ

Total supported: 19

Total unknown or missing: 457

18.2.64 InCell3000Reader

This page lists supported metadata fields for the Bio-Formats InCell 3000 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

[^2503]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
[^2504]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[^2505]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[^2506]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
[^2507]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
[^2508]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
[^2509]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
[^2510]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
[^2511]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
[^2512]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
[^2513]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
[^2514]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
[^2515]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
[^2516]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
[^2517]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
[^2518]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[^2519]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
[^2520]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
[^2521]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
[^2522]: http://www.openmicroscopy.org/site/support/ome-model/
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats InCell 3000 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19

Total unknown or missing: 457

\[^{2523}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\[^{2524}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\[^{2525}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\[^{2526}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\[^{2527}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\[^{2528}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\[^{2529}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\[^{2530}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\[^{2531}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\[^{2532}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\[^{2533}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\[^{2534}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\[^{2535}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\[^{2536}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\[^{2537}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\[^{2538}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\[^{2539}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\[^{2540}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\[^{2541}\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

18.2. Metadata fields
18.2.65 InCellReader

This page lists supported metadata fields for the Bio-Formats InCell 1000/2000 format reader.
These fields are from the OME data model\(^\text{2542}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 67 of them (14%).
- Of those, Bio-Formats fully or partially converts 67 (100%).

Supported fields

These fields are fully supported by the Bio-Formats InCell 1000/2000 format reader:

- Channel: EmissionWavelength\(^\text{2543}\)
- Channel: ExcitationWavelength\(^\text{2544}\)
- Channel: ID\(^\text{2545}\)
- Channel: Name\(^\text{2546}\)
- Channel: SamplesPerPixel\(^\text{2547}\)
- Detector: ID\(^\text{2548}\)
- Detector: Model\(^\text{2549}\)
- Detector: Type\(^\text{2550}\)
- DetectorSettings : Binning\(^\text{2551}\)
- DetectorSettings : Gain\(^\text{2552}\)
- DetectorSettings : ID\(^\text{2553}\)
- Experiment : ID\(^\text{2554}\)
- Experiment : Type\(^\text{2555}\)
- Image : AcquisitionDate\(^\text{2556}\)
- Image : Description\(^\text{2557}\)
- Image : ExperimentRef\(^\text{2558}\)
- Image : ID\(^\text{2559}\)
- Image : InstrumentRef\(^\text{2560}\)
- Image : Name\(^\text{2561}\)

\(^{2542}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2543}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
\(^{2544}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
\(^{2545}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{2546}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
\(^{2547}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2548}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
\(^{2549}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
\(^{2550}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
\(^{2551}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
\(^{2552}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
\(^{2553}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
\(^{2554}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_ID
\(^{2555}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Type
\(^{2556}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{2557}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
\(^{2558}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimentRef_ID
\(^{2559}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{2560}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
\(^{2561}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
• **ImagingEnvironment**: Temperature
• **Instrument**: ID
• **Objective**: Correction
• **Objective**: ID
• **Objective**: Immersion
• **Objective**: LensNA
• **Objective**: Manufacturer
• **Objective**: NominalMagnification
• **ObjectiveSettings**: ID
• **ObjectiveSettings**: RefractiveIndex
• **Pixels**: BigEndian
• **Pixels**: DimensionOrder
• **Pixels**: ID
• **Pixels**: Interleaved
• **Pixels**: PhysicalSizeX
• **Pixels**: PhysicalSizeY
• **Pixels**: SignificantBits
• **Pixels**: SizeC
• **Pixels**: SizeT
• **Pixels**: SizeX
• **Pixels**: SizeY
• **pixels**: SizeZ
• **Pixels**: Type
• **Plane**: DeltaT
• **Plane**: ExposureTime
• **Plane**: PositionX

2564 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
2565 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
2566 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
2567 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
2568 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
2569 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
2570 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
2571 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
2572 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
2573 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
2574 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
2575 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
2576 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
2577 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
2578 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2579 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2580 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2581 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2582 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
2583 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
2584 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
2586 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: ColumnNamingConvention
• Plate: ID
• Plate: Name
• Plate: RowNamingConvention
• Plate: WellOriginX
• Plate: WellOriginY
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: WellSampleRef
• Well: Column
• Well: ID
• Well: Row
• WellSample: ID
• WellSample: ImageRef
• WellSample: Index
• WellSample: PositionX
• WellSample: PositionY

Total supported: 67
Total unknown or missing: 409

18.2.66 InveonReader

This page lists supported metadata fields for the Bio-Formats Inveon format reader.

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ColumnNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_RowNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_WellOriginX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_WellOriginY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSampleRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionY
These fields are from the OME data model\[2610\]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 30 of them (6%).
- Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Inveon format reader:

- Channel : ID\[2611\]
- Channel : SamplesPerPixel\[2612\]
- Experimenter : ID\[2613\]
- Experimenter : Institution\[2614\]
- Experimenter : UserName\[2615\]
- Image : AcquisitionDate\[2616\]
- Image : Description\[2617\]
- Image : ExperimenterRef\[2618\]
- Image : ID\[2619\]
- Image : InstrumentRef\[2620\]
- Image : Name\[2621\]
- Instrument : ID\[2622\]
- Microscope : Model\[2623\]
- Pixels : BigEndian\[2624\]
- Pixels : DimensionOrder\[2625\]
- Pixels : ID\[2626\]
- Pixels : Interleaved\[2627\]
- Pixels : PhysicalSizeX\[2628\]
- Pixels : PhysicalSizeY\[2629\]
- Pixels : PhysicalSizeZ\[2630\]
18.2.67 IvisionReader

This page lists supported metadata fields for the Bio-Formats I Vision format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 34 of them (7%).
- Of those, Bio-Formats fully or partially converts 34 (100%).

Supported fields

These fields are fully supported by the Bio-Formats I Vision format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Type
- DetectorSettings : Binning
- DetectorSettings : Gain
- DetectorSettings : ID
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 30
Total unknown or missing: 446
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: NominalMagnification
• ObjectiveSettings: ID
• ObjectiveSettings: RefractiveIndex
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: TheC
• Plane: TheT

2649 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
2650 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
2651 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
2652 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
2653 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
2654 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
2655 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
2656 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
2657 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
2658 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
2659 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
2660 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
2661 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
2662 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
2663 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
2664 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
2665 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2666 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2667 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2668 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2669 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
2670 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
2671 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
2672 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
2673 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
2674 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT

18.2. Metadata fields
• Plane : TheZ

Total supported: 34
Total unknown or missing: 442

18.2.68 JEOLReader

This page lists supported metadata fields for the Bio-Formats JEOL format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JEOL format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

18.2. Metadata fields
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.69 JPEG2000Reader

This page lists supported metadata fields for the Bio-Formats JPEG-2000 format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPEG-2000 format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

18.2. Metadata fields
Bio-Formats Documentation, Release 5.2.3

18.2.70 JPEGReader

This page lists supported metadata fields for the Bio-Formats JPEG format reader. These fields are from the OME data model\(^\text{2716}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

* The file format itself supports 19 of them (3%).
* Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPEG format reader:

* Channel : ID\(^{2717}\)
* Channel : SamplesPerPixel\(^{2718}\)
* Image : AcquisitionDate\(^{2719}\)
* Image : ID\(^{2720}\)
* Image : Name\(^{2721}\)
* Pixels : BigEndian\(^{2722}\)
* Pixels : DimensionOrder\(^{2723}\)
* Pixels : ID\(^{2724}\)
* Pixels : Interleaved\(^{2725}\)
* Pixels : SignificantBits\(^{2726}\)
* Pixels : SizeC\(^{2727}\)
* Pixels : SizeT\(^{2728}\)

\(^{2711}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\(^{2712}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{2713}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{2714}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{2715}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{2716}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2717}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{2718}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2719}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{2720}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{2721}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{2722}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{2723}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{2724}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{2725}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{2726}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{2727}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{2728}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
18.2.71 JPKReader

This page lists supported metadata fields for the Bio-Formats JPK Instruments format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPK Instruments format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits

Total supported: 19
Total unknown or missing: 457
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.72 JPXReader

This page lists supported metadata fields for the Bio-Formats JPX format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPX format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
Bio-Formats Documentation, Release 5.2.3

• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 457

18.2.73 KhorosReader

This page lists supported metadata fields for the Bio-Formats Khoros XV format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Khoros XV format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian

18.2. Metadata fields
18.2.74 KodakReader

This page lists supported metadata fields for the Bio-Formats Kodak Molecular Imaging format reader. These fields are from the OME data model\(^{2796}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 26 of them (5%).
- Of those, Bio-Formats fully or partially converts 26 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Kodak Molecular Imaging format reader:

- Channel : ID\(^{2797}\)
- Channel : SamplesPerPixel\(^{2798}\)
- Image : AcquisitionDate\(^{2799}\)
- Image : ID\(^{2800}\)

\(^{2783}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder]

\(^{2784}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID]

\(^{2785}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved]

\(^{2786}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits]

\(^{2787}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC]

\(^{2788}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT]

\(^{2789}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX]

\(^{2790}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY]

\(^{2791}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ]

\(^{2792}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type]

\(^{2793}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC]

\(^{2794}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT]

\(^{2795}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ]

\(^{2796}\)[http://www.openmicroscopy.org/site/support/ome-model/]

\(^{2797}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID]

\(^{2798}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel]

\(^{2799}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate]

\(^{2800}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID]
- Image: InstrumentRef
- Image: Name
- ImagingEnvironment: Temperature
- Instrument: ID
- Microscope: Model
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: ExposureTime
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 26
Total unknown or missing: 450

18.2.75 L2DReader

This page lists supported metadata fields for the Bio-Formats Li-Cor L2D format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME

18.2. Metadata fields
data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 29 of them (6%).
- Of those, Bio-Formats fully or partially converts 29 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Li-Cor L2D format reader:

- Channel : ID
- Channel : LightSourceSettingsID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Laser : ID
- Laser : LaserMedium
- Laser : Type
- Laser : Wavelength
- Microscope : Model
- Microscope : Type
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Settings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_LaserMedium
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Microscope_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC

18.2. Metadata fields
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 29
Total unknown or missing: 447

18.2.76 LEOReader

This page lists supported metadata fields for the Bio-Formats LEO format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 27 of them (5%).
• Of those, Bio-Formats fully or partially converts 27 (100%).

Supported fields

These fields are fully supported by the Bio-Formats LEO format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Objective: Correction

2845 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2846 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2847 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
2848 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
2849 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
2850 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
2851 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
2852 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
2853 http://www.openmicroscopy.org/site/support/ome-model/
• Objective: Immersion
• Objective: WorkingDistance
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 27
Total unknown or missing: 449

18.2. LIFReader

This page lists supported metadata fields for the Bio-Formats Leica Image File Format format reader. These fields are from the OME data model[1881]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 85 of them (17%).
• Of those, Bio-Formats fully or partially converts 85 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Objective_WorkingDistance
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome-xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Leica Image File Format format reader:

- Channel: Color
- Channel: ExcitationWavelength
- Channel: ID
- Channel: LightSourceSettingsAttenuation
- Channel: LightSourceSettingsID
- Channel: Name
- Channel: PinholeSize
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Model
- Detector: Offset
- Detector: Type
- Detector: Zoom
- DetectorSettings: Gain
- DetectorSettings: ID
- DetectorSettings: Offset
- Filter: ID
- Filter: Model
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Image: ROIRef
• Instrument: ID
• Label: FontSize
• Label: ID
• Label: StrokeWidth
• Label: Text
• Label: X
• Label: Y
• Laser: ID
• Laser: LaserMedium
• Laser: Type
• Laser: Wavelength
• LightPath: EmissionFilterRef
• Line: ID
• Line: X1
• Line: X2
• Line: Y1
• Line: Y2
• Microscope: Model
• Microscope: Type
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• Objective: NominalMagnification
• Objective: SerialNumber

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Label_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Label_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_LaserMedium
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Wavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_X1
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_X2
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_Y1
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_Y2

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Microscope_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber

18.2. Metadata fields
• ObjectiveSettings: ID
• ObjectiveSettings: RefractiveIndex
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Polygon: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID

18.2. Metadata fields 373
• Polygon: Points
• ROI: ID
• Rectangle: Height
• Rectangle: ID
• Rectangle: Width
• Rectangle: X
• Rectangle: Y
• TransmittanceRange: CutIn
• TransmittanceRange: CutOut

Total supported: 85
Total unknown or missing: 391

18.2.78 LIMReader

This page lists supported metadata fields for the Bio-Formats Laboratory Imaging format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Laboratory Imaging format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID

2958 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polygon_Points
2959 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
2960 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Height
2961 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
2962 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Width
2963 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X
2964 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Y
2965 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutIn
2966 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutOut
2967 http://www.openmicroscopy.org/site/support/ome-model/
2968 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
2969 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
2970 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
2971 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
2972 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
2973 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
2974 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
2975 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.79 LegacyND2Reader

This page lists supported metadata fields for the Bio-Formats Nikon ND2 (Legacy) format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon ND2 (Legacy) format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder2994
• Pixels: ID2995
• Pixels: Interleaved2996
• Pixels: SignificantBits2997
• Pixels: Size2998
• Pixels: SizeT2999
• Pixels: SizeX3000
• Pixels: SizeY3001
• Pixels: SizeZ3002
• Pixels: Type3003
• Plane: TheC3004
• Plane: TheT3005
• Plane: TheZ3006

Total supported: 19
Total unknown or missing: 457

18.2.80 LegacyQTReader

This page lists supported metadata fields for the Bio-Formats QuickTime format reader.

These fields are from the OME data model3007. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats QuickTime format reader:

• Channel: ID3008
• Channel: SamplesPerPixel3009
• Image: AcquisitionDate3010
• Image: ID3011

2994 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
2995 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
2996 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
2997 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2998 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2999 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
3000 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
3001 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
3002 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
3003 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
3004 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
3005 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
3006 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
3007 http://www.openmicroscopy.org/site/support/ome-model/
3008 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3009 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3010 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
3011 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 457

18.2.81 LeicaReader

This page lists supported metadata fields for the Bio-Formats Leica format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 56 of them (11%).
• Of those, Bio-Formats fully or partially converts 56 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Leica format reader:

• Channel : Color
• Channel : EmissionWavelength
• Channel: ExcitationWavelength
• Channel: ID
• Channel: Name
• Channel: PinholeSize
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Offset
• Detector: Type
• Detector: Voltage
• DetectorSettings: ID
• Filter: ID
• Filter: Model
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• LightPath: EmissionFilterRef
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• Objective: NominalMagnification
• Objective: SerialNumber

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_PinholeSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Offset
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Voltage
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• StageLabel : Name
• StageLabel : Z
Bio-Formats Documentation, Release 5.2.3

• TransmittanceRange : CutIn
• TransmittanceRange : CutOut

Total supported: 56
Total unknown or missing: 420

18.2.82 LeicaSCNReader

This page lists supported metadata fields for the Bio-Formats Leica SCN format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 33 of them (6%).
• Of those, Bio-Formats fully or partially converts 33 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Leica SCN format reader:

• Channel : ID
• Channel : IlluminationType
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Objective : CalibratedMagnification
• Objective : ID
• Objective : LensNA
• Objective : NominalMagnification
• ObjectiveSettings : ID
• Pixels : BigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutIn

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutOut

http://www.openmicroscopy.org/site/support/ome-model/

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_IlluminationType

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_CalibratedMagnification

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
• Pixels: DimensionOrder3100
• Pixels: ID3101
• Pixels: Interleaved3102
• Pixels: PhysicalSizeX3103
• Pixels: PhysicalSizeY3104
• Pixels: PhysicalSizeZ3105
• Pixels: SignificantBits3106
• Pixels: SizeC3107
• Pixels: SizeT3108
• Pixels: SizeX3109
• Pixels: SizeY3110
• Pixels: SizeZ3111
• Pixels: Type3112
• Plane: PositionX3113
• Plane: PositionY3114
• Plane: TheC3115
• Plane: TheT3116
• Plane: TheZ3117

Total supported: 33

Total unknown or missing: 443

18.2.83 LiFlimReader

This page lists supported metadata fields for the Bio-Formats LI-FLIM format reader.

These fields are from the OME data model3118. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 25 of them (5%).
• Of those, Bio-Formats fully or partially converts 25 (100%).
Supported fields

These fields are fully supported by the Bio-Formats LI-FLIM format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Image: ROIRef
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: DeltaT
- Plane: ExposureTime
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Polygon: ID
- Polygon: Points
• ROI : ID

Total supported: 25
Total unknown or missing: 451

18.2.84 MIASReader

This page lists supported metadata fields for the Bio-Formats MIAS format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 65 of them (13%).
• Of those, Bio-Formats fully or partially converts 65 (100%).

Supported fields

These fields are fully supported by the Bio-Formats MIAS format reader:

• Channel : Color
• Channel : ID
• Channel : Name
• Channel : SamplesPerPixel
• Ellipse : ID
• Ellipse : RadiusX
• Ellipse : RadiusY
• Ellipse : Text
• Ellipse : TheT
• Ellipse : TheZ
• Ellipse : X
• Ellipse : Y
• Experiment : Description
• Experiment : ID
• Experiment : Type
• Image : AcquisitionDate

3143 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
3144 http://www.openmicroscopy.org/site/support/ome-model/
3145 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Color
3146 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3147 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
3148 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3149 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
3150 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_RadiusX
3151 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_RadiusY
3152 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
3153 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
3154 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
3155 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_X
3156 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_Y
3157 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Description
3158 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_ID
3159 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Type
3160 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
• Image: ExperimentRef
• Image: ID
• Image: InstrumentRef
• Image: Name
• Image: ROIRef
• Instrument: ID
• Mask: BinData
• Mask: FillColor
• Mask: Height
• Mask: ID
• Mask: StrokeColor
• Mask: Width
• Mask: X
• Mask: Y
• Objective: ID
• Objective: Model
• Objective: NominalMagnification
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT

18.2. Metadata fields
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : ExposureTime
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• Plate : ColumnNamingConvention
• Plate : ExternalIdentifier
• Plate : ID
• Plate : Name
• Plate : RowNamingConvention
• PlateAcquisition : ID
• PlateAcquisition : MaximumFieldCount
• PlateAcquisition : WellSampleRef
• ROI : ID
• Well : Column
• Well : ID
• Well : Row
• WellSample : ID
• WellSample : ImageRef
• WellSample : Index

Total supported: 65

Total unknown or missing: 411

[3190]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[3198]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
[3209]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
18.2.85 MINCReader

This page lists supported metadata fields for the Bio-Formats MINC MRI format reader.

These fields are from the OME data model\(^\text{3210}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats MINC MRI format reader:

- \text{Channel: ID}^{3211}
- \text{Channel: SamplesPerPixel}^{3212}
- \text{Image: AcquisitionDate}^{3213}
- \text{Image: Description}^{3214}
- \text{Image: ID}^{3215}
- \text{Image: Name}^{3216}
- \text{Pixels: BigEndian}^{3217}
- \text{Pixels: DimensionOrder}^{3218}
- \text{Pixels: ID}^{3219}
- \text{Pixels: Interleaved}^{3220}
- \text{Pixels: PhysicalSizeX}^{3221}
- \text{Pixels: PhysicalSizeY}^{3222}
- \text{Pixels: PhysicalSizeZ}^{3223}
- \text{Pixels: SignificantBits}^{3224}
- \text{Pixels: SizeC}^{3225}
- \text{Pixels: SizeT}^{3226}
- \text{Pixels: SizeX}^{3227}
- \text{Pixels: SizeY}^{3228}

\(^{3210}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{3211}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{3212}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{3213}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{3214}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
\(^{3215}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{3216}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{3217}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{3218}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{3219}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{3220}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{3221}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{3222}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{3223}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
\(^{3224}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{3225}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{3226}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{3227}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{3228}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

18.2. Metadata fields
This page lists supported metadata fields for the Bio-Formats Multiple-image Network Graphics format reader.

These fields are from the OME data model[^1]. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

18.2.86 MNGReader

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Multiple-image Network Graphics format reader:

- Channel: ID[^235]
- Channel: SamplesPerPixel[^236]
- Image: AcquisitionDate[^237]
- Image: ID[^238]
- Image: Name[^239]
- Pixels: BigEndian[^240]
- Pixels: DimensionOrder[^241]
- Pixels: ID[^242]
- Pixels: Interleaved[^243]
- Pixels: SignificantBits[^244]
- Pixels: Size[^245]
- Pixels: Size[^246]

[^229]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
[^230]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[^233]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
[^236]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[^237]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[^239]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
[^240]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
[^241]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
[^243]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
[^244]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
[^245]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Size
[^246]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Size
Total supported: 19
Total unknown or missing: 457

18.2.87 MRCReader

This page lists supported metadata fields for the Bio-Formats Medical Research Council format reader.

These fields are from the OME data model\(^\text{3254}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Medical Research Council format reader:

- Channel: ID\(^\text{3255}\)
- Channel: SamplesPerPixel\(^\text{3256}\)
- Image: AcquisitionDate\(^\text{3257}\)
- Image: ID\(^\text{3258}\)
- Image: Name\(^\text{3259}\)
- Pixels: BigEndian\(^\text{3260}\)
- Pixels: DimensionOrder\(^\text{3261}\)
- Pixels: ID\(^\text{3262}\)
- Pixels: Interleaved\(^\text{3263}\)
- Pixels: PhysicalSizeX\(^\text{3264}\)
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.88 MRWReader

This page lists supported metadata fields for the Bio-Formats Minolta MRW format reader.

These fields are from the OME data model\(^{3277}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Minolta MRW format reader:
• Channel: ID\(^{3278}\)
• Channel: SamplesPerPixel\(^{3279}\)
• Image: AcquisitionDate\(^{3280}\)
• Image: ID\(^{3281}\)
• Image: Name\(^{3282}\)

\(^{3265}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{3266}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
\(^{3267}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{3268}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{3269}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{3270}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{3271}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^{3272}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{3273}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{3274}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{3275}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{3276}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{3277}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{3278}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{3279}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{3280}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{3281}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{3282}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
• Pixels: BigEndian3283
• Pixels: DimensionOrder3284
• Pixels: ID3285
• Pixels: Interleaved3286
• Pixels: SignificantBits3287
• Pixels: SizeC3288
• Pixels: SizeT3289
• Pixels: SizeX3290
• Pixels: SizeY3291
• Pixels: SizeZ3292
• Pixels: Type3293
• Plane: TheC3294
• Plane: TheT3295
• Plane: TheZ3296

Total supported: 19
Total unknown or missing: 457

18.2.89 MetamorphReader

This page lists supported metadata fields for the Bio-Formats Metamorph STK format reader.

These fields are from the OME data model3297. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 46 of them (9%).
• Of those, Bio-Formats fully or partially converts 46 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Metamorph STK format reader:

• Channel: ID3298
• Channel: LightSourceSettingsID3299
• Channel: LightSourceSettingsWavelength3300

3283http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
3284http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
3285http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
3286http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
3287http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
3288http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
3289http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
3290http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
3291http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
3292http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
3293http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
3294http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
3295http://www.openmicroscopy.org/site/support/ome-model/
3296http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3297http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_ID
3300http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_Wavelength
• Channel: Name
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Type
• DetectorSettings: Binning
• DetectorSettings: Gain
• DetectorSettings: ID
• DetectorSettings: ReadOutRate
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• ImagingEnvironment: Temperature
• Instrument: ID
• Laser: ID
• Laser: LaserMedium
• Laser: Type
• Objective: ID
• Objective: LensNA
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
18.2.90 MetamorphTiffReader

This page lists supported metadata fields for the Bio-Formats Metamorph TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 38 of them (7%).
- Of those, Bio-Formats fully or partially converts 38 (100%).

18.2. Metadata fields

Total supported: 46
Total unknown or missing: 430
Supported fields

These fields are fully supported by the Bio-Formats Metamorph TIFF format reader:

- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- ImagingEnvironment: Temperature
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: DeltaT
- Plane: ExposureTime

[^3345]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
[^3346]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
[^3347]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[^3348]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[^3349]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
[^3350]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
[^3351]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_Temperature
[^3352]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
[^3353]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
[^3354]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
[^3355]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
[^3356]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
[^3357]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
[^3358]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
[^3359]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
[^3360]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
[^3361]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
[^3362]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
[^3363]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
[^3364]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
[^3365]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[^3366]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
[^3367]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime

18.2. Metadata fields
18.2.91 MicromanagerReader

This page lists supported metadata fields for the Bio-Formats Micro-Manager format reader.

These fields are from the OME data model\(^{383}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 41 of them (8%).
- Of those, Bio-Formats fully or partially converts 41 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Micro-Manager format reader:

- Channel : ID\(^{384}\)
- Channel : Name\(^{385}\)
- Channel : SamplesPerPixel\(^{386}\)

\(^{383}\) \url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ColumnNamingConvention}

\(^{384}\) \url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID}

\(^{385}\) \url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name}

\(^{386}\) \url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel}
18.2. Metadata fields

- Detector: ID
- Detector: Manufacturer
- Detector: Model
- Detector: SerialNumber
- Detector: Type
- DetectorSettings: Binning
- DetectorSettings: Gain
- DetectorSettings: ID
- DetectorSettings: Voltage
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- ImagingEnvironment: Temperature
- Instrument: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Voltage
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_Temperature
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
• Pixels : SizeX³⁴¹³
• Pixels : SizeY³⁴¹⁴
• Pixels : SizeZ³⁴¹⁵
• Pixels : Type³⁴¹⁶
• Plane : DeltaT³⁴¹⁷
• Plane : ExposureTime³⁴¹⁸
• Plane : PositionX³⁴¹⁹
• Plane : PositionY³⁴²⁰
• Plane : PositionZ³⁴²¹
• Plane : TheC³⁴²²
• Plane : TheT³⁴²³
• Plane : TheZ³⁴²⁴

Total supported: 41
Total unknown or missing: 435

18.2.92 MinimalTiffReader

This page lists supported metadata fields for the Bio-Formats Minimal TIFF format reader.

These fields are from the OME data model³⁴²⁵. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Minimal TIFF format reader:

• Channel : ID³⁴²⁶
• Channel : SamplesPerPixel³⁴²⁷
• Image : AcquisitionDate³⁴²⁸
• Image : ID³⁴²⁹
• Image : Name³⁴³⁰

³⁴¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
³⁴¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
³⁴¹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
³⁴¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
³⁴¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
³⁴¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
³⁴¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
³⁴²⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
³⁴²¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
³⁴²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
³⁴²³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
³⁴²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
³⁴²⁵http://www.openmicroscopy.org/site/support/ome-model/
³⁴²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
³⁴²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
³⁴²⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
³⁴²⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
³⁴³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
Bio-Formats Documentation, Release 5.2.3

• Pixels: BigEndian3431
• Pixels: DimensionOrder3432
• Pixels: ID3433
• Pixels: Interleaved3434
• Pixels: SignificantBits3435
• Pixels: SizeC3436
• Pixels: SizeT3437
• Pixels: SizeX3438
• Pixels: SizeY3439
• Pixels: SizeZ3440
• Pixels: Type3441
• Plane: TheC3442
• Plane: TheT3443
• Plane: TheZ3444

Total supported: 19
Total unknown or missing: 457

18.2.93 MolecularImagingReader

This page lists supported metadata fields for the Bio-Formats Molecular Imaging format reader. These fields are from the OME data model3445. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Molecular Imaging format reader:
• Channel: ID3446
• Channel: SamplesPerPixel3447
• Image: AcquisitionDate3448

3431 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
3432 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
3433 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
3434 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
3435 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
3436 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
3437 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
3438 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
3439 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
3440 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
3441 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
3442 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
3443 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
3444 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
3445 http://www.openmicroscopy.org/site/support/ome-model/
3446 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3448 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

18.2. Metadata fields
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 21
Total unknown or missing: 455

18.2.94 NAFReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu Aquacosmos format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

18.2. Metadata fields
Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu Aquacosmos format reader:

- **Channel**: ID
- **Channel**: SamplesPerPixel
- **Image**: AcquisitionDate
- **Image**: ID
- **Image**: Name
- **Pixels**: BigEndian
- **Pixels**: DimensionOrder
- **Pixels**: ID
- **Pixels**: Interleaved
- **Pixels**: SignificantBits
- **Pixels**: SizeC
- **Pixels**: SizeT
- **Pixels**: SizeX
- **Pixels**: SizeY
- **Pixels**: SizeZ
- **Pixels**: Type
- **Plane**: TheC
- **Plane**: TheT
- **Plane**: TheZ

Total supported: 19

Total unknown or missing: 457

18.2.95 ND2Reader

This page lists supported metadata fields for the Bio-Formats Nikon ND2 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

3468: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3469: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3470: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
3471: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
3472: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
3473: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
3474: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
3475: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
3476: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
3477: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
3478: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
3479: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
3480: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
3481: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
3482: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
3483: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
3484: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
3485: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
3486: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
3487: http://www.openmicroscopy.org/site/support/ome-model/
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon ND2 format reader:

- Channel ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19

Total unknown or missing: 457

488 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
489 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
490 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
491 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
492 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
493 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
494 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
495 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
496 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
497 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
498 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
499 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
500 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
501 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
502 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
503 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
504 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
505 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
506 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
18.2.96 NDPIReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu NDPI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 28 of them (5%).
- Of those, Bio-Formats fully or partially converts 28 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu NDPI format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Microscope: Model
- Objective: ID
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits

http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits

18.2. Metadata fields
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 28
Total unknown or missing: 448

18.2.97 NDPISReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu NDPIS format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu NDPIS format reader:
• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID

[3532]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[3538]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[3539]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

18.2. Metadata fields
18.2.98 NRRDReader

This page lists supported metadata fields for the Bio-Formats NRRD format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats NRRD format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2. Metadata fields
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.99 NativeND2Reader

This pagelistssupported metadata fields for the Bio-Formats Nikon ND2 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 52 of them (10%).
• Of those, Bio-Formats fully or partially converts 52 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon ND2 format reader:

• Channel: AcquisitionMode

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/

18.2. Metadata fields
• Channel: Color
• Channel: EmissionWavelength
• Channel: ExcitationWavelength
• Channel: ID
• Channel: Name
• Channel: PinholeSize
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Model
• Detector: Type
• DetectorSettings: Binning
• DetectorSettings: Gain
• DetectorSettings: ID
• DetectorSettings: ReadOutRate
• DetectorSettings: Voltage
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• ImagingEnvironment: Temperature
• Instrument: ID
• Objective: CalibratedMagnification
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Color
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_PinholeSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ReadOutRate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Voltage
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_Temperature
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_CalibratedMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
• Objective: Model

• ObjectiveSettings: ID

• ObjectiveSettings: RefractiveIndex

• Pixels: BigEndian

• Pixels: DimensionOrder

• Pixels: Interleaved

• Pixels: PhysicalSizeX

• Pixels: PhysicalSizeY

• Pixels: PhysicalSizeZ

• Pixels: SignificantBits

• Pixels: SizeC

• Pixels: SizeT

• Pixels: SizeX

• Pixels: SizeY

• Pixels: SizeZ

• Pixels: Type

• Plane: DeltaT

• Plane: ExposureTime

• Plane: PositionX

• Plane: PositionY

• Plane: PositionZ

• Plane: TheC

• Plane: TheT

• Plane: TheZ

Total supported: 52

Total unknown or missing: 424

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
18.2.100 NativeQTReader

This page lists supported metadata fields for the Bio-Formats QuickTime format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats QuickTime format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT

http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
Total supported: 19
Total unknown or missing: 457

18.2.101 NIfTIReader

This page lists supported metadata fields for the Bio-Formats NIfTI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 24 of them (5%).
- Of those, Bio-Formats fully or partially converts 24 (100%).

Supported fields

These fields are fully supported by the Bio-Formats NIfTI format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT

3651 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
3652 http://www.openmicroscopy.org/site/support/ome-model/
3653 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3654 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3655 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
3656 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
3657 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
3658 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
3659 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
3660 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
3661 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
3662 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
3663 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
3664 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
3665 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
3666 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
3667 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
3668 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
- Pixels: SizeX\(^{3669}\)
- Pixels: SizeY\(^{3670}\)
- Pixels: SizeZ\(^{3671}\)
- Pixels: TimeIncrement\(^{3672}\)
- Pixels: Type\(^{3673}\)
- Plane: TheC\(^{3674}\)
- Plane: TheT\(^{3675}\)
- Plane: TheZ\(^{3676}\)

Total supported: 24

Total unknown or missing: 452

18.2.102 NikonElementsTiffReader

This page lists supported metadata fields for the Bio-Formats Nikon Elements TIFF format reader. These fields are from the OME data model\(^{3677}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 50 of them (10%).
- Of those, Bio-Formats fully or partially converts 50 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon Elements TIFF format reader:

- Channel: AcquisitionMode\(^{3678}\)
- Channel: EmissionWavelength\(^{3679}\)
- Channel: ExcitationWavelength\(^ {3680}\)
- Channel: ID\(^ {3681}\)
- Channel: Name\(^{3682}\)
- Channel: PinholeSize\(^ {3683}\)
- Channel: SamplesPerPixel\(^ {3684}\)
- Detector: ID\(^ {3685}\)
- Detector: Model\(^ {3686}\)

3669[^Pixels_SizeX]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
3670[^Pixels_SizeY]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
3671[^Pixels_SizeZ]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
3672[^Pixels_TimeIncrement]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
3673[^Pixels_Type]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
3674[^Plane_TheC]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
3675[^Plane_TheT]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
3676[^Plane_TheZ]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
3677[^OMEx_data_model]: http://www.openmicroscopy.org/site/support/ome-model/
3678[^Channel_AcquisitionMode]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_AcquisitionMode
3679[^Channel_EmissionWavelength]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
3680[^Channel_ExcitationWavelength]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
3681[^Channel_ID]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3682[^Channel_Name]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
3683[^Channel_PinholeSize]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_PinholeSize
3684[^Channel_SamplesPerPixel]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3685[^Detector_ID]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
3686[^ManufacturerSpec_Model]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
• Detector: Type
• DetectorSettings: Binning
• DetectorSettings: Gain
• DetectorSettings: ID
• DetectorSettings: ReadOutRate
• DetectorSettings: Voltage
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• ImagingEnvironment: Temperature
• Instrument: ID
• Objective: CalibratedMagnification
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• ObjectiveSettings: ID
• ObjectiveSettings: RefractiveIndex
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 50
Total unknown or missing: 426

18.2.103 NikonReader

This page lists supported metadata fields for the Bio-Formats Nikon NEF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon NEF format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.104 NikonTiffReader

This page lists supported metadata fields for the Bio-Formats Nikon TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 47 of them (9%).
• Of those, Bio-Formats fully or partially converts 47 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Nikon TIFF format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: PinholeSize
- Channel: SamplesPerPixel
- Detector: Gain
- Detector: ID
- Detector: Type
- Dichroic: ID
- Dichroic: Model
- Filter: ID
- Filter: Model
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Laser: ID
- Laser: LaserMedium
- Laser: Model
- Laser: Type
- Laser: Wavelength
- Objective: Correction

3749 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
3750 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
3751 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3752 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_PinholeSize
3753 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3754 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Gain
3755 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
3756 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
3757 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Dichroic_ID
3758 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
3759 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
3760 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_LaserMedium
3761 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
3762 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
3763 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
3764 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
3765 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
3766 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
3767 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_ID
3768 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_LaserMedium
3769 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
3770 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Type
3771 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Wavelength
3772 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : NominalMagnification
• Objective : WorkingDistance
• ObjectiveSettings : ID
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : Size
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 47
Total unknown or missing: 429

3773 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
3774 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
3775 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
3776 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
3777 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_WorkingDistance
3778 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
3779 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
3780 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
3781 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
3782 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
3783 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
3784 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
3785 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
3786 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
3787 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Size
3788 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
3789 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
3790 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
3791 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
3792 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
3793 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
3794 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
3795 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

18.2. Metadata fields
18.2.105 OBFReader

This page lists supported metadata fields for the Bio-Formats OBF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats OBF format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT

http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.106 OMETiffReader

This page lists supported metadata fields for the Bio-Formats OME-TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats OME-TIFF format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

18.2. Metadata fields
18.2. Metadata fields

18.2.107 OMEXMLReader

This page lists supported metadata fields for the Bio-Formats OME-XML format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats OME-XML format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 457

18.2.108 OpenlabRawReader

This page lists supported metadata fields for the Bio-Formats Openlab RAW format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Openlab RAW format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Total supported: 19
Total unknown or missing: 457

18.2.109 OpenlabReader

This page lists supported metadata fields for the Bio-Formats Openlab LIFF format reader.

These fields are from the OME data model\[3876\]. Bio- Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 32 of them (6%).
- Of those, Bio-Formats fully or partially converts 32 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Openlab LIFF format reader:

- Channel: ID\[3877\]
- Channel: Name\[3878\]
- Channel: SamplesPerPixel\[3879\]
- Detector: ID\[3880\]
- Detector: Type\[3881\]
- DetectorSettings: Gain\[3882\]
- DetectorSettings: ID\[3883\]
- DetectorSettings: Offset\[3884\]
- Image: AcquisitionDate\[3885\]
- Image: ID\[3886\]

\[3869\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\[3870\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\[3871\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\[3872\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\[3873\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\[3874\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\[3875\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\[3876\]http://www.openmicroscopy.org/site/support/ome-model/
\[3877\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\[3878\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
\[3879\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\[3880\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
\[3881\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
\[3882\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
\[3883\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
\[3884\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\[3885\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
18.2.110 OperettaReader

This page lists supported metadata fields for the Bio-Formats PerkinElmer Operetta format reader.

These fields are from the OME data model[^900]. Bio-Formats standardizes each format’s original metadata to and from the OME

[^987]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef
[^988]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image
[^989]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
[^990]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
[^991]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
[^992]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
[^993]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
[^994]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
[^995]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
[^996]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
[^997]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
[^998]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
[^999]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
[^1000]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
[^1001]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
[^1002]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[^1003]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
[^1004]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
[^1005]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
[^1006]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
[^1007]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
[^1008]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 43 of them (9%).
- Of those, Bio-Formats fully or partially converts 43 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PerkinElmer Operetta format reader:

- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Experimenter: ID
- Experimenter: LastName
- Image: AcquisitionDate
- Image: ExperimenterRef
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ

3911. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
3912. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3914. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
3915. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
3919. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
3926. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
3927. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
18.2.111 OxfordInstrumentsReader

This page lists supported metadata fields for the Bio-Formats Oxford Instruments format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME

Total supported: 43
Total unknown or missing: 433

18.2. Metadata fields

• Pixels: Type
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: Columns
• Plate: Description
• Plate: ExternalIdentifier
• Plate: ID
• Plate: Name
• Plate: Rows
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: WellSampleRef
• Well: Column
• Well: ID
• Well: Row
• WellSample: ID
• WellSample: ImageRef
• WellSample: Index

422
data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Oxford Instruments format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT

3954: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3955: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3956: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
3957: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
3958: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
3959: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
3960: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
3961: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
3962: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
3963: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
3964: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
3965: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
3966: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
3967: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
3968: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
3969: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
3970: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
3971: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
3972: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
3973: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
3974: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
• Plane : TheZ

Total supported: 22
Total unknown or missing: 454

18.2.112 PCIReader

This page lists supported metadata fields for the Bio-Formats Compix Simple-PCI format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 29 of them (6%).
• Of those, Bio-Formats fully or partially converts 29 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Compix Simple-PCI format reader:
• Channel : ID
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Type
• DetectorSettings : Binning
• DetectorSettings : ID
• Image : AcquisitionDate
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX

3975 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
3976 http://www.openmicroscopy.org/site/support/ome-model/
3977 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3978 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3979 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
3980 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
3981 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
3982 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
3983 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
3984 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
3985 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
3986 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
3987 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
3988 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
3989 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
3990 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
3991 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
3992 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX

18.2. Metadata fields
18.2.113 PCORAWReader

This page lists supported metadata fields for the Bio-Formats PCO-RAW format reader. These fields are from the OME data model[4006]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 26 of them (5%).
- Of those, Bio-Formats fully or partially converts 26 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PCO-RAW format reader:

- Channel: ID[4007]
- Channel: SamplesPerPixel[4008]
- Detector: ID[4009]
- Detector: SerialNumber[4010]
• DetectorSettings: Binning
• DetectorSettings: ID
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Instrument: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 26
Total unknown or missing: 450

18.2.114 PCXReader

This page lists supported metadata fields for the Bio-Formats PCX format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model.
data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PCX format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 19

Total unknown or missing: 457

4034 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4035 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4036 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4037 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4038 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4039 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
4040 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4041 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
4042 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4043 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4044 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4045 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
4046 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
4047 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
4048 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
4049 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
4050 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
4051 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4052 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
18.2.115 PDSReader

This page lists supported metadata fields for the Bio-Formats Perkin Elmer Densitometer format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Perkin Elmer Densitometer format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
• Plane: PositionX
• Plane: PositionY
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 23
Total unknown or missing: 453

18.2.116 PGMReader

This page lists supported metadata fields for the Bio-Formats Portable Any Map format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Portable Any Map format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT

4072 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
4073 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
4074 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
4075 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4076 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
4077 http://www.openmicroscopy.org/site/support/ome-model/
4078 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4079 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4080 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4081 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4082 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4083 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
4084 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4085 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
4086 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4087 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4088 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4089 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT

18.2. Metadata fields
18.2.117 PQBinReader

This page lists supported metadata fields for the Bio-Formats PicoQuant Bin format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PicoQuant Bin format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX

Total supported: 19
Total unknown or missing: 457
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 21
Total unknown or missing: 455

18.2.118 PSDReader

This page lists supported metadata fields for the Bio-Formats Adobe Photoshop format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Adobe Photoshop format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian

4108 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
4109 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4110 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4111 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
4112 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
4113 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
4114 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
4115 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
4116 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
4117 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4118 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
4119 http://www.openmicroscopy.org/site/support/ome-model/
4120 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4121 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4122 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4123 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4124 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4125 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.119 PerkinElmerReader

This page lists supported metadata fields for the Bio-Formats PerkinElmer format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 30 of them (6%).
• Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PerkinElmer format reader:
• Channel: EmissionWavelength
• Channel: ExcitationWavelength
• Channel: ID
• Channel: SamplesPerPixel
• Channel: Type

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
18.2. Metadata fields
Total supported: 30
Total unknown or missing: 446

18.2.120 PhotoshopTiffReader

This page lists supported metadata fields for the Bio-Formats Adobe Photoshop TIFF format reader. These fields are from the OME data model\(^{1170}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Adobe Photoshop TIFF format reader:

- Channel: ID\(^{4171}\)
- Channel: SamplesPerPixel\(^{4172}\)
- Image: AcquisitionDate\(^{4173}\)
- Image: ID\(^{4174}\)
- Image: Name\(^{4175}\)
- Pixels: BigEndian\(^{4176}\)
- Pixels: DimensionOrder\(^{4177}\)
- Pixels: ID\(^{4178}\)
- Pixels: Interleaved\(^{4179}\)
- Pixels: SignificantBits\(^{4180}\)
- Pixels: SizeC\(^{4181}\)
- Pixels: SizeT\(^{4182}\)
- Pixels: SizeX\(^{4183}\)
- Pixels: SizeY\(^{4184}\)
- Pixels: SizeZ\(^{4185}\)
- Pixels: Type\(^{4186}\)
- Plane: TheC\(^{4187}\)

\(^{1170}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{4171}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{4172}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{4173}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{4174}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{4175}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{4176}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{4177}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{4178}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{4179}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{4180}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{4181}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{4182}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{4183}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{4184}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^{4185}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\(^{4186}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{4187}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC

18.2. Metadata fields
18.2.121 PictReader

This page lists supported metadata fields for the Bio-Formats PICT format reader.

These fields are from the OME data model\[4190]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PICT format reader:

• Channel: ID\[4191]
• Channel: SamplesPerPixel\[4192]
• Image: AcquisitionDate\[4193]
• Image: ID\[4194]
• Image: Name\[4195]
• Pixels: BigEndian\[4196]
• Pixels: DimensionOrder\[4197]
• Pixels: ID\[4198]
• Pixels: Interleaved\[4199]
• Pixels: SignificantBits\[4200]
• Pixels: SizeC\[4201]
• Pixels: SizeT\[4202]
• Pixels: SizeX\[4203]
• Pixels: SizeY\[4204]
• Pixels: SizeZ\[4205]
18.2.122 PovrayReader

This page lists supported metadata fields for the Bio-Formats POV-Ray format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats POV-Ray format reader:

- `Channel : ID`
- `Channel : SamplesPerPixel`
- `Image : AcquisitionDate`
- `Image : ID`
- `Image : Name`
- `Pixels : BigEndian`
- `Pixels : DimensionOrder`
- `Pixels : ID`
- `Pixels : Interleaved`
- `Pixels : SignificantBits`
- `Pixels : SizeC`
- `Pixels : SizeT`
- `Pixels : SizeX`

4206 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
4207 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
4208 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4209 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
4210 http://www.openmicroscopy.org/site/support/ome-model/
4211 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4212 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4213 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4214 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4215 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4216 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
4217 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4218 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
4219 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4220 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4221 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4222 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
4223 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
18.2.123 PrairieReader

This page lists supported metadata fields for the Bio-Formats Prairie TIFF format reader.

These fields are from the OME data model[4230]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 46 of them (9%).
- Of those, Bio-Formats fully or partially converts 46 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Prairie TIFF format reader:

- Channel: EmissionWavelength[4231]
- Channel: ID[4232]
- Channel: Name[4233]
- Channel: SamplesPerPixel[4234]
- Detector: ID[4235]
- Detector: Type[4236]
- Detector: Zoom[4237]
- DetectorSettings: Gain[4238]
- DetectorSettings: ID[4239]
- DetectorSettings: Offset[4240]
- Image: AcquisitionDate[4241]
• Image : ID4242
• Image : InstrumentRef4243
• Image : Name4244
• Instrument : ID4245
• Laser : ID4246
• Laser : Power4247
• Microscope : Model4248
• Objective : Correction4249
• Objective : ID4250
• Objective : Immersion4251
• Objective : LensNA4252
• Objective : Manufacturer4253
• Objective : NominalMagnification4254
• ObjectiveSettings : ID4255
• Pixels : BigEndian4256
• Pixels : DimensionOrder4257
• Pixels : ID4258
• Pixels : Interleaved4259
• Pixels : PhysicalSizeX4260
• Pixels : PhysicalSizeY4261
• Pixels : SignificantBits4262
• Pixels : SizeC4263
• Pixels : SizeT4264
• Pixels : SizeX4265
• Pixels : SizeY4266
• Pixels : SizeZ4267

4242\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID}
4243\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID}
4244\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name}
4245\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID}
4246\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_ID}
4247\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power}
4248\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model}
4249\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction}
4250\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID}
4251\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion}
4252\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA}
4253\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer}
4254\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification}
4255\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID}
4256\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian}
4257\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder}
4258\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID}
4259\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved}
4260\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX}
4261\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY}
4262\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits}
4263\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC}
4264\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT}
4265\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX}
4266\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY}
4267\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ}
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 46
Total unknown or missing: 430

18.2.124 PyramidTiffReader

This page lists supported metadata fields for the Bio-Formats Pyramid TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Pyramid TIFF format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
18.2.125 QTRenderer

This page lists supported metadata fields for the Bio-Formats QuickTime format reader. These fields are from the OME data model\(^\text{4297}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats QuickTime format reader:

- Channel: ID\(^\text{4298}\)
- Channel: SamplesPerPixel\(^\text{4299}\)
- Image: AcquisitionDate\(^\text{4300}\)
- Image: ID\(^\text{4301}\)
- Image: Name\(^\text{4302}\)
- Pixels: BigEndian\(^\text{4303}\)

\(^{4286}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved

\(^{4287}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits

\(^{4288}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC

\(^{4289}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT

\(^{4290}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX

\(^{4291}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

\(^{4292}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ

\(^{4293}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

\(^{4294}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC

\(^{4295}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT

\(^{4296}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

\(^{4297}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{4298}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID

\(^{4299}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{4300}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

\(^{4301}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID

\(^{4302}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name

\(^{4303}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
Bio-Formats Documentation, Release 5.2.3

- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.126 QuesantReader

This page lists supported metadata fields for the Bio-Formats Quesant AFM format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Quesant AFM format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description

18.2. Metadata fields
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.127 RHKReader

This page lists supported metadata fields for the Bio-Formats RHK Technologies format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).
Supported fields

These fields are fully supported by the Bio-Formats RHK Technologies format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 22

Total unknown or missing: 454

18.2. Metadata fields

4341 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4342 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4343 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4344 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
4345 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4346 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4347 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
4348 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4349 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
4350 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4351 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
4352 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
4353 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4354 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4355 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
4356 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
4357 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
4358 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
4359 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
4360 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
4361 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4362 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
18.2.128 SBIGReader

This page lists supported metadata fields for the Bio-Formats SBIG format reader. These fields are from the OME data model\[4363\]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SBIG format reader:

- Channel : ID\[4364\]
- Channel : SamplesPerPixel\[4365\]
- Image : AcquisitionDate\[4366\]
- Image : Description\[4367\]
- Image : ID\[4368\]
- Image : Name\[4369\]
- Pixels : BigEndian\[4370\]
- Pixels : DimensionOrder\[4371\]
- Pixels : ID\[4372\]
- Pixels : Interleaved\[4373\]
- Pixels : PhysicalSizeX\[4374\]
- Pixels : PhysicalSizeY\[4375\]
- Pixels : SignificantBits\[4376\]
- Pixels : SizeC\[4377\]
- Pixels : SizeT\[4378\]
- Pixels : SizeX\[4379\]
- Pixels : SizeZ\[4380\]
- Pixels : Type\[4381\]
- Pixels : SizeY\[4382\]

[4363]: http://www.openmicroscopy.org/site/support/ome-model/
[4364]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
[4365]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[4366]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[4367]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
[4368]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
[4369]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
[4370]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
[4371]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
[4372]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
[4373]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
[4374]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
[4375]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
[4376]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
[4377]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
[4378]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
[4379]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
[4380]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
Total supported: 22
Total unknown or missing: 454

18.2.129 SDTReader

This page lists supported metadata fields for the Bio-Formats SPCImage Data format reader.

These fields are from the OME data model[^4386]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SPCImage Data format reader:
- Channel: ID[^4387]
- Channel: SamplesPerPixel[^4388]
- Image: AcquisitionDate[^4389]
- Image: ID[^4390]
- Image: Name[^4391]
- Pixels: BigEndian[^4392]
- Pixels: DimensionOrder[^4393]
- Pixels: ID[^4394]
- Pixels: Interleaved[^4395]
- Pixels: SignificantBits[^4396]
- Pixels: SizeC[^4397]
- Pixels: SizeT[^4398]
- Pixels: SizeX[^4399]
- Pixels: SizeY[^4400]
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.130 SEQReader

This page lists supported metadata fields for the Bio-Formats Image-Pro Sequence format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
 • The file format itself supports 19 of them (3%).
 • Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Image-Pro Sequence format reader:
 • Channel: ID
 • Channel: SamplesPerPixel
 • Image: AcquisitionDate
 • Image: ID
 • Image: Name
 • Pixels: BigEndian
 • Pixels: DimensionOrder
 • Pixels: ID
 • Pixels: Interleaved
 • Pixels: SignificantBits
 • Pixels: SizeC
 • Pixels: SizeT
18.2.131 SIFReader

This page lists supported metadata fields for the Bio-Formats Andor SIF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Andor SIF format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits

Total supported: 19

Total unknown or missing: 457

18.2. Metadata fields
This page lists supported metadata fields for the Bio-Formats Olympus SIS TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 33 of them (6%).
- Of those, Bio-Formats fully or partially converts 33 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus SIS TIFF format reader:

- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Model
- Detector: Type
- DetectorSettings: ID
• Image : AcquisitionDate
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : NominalMagnification
• ObjectiveSettings : ID
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

18.2. Metadata fields
18.2.133 SMCameraReader

This page lists supported metadata fields for the Bio-Formats SM Camera format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SM Camera format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC

[4481](http://www.openmicroscopy.org/site/support/ome-model/)
[4482](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID)
[4483](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel)
[4484](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate)
[4485](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID)
[4486](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name)
[4487](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian)
[4488](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder)
[4489](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID)
[4490](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved)
[4491](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits)
[4492](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC)
[4493](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT)
[4494](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX)
[4495](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY)
[4496](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ)
[4497](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type)
[4498](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC)
18.2.134 SPCReader

This page lists supported metadata fields for the Bio-Formats SPC FIFO Data format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SPC FIFO Data format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 457

18.2.135 SPEReader

This page lists supported metadata fields for the Bio-Formats Princeton Instruments SPE format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 30 of them (6%).
• Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Princeton Instruments SPE format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Image : ROIRef
• Label : ID
• Label : Text
• Label : X
• Label : Y
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
This page lists supported metadata fields for the Bio-Formats Aperio SVS format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 29 of them (6%).
- Of those, Bio-Formats fully or partially converts 29 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Aperio SVS format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: ID
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY

453 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
454 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
455 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
459 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
460 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
462 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
463 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
464 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
465 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
466 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
467 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
468 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
469 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
470 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
472 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
474 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
475 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
476 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 29
Total unknown or missing: 447

18.2.137 ScanrReader

This page lists supported metadata fields for the Bio-Formats Olympus ScanR format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 43 of them (9%).
• Of those, Bio-Formats fully or partially converts 43 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus ScanR format reader:
• Channel: ID
• Channel: Name
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
• Pixels : SignificantBits
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
• Pixels : SizeC
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
• Pixels : SizeT
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
• Pixels : SizeX
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
• Pixels : SizeY
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
• Pixels : SizeZ
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
• Pixels : Type
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
• Plane : DeltaT
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
• Plane : ExposureTime
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
• Plane : PositionX
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
• Plane : PositionY
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
• Plane : TheC
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
• Plane : TheT
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
• Plane : TheZ
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
• Plate : ColumnNamingConvention
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ColumnNamingConvention
• Plate : Columns
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Columns
• Plate : ID
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
• Plate : Name
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
• Plate : RowNamingConvention
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_RowNamingConvention
• Plate : Rows
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Rows
• PlateAcquisition : ID
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
• PlateAcquisition : MaximumFieldCount
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
• PlateAcquisition : WellSampleRef
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_WellSampleRef
• Well : Column
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
• Well : ID
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
• Well : Row
 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row

18.2. Metadata fields
• WellSample : ID
• WellSample : ImageRef
• WellSample : Index
• WellSample : PositionX
• WellSample : PositionY

Total supported: 43
Total unknown or missing: 433

18.2.138 ScreenReader

This page lists supported metadata fields for the Bio-Formats Screen format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 34 of them (7%).
• Of those, Bio-Formats fully or partially converts 34 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Screen format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: ColumnNamingConvention
• Plate: Columns
• Plate: ID
• Plate: Name
• Plate: RowNamingConvention
• Plate: Rows
• Screen: ID
• Screen: Name
• Screen: PlateRef
• Well: Column
• Well: ID
• Well: Row
• WellSample: ID
• WellSample: ImageRef
• WellSample: Index

Total supported: 34
Total unknown or missing: 442

18.2.139 SeikoReader

This page lists supported metadata fields for the Bio-Formats Seiko format reader.
These fields are from the OME data model[^4661]. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Seiko format reader:

- **Channel:** ID[^4662]
- **Channel:** SamplesPerPixel[^4663]
- **Image:** AcquisitionDate[^4664]
- **Image:** Description[^4665]
- **Image:** ID[^4666]
- **Image:** Name[^4667]
- **Pixels:** BigEndian[^4668]
- **Pixels:** DimensionOrder[^4669]
- **Pixels:** ID[^4670]
- **Pixels:** Interleaved[^4671]
- **Pixels:** PhysicalSizeX[^4672]
- **Pixels:** PhysicalSizeY[^4673]
- **Pixels:** SignificantBits[^4674]
- **Pixels:** SizeC[^4675]
- **Pixels:** SizeT[^4676]
- **Pixels:** SizeX[^4677]
- **Pixels:** SizeY[^4678]
- **Pixels:** SizeZ[^4679]
- **Pixels:** Type[^4680]
- **Plane:** TheC[^4681]

[^4661]: http://www.openmicroscopy.org/site/support/ome-model/
[^4662]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
[^4663]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[^4664]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[^4665]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
[^4666]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
[^4667]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
[^4668]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
[^4669]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
[^4670]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
[^4671]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
[^4672]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
[^4673]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
[^4674]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
[^4675]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
[^4676]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
[^4677]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
[^4678]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
[^4679]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
[^4680]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[^4681]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.140 SimplePCITiffReader

This page lists supported metadata fields for the Bio-Formats SimplePCI TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 33 of them (6%).
• Of those, Bio-Formats fully or partially converts 33 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SimplePCI TIFF format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Model
• Detector: Type
• DetectorSettings: Binning
• DetectorSettings: ID
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Objective: ID
• Objective: Immersion
• Objective: NominalMagnification
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: Size
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 33
Total unknown or missing: 443

18.2.141 SlidebookReader

This page lists supported metadata fields for the Bio-Formats Olympus Slidebook format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 34 of them (7%).
• Of those, Bio-Formats fully or partially converts 34 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Olympus Slidebook format reader:

- Channel: ID
- Channel: NDFilter
- Channel: Name
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: Model
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits

4719 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4720 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_NDFilter
4721 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
4722 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4723 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4724 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
4725 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4726 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
4727 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4728 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
4729 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
4730 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
4731 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
4732 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
4733 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
4734 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
4735 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
4736 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4737 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4738 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
4739 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
4740 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
4741 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 34
Total unknown or missing: 442

18.2.142 SlidebookTiffReader

This page lists supported metadata fields for the Bio-Formats Slidebook TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 30 of them (6%).
• Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Slidebook TIFF format reader:

• Channel: ID
• Channel: Name
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Instrument: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: NominalMagnification
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 30

Total unknown or missing: 446
18.2.143 SpiderReader

This page lists supported metadata fields for the Bio-Formats SPIDER format reader.

These fields are from the OME data model\(^1\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SPIDER format reader:

- Channel: ID\(^2\)
- Channel: SamplesPerPixel\(^2\)
- Image: AcquisitionDate\(^2\)
- Image: ID\(^2\)
- Image: Name\(^2\)
- Pixels: BigEndian\(^2\)
- Pixels: DimensionOrder\(^2\)
- Pixels: ID\(^2\)
- Pixels: Interleaved\(^2\)
- Pixels: PhysicalSizeX\(^2\)
- Pixels: PhysicalSizeY\(^2\)
- Pixels: SignificantBits\(^2\)
- Pixels: SizeC\(^2\)
- Pixels: SizeT\(^2\)
- Pixels: SizeX\(^2\)
- Pixels: SizeY\(^2\)
- Pixels: SizeZ\(^2\)
- Pixels: Type\(^2\)

\(^1\)http://www.openmicroscopy.org/site/support/ome-model/
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

18.2. Metadata fields
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 21
Total unknown or missing: 455

18.2.144 TCSReader

This page lists supported metadata fields for the Bio-Formats Leica TCS TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Leica TCS TIFF format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.145 TargaReader

This page lists supported metadata fields for the Bio-Formats Truevision Targa format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Truevision Targa format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 20
Total unknown or missing: 456

18.2.146 TextReader

This page lists supported metadata fields for the Bio-Formats Text format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Text format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian

4839 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4840 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4841 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4842 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
4843 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
4844 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
4845 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
4846 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
4847 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4848 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
4850 http://www.openmicroscopy.org/site/support/ome-model/
4851 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4852 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4853 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4854 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4855 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4856 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian

18.2. Metadata fields
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 457

18.2.147 TiffDelegateReader

This page lists supported metadata fields for the Bio-Formats Tagged Image File Format format reader.
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Tagged Image File Format format reader:
• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID

4857 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4858 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
4859 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4860 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4861 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4862 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
4863 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
4864 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
4865 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
4866 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
4867 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
4868 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4869 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
4870 http://www.openmicroscopy.org/site/support/ome-model/
4871 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4872 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4873 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4874 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID

18.2. Metadata fields
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.148 TiffJAIReader

This page lists supported metadata fields for the Bio-Formats Tagged Image File Format format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Tagged Image File Format format reader:

• Channel: ID
• Channel: SamplesPerPixel

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
18.2.149 TiffReader

This page lists supported metadata fields for the Bio-Formats Tagged Image File Format format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Total supported: 19
Total unknown or missing: 457
Supported fields

These fields are fully supported by the Bio-Formats Tagged Image File Format format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: TimeIncrement
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 22

Total unknown or missing: 454
18.2.150 TileJPEGReader

This page lists supported metadata fields for the Bio-Formats Tile JPEG format reader. These fields are from the OME data model\(^{4933}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Tile JPEG format reader:

- Channel: ID\(^{4934}\)
- Channel: SamplesPerPixel\(^{4935}\)
- Image: AcquisitionDate\(^{4936}\)
- Image: ID\(^{4937}\)
- Image: Name\(^{4938}\)
- Pixels: BigEndian\(^{4939}\)
- Pixels: DimensionOrder\(^{4940}\)
- Pixels: ID\(^{4941}\)
- Pixels: Interleaved\(^{4942}\)
- Pixels: SignificantBits\(^{4943}\)
- Pixels: SizeC\(^{4944}\)
- Pixels: SizeT\(^{4945}\)
- Pixels: SizeX\(^{4946}\)
- Pixels: SizeY\(^{4947}\)
- Pixels: SizeZ\(^{4948}\)
- Pixels: Type\(^{4949}\)
- Plane: TheC\(^{4950}\)
- Plane: TheT\(^{4951}\)

\(^{4933}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{4934}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{4935}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{4936}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{4937}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{4938}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{4939}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{4940}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{4941}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{4942}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{4943}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{4944}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{4945}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{4946}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{4947}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^{4948}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\(^{4949}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{4950}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{4951}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.151 TillVisionReader

This page lists supported metadata fields for the Bio-Formats TillVision format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats TillVision format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Experiment: ID
• Experiment: Type
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : ExposureTime
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 22
Total unknown or missing: 454

18.2.152 TopometrixReader

This page lists supported metadata fields for the Bio-Formats Topometrix format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Topometrix format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX

[4971]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[4978]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[4979]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.153 TrestleReader

This page lists supported metadata fields for the Bio-Formats Trestle format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 27 of them (5%).
• Of those, Bio-Formats fully or partially converts 27 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Trestle format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Image: ROIRef

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID

18.2. Metadata fields
• Mask: BinData
• Mask: Height
• Mask: ID
• Mask: Width
• Mask: X
• Mask: Y
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• ROI: ID

Total supported: 27
Total unknown or missing: 449

18.2.154 UBMReader

This page lists supported metadata fields for the Bio-Formats UBM format reader.

These fields are from the [OME data model](http://www.openmicroscopy.org/site/support/ome-model/). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

[5006]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#BinData
[5007]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_Height
[5008]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
[5009]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_Width
[5010]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_X
[5011]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_Y
[5012]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
[5013]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
[5014]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
[5015]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
[5016]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
[5017]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
[5018]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
[5019]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
[5020]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
[5021]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[5022]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
[5023]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
[5024]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
[5025]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
[5026]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats UBM format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 19

Total unknown or missing: 457

5028 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
5029 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
5030 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
5031 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
5032 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
5033 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
5034 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
5035 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
5036 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
5037 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
5038 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
5039 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
5040 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
5041 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
5042 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
5043 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
5044 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
5045 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
5046 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
18.2.155 UnisokuReader

This page lists supported metadata fields for the Bio-Formats Unisoku STM format reader.

These fields are from the OME data model\(^\text{5047}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Unisoku STM format reader:

- Channel: ID\(^\text{5048}\)
- Channel: SamplesPerPixel\(^\text{5049}\)
- Image: AcquisitionDate\(^\text{5050}\)
- Image: Description\(^\text{5051}\)
- Image: ID\(^\text{5052}\)
- Image: Name\(^\text{5053}\)
- Pixels: BigEndian\(^\text{5054}\)
- Pixels: DimensionOrder\(^\text{5055}\)
- Pixels: ID\(^\text{5056}\)
- Pixels: Interleaved\(^\text{5057}\)
- Pixels: PhysicalSizeX\(^\text{5058}\)
- Pixels: PhysicalSizeY\(^\text{5059}\)
- Pixels: SignificantBits\(^\text{5060}\)
- Pixels: SizeC\(^\text{5061}\)
- Pixels: SizeT\(^\text{5062}\)
- Pixels: SizeX\(^\text{5063}\)
- Pixels: SizeY\(^\text{5064}\)
- Pixels: SizeZ\(^\text{5065}\)
- Pixels: Type\(^\text{5066}\)

\(^{5047}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{5048}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{5049}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{5050}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{5051}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
\(^{5052}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{5053}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{5054}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{5055}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{5056}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{5057}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{5058}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{5059}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{5060}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{5061}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{5062}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{5063}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{5064}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^{5065}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\(^{5066}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.156 VGSAMReader

This page lists supported metadata fields for the Bio-Formats VG SAM format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats VG SAM format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.157 VarianFDFReader

This page lists supported metadata fields for the Bio-Formats Varian FDF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 25 of them (5%).
• Of those, Bio-Formats fully or partially converts 25 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Varian FDF format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/

18.2. Metadata fields
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 25
Total unknown or missing: 451

18.2.158 VeecoReader

This page lists supported metadata fields for the Bio-Formats Veeco format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Veeco format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/}

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
• Image: Name5121
• Pixels: BigEndian5122
• Pixels: DimensionOrder5123
• Pixels: ID5124
• Pixels: Interleaved5125
• Pixels: SignificantBits5126
• Pixels: SizeC5127
• Pixels: SizeT5128
• Pixels: SizeX5129
• Pixels: SizeY5130
• Pixels: SizeZ5131
• Pixels: Type5132
• Plane: TheC5133
• Plane: TheT5134
• Plane: TheZ5135

Total supported: 19
Total unknown or missing: 457

18.2.159 VisitechReader

This page lists supported metadata fields for the Bio-Formats Visitech XYS format reader.

These fields are from the OME data model5136. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Visitech XYS format reader:
• Channel: ID5137
• Channel: SamplesPerPixel5138

5121http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
5122http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
5123http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
5124http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
5125http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
5126http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
5127http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
5128http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
5129http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
5130http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
5131http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
5132http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
5133http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
5134http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
5135http://www.openmicroscopy.org/site/support/ome-model/
5136http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
5137http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.160 VolocityClippingReader

This page lists supported metadata fields for the Bio-Formats Volocity Library Clipping format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Volocity Library Clipping format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.161 VolocityReader

This page lists supported metadata fields for the Bio-Formats Volocity Library format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

References:

5157 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
5158 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
5159 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
5160 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
5161 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
5162 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
5163 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
5164 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
5165 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
5166 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
5167 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
5168 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
5169 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
5170 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
5171 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
5172 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
5173 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
5174 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
5175 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
5176 http://www.openmicroscopy.org/site/support/ome-model/
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 38 of them (7%).
- Of those, Bio-Formats fully or partially converts 38 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Velocity Library format reader:

- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Model
- DetectorSettings: ID
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Plane: DeltaT
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 38
Total unknown or missing: 438

18.2.162 WATOPReader

This page lists supported metadata fields for the Bio-Formats WA Technology TOP format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats WA Technology TOP format reader:

• Channel: ID

5199 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
5200 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
5201 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
5202 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
5203 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
5204 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
5205 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
5206 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
5207 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
5208 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
5209 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
5210 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
5211 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
5212 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
5213 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
5214 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
5215 http://www.openmicroscopy.org/site/support/ome-model/
5216 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.163 WlzReader

This page lists supported metadata fields for the Bio-Formats Woolz format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 26 of them (5%).
- Of those, Bio-Formats fully or partially converts 26 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Woolz format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ
18.2.164 ZeissCZIReader

This page lists supported metadata fields for the Bio-Formats Zeiss CZI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 158 of them (33%).
- Of those, Bio-Formats fully or partially converts 158 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss CZI format reader:

- Arc : LotNumber
- Arc : Manufacturer
- Arc : Model
- Arc : Power
- Arc : SerialNumber
- Channel : AcquisitionMode
- Channel : Color
- Channel : EmissionWavelength
- Channel : ExcitationWavelength
- Channel : FilterSetRef
- Channel : Fluor
- Channel : ID
- Channel : IlluminationType

5261 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Name
5262 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_X
5263 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Y
5264 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Z
5265 http://www.openmicroscopy.org/site/support/ome-model/
5266 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
5267 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
5268 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
5269 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
5270 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
5271 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_AcquisitionMode
5272 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Color
5273 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
5274 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
5275 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterSetRef_ID
5276 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Fluor
5277 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
5278 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_IlluminationType
• Channel : Name

• Channel : PinholeSize

• Channel : SamplesPerPixel

• Detector : AmplificationGain

• Detector : Gain

• Detector : ID

• Detector : LotNumber

• Detector : Manufacturer

• Detector : Model

• Detector : Offset

• Detector : SerialNumber

• Detector : Type

• Detector : Zoom

• DetectorSettings : Binning

• DetectorSettings : Gain

• DetectorSettings : ID

• Dichroic : ID

• Dichroic : LotNumber

• Dichroic : Manufacturer

• Dichroic : Model

• Dichroic : SerialNumber

• Ellipse : ID

• Ellipse : RadiusX

• Ellipse : RadiusY

• Ellipse : Text

• Ellipse : X

5279 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name

5280 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_PinholeSize

5281 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel

5282 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_AmplificationGain

5283 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Gain

5284 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID

5285 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber

5286 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer

5287 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model

5288 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Offset

5289 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber

5290 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type

5291 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Zoom

5292 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning

5293 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain

5294 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID

5295 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Dichroic_ID

5296 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber

5297 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer

5298 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model

5299 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID

5300 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber

5301 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipses_RadiusX

5302 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_RadiusY

5303 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text

5304 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_X
• Ellipse: Y
• Experimenter: Email
• Experimenter: FirstName
• Experimenter: ID
• Experimenter: Institution
• Experimenter: LastName
• Experimenter: MiddleName
• Experimenter: UserName
• Filament: LotNumber
• Filament: Manufacturer
• Filament: Model
• Filament: Power
• Filament: SerialNumber
• Filter: FilterWheel
• Filter: ID
• Filter: LotNumber
• Filter: Manufacturer
• Filter: Model
• Filter: SerialNumber
• Filter: Type
• FilterSet: DichroicRef
• FilterSet: EmissionFilterRef
• FilterSet: ExcitationFilterRef
• FilterSet: ID
• FilterSet: LotNumber
• FilterSet: Manufacturer

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_Email
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_FirstName
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_Institution
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
• FilterSet: Model
• FilterSet: SerialNumber
• Image: AcquisitionDate
• Image: Description
• Image: ExperimenterRef
• Image: ID
• Image: InstrumentRef
• Image: Name
• Image: ROIRef
• ImagingEnvironment: AirPressure
• ImagingEnvironment: CO2Percent
• ImagingEnvironment: Humidity
• ImagingEnvironment: Temperature
• Instrument: ID
• Laser: LotNumber
• Laser: Manufacturer
• Laser: Model
• Laser: Power
• Laser: SerialNumber
• LightEmittingDiode: LotNumber
• LightEmittingDiode: Manufacturer
• LightEmittingDiode: Model
• LightEmittingDiode: Power
• LightEmittingDiode: SerialNumber
• Line: ID
• Line: Text

5331 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
5332 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
5333 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
5334 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
5335 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID
5336 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
5337 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
5338 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
5339 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID
5340 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_AirPressure
5341 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_CO2Percent
5342 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_Humidity
5343 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_Temperature
5344 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
5345 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
5346 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
5347 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
5348 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
5349 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
5350 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
5351 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
5352 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
5353 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
5354 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
5355 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
5356 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text

18.2. Metadata fields
• Line : X1
• Line : X2
• Line : Y1
• Line : Y2
• Microscope : LotNumber
• Microscope : Manufacturer
• Microscope : Model
• Microscope : SerialNumber
• Microscope : Type
• Objective : CalibratedMagnification
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : Iris
• Objective : LensNA
• Objective : LotNumber
• Objective : Manufacturer
• Objective : Model
• Objective : NominalMagnification
• Objective : SerialNumber
• Objective : WorkingDistance
• ObjectiveSettings : CorrectionCollar
• ObjectiveSettings : ID
• ObjectiveSettings : Medium
• ObjectiveSettings : RefractiveIndex
• Pixels : BigEndian

5357
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_X1
5358
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_X2
5359
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_Y1
5360
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_Y2
5361
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
5362
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
5363
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
5364
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
5365
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Microscope_Type
5366
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_CalibratedMagnification
5367
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
5368
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
5369
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
5370
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Iris
5371
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
5372
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
5373
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
5374
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
5375
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
5376
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_SerialNumber
5377
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_WorkingDistance
5378
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_CorrectionCollar
5379
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
5380
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_Medium
5381
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
5382
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian

18.2. Metadata fields
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• Polygon : ID
• Polygon : Points
• Polygon : Text
• Polyline : ID
• Polyline : Points
• Polyline: Text
• ROI: Description
• ROI: ID
• ROI: Name
• Rectangle: Height
• Rectangle: ID
• Rectangle: Text
• Rectangle: Width
• Rectangle: X
• Rectangle: Y
• TransmittanceRange: CutIn
• TransmittanceRange: CutInTolerance
• TransmittanceRange: CutOut
• TransmittanceRange: CutOutTolerance
• TransmittanceRange: Transmittance

Total supported: 158
Total unknown or missing: 318

18.2.165 ZeissLMSReader

This page lists supported metadata fields for the Bio-Formats Zeiss LMS format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 23 of them (4%).
• Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss LMS format reader:

• Channel: ID
• Channel: SamplesPerPixel

References:
5409 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
5410 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_Description
5411 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
5412 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_Name
5413 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Height
5414 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_ID
5415 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
5416 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Width
5417 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X
5418 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Y
5419 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutIn
5420 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutInTolerance
5421 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutOut
5422 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutOutTolerance
5423 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_Transmittance
5424 http://www.openmicroscopy.org/site/support/ome-model/
5425 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
5426 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
Bio-Formats Documentation, Release 5.2.3

- Image: AcquisitionDate
- Image: ID
- Image: Name
- Instrument: ID
- Objective: ID
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 23
Total unknown or missing: 453

18.2.1.66 ZeissLSMReader

This page lists supported metadata fields for the Bio-Formats Zeiss Laser-Scanning Microscopy format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 101 of them (21%).
- Of those, Bio-Formats fully or partially converts 101 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss Laser-Scanning Microscopy format reader:

- Channel: Color
- Channel: ID
- Channel: Name
- Channel: PinholeSize
- Channel: SamplesPerPixel
- Detector: AmplificationGain
- Detector: Gain
- Detector: ID
- Detector: Type
- Detector: Zoom
- DetectorSettings: Binning
- DetectorSettings: ID
- Dichroic: ID
- Dichroic: Model
- Ellipse: FontSize
- Ellipse: ID
- Ellipse: RadiusX
- Ellipse: RadiusY
- Ellipse: StrokeWidth
- Ellipse: Transform
- Ellipse: X
- Ellipse: Y

5449: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Color
5450: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
5451: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
5452: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_PinholeSize
5453: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
5454: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_AmplificationGain
5455: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Gain
5456: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
5457: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
5458: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Zoom
5459: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
5460: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
5461: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Dichroic_ID
5462: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
5463: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
5464: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
5465: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Pinhole
5466: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_RadiusX
5467: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_RadiusY
5468: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
5469: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
5470: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_Y
- Experimenter: ID
- Experimenter: UserName
- Filter: ID
- Filter: Model
- Filter: Type
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Image: ROIRef
- Instrument: ID
- Label: FontSize
- Label: ID
- Label: StrokeWidth
- Label: Text
- Label: X
- Label: Y
- Laser: ID
- Laser: LaserMedium
- Laser: Model
- Laser: Type
- Laser: Wavelength
- LightPath: DichroicRef
- LightPath: EmissionFilterRef
- Line: FontSize
- Line: ID

5471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_ID
5472 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_UserName
5473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_ID
5474 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
5475 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_Type
5476 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
5477 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
5478 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
5479 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
5480 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
5481 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID
5482 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
5483 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
5484 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_ID
5485 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
5486 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Label_X
5487 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Label_Y
5488 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_LaserMedium
5489 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
5490 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Type
5491 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Wavelength
5492 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DichroicRef_ID
5493 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterRef_ID
5494 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize

18.2. Metadata fields
• Line: ID
• Line: StrokeWidth
• Line: X1
• Line: X2
• Line: Y1
• Line: Y2
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: Iris
• Objective: LensNA
• Objective: NominalMagnification
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ

5497 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
5498 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
5499 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_X1
5500 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_X2
5501 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_Y1
5502 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_Y2
5503 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
5504 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
5505 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Iris
5506 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
5507 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
5508 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
5509 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
5510 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
5511 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
5512 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
5513 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
5514 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
5515 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
5516 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
5517 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
5518 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
5519 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
5520 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
5521 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
5522 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ

18.2. Metadata fields
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Polygon: FontSize
• Polygon: ID
• Polygon: Points
• Polygon: StrokeWidth
• Polyline: FontSize
• Polyline: ID
• Polyline: Points
• Polyline: StrokeWidth
• ROI: ID
• Rectangle: FontSize
• Rectangle: Height
• Rectangle: ID
• Rectangle: StrokeWidth
• Rectangle: Width
• Rectangle: X
• Rectangle: Y
• TransmittanceRange: CutIn

\(^{5523}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
\(^{5524}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{5525}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
\(^{5526}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
\(^{5527}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
\(^{5528}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
\(^{5529}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{5530}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{5531}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{5532}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
\(^{5533}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
\(^{5534}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polygon_Points
\(^{5535}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
\(^{5536}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
\(^{5537}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
\(^{5538}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_Points
\(^{5539}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
\(^{5540}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
\(^{5541}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
\(^{5542}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Height
\(^{5543}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
\(^{5544}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
\(^{5545}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
\(^{5546}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X
\(^{5547}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Y
\(^{5548}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutIn

18.2. Metadata fields
• TransmittanceRange : CutOut

Total supported: 101
Total unknown or missing: 375

18.2.167 ZeissTIFFReader

This page lists supported metadata fields for the Bio-Formats Zeiss AxioVision TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss AxioVision TIFF format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type

5549 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutOut
5550 http://www.openmicroscopy.org/site/support/ome-model/
5551 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
5552 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
5553 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
5554 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
5555 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
5556 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
5557 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
5558 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
5559 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
5560 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
5561 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
5562 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
5563 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
5564 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
5565 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
5566 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

18.2. Metadata fields
18.2.168 ZeissZVIReader

This page lists supported metadata fields for the Bio-Formats Zeiss Vision Image (ZVI) format reader. These fields are from the OME data model\(^{5570}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss Vision Image (ZVI) format reader:

- Channel: ID\(^{5571}\)
- Channel: SamplesPerPixel\(^{5572}\)
- Image: AcquisitionDate\(^{5573}\)
- Image: ID\(^{5574}\)
- Image: Name\(^{5575}\)
- Pixels: BigEndian\(^{5576}\)
- Pixels: DimensionOrder\(^{5577}\)
- Pixels: ID\(^{5578}\)
- Pixels: Interleaved\(^{5579}\)
- Pixels: SignificantBits\(^{5580}\)
- Pixels: SizeC\(^{5581}\)
- Pixels: SizeT\(^{5582}\)
- Pixels: SizeX\(^{5583}\)
- Pixels: SizeY\(^{5584}\)

\(^{5567}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{5568}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{5569}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{5570}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{5571}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{5572}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{5573}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{5574}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{5575}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{5576}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{5577}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{5578}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{5579}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{5580}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{5581}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{5582}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{5583}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{5584}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
18.2.169 ZipReader

This page lists supported metadata fields for the Bio-Formats Zip format reader.

These fields are from the OME data model\(^{5590}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zip format reader:

- Channel : ID\(^{5591}\)
- Channel : SamplesPerPixel\(^{5592}\)
- Image : AcquisitionDate\(^{5593}\)
- Image : ID\(^{5594}\)
- Image : Name\(^{5595}\)
- Pixels : BigEndian\(^{5596}\)
- Pixels : DimensionOrder\(^{5597}\)
- Pixels : ID\(^{5598}\)
- Pixels : Interleaved\(^{5599}\)
- Pixels : SignificantBits\(^{5600}\)
- Pixels : SizeC\(^{5601}\)
- Pixels : SizeT\(^{5602}\)

\(^{5585}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\(^{5586}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{5587}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{5588}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{5589}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{5590}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{5591}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{5592}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{5593}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{5594}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{5595}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{5596}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{5597}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{5598}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{5599}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{5600}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{5601}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{5602}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 457
GROUPING FILES USING A PATTERN FILE

Individual files can be grouped together into a single fileset using a pattern file. This works for any single-file format that Bio-Formats supports, as long as all files are in the same format. It is most useful for sets of TIFF, JPEG, PNG, etc. files that do not have any associated metadata.

All files to be grouped together should be in the same folder. The pattern file should be in the same folder as the other files; it can have any name, but must have the .pattern extension. The pattern file is what must be opened or imported, so it may be helpful to give it a descriptive or easily-recognizable name.

The pattern file contains a single line of text that is specially formatted to describe how the files should be grouped. The file can be created in any text editor.

The text in the pattern file can take one of several forms. To illustrate, consider a folder with the following file names:

red.tiff
green.tiff
blue.tiff
test_Z0_C0.png
test_Z1_C0.png
test_Z0_C1.png
test_Z1_C1.png
test_Z0_C2.png
test_Z1_C2.png
test_Z00.tiff
test_Z01.tiff

A pattern file that groups red.tiff, green.tiff, and blue.tiff in that order would look like:

<red,green,blue>.tiff

A pattern that groups test_Z0_C0.png,test_Z1_C0.png,test_Z0_C2.png, and test_Z1_C2.png:

test_Z<0-1>_C<0-2;2>.png

The <> notation in general can accept a single literal value, a comma-separated list of literal values, a range of integer values, or a range of integer values with a step value greater than 1 (the range and step are separated by :). Note that inverting the values in a range (e.g. <2-0>) is not supported and will cause an exception to be thrown.

The characters immediately preceding the < can affect which dimension is assigned to the specified values. The values will be interpreted as:

- channels, if c, ch, w, or wavelength precede <
- timepoints, if t, tl, tp, or timepoint precede <
- Z sections, if z, zs, sec, fp, focal, or focalplane precede <
- series, if s, sp, or series precede <

Note that the listed dimension specifier characters are case insensitive. A separator character (underscore or space) must precede the dimension specifier if it is not at the beginning of the filename. In the above example, 2 Z sections and 2 out of 3 channels would be detected according to the dimension specifiers.
Leading zeros in the integer values must be specified. To group test_Z00.tiff and test_Z01.tiff:

```
test_Z<00-01>.tiff
```

or:

```
test_Z0<0-1>.tiff
```

Note that this pattern would not group the files correctly:

```
test_Z<0-1>.tiff
```

A pattern file that groups all PNG files beginning with test_ would look like:

```
test_.*.png
```

This and most other Java-style regular expressions can be used in place of the <> notation above. See the java.util.regex.Pattern Javadoc\(^1\) for more information on constructing regular expressions.

\(^1\)http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
Symbols

- `--debug` command line option, 119
- `--metadata-package=package` command line option, 119
- `--ome-xml-metadata-package` command line option, 119
- `--ome-xml-model-enum-handlers-package=package` command line option, 119
- `--ome-xml-model-enums-package=package` command line option, 119
- `--ome-xml-model-package=package` command line option, 119
- `--print-depends` command line option, 119
- `--print-generated` command line option, 119
- `--autoscale` showinf command line option, 55
- `--bigtiff` bfconvert command line option, 57
- `--cache` showinf command line option, 55
- `--cache-dir DIR` showinf command line option, 55
- `--channel CHANNEL` bfconvert command line option, 56
- `--columns COLUMNS` mkfake command line option, 61
- `--compression COMPRESSION` bfconvert command line option, 56
- `--crop X,Y,WIDTH,HEIGHT` showinf command line option, 54
- `--dry-run` command line option, 119
- `--debug` showinf command line option, 55
- `--debug DEBUG` mkfake command line option, 61
- `--fast` showinf command line option, 55
- `--fields FIELDS` mkfake command line option, 61
- `--help` formatlist command line option, 60
- `--html` formatlist command line option, 59
- `--language, --language=language` command line option, 119
- `-n, --xsd-namespace` command line option, 119
- `--no-core` showinf command line option, 54
- `--no-upgrade` showinf command line option, 54
- `--no-valid` showinf command line option, 54
- `--nolookup` bfconvert command line option, 57
- `--nooverwrite` bfconvert command line option, 57
- `--nopix` showinf command line option, 54
- `-o dir, --output-directory=dir` command line option, 119
- `--omexml` showinf command line option, 54
- `--omexml-only` showinf command line option, 54
- `--overwrite` bfconvert command line option, 57
- `--padded` bfconvert command line option, 57
- `--plates PLATES` bfconvert command line option, 56
- `--range START END` showinf command line option, 54
- `--q, --quiet` command line option, 119
- `--range START END` bfconvert command line option, 56
- `--runs RUNS` mkfake command line option, 61
- `--series SERIES` mkfake command line option, 61
- `--t path, --template-path=path` command line option, 119
- `--tilex TILEX`, `--tiley TILEY` bfconvert command line option, 54
- `--timepoint TIMEPOINT` bfconvert command line option, 56
- `--txt` formatlist command line option, 59
- `--v, --verbose` command line option, 119
- `--xml`
<table>
<thead>
<tr>
<th>Format</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>.ids</td>
<td>165</td>
</tr>
<tr>
<td>.im3</td>
<td>203</td>
</tr>
<tr>
<td>.img</td>
<td>140, 150, 157, 168, 175, 192</td>
</tr>
<tr>
<td>.ims</td>
<td>148</td>
</tr>
<tr>
<td>.inr</td>
<td>173</td>
</tr>
<tr>
<td>.ipl</td>
<td>174</td>
</tr>
<tr>
<td>.ipm</td>
<td>175</td>
</tr>
<tr>
<td>.ipw</td>
<td>167</td>
</tr>
<tr>
<td>.jp2</td>
<td>177</td>
</tr>
<tr>
<td>.jpg</td>
<td>164, 176, 219</td>
</tr>
<tr>
<td>.jpk</td>
<td>178</td>
</tr>
<tr>
<td>.jpx</td>
<td>178</td>
</tr>
<tr>
<td>.l2d</td>
<td>184</td>
</tr>
<tr>
<td>.labels</td>
<td>139</td>
</tr>
<tr>
<td>.lei</td>
<td>181</td>
</tr>
<tr>
<td>.lif</td>
<td>182</td>
</tr>
<tr>
<td>.liff</td>
<td>169</td>
</tr>
<tr>
<td>.lim</td>
<td>185</td>
</tr>
<tr>
<td>.lms</td>
<td>226</td>
</tr>
<tr>
<td>.lsd</td>
<td>229</td>
</tr>
<tr>
<td>.mdb</td>
<td>229</td>
</tr>
<tr>
<td>.mea</td>
<td>157</td>
</tr>
<tr>
<td>.mnc</td>
<td>188</td>
</tr>
<tr>
<td>.mng</td>
<td>189</td>
</tr>
<tr>
<td>.mod</td>
<td>169</td>
</tr>
<tr>
<td>.mov</td>
<td>210</td>
</tr>
<tr>
<td>.mrc</td>
<td>190</td>
</tr>
<tr>
<td>.mrw</td>
<td>188</td>
</tr>
<tr>
<td>.msr</td>
<td>171, 181</td>
</tr>
<tr>
<td>.mtb</td>
<td>195</td>
</tr>
<tr>
<td>.mvd2</td>
<td>223</td>
</tr>
<tr>
<td>.naf</td>
<td>161</td>
</tr>
<tr>
<td>.nd</td>
<td>186</td>
</tr>
<tr>
<td>.nd2</td>
<td>194</td>
</tr>
<tr>
<td>.ndpi</td>
<td>162</td>
</tr>
<tr>
<td>.ndpis</td>
<td>162</td>
</tr>
<tr>
<td>.nef</td>
<td>191</td>
</tr>
<tr>
<td>.nhdr</td>
<td>195</td>
</tr>
<tr>
<td>.nii</td>
<td>192</td>
</tr>
<tr>
<td>.nii.gz</td>
<td>192</td>
</tr>
<tr>
<td>.nrrd</td>
<td>195</td>
</tr>
<tr>
<td>.obf</td>
<td>171</td>
</tr>
<tr>
<td>.obsep</td>
<td>195</td>
</tr>
<tr>
<td>.obil</td>
<td>196</td>
</tr>
<tr>
<td>.otf</td>
<td>196</td>
</tr>
<tr>
<td>.ome</td>
<td>200</td>
</tr>
<tr>
<td>.ome.btf</td>
<td>199</td>
</tr>
<tr>
<td>.ome.tf2</td>
<td>199</td>
</tr>
<tr>
<td>.ome.tf8</td>
<td>199</td>
</tr>
<tr>
<td>.ome.tif</td>
<td>199</td>
</tr>
<tr>
<td>.ome.tiff</td>
<td>199</td>
</tr>
<tr>
<td>.ome.xml</td>
<td>200</td>
</tr>
<tr>
<td>.par</td>
<td>175</td>
</tr>
<tr>
<td>.pbm</td>
<td>205</td>
</tr>
<tr>
<td>.pcoraw</td>
<td>201</td>
</tr>
<tr>
<td>.pcx</td>
<td>202</td>
</tr>
<tr>
<td>.pds</td>
<td>202</td>
</tr>
<tr>
<td>.pgm</td>
<td>205</td>
</tr>
<tr>
<td>.pic</td>
<td>147</td>
</tr>
<tr>
<td>.pict</td>
<td>207</td>
</tr>
<tr>
<td>.png</td>
<td>140, 208</td>
</tr>
</tbody>
</table>
Applied Precision CellWorX, 142
AVI (Audio Video Interleave), 143
Axon Raw Format, 144

B
BD Pathway, 144
Becker & Hickl SPC FIFO, 145
Becker & Hickl SPCImage, 146
BF_DEVEL, 53
BF_PROFILE, 53
bfconvert, 52
bfconvert command line option
 -bigtiff, 57
 -channel CHANNEL, 56
 -compression COMPRESSION, 56
 -nolookup, 57
 -nooverwrite, 57
 -overwrite, 57
 -padded, 57
 -range START END, 56
 -series SERIES, 55
 -tilex TILEX, -tiley TYLEY, 56
 -timepoint TIMEPOINT, 56
 -z Z, 56
Bio-Rad Gel, 146
Bio-Rad PIC, 147
Bio-Rad SCN, 148
Bitplane Imaris, 148
Bruker MRI, 149
BSD, 135
bsd, 116
Burleigh, 150

C
Canon DNG, 151
CellH5, 151
Cellomics, 152
cellSens VSI, 152
CellVoyager, 153
CLASSPATH, 111
command line option
 –debug, 119
 –metadata-package=package, 119
 –ome-xml-metadata-package, 119
 –ome-xml-model-enum-handlers-package=package, 119
 –ome-xml-model-enums-package=package, 119
 –ome-xml-model-package=package, 119
 –print-depends, 119
 –print-generated, 119
 -d, –dry-run, 119
 -l language, –language=language, 119
 -n, –xsd-namespace, 119
 -o dir, –output-directory=dir, 119
 -q, –quiet, 119
 -t path, –template-path=path, 119
 -v, –verbose, 119

D
DeltaVision, 154
developer, 116
<table>
<thead>
<tr>
<th>Index</th>
<th>511</th>
</tr>
</thead>
</table>

DICOM, 154
domainlist, 52

E
ECAT7, 155
environment variable
 - BF_DEVEL, 53
 - BF_PROFILE, 53
 - CLASSPATH, 111
 - PYTHONPATH, 80

F
FEI, 157
FEI TIFF, 158
FITS (Flexible Image Transport System), 159
formatlist, 52
formatlist command line option
 -help, 60
 -html, 59
 -txt, 59
 -xml, 59

G
Gatan Digital Micrograph, 159
Gatan Digital Micrograph 2, 160
GIF (Graphics Interchange Format), 161

H
Hamamatsu Aquacosmos NAF, 161
Hamamatsu HIS, 162
Hamamatsu ndpi, 162
Hamamatsu VMS, 163
Hitachi S-4800, 164

I
I2I, 164
ICS (Image Cytometry Standard), 165
ijview, 52
Imacon, 166
ImagePro Sequence, 166
ImagePro Workspace, 167
IMAGIC, 168
IMOD, 169
Improvision Openlab LIFF, 169
Improvision Openlab Raw, 170
Improvision TIFF, 170
Inspektor OBF, 171
InCell 1000/2000, 172
InCell 3000, 172
INR, 173
Inveon, 173
IPLab, 174
IVision, 175

J
JEOL, 175

K
Khoros VIFF (Visualization Image File Format) Bitmap, 179
Kodak BIP, 179

L
Lambert Instruments FLIM, 180
LaVision Inspector, 181
Leica LAS AF LIF (Leica Image File Format), 182
Leica LCS LEI, 181
Leica SCN, 183
LEO, 183
Li-Cor L2D, 184
LIM (Laboratory Imaging/Nikon), 185

M
Metadata, 135
metadataRating, 116
MetaMorph 7.5 TIFF, 185
MetaMorph Stack (STK), 186
MIAS (Maia Scientific), 187
Micro-Manager, 187
MINC MRI, 188
Minolta MRW, 188
mkfake, 52
mkfake command line option
 -columns COLUMNS, 61
 -debug DEBUG, 61
 -fields FIELDS, 61
 -plates PLATES, 61
 -rows ROWS, 61
 -runs RUNS, 61
MNG (Multiple-image Network Graphics), 189
Molecular Imaging, 190
MRC (Medical Research Council), 190
Multiple Images, 135

N
NEF (Nikon Electronic Format), 191
NIITI, 192
Nikon Elements TIFF, 193
Nikon EZ-C1 TIFF, 193
Nikon NIS-Elements ND2, 194
notes, 116
NRRD (Nearly Raw Raster Data), 195

O
Olympus CellR/APL, 195
Olympus Fluoview FV1000, 196
Olympus Fluoview TIFF, 197
Olympus ScanR, 198
Olympus SIS TIFF, 198
OME-TIFF, 199
OME-XML, 200
Openness, 135
opennessRating, 116
owner, 116
Oxford Instruments, 200

P
pagename, 116
PCORAW, 201
PCX (PC Paintbrush), 202
Perkin Elmer Densitometer, 202
PerkinElmer Nuance, 203
PerkinElmer Operetta, 203
PerkinElmer UltraVIEW, 204
Photoshop TIFF, 206
PicoQuant Bin, 206
PICT (Macintosh Picture), 207
pixelRating, 116
Pixels, 135
PNG (Portable Network Graphics), 208
Portable Any Map, 205
Prairie Technologies TIFF, 208
Presence, 135
presenceRating, 116
Princeton Instruments SPE, 209
Pyramid, 135
PYTHONPATH, 80

Q
Quesant, 209
QuickTime Movie, 210

R
Ratings legend and definitions, 135
reader, 116
RHK, 211

S
SBIG, 212
Seiko, 213
showinf, 52
showinf command line option
-autoscale, 55
-cache, 55
-cache-dir DIR, 55
-crop X,Y,WIDTH,HEIGHT, 54
-debug, 55
-fast, 55
-no-core, 54
-no-upgrade, 54
-no-valid, 54
-nopix, 54
-omexml, 54
-omexml-only, 54
-range START END, 54
-series SERIES, 54
SimplePCI & HCImage, 213
SimplePCI & HCImage TIFF, 214
SM Camera, 214
SPIDER, 215

T
Targa, 216

Text, 216
TIFF (Tagged Image File Format), 217
tiffcomment, 52
TillPhotonics TillVision, 218
Topometrix, 218
Trestle, 219

U
UBM, 219
Unisoku, 220
Utility, 135
utilityRating, 116

V
Varian FDF, 220
Veeco AFM, 221
versions, 116
VG SAM, 222
VisiTech XYS, 222
Volocity, 223
Volocity Library Clipping, 223

W
WA-TOP, 224
weHave, 116
weWant, 116
Windows Bitmap, 225
Woolz, 225

X
xmlindent, 52
xmlvalid, 52

Z
Zeiss Axio CSM, 226
Zeiss AxioVision TIFF, 226
Zeiss AxioVision ZVI (Zeiss Vision Image), 227
Zeiss CFI, 228
Zeiss LSM (Laser Scanning Microscope) 510/710, 229