I About Bio-Formats

1 Help

2 Bio-Formats versions

3 Why Java?

4 Bio-Formats metadata processing
 4.1 Reporting a bug
 4.2 Version history

II User Information

5 Using Bio-Formats with ImageJ and Fiji
 5.1 ImageJ overview
 5.2 Fiji overview
 5.3 Bio-Formats features in ImageJ and Fiji
 5.4 Installing Bio-Formats in ImageJ
 5.5 Using Bio-Formats to load images into ImageJ
 5.6 Managing memory in ImageJ/Fiji using Bio-Formats

6 Command line tools
 6.1 Command line tools introduction
 6.2 Displaying images and metadata
 6.3 Converting a file to different format
 6.4 Validating XML in an OME-TIFF
 6.5 Editing XML in an OME-TIFF
 6.6 List formats by domain
 6.7 List supported file formats
 6.8 Display file in ImageJ
 6.9 Format XML data
 6.10 Create a high-content screen for testing

7 OMERO

8 Image server applications
 8.1 BISQUE
 8.2 OME Server

9 Libraries and scripting applications
 9.1 FARSIGHT
 9.2 i3dcore
 9.3 ImgLib
 9.4 ITK
 9.5 Qu for MATLAB

10 Numerical data processing applications
 10.1 GNU Octave
10.2 IDL ... 68
10.3 KNIME .. 68
10.4 MATLAB .. 68
10.5 VisAD ... 69

11 Visualization and analysis applications 70
 11.1 Bitplane Imaris .. 70
 11.2 CellProfiler ... 70
 11.3 Comstat2 .. 71
 11.4 Endrov ... 71
 11.5 FocalPoint .. 71
 11.6 Graphic Converter ... 71
 11.7 Icy ... 72
 11.8 imago ... 72
 11.9 Iqm ... 72
 11.10 Macnification .. 72
 11.11 Micro-Manager ... 72
 11.12 MIPAV ... 73
 11.13 Vaa3D ... 74
 11.14 VisBio ... 74
 11.15 XuvTools ... 75

III Developer Documentation ... 76

12 Introduction to Bio-Formats ... 78
 12.1 Overview for developers .. 78
 12.2 Obtaining and building Bio-Formats 79
 12.3 Component overview .. 81
 12.4 Reading files ... 84
 12.5 Writing files .. 86

13 Using Bio-Formats as a Java library 87
 13.1 Using Bio-Formats as a Java library 87
 13.2 Units of measurement .. 91
 13.3 Exporting files using Bio-Formats 92
 13.4 Further details on exporting raw pixel data to OME-TIFF files 94
 13.5 Logging ... 96
 13.6 Converting files from FV1000 OIB/OIF to OME-TIFF 96
 13.7 Using Bio-Formats in MATLAB 97
 13.8 Using Bio-Formats in Python 103
 13.9 Interfacing with Bio-Formats from non-Java code 103

14 Using Bio-Formats as a native C++ library 104

15 Contributing to Bio-Formats ... 105
 15.1 Code formatting .. 105
 15.2 Testing code changes .. 105
 15.3 Generating test images .. 108
 15.4 Writing a new file format reader 111
 15.5 Adding format reader documentation pages 115
 15.6 Bio-Formats service and dependency infrastructure 116
 15.7 Code generation with xsd-fu 118
 15.8 Scripts for performing development tasks 121

IV Formats ... 122

16 Dataset Structure Table ... 124
 16.1 Flex Support ... 127
17 Supported Formats

17.1 3i SlideBook ... 134
17.2 Andor Bio-Imaging Division (ABD) TIFF 135
17.3 AIM .. 136
17.4 Alicona 3D ... 136
17.5 Amersham Biosciences Gel ... 137
17.6 Amira Mesh ... 138
17.7 Amnis FlowSight .. 138
17.8 Analyze 7.5 .. 139
17.9 Animated PNG .. 139
17.10 Aperio AFI .. 140
17.11 Aperio SVS TIFF ... 141
17.12 Applied Precision CellWorX ... 141
17.13 AVI (Audio Video Interleave) ... 142
17.14 Axon Raw Format ... 143
17.15 BD Pathway .. 144
17.16 Becker & Hickl SPC FIFO ... 144
17.17 Becker & Hickl SPCImage ... 145
17.18 Bio-Rad Gel .. 146
17.19 Bio-Rad PIC .. 146
17.20 Bio-Rad SCN .. 147
17.21 Bitplane Imaris .. 148
17.22 Bruker MRI ... 149
17.23 Burleigh .. 149
17.24 Canon DNG .. 150
17.25 CellH5 .. 150
17.26 Cellomics .. 151
17.27 cellSens VSI ... 152
17.28 CellVoyager ... 152
17.29 DeltaVision .. 153
17.30 DICOM .. 154
17.31 ECAT7 .. 155
17.32 EPS (Encapsulated PostScript) .. 155
17.33 Evotec/PerkinElmer Opera Flex 156
17.34 FEI ... 157
17.35 FEI TIFF ... 157
17.36 FITS (Flexible Image Transport System) 158
17.37 Gatan Digital Micrograph ... 158
17.38 Gatan Digital Micrograph 2 ... 159
17.39 GIF (Graphics Interchange Format) 160
17.40 Hamamatsu Aquacosmos NAF 160
17.41 Hamamatsu HIS .. 161
17.42 Hamamatsu ndpi ... 162
17.43 Hamamatsu VMS ... 162
17.44 Hitachi S-4800 .. 163
17.45 I2I ... 164
17.46 ICS (Image Cytometry Standard) 164
17.47 Imacon .. 165
17.48 ImagePro Sequence .. 166
17.49 ImagePro Workspace .. 166
17.50 IMAGIC ... 167
17.51 IMOD .. 168
17.52 Improvision Openlab LIFF ... 168
17.53 Improvision Openlab Raw ... 169
17.54 Improvision TIFF ... 170
17.55 Inspector OBF ... 170
17.56 InCell 1000/2000 ... 171
17.57 InCell 3000 ... 171
17.58 INR ... 172
17.59 Inveon ... 172
17.60 IP Lab ... 173
The following documentation is split into four parts. *About Bio-Formats* explains the goal of the software, discusses how it processes metadata, and provides other useful information such as version history and how to report bugs. *User Information* focuses on how to use Bio-Formats as a plugin for ImageJ and Fiji, and also gives details of other software packages which can use Bio-Formats to read and write microscopy formats. *Developer Documentation* covers more in-depth information on using Bio-Formats as a Java library and how to interface from non-Java codes. Finally, *Formats* is a guide to all the file formats currently supported by Bio-Formats.
Part I

About Bio-Formats
Bio-Formats is a standalone Java library for reading and writing life sciences image file formats. It is capable of parsing both pixels and metadata for a large number of formats, as well as writing to several formats.

The primary goal of Bio-Formats is to facilitate the exchange of microscopy data between different software packages and organizations. It achieves this by converting proprietary microscopy data into an open standard called the OME data model¹, particularly into the OME-TIFF² file format.

We believe the standardization of microscopy metadata to a common structure is of vital importance to the community. You may find LOCI’s article on open source software in science³ of interest.

¹http://genomebiology.com/2005/6/5/R47
²http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
³http://loci.wisc.edu/software/oss
There is a guide for reporting bugs here.

For help relating to opening images in ImageJ or FIJI or when using the command line tools, refer to the users documentation. You can also find tips on common issues with specific formats on the pages linked from the supported formats table.

Please contact us if you have any questions or problems with Bio-Formats not addressed by referring to the documentation.

Other places where questions are commonly asked and/or bugs are reported include:

• OME Trac
• ome-devel mailing list (searchable using google with ‘site:lists.openmicroscopy.org.uk’)
• ome-users mailing list (searchable using google with ‘site:lists.openmicroscopy.org.uk’)
• ImageJ forum (for ImageJ/Fiji issues)
• ImageJ mailing list (and archive)
• Fiji GitHub Issues
• Confocal microscopy mailing list

1 http://www.openmicroscopy.org/site/community/mailing-lists
2 https://trac.openmicroscopy.org/ome
3 http://lists.openmicroscopy.org.uk/pipermail/ome-devel
4 http://lists.openmicroscopy.org.uk/pipermail/ome-users
5 http://forum.imagej.net
6 http://imagej.nih.gov/ij/list.html
7 http://imagej.1557.n6.nabble.com
8 https://github.com/fiji/fiji/issues
9 http://lists.umn.edu/cgi-bin/wa?A0=confocalmicroscopy
Bio-Formats is now decoupled from OMERO with its own release schedule rather than being updated whenever a new version of OMERO\(^1\) is released. We expect this to result in more frequent releases to get fixes out to the community faster.

The version number is three numbers separated by dots e.g. 4.0.0. See the version history for a list of major changes in each release.

\(^1\)http://www.openmicroscopy.org/site/support/omero5.1/
From a practical perspective, Bio-Formats is written in Java because it is cross-platform and widely used, with a vast array of libraries for handling common programming tasks. Java is one of the easiest languages from which to deploy cross-platform software. In contrast to C++, which has a large number of complex platform issues to consider, and Python, which leans heavily on C and C++ for many of its components (e.g., NumPy and SciPy), Java code is compiled one time into platform-independent byte code, which can be deployed as is to all supported platforms. And despite this enormous flexibility, Java manages to provide time performance nearly equal to C++, often better in the case of I/O operations (see further discussion on the comparative speed of Java on the LOCI site1).

There are also historical reasons associated with the fact that the project grew out of work on the VisAD Java component library2. You can read more about the origins of Bio-Formats on the LOCI Bio-Formats homepage3.

1 http://loci.wisc.edu/faq/ist-java-too-slow
2 http://visad.ssec.wisc.edu
3 http://loci.wisc.edu/software/bio-formats
CHAPTER
FOUR

BIO-FORMATS METADATA PROCESSING

Pixels in microscopy are almost always very straightforward, stored on evenly spaced rectangular grids. It is the metadata (details about the acquisition, experiment, user, and other information) that can be complex. Using the OME data model enables applications to support a single metadata format, rather than the multitude of proprietary formats available today.

Every file format has a distinct set of metadata, stored differently. Bio-Formats processes and converts each format’s metadata structures into a standard form called the OME data model\(^1\), according to the OME-XML\(^2\) specification. We have defined an open exchange format called OME-TIFF\(^3\) that stores its metadata as OME-XML. Any software package that supports OME-TIFF is also compatible with the dozens of formats listed on the Bio-Formats page, because Bio-Formats can convert your files to OME-TIFF format.

To facilitate support of OME-XML, we have created a library in Java\(^4\) for reading and writing OME-XML\(^5\) metadata.

There are three types of metadata in Bio-Formats, which we call core metadata, original metadata, and OME metadata.

1. **Core metadata** only includes things necessary to understand the basic structure of the pixels: image resolution; number of focal planes, time points, channels, and other dimensional axes; byte order; dimension order; color arrangement (RGB, indexed color or separate channels); and thumbnail resolution.

2. **Original metadata** is information specific to a particular file format. These fields are key/value pairs in the original format, with no guarantee of cross-format naming consistency or compatibility. Nomenclature often differs between formats, as each vendor is free to use their own terminology.

3. **OME metadata** is information from #1 and #2 converted by Bio-Formats into the OME data model. **Performing this conversion is the primary purpose of Bio-Formats.** Bio-Formats uses its ability to convert proprietary metadata into OME-XML as part of its integration with the OME and OMERO servers—essentially, they are able to populate their databases in a structured way because Bio-Formats sorts the metadata into the proper places. This conversion is nowhere near complete or bug free, but we are constantly working to improve it. We would greatly appreciate any and all input from users concerning missing or improperly converted metadata fields.

4.1 Reporting a bug

4.1.1 Before filing a bug report

If you think you have found a bug in Bio-Formats, the first thing to do is update your version of Bio-Formats to the latest version to check if the problem has already been addressed. The Fiji updater will automatically do this for you, while in ImageJ you can select **Plugins → Bio-Formats → Update Bio-Formats Plugins.**

You can also download the latest version of Bio-Formats\(^6\). If you are not sure which version you need, select the latest build of the Bio-Formats package bundle from the components table.

\(^1\)http://genomebiology.com/2005/6/5/R47
\(^2\)http://www.openmicroscopy.org/site/support/ome-model/ome-xml
\(^3\)http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
\(^4\)http://www.openmicroscopy.org/site/support/ome-model/ome-xml/java-library.html
\(^5\)http://www.openmicroscopy.org/site/support/ome-model/ome-xml
\(^6\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/
4.1.2 Common issues to check

- If your 12, 14 or 16-bit images look all black when you open them, typically the problem is that the pixel values are very, very small relative to the maximum possible pixel value (4095, 16383, and 65535, respectively), so when displayed the pixels are effectively black. In ImageJ/Fiji, this is fixable by checking the “Autoscale” option; with the command line tools, the “-autoscale-fast” options should work.

- If the file is very, very small (4096 bytes) and any exception is generated when reading the file, then make sure it is not a Mac OS X resource fork. The ‘file’ command should tell you:

 $ file /path/to/suspicious-file
 suspicious-file: AppleDouble encoded Macintosh file

- If you get an OutOfMemory or NegativeArraySize error message when attempting to open an SVS or JPEG-2000 file then the amount of pixel data in a single image plane exceeds the amount of memory allocated to the JVM (Java Virtual Machine) or 2 GB, respectively. For the former, you can increase the amount of memory allocated; in the latter case, you will need to open the image in sections. If you are using Bio-Formats as a library, this means using the openBytes(int, int, int, int, int) method in loci.formats.IFormatReader. If you are using Bio-Formats within ImageJ, you can use the Crop on import option.

Note that JPEG-2000 is a very efficient compression algorithm - thus the size of the file on disk will be substantially smaller than the amount of memory required to store the uncompressed pixel data. It is not uncommon for a JPEG-2000 or SVS file to occupy less than 200 MB on disk, and yet have over 2 GB of uncompressed pixel data.

4.1.3 Sending a bug report

If you can still reproduce the bug after updating to the latest version of Bio-Formats, and your issue does not relate to anything listed above or noted on the relevant file format page, please send a bug report to the OME Users mailing list. You can upload files to our QA system or for large files (>2 GB), we can provide you with an FTP server address if you write to the mailing list.

To ensure that any inquiries you make are resolved promptly, please include the following information:

- **Exact error message.** Copy and paste any error messages into the text of your email. Alternatively, attach a screenshot of the relevant windows.

- **Version information.** Indicate which release of Bio-Formats, which operating system, and which version of Java you are using.

- **Non-working data.** If possible, please send a non-working file. This helps us ensure that the problem is fixed for next release and will not reappear in later releases. Note that any data provided is used for internal testing only; we do not make images publicly available unless given explicit permission to do so.

- **Metadata and screenshots.** If possible, include any additional information about your data. We are especially interested in the expected dimensions (width, height, number of channels, Z slices, and timepoints). Screenshots of the image being successfully opened in other software are also useful.

- **Format details.** If you are requesting support for a new format, we ask that you send as much data as you have regarding this format (sample files, specifications, vendor/manufacturer information, etc.). This helps us to better support the format and ensures future versions of the format are also supported.

Please be patient - it may be a few days until you receive a response, but we reply to every email inquiry we receive.

4.2 Version history

4.2.1 5.2.2 (2016 September 13)

Java bug fixes and improvements:

- fixed a regression in which the DataTools number parsing API would not be thread-safe anymore

8http://lists.openmicroscopy.org.uk/mailman/listinfo/ome-users
9http://qa.openmicroscopy.org.uk/qa/upload/
• InCell
 – improved handling of Analyzer 2000 datasets to find TIFF files
• FV1000
 – fixed preview names ordering
• OME-TIFF
 – enabled all BigTIFF extensions
 • various code cleanup across the Java code
 • added test coverage for all example codes in the developer documentations
 • added tests covering the semantics of the INI parser

ImageJ bug fixes and improvements:
• fixed a bug in ImageJ when swapping dimensions of an image with multiple series of different dimensions
• added an option to the exporter to pad filename indexes with zeros

Command-line tools improvements:
• allowed the binaries to be symlinked (thanks to Gerhard Burger)
• added an option to bfconvert to pad filename indexes with zeros

4.2.2 5.2.1 (2016 August 25)

Java bug fixes:
• Zeiss CZI
 – fixed NumberFormatException when the position object is not null but the values of child are null
• SimplePCI
 – made IniParser less stringent to allow reading of imperfectly formatted TIFF description headers
 • fixed stitching of file patterns in ImageJ to remove duplication of directory names in the file path
 • added an option to bfconvert to allow creation of OME-TIFF without lookup tables
 • addition of MetadataOnly elements containing no BinData or TiffData now handled via MetadataTools API in ImageInfo
 • example code in developer docs is now tested via a new Maven module

4.2.3 5.2.0 (2016 August 18)

Java format support improvements are listed below.
†Denotes a major breaking change to the reader (typically modification of core metadata). Code changes or re-import may be necessary in ImageJ/FIJI and OMERO.
• added support (and public sample files) for Becker & Hickl .spc FIFO data
• added support for Princeton Instruments .spe data
• bug fixes for many formats including:
 – CellSens VSI†
 * fixes for correctly reading dimensions
 – FlowSight
 * fixes to infer channel count from channel names (thanks to Lee Kamentsky)
 – Hamamatsu VMS†
 * fixed dimensions of full-resolution images
– ICS writing
 * fixed dimension population for split files

– Kodak BIP
 * fixed handling of CCD temperature stored in hexadecimal

– Leica LIF
 * fixed incorrect plane offsets for large multi-tile files

– LiFlim
 * fixed ExposureTime check and units usage

– Micro-Manager
 * fixed handling of large datasets saved as image stacks and split over multiple files
 * added user documentation for file saving options

– MRC and Spider
 * fixed format type checking

– Nifti
 * fixed planeSize to prevent crashes when loading large files (thanks to Christian Niedworok)
 * added support for gzipped compressed .nii.gz files (thanks to Eric Barnhill)
 * added public samples and updated documented supported file extensions

– OME-TIFF
 * fixed Plane population errors
 * fixed NullPointerException when closing reader for partial multi-file filesets
 * reduced buffer size for RandomAccessInputStreams to improve performance
 * deprecated getMetadataStoreForConversion and getMetadataStoreForDisplay methods

– OME-XML
 * fixed metadata store

– PicoQuant
 * updated reader to always buffer data

– PNG writing

– SDT
 * performance improvements for loading of large files

– Slidebook
 * Slidebook6Reader is now completely external and fully maintained by 3i (see http://www.openmicroscopy.org/info/slidebook) and is specified as such in the readers.txt configuration file

– SVS
 * fixed NumberFormatException

– Tiff
 * fixed integer overflow to read resolutions correctly
 * fixed handling of tiled images with tile width less than 64

– Zeiss CZI
 * fixed timestamp indexing when multiple separate channels are present
* improved slide support - slides are now detected as a complete full-resolution image (instead of each tile being a separate series) and pyramid sub-resolutions and label/overview images are also detected

 – **Zeiss LSM**
 * fixed Plane population errors

 – **Zeiss ZVI†**
 * reworked image ordering calculation to allow for tiles

Top-level Bio-Formats API changes:

- Java 1.7 is now the minimum supported version
- the native-lib-loader dependency has been bumped to version 2.1.4
- the xalan dependency has been bumped to version 2.7.2
- all the ome.jxr classes have been deprecated to make clear that there is no JPEG-XR support implemented in Bio-Formats as yet

- the **DataTools API** has been extended to add a number of utility functions to:
 - account for decimal separators in different locales
 - parse a String into Double, Float, Integer etc
 - handle NumberFormatException thrown when parsing Unit tests

- the **Logging API** has been updated to respect logging frameworks (log4j/logback) initialized via a binding-specific configuration file and to prevent DebugTools.enableLogging(String) from overriding initialized logger levels (see Logging for more information)

- helper methods have been added to FormatTools allowing a stage position to be formatted from an input Double and an input unit

- the **Formats API** has also been updated to add a new validate property to MetadataOptions and support for MetadataOptions has been moved to FormatHandler level to allow it to be used by both Readers and Writers

- initial work on Reader discoverability extended the ClassList API to allow the readers.txt configuration file to be annotated using key/value pairs to mark optional Readers and specify additional per-Reader options

Other general improvements include:

- improved performance of getUsedFiles
- fixes for FilePatternBlock, AxisGuesser, FilePattern
- fixes for the detection of CSV pattern blocks by FilePatternBlock
- **bioformats_package.jar** now includes bio-formats-tools as a dependency so ImageConverter, ImageFaker and ImageInfo classes are included in the bundle
- the **JACE C++** implementation has been decoupled as it does not function with Java 1.8 (see legacy repo)

- **ImageJ fixes**
 - to allow reader delegation when a legacy reader is enabled but not working
 - to allow ROIs to be imported to the ImageJ ROI manager or added to a new overlay

- **MATLAB fixes**
 - improved integration with Octave (thanks to Carnē Draug)
 - added logging initialization

- **Command-line tools fixes**
 - upgrade check no longer run when passing -version
 - common methods refactoring
 - showinfo improvements to preload format

10 https://github.com/openmicroscopy/design/issues/42
11 https://github.com/ome/bio-formats-jace

4.2. Version history
- tiffcomment now warns that it requires an ImageDescription tag to be present in the TIFF file
- added many automated tests and improved FakeReader testing framework

documentation improvements include:
- clarifying status of legacy Quicktime and ND2 readers
- noting that the Gatan reader does not currently support stacks
- more Java examples added to the developer documentation
- new units page for developers

The Data Model version 2016-06 has been released to introduce Folders\(^\text{12}\), and to simplify both the graphical aspects of the model and code generation. Full details are available in the OME Model and Formats Documentation\(^\text{13}\). OME-XML changes include:

- **Map** is now a complexType rather than an element and **MapPairs** has been dropped
- extended enum metadata has been introduced to better support units
- **Shape** and **LightSource** are now complexTypes rather than elements
- **BinData** has been added to code generation to handle raw binary data

various code generation improvements to:
- simplify and standardize the generation process
- remove a number of hard-coded exceptional cases allowing for easier maintenance and growth
- allow for genuine abstract model types and enable C++ model implementation

- updated OME-XML and OME-TIFF public sample files

The Bio-Formats C++ native implementation has been decoupled from the Java codebase and will be released as OME-Files C++\(^\text{14}\) from now on, with the exception of OME-XML which is still within Bio-Formats at present (there is a plan to decouple both the Java and the C++ versions of OME-XML in future).

The following components have had their licensing updated to Simplified (2-clause) BSD:

- XSL transforms
- specification code
- xsd-fu Python code

4.2.4 5.1.10 (2016 May 9)

Java bug fixes:
- fixed warnings being thrown for ImageJ and other non-FIJI users on Windows (these warnings were triggered by the removal of the 3i Slidebook DLLs from the source code repository in Bio-Formats 5.1.9 and should now only be triggered when opening Slidebook files without the update site enabled - http://www.openmicroscopy.org/info/slidebook)
- a fix in the ImageJ plugin for files grouped using the “Dimensions” option
- a fix for writing TIFF files in tiles

4.2.5 5.1.9 (2016 April 14)

- **Java bug fixes, including:**
 - **SDT**
 * fixed width padding calculation for single-pixel image
 - **Deltavision**
 * fixed the parsing of the new date format

\(^\text{12}\)http://blog.openmicroscopy.org/data-model/future-plans/2016/05/23/folders-upcoming/
\(^\text{13}\)http://www.openmicroscopy.org/site/support/ome-model/schemas/june-2016.html
\(^\text{14}\)http://downloads.openmicroscopy.org/ome-files-cpp/
* added support for parsing and storing the working distance in native units

- **Micromanager**
 * cleaned up JSON metadata parsing

- **Olympus Fluoview**
 * fixed null pointer exceptions while parsing metadata

- **Leica LIF**
 * fixed large multi-tiled files from having incorrect plane offsets after the 2GB mark

- **EM formats (MRC and Spider)**
 * added native length support for EM readers

- **Gatan**
 * fixed erroneous metadata parsing
 * added support for parsing and storing the physical sizes in native units

- **OME-TIFF**
 * improved handling of OME-TIFF multi-file fileset’s with partial metadata blocks

- **Nikon ND2**
 * fixed the parsing of emission wavelength

- **Olympus CellR (APL)**
 * fixed multiple parsing issues with the mtb file

- **SlideBook**
 * removed slidebook dlls from Bio-Formats repository
 * http://www.openmicroscopy.org/info/slidebook

- **Zeiss CZI**
 * fixed parsing of files with multiple mosaics and positions

- **Documentation updates, including:**
 - improved documentation for the export of BigTIFFs in ImageJ

- **C++:**
 - no changes.

4.2.6 5.1.8 (2016 February 15)

- **Java bug fixes, including:**
 - **FEI TIFF**
 * fixed stage position parsing and whitespace handling (thanks to Antoine Vandecreme)

 - **Pyramid TIFF**
 * fixed tile reading when a cache (.bfmemo) file is present

 - **MicroManager**
 * updated to parse JSON data from tags 50839 and 51123
 * fixed to detect ".metadata.txt" files in addition to "metadata.txt" files
 * fixed to handle datasets with each stack in a single file

 - **OME-XML**
 * updated to make .ome.xml an official extension

4.2. Version history

- **OME-TIFF**
 * fixed to ignore invalid BinaryOnly elements

- **TIFF**
 * fixed caching of BigTIFF files

- **Slidebook**
 * fixed handling of montages in Slidebook6Reader (thanks to Richard Myers)

- **Performance improvement for writing files to disk** (thanks to Stephane Dallongeville)

- **Build system**
 * fixed Maven POMs to reduce calls to artifacts.openmicroscopy.org
 * fixed bioformats_package.jar to include the loci.formats.tools package

- **Documentation updates, including:**
 - updated format pages to include links to example data
 - clarified description of Qu for MATLAB (thanks to Carnë Draug)
 - added installation instructions for Octave (thanks to Carnë Draug)

- **C++:**
 - Bugfixes to the OME-TIFF writer to correct use of the metadata store with multiple series
 - Ensure file and writer state consistency upon close failure

4.2.7 5.1.7 (2015 December 7)

- **Java bug fixes, including:**
 - Prevent physical pixel sizes from being rounded to 0, for all formats

- **Metamorph**
 * fixed calculation of Z step size
 * fixed detection of post-processed dual camera acquisitions (thanks to Mark Kittisopikul)

- **OME-XML**
 * fixed XML validation when an `xmlns` value is not present (thanks to Bjoern Thiel)

- **MINC**
 * fixed endianness of image data

- **Andor/Fluoview TIFF**
 * fixed calculation of Z step size

- **MATLAB**
 * improved performance by reducing static classpath checks (thanks to Mark Kittisopikul)

- **Gatan**
 * fixed physical size parsing in non-English locales

- **Automated testing**
 * fixed handling of non-default physical size and plane position units

- **Documentation updates, including:**
 - updated MapAnnotation example to show linkage of annotations to images

- **C++:**
 - no changes, released to keep version numbers in sync with Bio-Formats Java
4.2.8 5.1.6 (2015 November 16)

- Java bug fixes, including:
 - Updated to use native units for following formats:
 * IMOD
 * Analyze
 * Unisoku
 * Olympus CellR (APL)
 - Metamorph TIFF
 * fixed handling of multi-line descriptions
 * added support for dual camera acquisitions
 - Zeiss LMS
 * fixed exception in type detection
 - Zeiss CZI
 * fixed detection of line scan Airyscan data
 - Slidebook
 * fixed calculation of physical Z size
 - ImageJ plugins
 * fixed handling of non-default units
 * fixed setting of preferences via macros
 - Automated testing
 * fixed handling of non-default units for physical sizes and timings

- C++ changes, including:
 - allow relocatable installation on Windows
 - reduce time required for debug builds

- Documentation updates, including:
 - addition of “Multiple Images” column to the supported formats table
 - addition of a MapAnnotation example

4.2.9 5.1.5 (2015 October 12)

- Java bug fixes, including:
 - ImageJ plugins
 * fixed use of “Group files...” and “Open files individually” options
 * fixed placement of ROIs
 * fixed size of the “About Plugins > Bio-Formats Plugins” window
 - xsd-fu (code generation)
 * removed OMERO-specific logic
 - Metamorph
 * fixed physical Z size calculation
 - Gatan DM3/DM4
 * fixed physical pixel size parsing
– **BMP**
 * added support for RLE compression

– **DICOM**
 * updated to respect the WINDOW_CENTER tag
 * fixed image dimensions when multiple sets of width and height values are present

– **Fluoview and Andor TIFF**
 * fixed physical Z size calculation

– **Inspector OBF**
 * updated to parse OME-XML metadata (thanks to Bjoern Thiel)

• **C++ changes:**
 – TIFF strip/tile row and column calulations corrected to compute the correct row and column count
 – Several compiler warnings removed (false positive warnings in third-party headers disabled, and additional warnings fixed)
 – It is now possible to build with Boost 1.59 and compile with a C++14 compiler

• **Documentation updates, including:**
 – substantial updates to the format pages
 * improved linking of reader/writer classes to each format page
 * improved supported metadata pages for each format
 * updated format page formatting for clarity
 * added developer documentation for adding and modifying format pages

4.2.10 5.1.4 (2015 September 7)

• **Bug fixes, including:**
 – **Command line tools**
 * fixed display of usage information
 – **Automated testing**
 * fixed problems with symlinked data on Windows
 * added unit tests for checking physical pixel size creation
 – **Cellomics**
 * fixed reading of sparse plates
 – **SlideBook**
 * fixed a few lingering issues with native library packaging
 – **SimplePCI/HCImage TIFF**
 * fixed bit depth parsing for files from newer versions of HCImage
 – **SimplePCI/HCImage .cdx**
 * fixed image dimensions to allow for extra padding bytes
 – **Leica LIF**
 * improved reading of image descriptions
 – **ICS**
 * fixed to use correct units for timestamps and physical pixel sizes
- **MicroManager**
 * fixed to use correct units for timestamps

- **Gatan .dm3/.dm4**
 * fixed problems with reading double-precision metadata values

- **Hamamatsu NDPI**
 * fixed reading of mask images

- **Leica .lei**
 * fixed reading of bit depth and endianness for datasets that were modified after acquisition

- **FEI TIFF**
 * updated to read metadata from files produced by FEI Titan systems

- **QuickTime**
 * fixed to handle planes with no stored pixels

- **Leica .scn**
 * fixed reading of files that contain fewer images than expected

- **Zeiss .czi**
 * fixed channel colors when an alpha value is not recorded
 * fixed handling of pre-stitched image tiles

- **SDT**
 * added support for Zip-compressed images

- **Nikon .nd2**
 * fixed to read image dimensions from new non-XML metadata

- **OME-XML**
 * fixed writing of integer metadata values

- **Native C++ updates:**
 - completed support for building on Windows

- **Documentation updates, including:**
 - updated instructions for running automated data tests
 - clarified JVM versions currently supported

4.2.11 5.1.3 (2015 July 21)

- **Native C++ updates:**
 - Added cmake superbuild to build core dependencies (zlib, bzip2, png, ICU, xerces, boost)
 - Progress on support for Windows

- **Bug fixes, including:**
 - Fixed segfault in the showinf tool used with the C++ bindings
 - Allow reading from https URLs

- **ImageJ**
 * improved performance of displaying ROIs

- **Command line tools**
 * fixed bfconvert to correctly create datasets with multiple files
– **Metamorph**
 * improved detection of time series
 * fixed .nd datasets with variable Z and T counts in each channel
 * fixed .nd datasets that contain invalid TIFF/STK files
 * fixed dimensions when the number of planes does not match the recorded Z, C, and T sizes

– **SlideBook**
 * improved native library detection (thanks to Richard Myers)

– **JPEG**
 * fixed decompression of lossless files with multiple channels (thanks to Aaron Avery)

– **Inspector OBF**
 * updated to support version 2 files (thanks to Bjoern Thiel)

– **Inspector MSR**
 * improved detection of Z stacks

– **PerkinElmer Opera Flex**
 * improved handling of multiple acquisitions of the same plate

– **Zeiss CZI**
 * fixed error when opening single-file datasets whose names contained “(” and “)”

– **TIFF**
 * improved speed of reading files with many tiles

– **AVI**
 * updated to read frame index (idx1) tables

– **Nikon ND2**
 * fixed channel counts for files with more than 3 channels

– **PNG**
 * fixed decoding of interlaced images with a width or height that is not a multiple of 8

– **PSD**
 * improved reading of compressed images

• **Documentation improvements, including:**
 – updated instructions for writing a new file format reader
 – updated usage information for command line tools
 – new Javadocs for the MetadataStore and MetadataRetrieve interfaces

4.2.12 5.1.2 (2015 May 28)

• Added OME-TIFF writing support to the native C++ implementation
• OME-TIFF export: switch to BigTIFF if .ome.tf2, .ome.tf8, or .ome.btf extensions are used
• Improved MATLAB developer documentation
• Added SlideBook reader that uses the SDK from 3I (thanks to Richard Myers and 3I - Intelligent Imaging Innovations\(^{15}\))
• Preliminary work to make MATLAB toolbox work with Octave
• **Many bug fixes, including:**

\(^{15}\)https://www.intelligent-imaging.com
– **ImageJ**
 * fixed regression in `getPlanePosition`
 * macro extension methods
 * fixed display of composite color virtual stacks

– **Nikon ND2**
 * improved parsing of plane position and timestamp data

– **TIFF**
 * reduced memory required to read color lookup tables

– **Zeiss LSM**
 * improved parsing of 16-bit color lookup tables

– **Zeiss CZI**
 * fixed ordering of original metadata table
 * fixed reading of large pre-stitched tiled images

– **AIM**
 * fixed handling of truncated files

– **Metamorph/MetaXpress TIFF**
 * improved UIC1 metadata tag parsing

4.2.13 5.1.1 (2015 April 28)

- Add TIFF writing support to the native C++ implementation
- Fixed remaining functional differences between Windows and Mac/Linux
- Improved performance of ImageJ plugin when working with ROIs
- TIFF export: switch to BigTIFF if `.tf2`, `.tf8`, or `.btf` extensions are used
- Many bug fixes, including:
 - fixed upgrade checking to more accurately report when a new version is available
 - **Zeiss CZI**
 * fixed ordering of multi-position data
 * improved support for RGB and fused images
 - **Nikon ND2**
 * improved ordering of multi-position data
 - **Leica LIF**
 * improved metadata validity checks
 * improved excitation wavelength detection
 - **Metamorph STK/TIFF**
 * record lens numerical aperture
 * fixed millisecond values in timestamps
 - **Gatan DM3**
 * correctly detect signed pixel data
 - **Imaris HDF**
 * fix channel count detection
 - **ICS export**
* fix writing of files larger than 2GB

4.2.14 5.1.0 (2015 April 2)

• Improvements to performance with network file systems
• Improvements to developer documentation
• Initial version of native C++ implementation\(^\text{16}\)
• Improved support for opening and saving ROI data with ImageJ
• Added support for CellH5 data (thanks to Christoph Sommer)
• Added support for Perkin Elmer Nuance data (thanks to Lee Kamentsky)
• Added support for Amnis FlowSight data (thanks to Lee Kamentsky and Sebastien Simard)
• Added support for Veeco AFM data
• Added support for Zeiss .lms data (not to be confused with .lsm)
• Added support for I2I data
• Added support for writing Vaa3D data (thanks to Brian Long)
• Updated to OME schema 2015-01\(^\text{17}\)
• Update RandomAccessInputStream and RandomAccessOutputStream to read and write bits
• Many bug fixes, including:
 – Leica SCN
 * fix pixel data decompression
 * fix handling of files with multiple channels
 * parse magnification and physical pixel size data
 – Olympus/CellSens .vsi
 * more thorough parsing of metadata
 * improved reading of thumbnails and multi-resolution images
 – NDPI
 * fix reading of files larger than 4GB
 * parse magnification data
 – Zeiss CZI
 * improve parsing of plane position coordinates
 – Inveon
 * fix reading of files larger than 2 GB
 – Nikon ND2
 * many improvements to dimension detection
 * many improvements to metadata parsing accuracy
 * update original metadata table to include PFS data
 – Gatan DM3
 * fix encoding when parsing metadata
 * fix physical pixel size parsing
 – Metamorph

\(^\text{16}\)http://www.openmicroscopy.org/site/support/bio-formats5.1/developers/cpp/overview.html
\(^\text{17}\)http://www.openmicroscopy.org/site/support/ome-model/schemas/january-2015.html
Bio-Formats Documentation, Release 5.2.2

* fix off-by-one in metadata parsing
* fix number parsing to be independent of the system locale

- JPEG
 * parse EXIF data, if present (thanks to Paul Van Schayck)

- OME-XML/OME-TIFF
 * fix handling of missing image data

- PrairieView
 * improved support for version 5.2 data (thanks to Curtis Rueden)

- DICOM
 * fix dimensions for multi-file datasets
 * fix pixel data decoding for files with multiple images

- PNG
 * reduce memory required to read large images

- Inspector OBF
 * fix support for version 5 data (thanks to Bjoern Thiel)

- PCORAW
 * fix reading of files larger than 4 GB

- AIM
 * fix reading of files larger than 4 GB

- MRC
 * add support for signed 8-bit data

- Fix build errors in MIPAV plugin

- ImageJ
 * fix export from a script/macro
 * fix windowless export
 * allow exporting from any open image window
 * allow the “Group files with similar names” and “Swap dimensions” options to be used from a script/macro

- bfconvert
 * fix writing each channel, Z section, and/or timepoint to a separate file
 * add options for configuring the tile size to be used when saving images

4.2.15 5.0.8 (2015 February 10)

- No changes - release to keep version numbers in sync with OMERO

4.2.16 5.0.7 (2015 February 5)

- Several bug fixes, including:
 - ND filter parsing for DeltaVision
 - Timepoint count and original metadata parsing for Metamorph
 - Build issues when Genshi or Git are missing
 - LZW image decoding
4.2.17 5.0.6 (2014 November 11)

• Several bug fixes, including:
 – Pixel sign for DICOM images
 – Image dimensions for Zeiss CZI and Nikon ND2
 – Support for Leica LIF files produced by LAS AF 4.0 and later

4.2.18 5.0.5 (2014 September 23)

• Documentation improvements
• Support for non-spectral Prairie 5.2 datasets

4.2.19 5.0.4 (2014 September 3)

• Fix compile and runtime errors under Java 1.8
• Improvements to Nikon .nd2 metadata parsing
• Added support for PicoQuant .bin files (thanks to Ian Munro)

4.2.20 5.0.3 (2014 August 7)

• Many bug fixes for Nikon .nd2 files
• Several other bug fixes, including:
 – LZW image decoding
 – Stage position parsing for Zeiss CZI
 – Exposure time units for ScanR
 – Physical pixel size units for DICOM
 – NDPI and Zeiss LSM files larger than 4GB
 – Z and T dimensions for InCell 6000 plates
 – Export of RGB images in ImageJ
• Improved metadata saving in MATLAB functions

4.2.21 5.0.2 (2014 May 28)

• Many bug fixes for Zeiss .czi files
• Several other bug fixes, including:
 – Gatan .dm3 units and step count parsing
 – Imspector .msr 5D image support
 – DICOM reading of nested tags
• Update native-lib-loader version (to 2.0.1)
• Updates and improvements to user documentation
4.2.22 5.0.1 (2014 Apr 7)

- Added image pyramid support for CellSens .vsi data
- **Several bug fixes, including:**
 - Woolz import into OMERO
 - Cellomics file name parsing (thanks to Lee Kamentsky)
 - Olympus FV1000 timestamp support (thanks to Lewis Kraft and Patrick Riley)
 - (A)PNG large image support
 - Zeiss .czi dimension detection for SPIM datasets
- Performance improvements for Becker & Hickl .sdt file reading (thanks to Ian Munro)
- Performance improvements to directory listing over NFS
- Update slf4j and logback versions (to 1.7.6 and 1.1.1 respectively)
- Update goodies-forms version (to 1.7.2)

4.2.23 5.0.0 (2014 Feb 25)

- New bundled ‘bioformats_package.jar’ for ImageJ
- Now uses logback as the slf4j binding by default
- Updated component names, .jar file names, and Maven artifact names
- Fixed support for Becker & Hickl .sdt files with multiple blocks
- Fixed tiling support for TIFF, Hamamatsu .ndpi, JPEG, and Zeiss .czi files
- Improved continuous integration testing
- Updated command line documentation

4.2.24 5.0.0-RC1 (2013 Dec 19)

- Updated Maven build system and launched new Artifactory repository (http://artifacts.openmicroscopy.org)
- **Added support for:**
 - Bio-Rad SCN
 - Yokogawa CellVoyager (thanks to Jean-Yves Tinevez)
 - LaVision Inspector
 - PCORAW
 - Woolz (thanks to Bill Hill)
- Added support for populating and parsing ModuloAlong{Z, C, T} annotations for FLIM/SPIM data
- Updated netCDF and slf4j version requirements - netCDF 4.3.19 and slf4j 1.7.2 are now required
- Updated and improved MATLAB users and developers documentation
- Many bug fixes including for Nikon ND2, Zeiss CZI, and CellWorX formats

4.2.25 5.0.0-beta1 (2013 June 20)

- Updated to 2013-06 OME-XML schema\(^\text{18}\)
- Improved the performance in tiled formats

\(^\text{18}\)http://www.openmicroscopy.org/site/support/ome-model/
• Added caching of Reader metadata using http://code.google.com/p/kryo/

• Added support for:
 – Aperio AFI
 – Inveon
 – MPI-BPC Inspector

• Many bug fixes, including:
 – Add ZEN 2012/Lightsheet support to Zeiss CZI
 – Improved testing of autogenerated code
 – Moved OME-XML specification into Bio-Formats repository

4.2.26 4.4.10 (2014 Jan 15)

• Bug fixes including CellWorx, Metamorph and Zeiss CZI

• Updates to MATLAB documentation

4.2.27 4.4.9 (2013 Oct 16)

• Many bug fixes including improvements to support for ND2 format

• Java 1.6 is now the minimum supported version; Java 1.5 is no longer supported

4.2.28 4.4.8 (2013 May 2)

• No changes - release to keep version numbers in sync with OMERO

4.2.29 4.4.7 (2013 April 25)

• Many bug fixes to improve support for more than 20 formats

• Improved export to multi-file datasets

• Now uses slf4j for logging rather than using log4j directly, enabling other logging implementations to be used, for example when Bio-Formats is used as a component in other software using a different logging system.

4.2.30 4.4.6 (2013 February 11)

• Many bug fixes

• Further documentation improvements

4.2.31 4.4.5 (2012 November 13)

• Restructured and improved documentation

• Many bug fixes, including:
 – File grouping in many multi-file formats
 – Maven build fixes
 – ITK plugin fixes

4.2. Version history
4.2.32 4.4.4 (2012 September 24)
• Many bug fixes

4.2.33 4.4.2 (2012 August 22)
• Security fix for OMERO plugins for ImageJ

4.2.34 4.4.1 (2012 July 20)
• Fix a bug that prevented BigTIFF files from being read
• Fix a bug that prevented PerkinElmer .flex files from importing into OMERO

4.2.35 4.4.0 (2012 July 13)
• Many, many bug fixes
• Added support for:
 – .nd2 files from Nikon Elements version 4
 – PerkinElmer Operetta data
 – MJPEG-compressed AVIs
 – MicroManager datasets with multiple positions
 – Zeiss CZI data
 – IMOD data

4.2.36 4.3.3 (2011 October 18)
• Many bug fixes, including:
 – Speed improvements to HCImage/SimplePCI and Zeiss ZVI files
 – Reduce memory required by Leica LIF reader
 – More accurately populate metadata for Prairie TIFF datasets
 – Various fixes to improve the security of the OMERO plugin for ImageJ
 – Better dimension detection for Bruker MRI datasets
 – Better thumbnail generation for histology (SVS, NDPI) datasets
 – Fix stage position parsing for Metamorph TIFF datasets
 – Correctly populate the channel name for PerkinElmer Flex files

4.2.37 4.3.2 (2011 September 15)
• Many bug fixes, including:
 – Better support for Volocity datasets that contain compressed data
 – More accurate parsing of ICS metadata
 – More accurate parsing of cellSens .vsi files
• Added support for a few new formats
 – .inr
 – Canon DNG
• Updated Zeiss LSM reader to parse application tags
• Various performance improvements, particularly for reading/writing TIFFs
• Updated OMERO ImageJ plugin to work with OMERO 4.3.x

4.2.38 4.3.1 (2011 July 8)

• Several bug fixes, including:
 – Fixes for multi-position DeltaVision files
 – Fixes for MicroManager 1.4 data
 – Fixes for 12 and 14-bit JPEG-2000 data
 – Various fixes for reading Volocity .mvd2 datasets
• Added various options to the ‘showinf’ and ‘bfconvert’ command line tools
• Added better tests for OME-XML backwards compatibility
• Added the ability to roughly stitch tiles in a multi-position dataset

4.2.39 4.3.0 (2011 June 14)

• Many bug fixes, including:
 – Many fixes for reading and writing sub-images
 – Fixes for stage position parsing in the Zeiss formats
 – File type detection fixes
• Updated JPEG-2000 reading and writing support to be more flexible
• Added support for 9 new formats:
 – InCell 3000
 – Trestle
 – Hamamatsu .ndpi
 – Hamamatsu VMS
 – SPIDER
 – Volocity .mvd2
 – Olympus SIS TIFF
 – IMAGIC
 – cellSens VSI
• Updated to 2011-06 OME-XML schema
• Minor speed improvements in many formats
• Switched version control system from SVN to Git
• Moved all Trac tickets into the OME Trac: https://trac.openmicroscopy.org
• Improvements to testing frameworks
• Added Maven build system as an alternative to the existing Ant build system
• Added pre-compiled C++ bindings to the download page

4.2.40 4.2.2 (2010 December 6)

• Several bug fixes, notably:
 – Metadata parsing fixes for Zeiss LSM, Metamorph STK, and FV1000
 – Prevented leaked file handles when exporting to TIFF/OME-TIFF
 – Fixed how BufferedImages are converted to byte arrays
• Proper support for OME-XML XML annotations
• Added support for SCANCO Medical .aim files
• Minor improvements to ImageJ plugins
• Added support for reading JPEG-compressed AVI files

4.2.41 4.2.1 (2010 November 12)

• Many, many bug fixes
• **Added support for 7 new formats:**
 – CellWorX .pnl
 – ECAT7
 – Varian FDF
 – Perkin Elmer Densitometer
 – FEI TIFF
 – Compix/SimplePCI TIFF
 – Nikon Elements TIFF
• Updated Zeiss LSM metadata parsing, with generous assistance from Zeiss, FMI, and MPI-CBG
• Lots of work to ensure that converted OME-XML validates
• Improved file stitching functionality; non-numerical file patterns and limited regular expression-style patterns are now supported

4.2.42 4.2.0 (2010 July 9)

• Fixed many, many bugs in all aspects of Bio-Formats
• Reworked ImageJ plugins to be more user- and developer-friendly
• Added many new unit tests
• Added support for approximately 25 new file formats, primarily in the SPM domain
• Rewrote underlying I/O infrastructure to be thread-safe and based on Java NIO
• Rewrote OME-XML parsing/generation layer; OME-XML 2010-06 is now supported
• Improved support for exporting large images
• Improved support for exporting to multiple files
• Updated logging infrastructure to use slf4j and log4j
4.2.43 4.1.1 (2009 December 3)

- Fixed many bugs in popular file format readers

4.1 (2009 October 21):

- Fixed many bugs in most file format readers
- Significantly improved confocal and HCS metadata parsing
- Improved C++ bindings
- Eliminated references to Java AWT classes in core Bio-Formats packages
- Added support for reading Flex datasets from multiple servers
- Improved OME-XML generation; generated OME-XML is now valid
- Added support for Olympus ScanR data
- Added OSGi information to JARs
- Added support for Amira Mesh files
- Added support for LI-FLIM files
- Added more informative exceptions
- Added support for various types of ICS lifetime data
- Added support for Nikon EZ-C1 TIFFs
- Added support for Maia Scientific MIAS data

4.2.44 4.0.1 (2009 June 1)

- Lots of bug fixes in most format readers and writers
- Added support for Analyze 7.1 files
- Added support for Nifti files
- Added support for Cellomics .c01 files
- Refactored ImageJ plugins
- Bio-Formats, the common package, and the ImageJ plugins now require Java 1.5
- Eliminated native library dependency for reading lossless JPEGs
- Changed license from GPLv3 or later to GPLv2 or later
- Updated Olympus FV1000, Zeiss LSM, Zeiss ZVI and Nikon ND2 readers to parse ROI data
- Added option to ImageJ plugin for displaying ROIs parsed from the chosen dataset
- Fixed BufferedImage construction for signed data and unsigned int data

4.2.45 4.0.0 (2009 March 3)

- Improved OME data model population for Olympus FV1000, Nikon ND2, Metamorph STK, Leica LEI, Leica LIF, InCell 1000 and MicroManager
- Added TestNG tests for format writers
- Added option to ImageJ plugin to specify custom colors when customizing channels
- Added ability to upgrade the ImageJ plugin from within ImageJ
- Fixed bugs in Nikon ND2, Leica LIF, BioRad PIC, TIFF, PSD, and OME-TIFF
- Fixed bugs in Data Browser and Exporter plugins
- Added support for Axon Raw Format (ARF), courtesy of Johannes Schindelin
• Added preliminary support for IPLab-Mac file format

4.2.46 2008 December 29

• Improved metadata support for DeltaVision, Zeiss LSM, MicroManager, and Leica LEI
• Restructured code base/build system to be component-driven
• Added support for JPEG and JPEG-2000 codecs within TIFF, OME-TIFF and OME-XML
• Added support for 16-bit compressed Flex files
• Added support for writing JPEG-2000 files
• Added support for Minolta MRW format
• Added support for the 2008-09 release of OME-XML
• Removed dependency on JMagick
• Re-added caching support to data browser plugin
• Updated loci.formats.Codec API to be more user-friendly
• Expanded loci.formats.MetadataStore API to better represent the OME-XML model
• Improved support for Nikon NEF
• Improved support for TillVision files
• Improved ImageJ import options dialog
• Fixed bugs with Zeiss LSM files larger than 4 GB
• Fixed minor bugs in most readers
• Fixed bugs with exporting from an Image5D window
• Fixed several problems with virtual stacks in ImageJ

4.2.47 2008 August 30

• Fixed bugs in many file format readers
• Fixed several bugs with swapping dimensions
• Added support for Olympus CellR/APL files
• Added support for MINC MRI files
• Added support for Aperio SVS files compressed with JPEG 2000
• Added support for writing OME-XML files
• Added support for writing APNG files
• Added faster LZW codec
• Added drag and drop support to ImageJ shortcut window
• Re-integrated caching into the data browser plugin

4.2.48 2008 July 1

• Fixed bugs in most file format readers
• Fixed bugs in OME and OMERO download functionality
• Fixed bugs in OME server-side import
• Improved metadata storage/retrieval when uploading to and downloading from the OME Perl server
• Improved Bio-Formats ImageJ macro extensions

4.2. Version history
• Major updates to MetadataStore API
• Updated OME-XML generation to use 2008-02 schema by default
• Addressed time and memory performance issues in many readers
• Changed license from LGPL to GPL
• Added support for the FEI file format
• Added support for uncompressed Hamamatsu Aquacosmos NAF files
• Added support for Animated PNG files
• Added several new options to Bio-Formats ImageJ plugin
• Added support for writing ICS files

4.2.49 2008 April 17

• Fixed bugs in Slidebook, ND2, FV1000 OIB/OIF, Perkin Elmer, TIFF, Prairie, Openlab, Zeiss LSM, MNG, Molecular Dynamics GEL, and OME-TIFF
• Fixed bugs in OME and OMERO download functionality
• Fixed bugs in OME server-side import
• Fixed bugs in Data Browser
• Added support for downloading from OMERO 2.3 servers
• Added configuration plugin
• Updates to MetadataStore API
• Updates to OME-XML generation - 2007-06 schema used by default
• Added support for Li-Cor L2D format
• Major updates to TestNG testing framework
• Added support for writing multi-series OME-TIFF files
• Added support for writing BigTIFF files

4.2.50 2008 Feb 12

• Fixed bugs in QuickTime, SimplePCI and DICOM
• Fixed a bug in channel splitting logic

4.2.51 2008 Feb 8

• Many critical bugfixes in format readers and ImageJ plugins
• Newly reborn Data Browser for 5D image visualization
 – some combinations of import options do not work yet

4.2.52 2008 Feb 1

• Fixed bugs in Zeiss LSM, Metamorph STK, FV1000 OIB/OIF, Leica LEI, TIFF, Zeiss ZVI, ICS, Prairie, Openlab LIFF, Gatan, DICOM, QuickTime
• Fixed bug in OME-TIFF writer
• Major changes to MetadataStore API
• Added support for JPEG-compressed TIFF files
• Added basic support for Aperio SVS files
 – JPEG2000 compression is still not supported
• Improved “crop on import” functionality
• Improvements to bfconvert and bfview
• Improved OME-XML population for several formats
• Added support for JPEG2000-compressed DICOM files
• EXIF data is now parsed from TIFF files

4.2.53 2007 Dec 28

• Fixed bugs in Leica LEI, Leica TCS, SDT, Leica LIF, Visitech, DICOM, Imaris 5.5 (HDF), and Slidebook readers
• Better parsing of comments in TIFF files exported from ImageJ
• Fixed problem with exporting 48-bit RGB data
• Added logic to read multi-series datasets spread across multiple files
• Improved channel merging in ImageJ - requires ImageJ 1.39l
• Support for hyperstacks and virtual stacks in ImageJ - requires ImageJ 1.39l
• Added API for reading directly from a byte array or InputStream
• Metadata key/value pairs are now stored in ImageJ’s “Info” property
• Improved OMERO download plugin - it is now much faster
• Added “open all series” option to ImageJ importer
• ND2 reader based on Nikon’s SDK now uses our own native bindings
• Fixed metadata saving bug in ImageJ
• Added sub-channel labels to ImageJ windows
• Major updates to 4D Data Browser
• Minor updates to automated testing suite

4.2.54 2007 Dec 1

• Updated OME plugin for ImageJ to support downloading from OMERO
• Fixed bug with floating point TIFFs
• Fixed bugs in Visitech, Zeiss LSM, Imaris 5.5 (HDF)
• Added alternate ND2 reader that uses Nikon’s native libraries
• Fixed calibration and series name settings in importer
• Added basic support for InCell 1000 datasets

4.2.55 2007 Nov 21

• Fixed bugs in ND2, Leica LIF, DICOM, Zeiss ZVI, Zeiss LSM, FV1000 OIB, FV1000 OIF, BMP, Evotec Flex, BioRad PIC, Slidebook, TIFF
• Added new ImageJ plugins to slice stacks and do “smart” RGB merging
• Added “windowless” importer plugin
 – uses import parameters from IJ_Prefs.txt, without prompting the user
• Improved stack slicing and colorizing logic in importer plugin

4.2. Version history
• Added support for DICOM files compressed with lossless JPEG
 – requires native libraries
• Fixed bugs with signed pixel data
• Added support for Imaris 5.5 (HDF) files
• Added 4 channel merging to importer plugin
• Added API methods for reading subimages
• Major updates to the 4D Data Browser

4.2.56 2007 Oct 17

• Critical OME-TIFF bug fixes
• Fixed bugs in Leica LIF, Zeiss ZVI, TIFF, DICOM, and AVI readers
• Added support for JPEG-compressed ZVI images
• Added support for BigTIFF
• Added importer plugin option to open each plane in a new window
• Added MS Video 1 codec for AVI

4.2.57 2007 Oct 1

• Added support for compressed DICOM images
• Added support for uncompressed LIM files
• Added support for Adobe Photoshop PSD files
• Fixed bugs in DICOM, OME-TIFF, Leica LIF, Zeiss ZVI, Visitech, PerkinElmer and Metamorph
• Improved indexed color support
• Addressed several efficiency issues
• Fixed how multiple series are handled in 4D data browser
• Added option to reorder stacks in importer plugin
• Added option to turn off autoscaling in importer plugin
• Additional metadata convenience methods

4.2.58 2007 Sept 11

• Major improvements to ND2 support; lossless compression now supported
• Support for indexed color images
• Added support for Simple-PCI .cxd files
• Command-line OME-XML validation
• Bug fixes in most readers, especially Zeiss ZVI, Metamorph, PerkinElmer and Leica LEI
• Initial version of Bio-Formats macro extensions for ImageJ

4.2. Version history
4.2.59 2007 Aug 1

- Added support for latest version of Leica LIF
- Fixed several issues with Leica LIF, Zeiss ZVI
- Better metadata mapping for Zeiss ZVI
- Added OME-TIFF writer
- Added MetadataRetrieve API for retrieving data from a MetadataStore
- Miscellaneous bugfixes

4.2.60 2007 July 16

- Fixed several issues with ImageJ plugins
- Better support for Improvision and Leica TCS TIFF files
- Minor improvements to Leica LIF, ICS, QuickTime and Zeiss ZVI readers
- Added searchable metadata window to ImageJ importer

4.2.61 2007 July 2

- Fixed issues with ND2, Openlab LIFF and Slidebook
- Added support for Visitech XYS
- Added composite stack support to ImageJ importer

4.2.62 2007 June 18

- Fixed issues with ICS, ND2, MicroManager, Leica LEI, and FV1000 OIF
- Added support for large (> 2 GB) ND2 files
- Added support for new version of ND2
- Minor enhancements to ImageJ importer
- Implemented more flexible logging
- Updated automated testing framework to use TestNG
- Added package for caching images produced by Bio-Formats

4.2.63 2007 June 6

- Fixed OME upload/download bugs
- Fixed issues with ND2, EPS, Leica LIF, and OIF
- Added support for Khoros XV
- Minor improvements to the importer

4.2.64 2007 May 24

- Better Slidebook support
- Added support for Quicktime RPZA
- Better Leica LIF metadata parsing
- Added support for BioRad PIC companion files
• Added support for bzip2-compressed files
• Improved ImageJ plugins
• Native support for FITS and PGM

4.2.65 2007 May 2

• Added support for NRRD
• Added support for Evotec Flex (requires LuraWave Java SDK with license code)
• Added support for gzip-compressed files
• Added support for compressed QuickTime headers
• Fixed QuickTime Motion JPEG-B support
• Fixed some memory issues (repeated small array allocations)
• Fixed issues reading large (> 2 GB) files
• Removed “ignore color table” logic, and replaced with Leica-specific solution
• Added status event reporting to readers
• Added API to toggle metadata collection
• Support for multiple dimensions rasterized into channels
• Deprecated reader and writer methods that accept the ‘id’ parameter
• Deprecated IFormatWriter.save in favor of saveImage and saveBytes
• Moved dimension swapping and min/max calculation logic to delegates
• Separate GUI logic into isolated loci.formats.gui package
• Miscellaneous bugfixes and tweaks in most readers and writers
• Many other bugfixes and improvements

4.2.66 2007 Mar 16

• Fixed calibration bugs in importer plugin
• Enhanced metadata support for additional formats
• Fixed LSM bug

4.2.67 2007 Mar 7

• Added support for Micro-Manager file format
• Fixed several bugs – Leica LIF, Leica LEI, ICS, ND2, and others
• Enhanced metadata support for several formats
• Load series preview thumbnails in the background
• Better implementation of openBytes(String, int, byte[]) for most readers
• Expanded unit testing framework

4.2.68 2007 Feb 28

• Better series preview thumbnails
• Fixed bugs with multi-channel Leica LEI
• Fixed bugs with “ignore color tables” option in ImageJ plugin

4.2. Version history
4.2.69 2007 Feb 26

• Many bugfixes: Leica LEI, ICS, FV1000 OIB, OME-XML and others
• Better metadata parsing for BioRad PIC files
• Enhanced API for calculating channel minimum and maximum values
• Expanded MetadataStore API to include more semantic types
• Added thumbnails to series chooser in ImageJ plugin
• Fixed plugins that upload and download from an OME server

4.2.70 2007 Feb 7

• Added plugin for downloading images from OME server
• Improved HTTP import functionality
• Added metadata filtering – unreadable metadata is no longer shown
• Better metadata table for multi-series datasets
• Added support for calibration information in Gatan DM3
• Eliminated need to install JAI Image I/O Tools to read ND2 files
• Fixed ZVI bugs: metadata truncation, and other problems
• Fixed bugs in Leica LIF: incorrect calibration, first series labeling
• Fixed memory bug in Zeiss LSM
• Many bugfixes: PerkinElmer, DeltaVision, Leica LEI, LSM, ND2, and others
• IFormatReader.close(boolean) method to close files temporarily
• Replaced Compression utility class with extensible Compressor interface
• Improved testing framework to use .bioformats configuration files

4.2.71 2007 Jan 5

• Added support for Prairie TIFF
• Fixed bugs in Zeiss LSM, OIB, OIF, and ND2
• Improved API for writing files
• Added feature to read files over HTTP
• Fixed bugs in automated testing framework
• Miscellaneous bugfixes

4.2.72 2006 Dec 22

• Expanded ImageJ plugin to optionally use Image5D or View5D
• Improved support for ND2 and JPEG-2000 files
• Added automated testing framework
• Fixed bugs in Zeiss ZVI reader
• Miscellaneous bugfixes
4.2.73 2006 Nov 30

- Added support for ND2/JPEG-2000
- Added support for MRC
- Added support for MNG
- Improved support for floating-point images
- Fixed problem with 2-channel Leica LIF data
- Minor tweaks and bugfixes in many readers
- Improved file stitching logic
- Allow ImageJ plugin to be called from a macro

4.2.74 2006 Nov 2

- Bugfixes and improvements for Leica LIF, Zeiss LSM, OIF and OIB
- Colorize channels when they are split into separate windows
- Fixed a bug with 4-channel datasets

4.2.75 2006 Oct 31

- Added support for Imaris 5 files
- Added support for RGB ICS images

4.2.76 2006 Oct 30

- Added support for tiled TIFFs
- Fixed bugs in ICS reader
- Fixed importer plugin deadlock on some systems

4.2.77 2006 Oct 27

- Multi-series support for Slidebook
- Added support for Alicona AL3D
- Fixed plane ordering issue with FV1000 OIB
- Enhanced dimension detection in FV1000 OIF
- Added preliminary support for reading NEF images
- Added option to ignore color tables
- Fixed ImageJ GUI problems
- Fixed spatial calibration problem in ImageJ
- Fixed some lingering bugs in Zeiss ZVI support
- Fixed bugs in OME-XML reader
- Tweaked ICS floating-point logic
- Fixed memory leaks in all readers
- Better file stitching logic

4.2. Version history
4.2.78 2006 Oct 6

- Support for 3i SlideBook format (single series only for now)
- Support for 16-bit RGB palette TIFF
- Fixed bug preventing import of certain Metamorph STK files
- Fixed some bugs in PerkinElmer UltraView support
- Fixed some bugs in Leica LEI support
- Fixed a bug in Zeiss ZVI support
- Fixed bugs in Zeiss LSM support
- Fixed a bug causing slow identification of Leica datasets
- Fixed bugs in the channel merging logic
- Fixed memory leak for OIB format
- Better scaling of 48-bit RGB data to 24-bit RGB
- Fixed duplicate channels bug in “open each channel in a separate window”
- Fixed a bug preventing PICT import into ImageJ
- Better integration with HandleExtraFileTypes
- Better virtual stack support in Data Browser plugin
- Fixed bug in native QuickTime random access
- Keep aspect ratio for computed thumbnails
- Much faster file stitching logic

4.2.79 2006 Sep 27

- PerkinElmer: support for PE UltraView
- Openlab LIFF: support for Openlab v5
- Leica LEI: bug fixes, and support for multiple series
- ZVI, OIB, IPW: more robust handling of these formats (eliminated custom OLE parsing logic in favor of Apache POI)
- OIB: better metadata parsing (but maybe still not perfect?)
- LSM: fixed a bug preventing import of certain LSMs
- Metamorph STK: fixed a bug resulting in duplicate image planes
- User interface: use of system look & feel for file chooser dialog when available
- Better notification when JAR libraries are missing

4.2.80 2006 Sep 6

- Leica LIF: multiple distinct image series within a single file
- Zeiss ZVI: fixes and improvements contributed by Michel Boudinot
- Zeiss LSM: fixed bugs preventing the import of certain LSM files
- TIFF: fixed a bug preventing import of TIFFs created with Bio-Rad software

4.2.81 2006 Mar 31

- First release
Part II

User Information
CHAPTER
FIVE

USING BIO-FORMATS WITH IMAGEJ AND FIJI

The following sections explain the features of Bio-Formats and how to use it within ImageJ and Fiji:

5.1 ImageJ overview

ImageJ\(^1\) is an image processing and analysis application written in Java, widely used in the life sciences fields, with an extensible plugin infrastructure. You can use Bio-Formats as a plugin for ImageJ to read and write images in the formats it supports.

5.1.1 Installation

Download bioformats_package.jar\(^2\) and drop it into your ImageJ/plugins folder. Next time you run ImageJ, a new Bio-Formats submenu with several plugins will appear in the Plugins menu, including the Bio-Formats Importer and Bio-Formats Exporter.

5.1.2 Usage

The Bio-Formats Importer plugin can display image stacks in several ways:

- In a standard ImageJ window (including as a hyperstack)
- Using the LOCI Data Browser\(^3\) plugin (included)
- With Joachim Walter’s Image5D\(^4\) plugin (if installed)
- With Rainer Heintzmann’s View5D\(^5\) plugin (if installed)

ImageJ v1.37 and later automatically (via HandleExtraFileTypes) calls the Bio-Formats logic, if installed, as needed when a file is opened within ImageJ, i.e. when using File → Open instead of explicitly choosing Plugins → Bio-Formats → Bio-Formats Importer from the menu.

For a more detailed description of each plugin, see the Bio-Formats page\(^6\) of the ImageJ wiki.

5.1.3 Upgrading

To upgrade, just overwrite the old bioformats_package.jar with the latest one\(^7\).

You can also upgrade the Bio-Formats plugin directly from ImageJ. Select Plugins → Bio-Formats → Update Bio-Formats Plugins from the ImageJ menu, then select which release you would like to use. You will then need to restart ImageJ to complete the upgrade process.

\(^1\)https://imagej.nih.gov/ij/index.html
\(^2\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/artifacts/bioformats_package.jar
\(^3\)http://loci.wisc.edu/software/data-browser
\(^4\)http://developer.imagej.net/plugins/image5d
\(^5\)http://www.nanoimaging.de/View5D
\(^6\)http://imagej.net/Bio-Formats
\(^7\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/
5.1.4 Macros and plugins

Bio-Formats is fully scriptable in a macro, and callable from a plugin. To use in a macro, use the Macro Recorder to record a call to the Bio-Formats Importer with the desired options. You can also perform more targeted metadata queries using the Bio-Formats macro extensions.

Here are some example ImageJ macros and plugins that use Bio-Formats to get you started:

- **basicMetadata.txt** - A macro that uses the Bio-Formats macro extensions to print the chosen file’s basic dimensional parameters to the Log.
- **planeTimings.txt** - A macro that uses the Bio-Formats macro extensions to print the chosen file’s plane timings to the Log.
- **recursiveTiffConvert.txt** - A macro for recursively converting files to TIFF using Bio-Formats.
- **bfOpenAsHyperstack.txt** - This macro from Wayne Rasband opens a file as a hyperstack using only the Bio-Formats macro extensions (without calling the Bio-Formats Importer plugin).
- **zvi2HyperStack.txt** - This macro from Sebastien Huart reads in a ZVI file using Bio-Formats, synthesizes the LUT using emission wavelength metadata, and displays the result as a hyperstack.
- **dvSplitTimePoints.txt** - This macro from Sebastien Huart splits timepoints/channels on all DV files in a folder.
- **batchTiffConvert.txt** - This macro converts all files in a directory to TIFF using the Bio-Formats macro extensions.
- **Read_Image** - A simple plugin that demonstrates how to use Bio-Formats to read files into ImageJ.
- **Mass_Importer** - A simple plugin that demonstrates how to open all image files in a directory using Bio-Formats, grouping files with similar names to avoid opening the same dataset more than once.

5.1.5 Usage tips

- “How do I make the options window go away?” is a common question. There are a few ways to do this:
 - To disable the options window only for files in a specific format, select Plugins > Bio-Formats > Bio-Formats Plugins Configuration, then pick the format from the list and make sure the “Windowless” option is checked.
 - To avoid the options window entirely, use the Plugins > Bio-Formats > Bio-Formats Windowless Importer menu item to import files.
 - Open files by calling the Bio-Formats importer plugin from a macro.
- A common cause of problems having multiple copies of bioformats_package.jar in your ImageJ plugins folder, or a copy of bioformats_package.jar and a copy of formats-gpl.jar. It is often difficult to determine for sure that this is the problem - the only error message that pretty much guarantees it is a NoSuchMethodException. If you downloaded the latest version and whatever error message or odd behavior you are seeing has been reported as fixed, it is worth removing all copies of bioformats_package.jar (and loci_tools.jar or any other Bio-Formats jars) and download a fresh version.
- The Bio-Formats Exporter plugin’s file chooser will automatically add the first listed file extension to the file name if a specific file format is selected in the Files of Type box (e.g. .ome.tif for OME-TIFF). This can prevent BigTIFF and OME BigTIFF files from being created, as the .btf or .ome.btf file extension will be overwritten. To ensure that the desired extension is used, select All files or All supported file types in the Files of type box, as an extension will not be automatically added in those cases.

8https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-plugins/utils/macros/basicMetadata.txt
9https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-plugins/utils/macros/recursiveTiffConvert.txt
10https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-plugins/utils/macros/bfOpenAsHyperstack.txt
11https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-plugins/utils/macros/zvi2HyperStack.txt
12https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-plugins/utils/macros/dvSplitTimePoints.txt
13https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-plugins/utils/macros/batchTiffConvert.txt
14https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-plugins/utils/Read_Image.java
15https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-plugins/utils/Mass_Importer.java
5.2 Fiji overview

Fiji\(^\text{17}\) is an image processing package. It can be described as a distribution of ImageJ together with Java, Java 3D and a lot of plugins organized into a coherent menu structure. Fiji compares to ImageJ as Ubuntu compares to Linux.

Fiji works with Bio-Formats out of the box, because it comes bundled with the Bio-Formats ImageJ plugins.

The Fiji documentation has been combined with the ImageJ wiki; for further details on Bio-Formats in Fiji, see the Bio-Formats ImageJ page\(^\text{18}\).

5.2.1 Upgrading

Upgrading Bio-Formats within Fiji is as simple as invoking the “Update Fiji” command from the Help menu. By default, Fiji even automatically checks for updates every time it is launched, so you will always be notified when new versions of Bio-Formats (or any other bundled plugin) are available.

Manual upgrade

Manually updating your Fiji installation should not be necessary but if you need to do so, the steps are detailed below. Note that although we assume you will be upgrading to the latest release version, all previous versions of Bio-Formats are available from http://downloads.openmicroscopy.org/bio-formats/ so you can revert to an earlier version using this guide if you need to.

1. Fiji must first be fully updated
2. Close Fiji
3. Open the Fiji installation folder (typically named ‘Fiji.app’)
4. Remove bio-formats_plugins.jar from the ‘plugins’ sub-folder
5. Remove all of the .jars from the ‘jars/bio-formats’ sub-folder:
 - jai_imageio.jar
 - formats-gpl.jar
 - formats-common.jar
 - turbojpeg.jar
 - ome-xml.jar
 - formats-bsd.jar
 - ome-poi.jar
 - specification.jar
 - mdbtools-java.jar
 - metakit.jar
 - formats-api.jar
6. Download bio-formats_plugins.jar (from the latest release http://downloads.openmicroscopy.org/bio-formats/) and place it in the ‘plugins’ sub-folder
7. Download each of the following (from the latest release http://downloads.openmicroscopy.org/bio-formats/) and place them in the ‘jars/bio-formats’ sub-folder:
 - jai_imageio.jar
 - formats-gpl.jar
 - formats-common.jar
 - turbojpeg.jar

\(^{17}\)http://fiji.sc/
\(^{18}\)http://imagej.net/Bio-Formats
Bio-Formats Documentation, Release 5.2.2

• ome-xml.jar
• formats-bsd.jar
• ome-poi.jar
• specification.jar
• mdbtools-java.jar
• metakit.jar
• formats-api.jar

8. To Check Version of Bio-Formats Select Help > About Plugins > Bio-Formats Plugins... Check that the version of Bio-Formats matches the freshly downloaded version.

Note: It is vital to perform all of those steps in order; omitting even one will cause a problem. In particular, make sure that the old files are fully removed; it is not sufficient to add the new files to any sub-directory without removing the old files first.

5.3 Bio-Formats features in ImageJ and Fiji

When you select Bio-Formats under the Plugin menu, you will see the following features:

• The **Bio-Formats Importer** is a plugin for loading images into ImageJ or Fiji. It can read over 140 proprietary life sciences formats and standardizes their acquisition metadata into the common OME data model. It will also extract and set basic metadata values such as spatial calibration\(^\text{19}\) if they are available in the file.

• The **Bio-Formats Exporter** is a plugin for exporting data to disk. It can save to the open OME-TIFF\(^\text{20}\) file format, as well as several movie formats (e.g. QuickTime, AVI) and graphics formats (e.g. PNG, JPEG).

• The **Bio-Formats Remote Importer** is a plugin for importing data from a remote URL. It is likely to be less robust than working with files on disk, so we recommend downloading your data to disk and using the regular Bio-Formats Importer whenever possible.

• The **Bio-Formats Windowless Importer** is a version of the Bio-Formats Importer plugin that runs with the last used settings to avoid any additional dialogs beyond the file chooser. If you always use the same import settings, you may wish to use the windowless importer to save time (Learn more here).\(^\text{19}\)

• The **Bio-Formats Macro Extensions** plugin prints out the set of commands that can be used to create macro extensions. The commands and the instructions for using them are printed to the ImageJ log window.

• The **Stack Slicer** plugin is a helper plugin used by the Bio-Formats Importer. It can also be used to split a stack across channels, focal planes or time points.

• The **Bio-Formats Plugins Configuration** dialog is a useful way to configure the behavior of each file format. The Formats tab lists supported file formats and toggles each format on or off, which is useful if your file is detected as the wrong format. It also toggles whether each format bypasses the importer options dialog through the “Windowless” checkbox. You can also configure any specific option for each format. The Libraries tab provides a list of available helper libraries used by Bio-Formats.

• The **Bio-Formats Plugins Shortcut Window** opens a small window with a quick-launch button for each plugin. Dragging and dropping files onto the shortcut window opens them quickly using the Bio-Formats Importer plugin.

• The **Update Bio-Formats Plugins** command will check for updates to the plugins. We recommend you update to the newest Trunk build as soon as you think you may have discovered a bug.

5.4 Installing Bio-Formats in ImageJ

Note: Since FIJI is essentially ImageJ with plugins like Bio-Formats already built in, people who install Fiji can skip this section.

\(^{19}\text{http://fiji.sc/SpatialCalibration}\)

\(^{20}\text{http://www.openmicroscopy.org/site/support/ome-model/ome-tiff}\)
If you are also using the OMERO plugin for ImageJ, you may find the set-up guide on the new user help site\(^{21}\) useful for getting you started with both plugins at the same time.

Once you download\(^{22}\) and install ImageJ, you can install the Bio-Formats plugin by going to the Bio-Formats download page\(^ {23}\) and saving the `bioformats_package.jar` to the Plugins directory within ImageJ.

![Figure 5.1: Plugin Directory for ImageJ: Where in ImageJ’s file structure you should place the file once you downloaded it.
](image.png)

You may have to quit and restart ImageJ. Once you restart it, you will find Bio-Formats in the Bio-Formats option under the Plugins menu:

\(^{21}\)http://help.openmicroscopy.org/imagej.html

\(^{22}\)http://rsbweb.nih.gov/ij/download.html

\(^{23}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/
You are now ready to start using Bio-Formats.

5.5 Using Bio-Formats to load images into ImageJ

This section will explain how to use Bio-Formats to import files into ImageJ and how to use the settings on the Bio-Formats Import Options screen.

5.5.1 Opening files

There are three ways you can open a file using Bio-Formats:

1. Select the Bio-Formats importer under the Bio-Formats plugins menu.
2. Drag and drop it onto the Bio-Formats Plugins Shortcut window.
3. Use the Open command in the File menu.

Unless you used the Bio-Formats Plugins Configuration dialog to open the file type windowlessly, you know you used Bio-Formats to open a file when you see a screen like this:

If you used the File > Open command and did not see the Bio-Formats Import Options screen, ImageJ/Fiji probably used another plugin instead of Bio-Formats to open the file. If this happens and you want to open a file using Bio-Formats, use one of the other two methods instead.

5.5.2 Opening files windowlessly

When you open a file with Bio-Formats, the Import Options Screen automatically recalls the settings you last used to open a file with that specific format (e.g. JPG, TIF, LSM, etc.). If you always choose the same options whenever you open files in a specific file format, you can save yourself time by bypassing the Bio-Formats Import Options screen. You can accomplish this two ways:

1. You can select the Bio-Formats Windowless Importer, located in the Bio-Formats menu under ImageJ’s Plugin menu. When you select this option, Bio-Formats will import the file using the same settings you used the last time you imported a file with the same format.

2. If you invariably use the same settings when you open files in a specific format, you can always bypass the Import Options Screen by changing the settings in the Bio-Formats Plugins Configuration option, which is also located in the Bio-Formats menu under ImageJ’s Plugin menu.
Once you select this option, select the file format you are interested in from the list on the left side of the screen. Check both the Enabled and Windowless boxes. Once you do this, whenever you open a file using the Bio-Formats Windowless Importer, the Bio-Formats Importer, or the drag-and-drop method described in the previous section, the file will always open the same way using the last setting used.

Please note that if you want to change any of the import settings once you enable this windowless option, you will have to go back to the Bio-Formats Plugins Configuration screen, unselect the windowless option, open a file using the regular Bio-Formats Importer, select your settings, and re-select the windowless option.

5.5.3 Group files with similar names

Note: The functionality described below is also available outside ImageJ, by using a pattern file to tell Bio-Formats how to group the files. See Grouping files using a pattern file for more information.

One of the most important features of Bio-Formats is to combine multiple files from a data set into one coherent, multi-dimensional image.

To demonstrate how to use the Group files with similar names feature, you can use the dub24 data set available under LOCI’s Sample Data25 page. You will notice that it is a large dataset: each of the 85 files shows the specimen at 33 optical sections along the z-plane at a specific time.

If you open just one file in ImageJ/Fiji using the Bio-Formats Importer, you will get an image incorporating three dimensions (x, y, z). However, if you select Group files with similar names from the Bio-Formats Import Options screen, you will be able to create a 4-D image (x, y, z, and t) incorporating the 85 files.

After clicking OK, you will see a screen like this:

![Screen with options to group files](image)

This screen allows you to select which files within the 85-file cluster to use to create that 4-D image. Some information will be pre-populated in the fields. Unless you want to change the settings in that field, there is no need to change or delete it. If you click OK at this point, you will load all 85 files.

However, you can specify which files you want to open by adjusting the “axis information”, the file “name contains”, or the “pattern” sections. Even though there are three options, you only need to make changes to one of them. Since Bio-Format’s precedence for processing data is from top to bottom, only the uppermost section that you made changes to will be used. If you change multiple boxes, any information you enter into lower boxes will be ignored.

To return to the example involving the dub data set, suppose you want to open the first image and only every fifth image afterwards (i.e. dub01, dub06, dub11 . . . dub81). This would give you 17 images. There are different ways to accomplish this:

You can use the Axis Settings only when your files are numbered in sequential order and you want to open only a subset of the files that have similar names. Since the dub data set is numbered sequentially, you can use this feature.

24http://loci.wisc.edu/sample-data/dub
25http://loci.wisc.edu/software/sample-data
Axis 1 number of images refers to the total number of images you want to open. Since you want to view 17 images, enter 17. Axis 1 axis first image specifies which image in the set you want to be the first. Since you want to start with dub01, enter 1 in that box. You also want to view only every fifth image, so enter 5 in the Axis 1 axis increment box.

The File name contains box should be used if all of the files that you want to open have common text. This is especially useful when the files are not numbered. For example, if you have “Image_Red.tif”, “Image_Green.tif”, and “Image.Blue.tif” you could enter “Image_” in the box to group them all.

To continue the example involving the dub dataset, you cannot use the file name contains box to open every fifth image. However, if you only wanted to open dub10 thorough dub19, you could enter “dub1” in the file name contains box.

The pattern box can be used to do either of the options listed above or much more. This box can accept a single file name like “dub01.pic”. It can also contain a pattern that use “<” and “>” to specify what numbers or text the file names contain.

There are three basic forms to the “< >” blocks:

- Text enumeration - “Image_<Red,Green,Blue>.tif” is the pattern for Image_Red.tif, Image_Green.tif, Image_Blue.tif. (Note that the order you in which you enter the file names is the order in which they will be loaded.)
- Number range - “dub<1-85>.pic” is the pattern for “dub1.pic”, “dub2.pic”, “dub3.pic” . . . “dub85.pic”.
- Number range with step - “dub<1-85:5>.pic” is the pattern for “dub1.pic”, “dub6.pic”, “dub11.pic”, “dub11.pic” . . . “dub85.pic”.

It can also accept a Java regular expression.\[^{26}\]

5.5.4 Autoscale

Autoscale helps increase the brightness and contrast of an image by adjusting the range of light intensity within an image to match the range of possible display values. Note that Autoscale does not change your data. It just changes how it is displayed.

Each pixel in an image has a numerical value ascribed to it to describe its intensity. The bit depth—the number of possible values—depends on the number of bits used in the image. Eight bits, for example, gives 256 values to express intensity where 0 is completely black, 255 is completely white, and 1 through 254 display increasingly lighter shades of grey.

ImageJ can collect the intensity information about each pixel from an image or stack and create a histogram (you can see it by selecting Histogram under the Analyze menu). Here is the histogram of a one particular image:

[^{26}]: http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html
Notice that the histogram heavily skews left. Even though there are 256 possible values, only 0 thorough 125 are being used. Autoscale adjusts the image so the smallest and largest number in that image or stack’s histogram become the darkest and brightest settings. For this image, pixels with the intensity of 125 will be displayed in pure white. The other values will be adjusted too to help show contrast between values that were too insignificant to see before.

Here is one image Bio-Formats imported with and without using Autoscale:
Autoscale readjusts the image based on the highest value in the entire data set. This means if the highest value in your dataset is close to maximum display value, Autoscale's adjusting may be undetectable to the eye.

ImageJ/Fiji also has its own tools for adjusting the image, which are available by selecting Brightness/Contrast, which is under the Adjust option in the Image menu.

5.6 Managing memory in ImageJ/Fiji using Bio-Formats

When dealing with a large stack of images, you may receive a warning like this:

![Bio-Formats Memory Usage](image)

This means the allotted memory is less than what Bio-Formats needs to load all the images. If you have a very large data set, you may have to:

- View your stack with Data Browser
- Crop the view area
- Open only a subset of images
- Use Virtual Stack
- Increase ImageJ/Fiji’s memory.

If your files contain JPEG or JPEG-2000 images, you may see this memory warning even if your file size is smaller than the amount of allocated memory. This is because compressed images like JPEG need to be decompressed into memory before being displayed and require more memory than their file size suggests. If you are having this issue, try utilizing one of the memory management tools below.
5.6.1 View your stack with Data Browser

Data Browser is another part of Bio-Formats that enables users to view large 3, 4, or 5-D datasets by caching a subset of all the images available. This enables users to view a stack that is bigger than the computer’s memory.

You can select Data Browser as an option for View stack with, the leftmost, uppermost option in the Bio-Formats Import Options screen.

![Data Browser options](image)

Note that when you use Data Browser, other features like cropping and specifying range are not available. You can, however, adjust the size of the image cache in the Data Browser after you open the files. You can read more about it on LOCI’s Data Browser page\(^\text{27}\).

5.6.2 Cropping the view area

Crop on Import is useful if your images are very large and you are only interested in one specific section of the stack you are importing. If you select this feature, you will see a screen where you can enter the height and width (in pixels) of the part of image you want to see. Note that these measurements are from the top left corner of the image.

5.6.3 Opening only a subset of images

The Specify Range for Each Series option is useful for viewing a portion of a data set where all the plane images are encapsulated into one file (e.g. the Zeiss LSM format). If your file has a large quantity of images, you can specify which channels, Z-planes, and times you want to load.

5.6.4 Use Virtual Stack

Virtual Stack conserves memory by not loading specific images until necessary. Note that unlike Data Browser, Virtual Stack does not contain a buffer and may produce choppy animations.

5.6.5 Increasing ImageJ/Fiji’s memory

Finally, you can also increase the amount of the computer memory devoted to ImageJ/Fiji by selecting Memory & Threads under the Edit menu.

\(^{27}\)http://loci.wisc.edu/software/data-browser
Generally, allocating more than 75% of the computer’s total memory will cause ImageJ/Fiji to become slow and unstable. **Please note** that unlike the other three features, ImageJ/Fiji itself provides this feature and not Bio-Formats. You can find out more about this feature by looking at ImageJ’s documentation[^28].

[^28]: http://rsbweb.nih.gov/ij/docs/menus/edit.html#options
The Bio-Formats Command line tools (bftools.zip) provide a complete package for carrying out a variety of tasks:

6.1 Command line tools introduction

There are several scripts for using Bio-Formats on the command line.

6.1.1 Installation

Download bftools.zip¹, unzip it into a new folder.

Note: As of Bio-Formats 5.0.0, this zip now contains the bundled jar and you no longer need to download loci_tools.jar or the new bioformats_package.jar separately.

The zip file contains both Unix scripts and Windows batch files.

6.1.2 Tools available

Currently available tools include:

- **showinf**
 Prints information about a given image file to the console, and displays the image itself in the Bio-Formats image viewer (see Displaying images and metadata for more information).

- **ijview**
 Displays the given image file in ImageJ using the Bio-Formats Importer plugin. See Display file in ImageJ for details.

- **bfconvert**
 Converts an image file from one format to another. Bio-Formats must support writing to the output file (see Converting a file to different format for more information).

- **formatlist**
 Displays a list of supported file formats in HTML, plaintext or XML. See List supported file formats for details.

- **xmlindent**
 A simple XML prettifier similar to xmllint –format but more robust in that it attempts to produce output regardless of syntax errors in the XML. See Format XML data for details.

- **xmlvalid**
 A command-line XML validation tool, useful for checking an OME-XML document for compliance with the OME-XML schema.

- **tiffcomment**
 Dumps the comment from the given TIFF file’s first IFD entry; useful for examining the OME-XML block in an OME-TIFF file (also see Editing XML in an OME-TIFF).

- **domainlist**
 Displays a list of imaging domains and the supported formats associated with each domain. See List formats by domain for more information.

- **mkfake**
 Creates a “fake” high-content screen with configurable dimensions. This is useful for testing how HCS metadata is handled, without requiring real image data from an acquired screen. See Create a high-content screen for testing for more information.

Some of these tools also work in combination, for example Validating XML in an OME-TIFF uses both tiffcomment and xmlvalid.

Running any of these commands without any arguments will print usage information to help you. When run with the -version argument, showinf and bfconvert will display the version of Bio-Formats that is being used (version number, build date, and Git commit reference).

6.1.3 Using the tools directly from source

Firstly, obtain a copy of the sources and build them (see Obtaining and building Bio-Formats). You can configure the scripts to use your source tree instead of bioformats_package.jar in the same directory by following these steps:

1. Point your CLASSPATH to the checked-out directory and the JAR files in the jar folder.
 - E.g. on Windows with Java 1.7 or later, if you have checked out the source at C:\code\bio-formats, set your CLASSPATH environment variable to the value C:\code\bio-formats\jar*;C:\code\bio-formats. You can access the environment variable configuration area by right-clicking on My Computer, choosing Properties, Advanced tab, Environment Variables button.

2. Compile the source with ant compile.

3. Set the BF_DEVEL environment variable to any value (the variable just needs to be defined).

6.1.4 Version checker

If you run bftools outside of the OMERO environment, you may encounter an issue with the automatic version checker causing a tool to crash when trying to connect to upgrade.openmicroscopy.org.uk. The error message will look something like this:

```
Failed to compare version numbers
java.io.IOException: Server returned HTTP response code: 400 for URL: http://upgrade.openmicroscopy.org.uk?version=4.4.8;os.name=Linux;os.version=2.6.32-358.6.2.el6.x86_64;os.arch=amd64;java.runtime.version=1.6.0_24-b24;java.vm.vendor=Sun+Microsystems+Inc.;bioformats.caller= Bio-Formats+utilities
```

To avoid this issue, call the tool with the -no-upgrade parameter.

6.1.5 Profiling

For debugging errors or investigating performance issues, it can be useful to use profiling tools while running Bio-Formats. The command-line tools can invoke the HPROF2 agent library to profile Heap and CPU usage. Setting the BF_PROFILE environment variable allows to turn profiling on, e.g.:

```
BF_PROFILE=true showinf -nopix -no-upgrade myfile
```

6.2 Displaying images and metadata

The showinf command line tool can be used to show the images and metadata contained in a file.

If no options are specified, showinf displays a summary of available options.

To simply display images:

```
showinf /path/to/file
```

2 http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
All of the images in the first ‘series’ (or 5 dimensional stack) will be opened and displayed in a simple image viewer. The number of series, image dimensions, and other basic metadata will be printed to the console.

- **series** `SERIES`
 Displays a different series, for example the second one:

  ```
  showinf -series 1 /path/to/file
  ```

 Note that series numbers begin with 0.

- **omexml**
 Displays the OME-XML metadata for a file on the console:

  ```
  showinf -omexml /path/to/file
  ```

- **nopix**
 Image reading can be suppressed if only the metadata is needed:

  ```
  showinf -nopix /path/to/file
  ```

- **range** `START END`
 A subset of images can also be opened instead of the entire stack, by specifying the start and end plane indices (inclusive):

  ```
  showinf -range 0 0 /path/to/file
  ```

 That opens only the first image in first series in the file.

- **crop** `X,Y,WIDTH,HEIGHT`
 For very large images, it may also be useful to open a small tile from the image instead of reading everything into memory. To open the upper-left-most 512x512 tile from the images:

  ```
  showinf -crop 0,0,512,512 /path/to/file
  ```

 The parameter to `-crop` is of the format `x, y, width, height`. The `(x, y)` coordinate (0, 0) is the upper-left corner of the image; `x + width` must be less than or equal to the image width and `y + height` must be less than or equal to the image height.

- **no-upgrade**
 By default, `showinf` will check for a new version of Bio-Formats. This can take several seconds (especially on a slow internet connection); to save time, the update check can be disabled:

  ```
  showinf -no-upgrade /path/to/file
  ```

- **no-valid**
 Similarly, if OME-XML is displayed then it will automatically be validated. On slow or missing internet connections, this can take some time, and so can be disabled:

  ```
  showinf -novalid /path/to/file
  ```

- **no-core**
 Most output can be suppressed:

  ```
  showinf -nocore /path/to/file
  ```
-omexml-only
Displays the OME-XML alone:

```
showinf -omexml-only /path/to/file
```

This is particularly helpful when there are hundreds or thousands of series.

-debug
Enables debugging output if more information is needed:

```
showinf -debug /path/to/file
```

-fast
Displays an image as quickly as possible. This is achieved by converting the raw data into a 8 bit RGB image:

```
showinf -fast /path/to/file
```

Note: Due to the data conversion to a RGB image, using this option results in a loss of precision.

-autoscale
Adjusts the display range to the minimum and maximum pixel values:

```
showinf -autoscale /path/to/file
```

Note: This option automatically sets the `-fast` option and suffers from the same limitations.

-cache
Caches the reader under the same directory as the input file after initialization:

```
showinf -cache /path/to/file
```

-cache-dir DIR
Specifies the base directory under which the reader should be cached:

```
showinf -cache-dir /tmp/cachedir /path/to/file
```

6.3 Converting a file to different format

The `bfconvert` command line tool can be used to convert files between supported formats.

`bfconvert` with no options displays a summary of available options.

To convert a file to single output file (e.g. TIFF):

```
bfconvert /path/to/input output.tiff
```

The output file format is determined by the extension of the output file, e.g. `.tiff` for TIFF files, `.ome.tiff` for OME-TIFF, `.png` for PNG.

-series SERIES
All images in the input file are converted by default. To convert only one series:
bfconvert -series 0 /path/to/input output-first-series.tiff

-timepoint TIMEPOINT
To convert only one timepoint:

bfconvert -timepoint 0 /path/to/input output-first-timepoint.tiff

-channel CHANNEL
To convert only one channel:

bfconvert -channel 0 /path/to/input output-first-channel.tiff

-z Z
To convert only one Z section:

bfconvert -z 0 /path/to/input output-first-z.tiff

-range START END
To convert images between certain indices (inclusive):

bfconvert -range 0 2 /path/to/input output-first-3-images.tiff

-tilex TILEX, **-tiley** TILEY
All images larger than 4096x4096 will be saved as a set of tiles if the output format supports doing so. The default tile size is determined by the input format, and can be overridden like this:

bfconvert -tilex 512 -tiley 512 /path/to/input output-512x512-tiles.tiff

-tilex is the width in pixels of each tile; **-tiley** is the height in pixels of each tile. The last row and column of tiles may be slightly smaller if the image width and height are not multiples of the specified tile width and height. Note that specifying **-tilex** and **-tiley** will cause tiles to be written even if the image is smaller than 4096x4096.

Also note that the specified tile size will affect performance. If large amounts of data are being processed, it is a good idea to try converting a single tile with a few different tile sizes using the **-crop** option. This gives an idea of what the most performant size will be.

Images can also be written to multiple files by specifying a pattern string in the output file. For example, to write one series, timepoint, channel, and Z section per file:

bfconvert /path/to/input output_series_%s_Z%z_C%c_T%t.tiff

%s is the series index, %z is the Z section index, %c is the channel index, and %t is the timepoint index (all indices begin at 0).

For large images in particular, it can also be useful to write each tile to a separate file:

bfconvert -tilex 512 -tiley 512 /path/to/input output_tile_%x_%y_%m.jpg

%x is the row index of the tile, %y is the column index of the tile, and %m is the overall tile index. As above, all indices begin at 0. Note that if %x or %y is included in the file name pattern, then the other must be included too. The only exception is if %m was also included in the pattern.

-compression COMPRESSION
By default, all images will be written uncompressed. Supported compression modes vary based upon the output format, but when multiple modes are available the compression can be changed using the **-compression** option. For example, to use LZW compression in a TIFF file:
bfconvert -compression LZW /path/to/input output-lzw.tiff

-overwrite
If the specified output file already exists, bfconvert will prompt to overwrite the file. When running bfconvert non-interactively, it may be useful to always allow bfconvert to overwrite the output file:

bfconvert -overwrite /path/to/input /path/to/output

-nooverwrite
To always exit without overwriting:

bfconvert -nooverwrite /path/to/input /path/to/output

-nolookup
To disable the conversion of lookup tables, leaving the output file without any lookup tables:

bfconvert -nolookup /path/to/input /path/to/output

New in version 5.2.1.

-bigtiff
This option forces the writing of a BigTiff file:

bfconvert -bigtiff /path/to/input output.ome.tif

New in version 5.1.2.

The -bigtiff option is not necessary if a BigTiff extension is used for the output file, e.g.:

bfconvert /path/to/input output.ome.btf

-padded
This option is used alongside a pattern string when writing an image to multiple files. When set this will enforce zero padding on the filename indexes set in the provided pattern string:

bfconvert /path/to/input output_xy%sz%zc%ct%t.ome.tif -padded

New in version 5.2.2.

6.4 Validating XML in an OME-TIFF

The XML stored in an OME-TIFF file can be validated using the command line tools. Both the tiffcomment and xmlvalid commands are used; tiffcomment extracts the XML from the file and xmlvalid validates the XML and prints any errors to the console.

For example:

tiffcomment /path/to/file.ome.tif | xmlvalid -

will perform the extraction and validation all at once.

Typical successful output is:
If any errors are found they are reported. When correcting errors it is usually best to work from the top of the file as errors higher up can cause extra errors further down. In this example the output shows 3 errors but there are only 2 mistakes in the file:

```
[~/Work/bftools]$ ./xmlvalid broken.ome
Parsing schema path http://www.openmicroscopy.org/Schemas/OME/2010-06/ome.xsd
Validating broken.ome
cvc-complex-type.4: Attribute ‘SizeY’ must appear on element ‘Pixels’.
cvc-enumeration-valid: Value ‘Non Zero’ is not facet-valid with respect to enumeration ‘[EvenOdd, NonZero]’. It must be a value from the enumeration.
cvc-attribute.3: The value ‘Non Zero’ of attribute ‘FillRule’ on element ‘ROI:Shape’ is not valid with respect to its type, ‘null’.
Error validating document: 3 errors found
```

If the XML is found to have validation errors, the `tiffcomment` command can be used to overwrite the XML in the OME-TIFF file with corrected XML. The XML can be displayed in an editor window:

```
tiffcomment -edit /path/to/file.ome.tiff
```

or the new XML can be read from a file:

```
tiffcomment -set new-comment.xml /path/to/file.ome.tiff
```

6.5 Editing XML in an OME-TIFF

To edit the XML in an OME-TIFF file you can use `tiffcomment`, one of the Bio-Formats tools.

Note: The `tiffcomment` tool requires that the `ImageDescription` tag is present in the TIFF file and will error otherwise.

To use the built in editor run:

```
tiffcomment -edit sample.ome.tif
```

To extract or view the XML run:

```
tiffcomment sample.ome.tif
```

To inject replacement XML into a file run:

```
tiffcomment -set ‘newmetadata.xml’ sample.ome.tif
```
6.6 List formats by domain

Each supported file format has one or more imaging domains associated with it. To print the list of formats associated with each imaging domain:

domainlist

The command does not accept any arguments. The known image domains are defined by:

- ASTRONOMY_DOMAIN
- EM_DOMAIN
- FLIM_DOMAIN
- GEL_DOMAIN
- GRAPHICS_DOMAIN
- HCS_DOMAIN
- HISTOLOGY_DOMAIN
- LM_DOMAIN
- MEDICAL_DOMAIN
- SEM_DOMAIN
- SPM_DOMAIN
- UNKNOWN_DOMAIN

6.7 List supported file formats

A detailed list of supported formats can be displayed using the `formatlist` command.

The default behavior is to print a plain-text list of formats:

formatlist

- **txt**

 Prints the list of formats as plain-text:

 formatlist -txt

- **html**

 Prints the list of formats as HTML:

 formatlist -html

3 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#ASTRONOMY_DOMAIN
4 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#EM_DOMAIN
5 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#FLIM_DOMAIN
6 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#GEL_DOMAIN
7 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#GRAPHICS_DOMAIN
8 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#HCS_DOMAIN
9 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#HISTOLOGY_DOMAIN
10 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#LM_DOMAIN
11 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#MEDICAL_DOMAIN
12 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#SEM_DOMAIN
13 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#SPM_DOMAIN
14 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#UNKNOWN_DOMAIN
-xml
 Prints the list of formats as XML:

 formatlist -xml

-help
 Displays the usage information:

 formatlist -help

6.8 Display file in ImageJ

Files can be displayed from the command line in ImageJ. The Bio-Formats importer plugin for ImageJ is used to open the file. The command takes a single argument:

ijview /file/to/open

If the input file is not specified, ImageJ will show a file chooser window. The Bio-Formats import options window will then appear, after which the image(s) will be displayed. If the BF_DEVEL environment variable is set, the ImageJ jar <jars/ij.jar> must be included in the classpath.

6.9 Format XML data

The xmlindent command formats and adds indenting to XML so that it is easier to read. Indenting is currently set to 3 spaces. If an XML file name is not specified, the XML to indent will be read from standard output. Otherwise, one or more file names can be specified:

xmlindent /path/to/xml
xmlindent /path/to/first-xml /path/to/second-xml

The formatted XML from each file will be printed in the order in which the files were specified. By default, extra whitespace may be added to CDATA elements. To preserve the contents of CDATA elements:

xmlindent -valid /path/to/xml

6.10 Create a high-content screen for testing

The mkfake command creates a high-content screen for testing. The image data will be meaningless, but it allows testing of screen, plate, and well metadata without having to find appropriately-sized screens from real acquisitions. If no arguments are specified, mkfake prints usage information. To create a single screen with default plate dimensions:

mkfake default-screen.fake
This will create a directory that represents one screen with a single plate containing one well, one field, and one acquisition of the plate (see PlateAcquisition15).

-plates PLATES
 To change the number of plates in the screen:

 mkfake -plates 3 three-plates.fake

-runs RUNS
 To change the number of acquisitions for each plate:

 mkfake -runs 4 four-plate-acquisitions.fake

-rows ROWS
 To change the number of rows of wells in each plate:

 mkfake -rows 8 eight-row-plate.fake

-columns COLUMNS
 To change the number of columns of wells in each plate:

 mkfake -columns 12 twelve-column-plate.fake

-fields FIELDS
 To change the number of fields per well:

 mkfake -fields 2 two-field-plate.fake

It is often most useful to use the arguments together to create a realistic screen, for example:

mkfake -rows 16 -columns 24 -plates 2 -fields 3 two-384-well-plates.fake

-debug DEBUG
 As with other command line tools, debugging output can be enabled if necessary:

 mkfake -debug debug-screen.fake

15http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2015-01/SPW_xsd.html#PlateAcquisition_ID

6.10. Create a high-content screen for testing
OMERO 5 uses Bio-Formats to read original files from over 140 file formats. Please refer to the OMERO documentation\(^1\) for further information.

\(^1\)http://www.openmicroscopy.org/site/support/omero5.1/
8.1 BISQUE

The BISQUE\(^1\) (Bio-Image Semantic Query User Environment) Database, developed at the Center for Bio-Image Informatics at UCSB, was developed for the exchange and exploration of biological images. The Bisque system supports several areas useful for imaging researchers from image capture to image analysis and querying. The bisque system is centered around a database of images and metadata. Search and comparison of datasets by image data and content is supported. Novel semantic analyses are integrated into the system allowing high level semantic queries and comparison of image content.

Bisque integrates with Bio-Formats by calling the \texttt{showinf} command line tool.

8.2 OME Server

OME\(^2\) is a set of software that interacts with a database to manage images, image metadata, image analysis and analysis results. The OME system is capable of leveraging Bio-Formats to import files.

\textbf{Please note} - the OME server is no longer maintained and has now been superseded by the OMERO server\(^3\). Support for the OME server has been entirely removed in the 5.0.0 version of Bio-Formats; the following instructions can still be used with the 4.4.x versions.

8.2.1 Installation

For OME Perl v2.6.1\(^4\) and later, the command line installer automatically downloads the latest \texttt{loci_tools.jar} and places it in the proper location. This location is configurable, but is \texttt{/OME/java/loci_tools.jar} by default.

For a list of what was recognized for a particular import into the OME server, go to the Image details page in the web interface, and click the “Image import” link in the upper right hand box.

Bio-Formats is capable of parsing original metadata for supported formats, and standardizes what it can into the OME data model. For the rest, it expresses the metadata in OME terms as key/value pairs using an OriginalMetadata custom semantic type. However, this latter method of metadata representation is of limited utility, as it is not a full conversion into the OME data model.

Bio-Formats is enabled in OME v2.6.1 for all formats except:

- OME-TIFF
- Metamorph HTD
- Deltavision DV
- Metamorph STK
- Bio-Rad PIC
- Zeiss LSM
- TIFF

\(^1\)http://www.bioimage.ucsb.edu/bisque
\(^2\)http://openmicroscopy.org/site/support/legacy/ome-server
\(^3\)http://www.openmicroscopy.org/site/support/omero5.1/
\(^4\)http://downloads.openmicroscopy.org/ome/2.6.1/
• BMP
• DICOM
• OME-XML

The above formats have their own Perl importers that override Bio-Formats, meaning that Bio-Formats is not used to process them by default. However, you can override this behavior (except for Metamorph HTD, which Bio-Formats does not support) by editing an OME database configuration value:

% psql ome

toseethecurrentfileformatreaderlist:

ome=# select value from configuration where name='import_formats';
value
--
["OME::ImportEngine::OMETIFFreader","OME::ImportEngine::MetamorphHTDFormat",
 "OME::ImportEngine::DVreader","OME::ImportEngine::STKreader",
 "OME::ImportEngine::BioradReader","OME::ImportEngine::LSMreader",
 "OME::ImportEngine::TIFFreader","OME::ImportEngine::BMPreader",
 "OME::ImportEngine::DICOMreader","OME::ImportEngine::XMLreader",
 "OME::ImportEngine::BioFormats"]
(1 row)

Toremoveextraneousreadersfromthelist:

ome=# update configuration set value='["OME::ImportEngine::MetamorphHTDFormat",
 "OME::ImportEngine::XMLreader","OME::ImportEngine::BioFormats"]' where
name='import_formats';
UPDATE 1
ome=# select value from configuration where name='import_formats';
value
--
["OME::ImportEngine::MetamorphHTDFormat","OME::ImportEngine::XMLreader",
 "OME::ImportEngine::BioFormats"]
(1 row)

Toretsetthingstakingb焓owtheywere:

ome=# update configuration set value='["OME::ImportEngine::OMETIFFreader",
 "OME::ImportEngine::MetamorphHTDFormat","OME::ImportEngine::DVreader",
 "OME::ImportEngine::STKreader","OME::ImportEngine::BioradReader",
 "OME::ImportEngine::LSMreader","OME::ImportEngine::TIFFreader",
 "OME::ImportEngine::BMPreader","OME::ImportEngine::DICOMreader",
 "OME::ImportEngine::XMLreader","OME::ImportEngine::BioFormats"]' where
name='import_formats';

Lastly, please note that Li-Cor L2D files cannot be imported into an OME server. Since the OME perl server has been discontinued, we have no plans to fix this limitation.

8.2.2 Upgrading

OME server is not supported by Bio-Formats versions 5.0.0 and above. To take advantage of more recent improvements to Bio-Formats, you must switch to OMERO server\(^5\).

8.2.3 Source Code

The source code for the Bio-Formats integration with OME server spans three languages, using piped system calls in both directions to communicate, with imported pixels written to OMEIS pixels files. The relevant source files are:

\(^5\)http://www.openmicroscopy.org/site/support/omero5.1/
• OmeisImporter.java\(^6\) – omebf Java command line tool
• BioFormats.pm\(^7\) – Perl module for OME Bio-Formats importer
• omeis.c\(^8\) – OMEIS C functions for Bio-Formats (search for “bioformats” case insensitively to find relevant sections)

\(^6\)http://github.com/openmicroscopy/bioformats/tree/v4.4.10/components/scifio/src/loci/formats/ome/OmeisImporter.java
\(^7\)http://downloads.openmicroscopy.org/ome/code/BioFormats.pm
\(^8\)http://downloads.openmicroscopy.org/ome/code/omeis.c
CHAPTER

NINE

LIBRARIES AND SCRIPTING APPLICATIONS

9.1 FARSIGHT

FARSIGHT\(^1\) is a collection of modules for image analysis created by LOCI’s collaborators at the University of Houston\(^2\). These open source modules are built on the ITK library and thus can take advantage of ITK’s support for Bio-Formats to process otherwise unsupported image formats.

The principal FARSIGHT module that benefits from Bio-Formats is the Nucleus Editor\(^3\), though in principle any FARSIGHT-based code that reads image formats via the standard ITK mechanism will be able to leverage Bio-Formats.

See also:
FARSIGHT Downloads page\(^4\)
FARSIGHT HowToBuild tutorial\(^5\)

9.2 i3dcore

i3dcore\(^6\), also known as the CBIA 3D image representation library, is a 3D image processing library developed at the Centre for Biomedical Image Analysis\(^7\). Together with i3dalgo\(^8\) and i4dcore\(^9\), i3dcore forms a continuously developed templated cross-platform C++ suite of libraries for multidimensional image processing and analysis.

i3dcore is capable of reading images with Bio-Formats using Java for C++ (java4cpp).

See also:
Download i3dcore\(^10\)
CBIA Software Development\(^11\)

9.3 ImgLib

ImgLib\(^12\) is a multidimensional image processing library. It provides a general mechanism for writing image analysis algorithms, without writing case logic for bit depth\(^13\), or worrying about the source of the pixel data (arrays in memory, files on disk, etc.).

The SCIFIO\(^14\) project provides an ImgOpener\(^15\) utility class for reading data into ImgLib2 data structures using Bio-Formats.

\(^{1}\)http://www.farsight-toolkit.org/
\(^{2}\)http://www.uh.edu/
\(^{3}\)http://www.farsight-toolkit.org/wiki/NucleusEditor
\(^{4}\)http://www.farsight-toolkit.org/wiki/Special:FarsightDownloads
\(^{5}\)http://www.farsight-toolkit.org/wiki/FARSIGHT_HowToBuild
\(^{6}\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html
\(^{7}\)http://cbia.fi.muni.cz/software-development.html
\(^{8}\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dalgo/index.html
\(^{9}\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i4dcore/index.html
\(^{10}\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html#download
\(^{11}\)http://cbia.fi.muni.cz/software-development.html
\(^{12}\)http://imglib2.net/
\(^{13}\)http://en.wikipedia.org/wiki/Color_depth
\(^{14}\)http://scif.io/
\(^{15}\)https://github.com/scifio/scifio/blob/master/src/main/java/io/scif/img/ImgOpener.java
9.4 ITK

The Insight Toolkit16 (ITK) is an open-source, cross-platform system that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional data.

ITK provides an ImageIO plug-in structure that works via discovery through a dependency injection scheme. This allows a program built on ITK to load plug-ins for reading and writing different image types without actually linking to the ImageIO libraries required for those types. Such encapsulation automatically grants two major boons: firstly, programs can be easily extended just by virtue of using ITK (developers do not have to specifically accommodate or anticipate what plug-ins may be used). Secondly, the architecture provides a distribution method for open source software, like Bio-Formats, which have licenses that might otherwise exclude them from being used with other software suites.

The SCIFIO ImageIO17 plugin provides an ITK imageIO base that uses Bio-Formats to read and write supported life sciences file formats. This plugin allows any program built on ITK to read any of the image types supported by Bio-Formats.

9.5 Qu for MATLAB

Qu for MATLAB18 is a MATLAB toolbox for the visualization and analysis of multi-channel 4-dimensional datasets targeted to the field of biomedical imaging, developed by Aaron Ponti.

- Uses Bio-Formats to read files
- Open source software available under the Mozilla Public License

See also:
Qu for MATLAB download page19

16http://itk.org/
17https://github.com/scifio/scifio-imageio
18http://www.scs2.net/home/index.php?option=com_content&view=article&id=46%3Aqu-for-matlab&catid=34%3Aqu&Itemid=55
19http://www.scs2.net/home/index.php?option=com_content&view=article&id=46%3Aqu-for-matlab&catid=34%3Aqu&Itemid=55&limitstart=3
GNU Octave\(^1\) is a high-level interpreted language, primarily intended for numerical computations. Being an array programming language, it is naturally suited for image processing and handling of N dimensional datasets. Octave is distributed under the terms of the GNU General Public License.

The Octave language is Matlab compatible so that programs are easily portable. Indeed, the Octave bioformats package is exactly the same as Matlab’s, the only difference being the installation steps.

10.1.1 Requirements

The bioformats package requires Octave version 4.0.0 or later with support for java:

```
$ octave
>> OCTAVE_VERSION
ans = 4.0.0
>> octave_config_info ("features").JAVA
ans = 1
```

10.1.2 Installation

1. Download bioformats_package_jar\(^2\) and place it somewhere sensible for your system (in Linux, this will probably be /usr/local/share/java or ~/.local/share/java for a system-wide or user installation respectively).
2. Add bioformats_package_jar to Octave’s static javaclasspath (see Octave’s documentation\(^3\)).
3. Download the Octave package from the downloads page\(^4\).
4. Start octave and install the package with:

```
>> pkg install path-to-bioformats-octave-version.tar.gz
```

10.1.3 Usage

Usage instructions are the same as Matlab. The only difference is that you need to explicitly load the package. This is done by running at the Octave prompt:

```
>> pkg load bioformats
```

\(^1\)http://www.octave.org

\(^2\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/artifacts/bioformats_package_jar

\(^3\)https://www.gnu.org/software/octave/doc/interpreter/How-to-make-Java-classes-available_003f.html

\(^4\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/
10.1.4 Upgrading

To use a newer version of Bio-Formats, repeat the install instructions. Do not follow the Matlab instructions.

10.2 IDL

IDL\(^5\) (Interactive Data Language) is a popular data visualization and analysis platform used for interactive processing of large amounts of data including images.

IDL possesses the ability to interact with Java applications via its IDL-Java bridge. Karsten Rodenacker has written a script that uses Bio-Formats to read in image files to IDL.

10.2.1 Installation

Download the ij_read_bio_formats.pro\(^6\) script from Karsten Rodenacker’s IDL goodies \(^7\) web site. See the comments at the top of the script for installation instructions and caveats.

10.2.2 Upgrading

To use a newer version of Bio-Formats, overwrite the requisite JAR files with the newer version\(^8\) and restart IDL.

10.3 KNIME

KNIME\(^9\) (Konstanz Information Miner) is a user-friendly and comprehensive open-source data integration, processing, analysis, and exploration platform. KNIME supports image import using Bio-Formats using the KNIME Image Processing\(^10\) (a.k.a. KNIP) plugin.

10.4 MATLAB

MATLAB\(^11\) is a high-level language and interactive environment that facilitates rapid development of algorithms for performing computationally intensive tasks.

Calling Bio-Formats from MATLAB is fairly straightforward, since MATLAB has built-in interoperability with Java. We have created a set of scripts\(^12\) for reading image files. Note the minimum supported MATLAB version is R2007b (7.5).

10.4.1 Installation

Download the MATLAB toolbox from the Bio-Formats downloads page\(^13\). Unzip bfmatlab.zip and add the unzipped bfmatlab folder to your MATLAB path.

Note: As of Bio-Formats 5.0.0, this zip now contains the bundled jar and you no longer need to download loci_tools.jar or the new bioformats_package.jar separately.

\(^5\)http://www.exelisvis.com/ProductsServices/IDL.aspx
\(^6\)http://karo03.bplaced.net/karo/IDL/_pro/ij_read_bio_formats.pro
\(^7\)http://karo03.bplaced.net/karo/ro_embed.php?file=IDL/index.html
\(^8\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/
\(^9\)http://www.knime.org/
\(^10\)http://tech.knime.org/community/image-processing
\(^11\)http://www.mathworks.com/products/matlab/
\(^12\)https://github.com/openmicroscopy/bioformats/tree/v5.2.2/components/formats-gpl/matlab
\(^13\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/
10.4.2 Usage

Please see *Using Bio-Formats in MATLAB* for usage instructions. If you intend to extend the existing .m files, please also see the developer page for more information on how to use Bio-Formats in general.

10.4.3 Performance

In our tests (MATLAB R14 vs. java 1.6.0_20), the script executes at approximately half the speed of our `showinf command line tool`, due to overhead from copying arrays.

10.4.4 Upgrading

To use a newer version of Bio-Formats, overwrite the content of the `bfmatlab` folder with the newer version\(^\text{14}\) of the toolbox and restart MATLAB.

10.4.5 Alternative scripts

Several other groups have developed their own MATLAB scripts that use Bio-Formats, including the following:

- https://github.com/prakatmac/bf-tools/
- imread for multiple life science image file formats\(^\text{15}\)

10.5 VisAD

The **VisAD**\(^\text{16}\) visualization toolkit is a Java component library for interactive and collaborative visualization and analysis of numerical data. VisAD uses Bio-Formats to read many image formats, notably TIFF.

10.5.1 Installation

The `visad.jar` file has Bio-Formats bundled inside, so no further installation is necessary.

10.5.2 Upgrading

It should be possible to use a newer version of Bio-Formats by putting the latest `bioformats_package.jar`\(^\text{17}\) or `formats-gpl.jar`\(^\text{18}\) before `visad.jar` in the class path. Alternately, you can create a “VisAD Lite” using the `make lite` command from VisAD source, and use the resultant `visad-lite.jar`, which is a stripped down version of VisAD without sample applications or Bio-Formats bundled in.

\(^\text{14}\) http://downloads.openmicroscopy.org/latest/bio-formats5.2/

\(^\text{16}\) http://www.ssec.wisc.edu/~billh/visad.html

11.1 Bitplane Imaris

Imaris is Bitplane’s core scientific software module that delivers all the necessary functionality for data visualization, analysis, segmentation and interpretation of 3D and 4D microscopy datasets. Combining speed, precision and ease-of-use, Imaris provides a complete set of features for working with three- and four-dimensional multi-channel images of any size, from a few megabytes to multiple gigabytes in size.

As of version 7.2, Imaris integrates with Fiji overview, which includes Bio-Formats. See this page for a detailed list of Imaris’ features.

11.2 CellProfiler

CellProfiler—developed by the Broad Institute Imaging Platform—is free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automatically. CellProfiler uses Bio-Formats to read images from disk, as well as write movies.

11.2.1 Installation

The CellProfiler distribution comes with Bio-Formats included, so no further installation is necessary.

11.2.2 Upgrading

It should be possible to use a newer version of Bio-Formats by replacing the bundled loci_tools.jar with a newer version.

- For example, on Mac OS X, Ctrl+click the CellProfiler icon, choose Show Package Contents, and replace the following files:
 - Contents/Resources/bioformats/loci_tools.jar
 - Contents/Resources/lib/python2.5/bioformats/loci_tools.jar

See also:

CellProfiler Website of the CellProfiler software

Using Bio-Formats in Python Section of the developer documentation describing the Python wrapper for Bio-Formats used by CellProfiler

1 http://www.bitplane.com/
3 http://www.bitplane.com/imaris/imaris
4 http://www.cellprofiler.org
5 http://www.broadinstitute.org/science/platforms/imaging/imaging-platform
11.3 Comstat2

Comstat2 is a Java-based computer program for the analysis and treatment of biofilm images in 3D. It is the Master’s project of Martin Vorregaard\(^7\).

Comstat2 uses the *Bio-Formats Importer plugin for ImageJ* to read files in TIFF and Leica LIF formats.

11.4 Endrov

Endrov\(^8\) (or http://www.endrov.net) (EV) is a multi-purpose image analysis program developed by the Thomas Burglin group\(^9\) at Karolinska Institute\(^10\), Department of Biosciences and Nutrition.

11.4.1 Installation

The EV distribution comes bundled with the core Bio-Formats library (*bio-formats.jar*), so no further installation is necessary.

11.4.2 Upgrading

It should be possible to use a newer version of Bio-Formats by downloading the latest *formats-gpl.jar*\(^11\) and putting it into the *libs* folder of the EV distribution, overwriting the old file.

You could also include some *optional libraries*, to add support for additional formats, if desired.

11.5 FocalPoint

FocalPoint\(^12\) is an image browser, similar to *Windows Explorer*\(^13\) or other *file manager*\(^14\) application, specifically designed to work with more complex image types. FocalPoint uses Bio-Formats to generate thumbnails for some formats.

11.5.1 Installation

FocalPoint is bundled with Bio-Formats, so no further installation is necessary.

11.5.2 Upgrading

It should be possible to use a newer version of Bio-Formats\(^15\) by overwriting the old *loci_tools.jar* within the FocalPoint distribution. For Mac OS X, you will have to control click the FocalPoint program icon, choose “Show Package Contents” and navigate into Contents/Resources/Java to find the *loci_tools.jar* file.

11.6 Graphic Converter

Graphic Converter\(^16\) is a Mac OS application for opening, editing, and organizing photos. Versions 6.4.1 and later use Bio-Formats to open all file formats supported by Bio-Formats.

\(^7\)http://www.comstat.dk/
\(^8\)https://github.com/mahogany/Endrov
\(^9\)http://www.biosci.ki.se/groups/tbu
\(^10\)http://www.ki.se/
\(^11\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/artifacts/formats-gpl.jar
\(^12\)http://www.bioinformatics.bbsrc.ac.uk/projects/focalpoint/
\(^13\)http://en.wikipedia.org/wiki/Windows_Explorer
\(^14\)http://en.wikipedia.org/wiki/File_manager
\(^15\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/
\(^16\)http://www.lemkesoft.com
11.7 Icy

Icy17 is an open-source image analysis and visualization software package that combines a user-friendly graphical interface with the ability to write scripts and plugins that can be uploaded to a centralized website. It uses Bio-Formats internally to read images and acquisition metadata, so no further installation is necessary.

11.8 imago

Mayachitra imago18 is an advanced desktop image management package that enables scientists to easily store, manage, search, and analyze 5D biological images and their analysis results. imago integrates flexible annotation and metadata management with advanced image analysis tools.

imago uses Bio-Formats to read files in some formats, including Bio-Rad PIC, Image-Pro Workspace, Metamorph TIFF, Leica LCS LEI, Olympus Fluoview FV1000, Nikon NIS-Elements ND2, and Zeiss LSM.

A free 30-day trial version of imago is available here19.

11.9 Iqm

Iqm20 is an image processing application written in Java. It is mainly constructed around the Java JAI library and furthermore it incorporates the functionality of the popular ImageJ image processing software.

Because iqm integrates with ImageJ, it can take advantage of the Bio-Formats ImageJ plugin to read image data.

11.10 Macnification

Macnification21 is a Mac OS X application for organizing, editing, analyzing and annotating microscopic images, designed for ease of use. It is being developed by Orbicule22.

Macnification uses Bio-Formats to read files in some formats, including Gatan DM3, ICS, ImagePro SEQ, ImagePro IPW, Metamorph STK, OME-TIFF and Zeiss LSM.

See also:
Free trial download23

11.11 Micro-Manager

Micro-Manager24 is a software framework for implementing advanced and novel imaging procedures, extending functionality, customization and rapid development of specialized imaging applications.

Micro-Manager offers the functionality for saving the acquired images in TIFF/OME-TIFF format. Based on the mode of saving and the configuration settings, the acquired image can be saved with or without a companion file (*metadata.txt):

17http://icy.bioimageanalysis.org/
18http://mayachitra.com/imago/index.html
19http://mayachitra.com/imago/download-trial.php
20http://code.google.com/p/iqm/
21http://www.orbicule.com/macnification/
22http://www.orbicule.com
23http://www.orbicule.com/macnification/download
24https://www.micro-manager.org/wiki/Micro-Manager
Saving Options within Micro-Manager

<table>
<thead>
<tr>
<th>Saving Options within Micro-Manager</th>
<th>Format</th>
<th>Companion File</th>
<th>Bio-Formats Reading</th>
<th>Reader Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save as separate image files</td>
<td>TIFF</td>
<td>Yes</td>
<td>Full Support</td>
<td>Micromanager-Reader</td>
</tr>
<tr>
<td></td>
<td>OME-TIFF</td>
<td>No</td>
<td>Pixel data plus minimal metadata*</td>
<td>OMETiffReader</td>
</tr>
<tr>
<td>Save as image stack file</td>
<td>OME-TIFF</td>
<td>Yes**</td>
<td>Full Support</td>
<td>Micromanager-Reader</td>
</tr>
</tbody>
</table>

* Not all acquisition metadata is converted to OME-XML.

** A small change in the acquisition side facilitates better handling of the metadata from the Bio-Formats side: Tools → Options... and then select “Create metadata.txt file with Image Stack Files” in the text box.

See also:
- Micro-Manager User’s Guide - Files on Disk

11.12 MIPAV

The MIPAV\(^26\) (Medical Image Processing, Analysis, and Visualization) application—developed at the Center for Information Technology\(^27\) at the National Institutes of Health\(^28\)—enables quantitative analysis and visualization of medical images of numerous modalities such as PET, MRI, CT, or microscopy. You can use Bio-Formats as a plugin for MIPAV to read images in the formats it supports.

11.12.1 Installation

Follow these steps to install the Bio-Formats plugin for MIPAV:

1. Download `bioformats_package.jar` and drop it into your MIPAV folder.
2. Download the plugin source code into your user `mipav/plugins` folder.
3. From the command line, compile the plugin with:
   ```
   cd mipav/plugins
   javac -cp $MIPAV:$MIPAV/bioformats\_package.jar PlugInBioFormatsImporter.java
   ```
4. where $MIPAV is the location of your MIPAV installation.
5. Add `bioformats_package.jar` to MIPAV’s class path:
 - How to do so depends on your platform.
 - E.g., in Mac OS X, edit the `mipav.app/Contents/Info.plist` file.

See the `readme.txt` file for more information.

To upgrade, just overwrite the old `bioformats_package.jar` with the latest one. You may want to download the latest version of MIPAV first, to take advantage of new features and bug-fixes.

11.13 Vaa3D

Vaa3D, developed by the Peng Lab at the HHMI Janelia Farm Research Campus, is a handy, fast, and versatile 3D/4D/5D Image Visualization & Analysis System for Bioimages & Surface Objects.

Vaa3D can use Bio-Formats via the Bio-Formats C++ bindings to read images.

11.14 VisBio

VisBio is a biological visualization tool designed for easy visualization and analysis of multidimensional image data. VisBio uses Bio-Formats to import files as the Bio-Formats library originally grew out of our efforts to continually expand the file format support within VisBio.

11.14.1 Installation

VisBio is bundled with Bio-Formats, so no further installation is necessary.

11.14.2 Upgrading

It should be possible to use a newer version of Bio-Formats by overwriting the old `bio-formats.jar` and optional libraries within the VisBio distribution. For Mac OS X, you’ll have to control click the VisBio program icon, choose “Show Package Contents” and navigate into Contents/Resources/Java to find the JAR files.

29 http://downloads.openmicroscopy.org/latest/bio-formats5.2/artifacts/bioformats_package.jar
30 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/utils/mipav/PlugInBioFormatsImporter.java
31 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/utils/mipav/readme.txt
32 http://downloads.openmicroscopy.org/latest/bio-formats5.2/
33 http://vaa3d.org
34 http://penglab.janelia.org/
35 http://www.hhmi.org/janelia/
37 http://loci.wisc.edu/software/visbio
38 http://downloads.openmicroscopy.org/latest/bio-formats5.2/
11.15 XuvTools

XuvTools\(^{39}\) is automated 3D stitching software for biomedical image data. As of release 1.8.0, XuvTools uses Bio-Formats to read image data.

\(^{39}\)http://www.xuvtools.org
Part III

Developer Documentation
The following sections describe various things that are useful to know when working with Bio-Formats. It is recommended that you obtain the Bio-Formats source by following the directions in the Source code section. Referring to the Javadocs as you read over these pages should help, as the notes will make more sense when you see the API.

For a complete list of supported formats, see the Bio-Formats supported formats table.

For a few working examples of how to use Bio-Formats, see these Github pages.

40 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/
41 https://github.com/openmicroscopy/bioformats/tree/v5.2.2/components/formats-gpl/utils
12.1 Overview for developers

From the rest of the Bio-Formats developer documentation one may piece together a correct and useful understanding of what Bio-Formats does and how it does it. This section gives a high-level tour of these technical details, for those new to working on Bio-Formats itself, making it easier to understand how the information from the other sections fits into the big picture.

12.1.1 Terms and concepts

Bio-Formats can read image data from files for many formats, and can write image data to files for some formats. An image may have many two-dimensional “planes” of pixel intensity values. Each pixel on a plane is identified by its x, y values. Planes within an image may be identified by various dimensions including z (third spatial dimension), c (channel, e.g. wavelength) or t (time). Planes may be divided into tiles, which are rectangular subsections of a plane; this is helpful in handling very large planes. A file (or set of related files) on disk may contain multiple images: each image is identified by a unique series number.

An image is more than a set of planes: it also has metadata. Bio-Formats distinguishes core metadata, such as the x, y, z, c, t dimensions of the image, from format-specific original metadata, e.g. information about the microscope and its settings, which is represented as a dictionary of values indexed by unique keys. Metadata apply to the image data as a whole, or separately to specific series within it.

Bio-Formats is able to translate the above metadata into a further form, OME metadata. The translation may be partial or incomplete, but remains very useful for allowing the metadata of images from different file formats to be used and compared in a common format defined by the OME data model.

12.1.2 Implementation

Bio-Formats is primarily a Java project. It can be used from MATLAB, and there are C++ bindings and an ongoing C++ implementation effort. The source code is available for download and sometimes the user community contributes code back into Bio-Formats by opening a pull request on GitHub. Bio-Formats is built from source with Ant or Maven and some of the Bio-Formats source code is generated from other files during the build process. The resulting JARs corresponding to official Bio-Formats releases are available for download.

Readers and writers for different image file formats are implemented in separate Java classes. Readers for related formats may reflect that relationship in the Java class hierarchy. Simple standalone command-line tools are provided with Bio-Formats, but it is more commonly used as a third-party library by other applications. Various examples show how one may use Bio-Formats in different ways in writing a new application that reads or writes image data. A common pattern is to initialize a reader based on the image data’s primary file, then query that reader for the metadata and planes of interest.

The set of readers is easily modified. The readers.txt file lists the readers to try in determining an image file’s format, and there are many useful classes and methods among the Bio-Formats Java code to assist in writing new readers and writers.

1[https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-api/src/loci/formats/readers.txt]
12.2 Obtaining and building Bio-Formats

12.2.1 Source code

The source code for this Bio-Formats release is available from the download page\(^2\). This release and the latest Bio-Formats source code are also available from the Git repository. This may be accessed using the repository path:

```
git@github.com:openmicroscopy/bioformats.git
```

More information about Git and client downloads are available from the Git project website\(^3\). You can also browse the Bio-Formats source on GitHub\(^4\)

Note: Windows users must set git to use `core.autocrlf=input` to ensure that Bio-Formats uses LF rather than CRLF line endings, otherwise the build will fail (Genshi can’t process code templates with CRLF line endings, leading to broken sources being generated). This can be set globally in the registry when installing **msysgit** or by editing `etc/gitconfig` in the git installation directory. Annoyingly, these settings appear to override per-user and per-repository configuration values, requiring these to be set globally.

Lastly, you can browse the Bio-Formats Javadoc online\(^5\), or generate them yourself using the “docs” Ant target.

12.2.2 Source code structure

The Bio-Formats code is divided into several projects. Core components are located in subfolders of the `components` folder, with some components further classified into `components/forks` or `components/stubs`, depending on the nature of the project. See the **Component overview** for more information, including associated build targets for each component.

Each project has a corresponding Maven POM file, which can be used to work with the project in your favorite IDE, or from the command line, once you have cloned the source.

12.2.3 Building from source

Instructions for several popular options follow. In all cases, make sure that the prerequisites are installed before you begin.

If you are interested in working on the Bio-Formats source code itself, you can load it into your favorite IDE, or develop with your favorite text editor.

Prerequisites

In addition to the Bio-Formats source code, the following programs and packages are also required:

- **Python**\(^9\), version 2.6 or later (note: not version 3)
- **Genshi**\(^10\) 0.5 or later (0.7 recommended)

Note: Genshi may be installed (in order of decreasing preference) with some Linux distributions’ package managers, **pip** (```pip install genshi```, by downloading a compatible .egg for your system from the Genshi download page\(^11\), or from source. If using a .egg, make sure it is added to your PYTHONPATH environment variable.

\(^2\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/
\(^3\)http://git-scm.com/
\(^4\)https://github.com/openmicroscopy/bioformats
\(^5\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/
\(^6\)https://github.com/openmicroscopy/bioformats/tree/v5.2.2/components/
\(^7\)https://github.com/openmicroscopy/bioformats/tree/v5.2.2/components/forks/
\(^8\)https://github.com/openmicroscopy/bioformats/tree/v5.2.2/components/stubs/
\(^9\)http://python.org
\(^10\)http://genshi.edgewall.org
\(^11\)http://genshi.edgewall.org/wiki/Download
NetBeans

NetBeans comes with Maven support built in. To import the Bio-Formats source, perform the following steps:

1. Select File → Open Project from the menu - choose the top-level path to bioformats.git and click Open Project

2. In the ‘Projects’ tab on the left-hand side, expand the ‘Bio-Formats projects’ entry - you should now have a series of folders including ‘Other Sources’, ‘Modules’ and ‘Dependencies’.

3. Expand the ‘Modules’ folder to give a list of components and then double-click the desired project(s) to work with them.

Alternately, you can clone the source directly from NetBeans into a project by selecting Team → Git → Clone Other... from the menu.

Eclipse

Eclipse uses the “Maven Integration for Eclipse” (m2e) plugin to work with Maven projects. It is more flexible than Eclipse’s built-in project management because m2e transparently converts between project dependencies and JAR dependencies (stored in the Maven repository in ~/.m2/repository) on the build path, depending on which projects are currently open.

We recommend using Eclipse 4.3 (Kepler) or later, specifically - “Eclipse IDE for Java developers”. It comes with m2e installed (http://eclipse.org/downloads/compare.php?release=kepler).

You can import the Bio-Formats source by choosing File → Import → Existing Maven Projects from the menu and browsing to the top-level folder of your Bio-Formats working copy. Alternatively, run the Eclipse Maven target with mvn eclipse:eclipse to create the Eclipse project files, then use File → Import → Existing Projects into Workspace.

To remove post-import errors, either close the ome-xml project or run:

ant jars & mvn generate-sources

See also:

[ome-devel] Importing source into eclipse

Command line

If you prefer developing code with a text editor such as vim or emacs, you can use the Ant or Maven command line tools to compile Bio-Formats. The Bio-Formats source tree provides parallel build systems for both Ant and Maven, so you can use either one to build the code.

For a list of Ant targets, run:

```
ant -p
```

In general, `ant jars` or `ant tools` is the correct command.

When using Maven, Bio-Formats is configured to run the “install” target by default, so all JARs will be copied into your local Maven repository in `~/.m2/repository`. Simply run:

```
mvn
```

With either Ant or Maven, you can use similar commands in any subproject folder to build just that component.

12.2.4 Using Gradle, Maven or Ivy

All released .jar artifacts may be obtained through the OME Artifactory server. The “Client Settings” section of the Artifactory main page provides example code snippets for inclusion into your Gradle, Maven or Ivy project, which will enable the use of this repository.

Example snippets for using the Bio-Formats ${release.major}.${release.minor}-SNAPSHOT formats-gpl artifact are available for Gradle and for Maven. These may be copied into your project to enable the use of the Bio-Formats library components, and may be adjusted to use different components or different release or development versions of Bio-Formats.

12.3 Component overview

The Bio-Formats code repository is divided up into separate components.

The Ant targets to build each component from the repository root are noted in the component descriptions below. Unless otherwise noted, each component can also be built with Maven by running `mvn` in the component’s subdirectory. The Maven module name for each component (as it is shown in most IDEs) is also noted in parenthesis.

12.3.1 Core components

The most commonly used and actively modified components.

- `formats-common`
- `formats-api`
- `formats-bsd`
- `formats-gpl`
- `specification`
- `ome-xml`

12.3.2 Internal testing components

These components are used heavily during continuous integration testing, but are less relevant for active development work.

- `autogen`
- `test-suite`

12.3.3 Forks of existing projects

• mdbtools
• jai
• turbojpeg
• poi

12.3.4 All components

autogen (Bio-Formats code generator)\(^ {14}\):

Ant: jar-autogen

Contains everything needed to automatically generate documentation for supported file formats. format-pages.txt\(^ {15}\) should be updated for each new file format reader or writer, but otherwise manual changes should be unnecessary. The following Ant targets are used to regenerate the documentation for all formats:

 gen-format-pages
gen-meta-support
gen-original-meta-support

bio-formats-plugins (Bio-Formats Plugins for ImageJ)\(^ {16}\):

Ant: jar-bio-formats-plugins

Everything pertaining to the Bio-Formats plugins for ImageJ lives in this component. Note that when built, this component produces bio-formats_plugins.jar (instead of bio-formats-plugins.jar) to be in keeping with ImageJ plugin naming conventions. bio-formats-tools (Bio-Formats command line tools)\(^ {17}\):

Ant: jar-bio-formats-tools

The classes that implement the showinf, bfconvert, and mkfake command line tools are contained in this component. Note that this is built with the jar-bio-formats-tools Ant target, and not the tools target (which is the Ant equivalent of bundles). bundles (bioformats_package bundle, LOCI Tools bundle, OME Tools bundle)\(^ {18}\):

Ant: tools

This is only needed by the Maven build system, and is used to aggregate all of the individual .jar files into bioformats_package.jar. There should not be any code here, just build system files. forks/jai (JAI Image I/O Tools)\(^ {19}\):

Ant: jar-jai

This is a fork of JAI ImageIO\(^ {20}\) which adds support for decoding YCbCr JPEG-2000 data. This is primarily needed for reading images from histology/pathology formats in formats-gpl. There are no dependencies on other components. forks/mdbtools (MDB Tools (Java port))\(^ {21}\):

Ant: jar-mdbtools

This is a fork of the mdbtools-java\(^ {22}\) project. There are numerous bug fixes, as well as changes to reduce the memory required for large files. There are no dependencies on other components. forks/poi (Apache Jakarta POI)\(^ {23}\):

Ant: jar-ome-poi

\(^ {14}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/autogen
\(^ {15}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/autogen/src/format-pages.txt
\(^ {16}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-plugins
\(^ {17}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-tools
\(^ {18}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bundles
\(^ {19}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/forks/jai
\(^ {20}\)http://java.net/projects/jai-imageio-core
\(^ {21}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/forks/mdbtools
\(^ {22}\)http://mdbtools.cvs.sourceforge.net/viewvc/mdbtools/mdbtools-java
\(^ {23}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/forks/poi
This is a fork of Apache POI\(^{24}\), which allows reading of Microsoft OLE document files. We have made substantial changes to support files larger than 2GB and reduce the amount of memory required to open a file. I/O is also handled by classes from `formats-common`, which allows OLE files to be read from memory. forks/turbojpeg (libjpeg-turbo Java bindings)\(^{25}\):

Ant: jar-turbojpeg

This is a fork of libjpeg-turbo\(^{26}\). There are not any real code changes, but having this as a separate component allows us to package the libjpeg-turbo Java API together with all of the required binaries into a single .jar file using native-lib-loader\(^{27}\). There are no dependencies on other components. formats-api (Bio-Formats API)\(^{28}\):

Ant: jar-formats-api

This defines all of the high level interfaces and abstract classes for reading and writing files. There are no file format readers or writers actually implemented in this component, but it does contain the majority of the API that defines Bio-Formats. formats-bsd and formats-gpl implement this API to provide file format readers and writers. formats-common and ome-xml are both required as part of the interface definitions. formats-common (Common)\(^{29}\):

Ant: jar-formats-common

Provides I/O classes that unify reading from files on disk, streams or files in memory, compressed streams, and non-file URLs. The primary entry points are Location\(^{30}\), RandomAccessInputStream\(^{31}\) (for reading), and RandomAccessOutputStream\(^{32}\) (for writing).

In addition to I/O, there are several classes to assist in working with XML (XMLTools\(^{33}\)), date/timestamps (DateTools\(^{34}\)), logging configuration (DebugTools\(^{35}\)), and byte arithmetic (DataTools\(^{36}\)).

This does not depend on any other components, so can be used anywhere independent of the rest of the Bio-Formats API.

Ant: jar-formats-bsd, jar-formats-bsd-tests

This contains readers and writers for formats which have a publicly available specification, e.g. TIFF. Everything in the component is BSD-licensed. formats-gpl (Bio-Formats library)\(^{38}\):

Ant: jar-formats-gpl

The majority of the file format readers and some file format writers are contained in this component. Everything in the component is GPL-licensed (in contrast with formats-bsd). Most file formats represented in this component do not have a publicly available specification. metakit (Metakit)\(^{39}\):

Ant: jar-metakit

Java implementation of the Metakit database specification\(^{40}\). This uses classes from formats-common and is used by formats-gpl, but is otherwise independent of the main Bio-Formats API. ome-xml (OME-XML Java library)\(^{41}\):

Ant: jar-ome-xml

This component contains classes that represent the OME-XML schema. Some classes are committed to the Git repository, but the majority are generated at build time by using xsd-fu to parse the OME-XML schema files. Classes from this component are used by Bio-Formats to read and write OME-XML, but they can also be used independently. specification (Specification)\(^{42}\):

Ant: jar-specification

\(^{24}\)http://poi.apache.org

\(^{25}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/forks/turbojpeg

\(^{26}\)http://libjpeg-turbo.virtualgl.org/

\(^{27}\)http://github.com/scijava/native-lib-loader

\(^{28}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-api

\(^{29}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-common

\(^{30}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/Location.html

\(^{33}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/xml/XMLTools.html

\(^{34}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/DateTools.html

\(^{35}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/DebugTools.html

\(^{36}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/DataTools.html

\(^{37}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd

\(^{38}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl

\(^{39}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/metakit

\(^{40}\)http://equi4.com/metakit/

\(^{41}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/ome-xml

\(^{42}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/specification
All released and in-progress OME-XML schema files are contained in this component. The specification component is also the location of all XSLT stylesheets for converting between OME-XML schema versions, as well as example OME-XML files in each of the released schema versions. stubs (Luratech LuraWave stubs, MIPAV stubs):

Ant: jar-lwf-stubs, jar-mipav-stubs

This component provides empty classes that mirror third-party dependencies which are required at compile time but cannot be included in the build system (usually due to licensing issues). The build succeeds since required class names are present with the correct method signatures; the end user is then expected to replace the stub .jar files at runtime. test-suite (Bio-Formats testing framework):

Ant: jar-tests

All tests that operate on files from our data repository (i.e. integration tests) are included in this component. These tests are primarily run by the continuous integration jobs, and verify that there are no regressions in reading images or metadata. xsd-fu (XSD-FU):

Ant: no target

xsd-fu is a Python framework for turning the schema files in the specification component into the classes that represent the OME-XML schema in the ome-xml component.

12.4 Reading files

12.4.1 Basic file reading

Bio-Formats provides several methods for retrieving data from files in an arbitrary (supported) format. These methods fall into three categories: raw pixels, core metadata, and format-specific metadata. All methods described here are present and documented in loci.formats.IFormatReader. In general, it is recommended that you read files using an instance of loci.formats.ImageReader. While it is possible to work with readers for a specific format, ImageReader contains additional logic to automatically detect the format of a file and delegate subsequent calls to the appropriate reader.

Prior to retrieving pixels or metadata, it is necessary to call `setId(java.lang.String)` on the reader instance, passing in the name of the file to read. Some formats allow multiple series (5D image stacks) per file; in this case you may wish to call `setSeries(int)` to change which series is being read.

Raw pixels are always retrieved one plane at a time. Planes are returned as raw byte arrays, using one of the openBytes methods.

Core metadata is the general term for anything that might be needed to work with the planes in a file. A list of core metadata fields is given in the table below together with the appropriate accessor method:

<table>
<thead>
<tr>
<th>Core metadata field</th>
<th>API method</th>
</tr>
</thead>
<tbody>
<tr>
<td>image width</td>
<td>getSizeX()</td>
</tr>
<tr>
<td>image height</td>
<td>getSizeY()</td>
</tr>
<tr>
<td>number of series per file</td>
<td>getSeriesCount()</td>
</tr>
<tr>
<td>total number of images per series</td>
<td>getImageCount()</td>
</tr>
<tr>
<td>number of slices in the current series</td>
<td>getSizeZ()</td>
</tr>
<tr>
<td>number of timepoints in the current series</td>
<td>getSizeT()</td>
</tr>
<tr>
<td>number of actual channels in the current series</td>
<td>getSizeC()</td>
</tr>
<tr>
<td>number of channels per image</td>
<td>getRGBChannelCount()</td>
</tr>
<tr>
<td>ordering of the images within the current series</td>
<td>getDimensionOrder()</td>
</tr>
<tr>
<td>whether each image is RGB</td>
<td>isRGB()</td>
</tr>
<tr>
<td>whether the pixel bytes are in little-endian order</td>
<td>isLittleEndian()</td>
</tr>
<tr>
<td>whether the channels in an image are interleaved</td>
<td>isInterleaved()</td>
</tr>
<tr>
<td>the type of pixel data in this file</td>
<td>getPixelType()</td>
</tr>
</tbody>
</table>

43. https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/stubs
44. https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/test-suite
45. https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/xsd-fu
46. https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/xsd-fu
All file formats are guaranteed to accurately report core metadata.

Bio-Formats also converts and stores additional information which can be stored and retrieved from the OME-XML Metadata. These fields can be accessed in a similar way to the core metadata above. An example of such values would be the physical size of dimensions X, Y and Z. The accessor methods for these properties return a `Length` object which contains both the value and unit of the dimension. These lengths can also be converted to other units using `value(ome.units.Unit)` Example of reading and converting these physical size values can be found in `ReadPhysicalSize.java`.

Format-specific metadata refers to any other data specified in the file - this includes acquisition and hardware parameters, among other things. This data is stored internally in a `java.util.Hashtable`, and can be accessed in one of two ways: individual values can be retrieved by calling `getMetadataValue(java.lang.String)` , which gets the value of the specified key. Note that the keys in thisHashtable are different for each format, hence the name “format-specific metadata”.

See Bio-Formats metadata processing for more information on the metadata capabilities that Bio-Formats provides.

See also:

`IFormatReader` Source code of the `loci.formats.IFormatReader` interface

12.4.2 File reading extras

The previous section described how to read pixels as they are stored in the file. However, the native format is not necessarily convenient, so Bio-Formats provides a few extras to make file reading more flexible.

- The `loci.formats.ReaderWrapper` API that implements `loci.formats.IFormatReader` allows to define “wrapper” readers that take a reader in the constructor, and manipulate the results somehow, for convenience. Using them is similar to the java.io.InputStream/OutputStream model: just layer whichever functionality you need by nesting the wrappers.

The table below summarizes a few wrapper readers of interest:

<table>
<thead>
<tr>
<th>Wrapper reader</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>loci.formats.BUFFEREDIMAGEREADER</code></td>
<td>Provides an API for changing the dimension order of a file</td>
</tr>
<tr>
<td><code>loci.formats.FILESTICHER</code></td>
<td>Makes sure that all planes are grayscale - RGB images are split into 3 separate grayscale images</td>
</tr>
<tr>
<td><code>loci.formats.CHANNELSEPARATOR</code></td>
<td>Merges grayscale images to RGB if the number of channels is greater than 1</td>
</tr>
<tr>
<td><code>loci.formats.CHANNELMERGER</code></td>
<td>Converts indexed color images to RGB images</td>
</tr>
<tr>
<td><code>loci.formats.CHANNELFILLER</code></td>
<td>Provides an API for retrieving the minimum and maximum pixel values for each channel</td>
</tr>
<tr>
<td><code>loci.formats.DIMENSIONSWAPPER</code></td>
<td>Provides an API for changing the dimension order of a file</td>
</tr>
<tr>
<td><code>loci.formats.MEMOIZER</code></td>
<td>Caches the state of the reader into a memoization file</td>
</tr>
</tbody>
</table>

- `loci.formats.IMAGETOOLS` and `loci.formats.GUI.AWTIMAGETOOLS` provide a number of methods for manipulating BufferedImages and primitive type arrays. In particular, there are methods to split and merge channels in a BufferedImage/array, as well as converting to a specific data type (e.g. convert short data to byte data).

53http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#getSeriesCount()
54http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#getImageCount()
55http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#getSizeZ()
56http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#getSizeT()
57http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#getSizeC()
58http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#getRGBChannelCount()
59http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#getDimensionOrder()
60http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#isRGB()
61http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#isLittleEndian()
62http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#isInterleaved()
63http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#isInterleaved()
64http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/ome/units/quantity/Length.html
65http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/ome/units/quantity/Length.html#value(ome.units.Unit)
68http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/ChannelSeparator.html
69http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/ChannelMerger.html
70http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/ChannelFiller.html
71http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/MinMaxCalculator.html
72http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/ChannelMerger.html
73http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/ChannelFiller.html
74http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/MinMaxCalculator.html
75http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/DimensionSwapper.html
76http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/Memoizer.html
12.4.3 Troubleshooting

- Importing multi-file formats (Leica LEI, PerkinElmer, FV1000 OIF, ICS, and Prairie TIFF, to name a few) can fail if any of the files are renamed. There are “best guess” heuristics in these readers, but they are not guaranteed to work in general. So please do not rename files in these formats.

- If you are working on a Macintosh, make sure that the data and resource forks of your image files are stored together. Bio-Formats does not handle separated forks (the native QuickTime reader tries, but usually fails).

- Bio-Formats file readers are not thread-safe. If files are read within a parallelized environment, a new reader must be fully initialized in each parallel session. See Improving reading performance about ways to improve file reading performance in multi-threaded mode.

12.5 Writing files

The `loci.formats.IFormatWriter` API is very similar to the reader API, in that files are written one plane at time (rather than all at once).

The file formats which can be written using Bio-Formats are marked in the supported formats table with a green tick in the ‘export’ column. These include, but are not limited to:

- TIFF (uncompressed, LZW, JPEG, or JPEG-2000)
- OME-TIFF (uncompressed, LZW, JPEG, or JPEG-2000)
- JPEG
- PNG
- AVI (uncompressed)
- QuickTime (uncompressed is supported natively; additional codecs use QTJava)
- Encapsulated PostScript (EPS)
- OME-XML (not recommended)

All writers allow the output file to be changed before the last plane has been written. This allows you to write to any number of output files using the same writer and output settings (compression, frames per second, etc.), and is especially useful for formats that do not support multiple images per file.

See also:

- `IFormatWriter` Source code of the `loci.formats.IFormatWriter` interface
- `loci.formats.tools.ImageConverter` Source code of the `loci.formats.tools.ImageConverter` class
- Further details on exporting raw pixel data to OME-TIFF files Examples of OME-TIFF writing

13.1 Using Bio-Formats as a Java library

13.1.1 Bio-Formats as a Maven dependency

If you wish to make use of Bio-Formats within your own software it can be included as a dependency in any Maven project. The dependency can be added to the project pom file and should include the desired Bio-Formats version. Using `bioformats_package` as the artifactId will include the complete Bio-Formats package, or individual components can be chosen as desired.

```xml
<dependency>
    <groupId>ome</groupId>
    <artifactId>bioformats_package</artifactId>
    <version>5.2.0</version>
</dependency>
```

In order to include this Bio-Formats dependency a custom repository must also be added to the project pom or `$USER_HOME/.m2/settings.xml`. The repositories element is inherited so for a group of projects the repositories element can be defined at the top of your inheritance chain.

```xml
<repositories>
    <repository>
        <id>ome</id>
        <name>Bio-Formats Repo</name>
        <url>http://artifacts.openmicroscopy.org/artifactory/maven</url>
    </repository>
</repositories>
```

13.1.2 Bio-Formats as a Java library

Alternatively Bio-Formats can be used by including its component jar files. You can download `formats-gpl.jar` to use it as a library. Just add `formats-gpl.jar` to your CLASSPATH or build path. You will also need `common.jar` for common I/O functions, `ome-xml.jar` for metadata standardization, and `SLF4J` for Logging.

See the list in the Bio-Formats toplevel build file for a complete and up-to-date list of all optional libraries, which can all be found in our Git repository.

Dependencies

The complete list of current dependencies is as follows:

2. http://slf4j.org/
3. https://github.com/openmicroscopy/bioformats/blob/v5.2.2/build.xml
4. https://github.com/openmicroscopy/bioformats/tree/v5.2.2/jar
<table>
<thead>
<tr>
<th>Package</th>
<th>Maven name</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logback Classic v1.1.1</td>
<td>ch.qos.logback:logback-classic:1.1.1</td>
<td>Eclipse Public License</td>
</tr>
<tr>
<td>Logback Core v1.1.1</td>
<td>ch.qos.logback:logback-core:1.1.1</td>
<td>Eclipse Public License</td>
</tr>
<tr>
<td>JHDF5 v14.12.0</td>
<td>com.systems.cisd:jhdf5:14.12.0</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>XMP Library for Java v5.1.2</td>
<td>com.adobe.xmp:xmpcore:5.1.2</td>
<td>BSD License v12</td>
</tr>
<tr>
<td>JCommander v1.27</td>
<td>com.beust:jcommander:1.27</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>metadata-extractor v2.6.2</td>
<td>com.drewnoakes:metadata-extractor:2.6.2</td>
<td>BSD License v18</td>
</tr>
<tr>
<td>Kryo v2.24.0</td>
<td>com.esotericsoftware.kryo:kryo:2.24.0</td>
<td>BSD License v20</td>
</tr>
<tr>
<td>MinLog v1.29</td>
<td>com.google.guava:guava:17.0</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>Guava v17.0</td>
<td>com.jgoodies:jgoodies-common:1.7.0</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>JGoodies Common v1.7.0</td>
<td>com.jgoodies:jgoodies-forms:1.7.2</td>
<td>MIT-Style License v2.0</td>
</tr>
<tr>
<td>JGoodies Forms v1.7.2</td>
<td>commons.collections:commons-collections:3.2.1</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>Commons Collections v3.2.1</td>
<td>commons-lang:commons-lang:2.4</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>Commons Lang v2.4.2</td>
<td>commons-logging:commons-logging:1.1.1</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>Commons Logging v1.1.1</td>
<td>edu.ucar:netcdf:4.3.19</td>
<td>MIT-Style License v2.0</td>
</tr>
<tr>
<td>NetCDF-Java Library v4.3.19</td>
<td>joda-time:joda-time:2.2</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>Joda time v2.3.5</td>
<td>junit:junit:4.10</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>JUnit v4.10</td>
<td>log4j:log4j:1.2.17</td>
<td>CommonPublicLicense v1.0</td>
</tr>
<tr>
<td>Apache Log4j v1.2.173</td>
<td>net.imagej:ij:1.48s</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>ImageJ v1.4.8.41</td>
<td>nl.javadude.assumeng:assumeng:1.2.4</td>
<td>Public domain</td>
</tr>
<tr>
<td>Assume NG v1.2.4.2</td>
<td>org.apache.velocity:velocity:1.6.4</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>Apache Velocity v1.6.4.44</td>
<td>org.beanshell:bsh:2.0b4</td>
<td>Sun Public License / GNU GPL</td>
</tr>
<tr>
<td>BeanShell v2.0b4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 http://logback.qos.ch
6 http://opensource.org/licenses/EPL-1.0
7 http://logback.qos.ch
8 http://opensource.org/licenses/EPL-1.0
9 https://wiki-bsse.ethz.ch/display/JHDF5
10 http://www.apache.org/licenses/LICENSE-2.0.txt
11 http://www.adobe.com/devnet/xmp.html
12 http://opensource.org/licenses/BSD-2-Clause
13 http://beust.com/jcommander
14 http://www.apache.org/licenses/LICENSE-2.0.txt
15 https://github.com/drewnoakes/metadata-extractor
16 http://www.apache.org/licenses/LICENSE-2.0.txt
17 http://github.com/EsotericSoftware/kryo
18 http://opensource.org/licenses/BSD-2-Clause
19 https://github.com/EsotericSoftware/minlog
20 http://github.com/google/guava
21 http://www.apache.org/licenses/LICENSE-2.0.txt
22 http://www.jgoodies.com/downloads/libraries/
23 http://github.com/EsotericSoftware/lns
24 https://github.com/log4j/log4j/2-0-alpha1
26 http://www.apache.org/licenses/LICENSE-2.0.txt
27 http://commons.apache.org/collections/
28 http://www.apache.org/licenses/LICENSE-2.0.txt
29 http://commons.apache.org/lang/
30 http://www.apache.org/licenses/LICENSE-2.0.txt
31 http://commons.apache.org/logging/
32 http://www.apache.org/licenses/LICENSE-2.0.txt
33 http://www.unidata.ucar.edu/software/netcdf-java/documentation.htm
34 https://github.com/Unidata/thredds/blob/v4.3.19/cdm/license.txt
35 http://github.com/JodaOrg/joda-time
36 http://www.apache.org/licenses/LICENSE-2.0.txt
37 http://www.junit.org
38 http://www.opensource.org/licenses/cpl1.0.txt
39 http://logging.apache.org/log4j/1.2
40 http://www.apache.org/licenses/LICENSE-2.0.txt
41 http://imagej.net
42 http://github.com/hierynomus/assumeng
43 http://www.apache.org/licenses/LICENSE-2.0.txt
44 http://velocity.apache.org
45 http://www.apache.org/licenses/LICENSE-2.0.txt
46 http://www.beanshell.org
47 http://www.beanshell.org/license.html

13.1. Using Bio-Formats as a Java library
13.1.1 Examples of usage

File reading and performance:

MultiFileExample - Simple example of how to open multiple files simultaneously.

ParallelRead - Reads all files in given directory in parallel, using a separate thread for each.

ReadWriteInMemory - Tests the Bio-Formats I/O logic to and from byte arrays in memory.

File writing:

MinimumWriter - A command line utility demonstrating the minimum amount of metadata needed to write a file.

TiledExport - Shows how to convert a file one tile at a time, instead of one plane at a time (needed for very large images).

License

- **BSD 3-Clause**
- **Apache License v2.0**
- **BSD License**
- **MIT License**
- **MIT License**
- **Apache License v2.0**

Table 13.1 – continued from previous page

<table>
<thead>
<tr>
<th>Package</th>
<th>Maven name</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamcrest Core v1.1</td>
<td>org.hamcrest:hamcrest-core:1.1</td>
<td>BSD License</td>
</tr>
<tr>
<td>Objenesis v2.1</td>
<td>org.objenesis:objenesis:2.1</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>Perf4J v0.9.13</td>
<td>org.perf4j:perf4j:0.9.13</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>Native Library Loader v2.1.4</td>
<td>org.scijava:native-lib-loader:2.1.4</td>
<td>BSD License</td>
</tr>
<tr>
<td>SLF4J API v1.7.4</td>
<td>org.slf4j:slf4j-api:1.7.6</td>
<td>MIT License</td>
</tr>
<tr>
<td>SLF4J LOG4J-12 Binding v1.7.6</td>
<td>org.slf4j:slf4j-log4j12:1.7.6</td>
<td>MIT License v2.0</td>
</tr>
<tr>
<td>TestNG v6.8</td>
<td>org.testng:testng:6.8</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>SnakeYAML v1.6</td>
<td>org.yaml:snakeyaml:1.6</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>Jakarta ORO v2.0.84</td>
<td>org.perf4j:perf4j:0.9.13</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>Woolz v1.4.06</td>
<td>org.slf4j:slf4j-api:1.7.6</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>Xalan Java Serializer v2.7.2</td>
<td>oracle:xalan:serializer:2.7.2</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>Xalan Java v2.7.2</td>
<td>oracle:xalan:xalan:2.7.2</td>
<td>Apache License v2.0</td>
</tr>
<tr>
<td>Xerces2 Java Parser v2.8.1.72</td>
<td>xerces:xercesImpl:2.8.1</td>
<td>Apache License v2.0</td>
</tr>
</tbody>
</table>

48 http://hamcrest.org/JavaHamcrest
49 http://opensource.org/licenses/BSD-3-Clause
50 http://objenesis.org
51 http://www.apache.org/licenses/LICENSE-2.0.txt
52 http://www.perf4j.org
53 http://www.apache.org/licenses/LICENSE-2.0.txt
54 http://github.com/scijava/native-lib-loader
55 http://www.apache.org/licenses/LICENSE-2.0.txt
56 http://www.slf4j.org
57 http://www.apache.org/licenses/MIT
58 http://www.slf4j.org
59 http://www.apache.org/licenses/MIT
60 http://testng.org
61 http://www.apache.org/licenses/LICENSE-2.0.txt
62 https://bitbucket.org/asomov/snakeyaml
63 http://www.apache.org/licenses/LICENSE-2.0.txt
64 http://jakarta.apache.org/oro
65 http://www.apache.org/licenses/LICENSE-2.0.txt
66 http://www.emouseatlas.org/emap/analysis_tools_resources/software/woolz.html
67 http://www.apache.org/licenses/GPL-2.0
68 http://www.apache.org/licenses/GPL-2.0
69 http://www.apache.org/licenses/LICENSE-2.0.txt
70 http://www.apache.org/licenses/LICENSE-2.0.txt
71 http://www.apache.org/licenses/LICENSE-2.0.txt
72 http://xerces.apache.org/xerces2-j
73 http://www.apache.org/licenses/LICENSE-2.0.txt
74 http://www.apache.org/licenses/LICENSE-2.0.txt
75 http://www.apache.org/licenses/LICENSE-2.0.txt
76 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/MultiFileExample.java
77 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/ParallelRead.java
78 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/ReadWriteInMemory.java
79 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/MinimumWriter.java
80 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/TiledExportExample.java
File compression:

makeLZW\(^{81}\) - Converts the given image file to an LZW-compressed TIFF.

Metadata extract/print:

GetPhysicalMetadata\(^{82}\) - Uses Bio-Formats to extract some basic standardized (format-independent) metadata.
ImageInfo\(^{83}\) - A more involved command line utility for thoroughly reading an input file, printing some information about it, and displaying the pixels on screen using the Bio-Formats viewer.
PrintTimestamps\(^{84}\) - A command line example demonstrating how to extract timestamps from a file.
PrintLensNA\(^{85}\) - Uses Bio-Formats to extract lens numerical aperture in a format-independent manner from a dataset.
PrintROIs\(^{86}\) - A simple example of how to retrieve ROI data parsed from a file.
SubResolutionExample\(^{87}\) - Demonstration of the sub-resolution API.

Metadata add/edit:

EditImageName\(^{88}\) - Edits the given file’s image name (but does not save back to disk).
EditTiffComment\(^{89}\) - Allows raw user TIFF comment editing for the given TIFF files.
writeMapAnnotations\(^{90}\) - Example method to write MapAnnotations to the ome-xml.
CommentSurgery\(^{91}\) - Edits a TIFF ImageDescription comment, particularly the OME-XML comment found in OME-TIFF files.

Image converters:

ImageConverter\(^{92}\) - A simple command line tool for converting between formats.
ConvertToOmeTiff\(^{93}\) - Converts the given files to OME-TIFF format.
WritePreCompressedPlanes\(^{94}\) - Writes the pixels from a set of JPEG files to a single TIFF. The pixel data is used as-is, so no decompression or re-compression is performed.

ImageJ plugins:

Simple_Read\(^{95}\) - A simple ImageJ plugin demonstrating how to use Bio-Formats to read files into ImageJ (see ImageJ overview).
Read_Image\(^{96}\) - An ImageJ plugin that uses Bio-Formats to build up an image stack, reading image planes one by one (see ImageJ overview).
Mass_Importer\(^{97}\) - A simple plugin for ImageJ that demonstrates how to open all image files in a directory using Bio-Formats, grouping files with similar names to avoiding opening the same dataset more than once (see ImageJ overview).

\(^{81}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/MakeLZW.java

\(^{82}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/GetPhysicalMetadata.java

\(^{83}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-tools/src/loci/formats/tools/ImageInfo.java

\(^{84}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/PrintTimestamps.java

\(^{85}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/PrintLensNA.java

\(^{86}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/PrintROIs.java

\(^{87}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/SubResolutionExample.java

\(^{88}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/EditImageName.java

\(^{89}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/EditTiffComment.java

\(^{90}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/writeMapAnnotationsExample.java

\(^{91}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/CommentSurgery.java

\(^{92}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/ImageConverter.java

\(^{93}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/ConvertToOmeTiff.java

\(^{94}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/WritePrecompressedPlanes.java

\(^{95}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-plugins/utils/Simple_Read.java

\(^{96}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-plugins/utils/Read_Image.java

\(^{97}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-plugins/utils/Mass_Importer.java
Image processing utilities:

SewTiffs98 - Stitches the first plane from a collection of TIFFs into a single file.
SumPlanes99 - Sums together the image planes from the given file, and saves the result to a 16-bit TIFF.

13.1.4 A Note on Java Web Start (bioformats_package.jar vs. formats-gpl.jar)

To use Bio-Formats with your Java Web Start application, we recommend using formats-gpl.jar rather than bioformats_package.jar—the latter is merely a bundle of formats-gpl.jar plus all its optional dependencies.

The bioformats_package.jar bundle is intended as a convenience (e.g. to simplify installation as an ImageJ plugin), but is by no means the only solution for developers. We recommend using formats-gpl.jar as a separate entity depending on your needs as a developer.

The bundle is quite large because we have added support for several formats that need large helper libraries (e.g. Imaris' HDF-based format). However, these additional libraries are optional; Bio-Formats has been coded using reflection so that it can both compile and run without them.

When deploying a JNLP-based application, using bioformats_package.jar directly is not the best approach, since every time Bio-Formats is updated, the server would need to feed another 15+ MB JAR file to the client. Rather, Web Start is a case where you should keep the JARs separate, since JNLP was designed to make management of JAR dependencies trivial for the end user. By keeping formats-gpl.jar and the optional dependencies separate, only a <1 MB JAR needs to be updated when formats-gpl.jar changes.

As a developer, you have the option of packaging formats-gpl.jar with as many or as few optional libraries as you wish, to cut down on file size as needed. You are free to make whatever kind of “stripped down” version you require. You could even build a custom formats-gpl.jar that excludes certain classes, if you like.

For an explicit enumeration of all the optional libraries included in bioformats_package.jar, see the package.libraries variable of the ant/toplevel.properties file of the distribution. You can also read our notes about each in the source distribution’s Ant build.xml script.

13.2 Units of measurement

Since Bio-Formats 5.1 and the adoption of the 2015-01 OME Data Model, the data model and the corresponding Bio-Formats model and metadata APIs have added support for units of measurement. Previously, the units for various properties such as the physical size of an image, stage position, confocal pinhole size, light wavelengths etc. were fixed in the model. This was however somewhat inflexible, and not appropriate for imaging modalities at widely different scales. The solution to this was to add a unit of measurement to each of these properties. The image size, for example, was previously specified to be stored in micrometers but may now be specified in any SI length unit of choice, or one of the supported non-SI length units. This permits the preservation of the unit used by a proprietary file format or used at acquisition time, for example nanometers, millimeters, meters, or inches or thousandths of an inch could be used instead.

At the OME-XML level, the properties continue to use the old attribute names. They are supplemented by an additional attribute with a Unit suffix, for example the PhysicalSizeX attribute and its companion PhysicalSizeXUnit attribute.

At the API level, two classes are used:

Unit<T> represents a unit system for a given dimension such as length, pressure or time.

Quantity represents a value and unit in a given unit system; this is subclassed for each of the supported dimensions such as Length, Pressure etc. For example the Length class could represent the value and unit of 5.3 μm and the Pressure class 956 mbar.

All of the model and metadata APIs pass Quantity objects in place of raw numerical values. Updating your code will require replacing the use of raw values with quantities. Where your code needs to deal with the quantity in a specific unit, for example μm, you will need to perform an explicit unit conversion to transform the value to the required unit.

The three situations you will need to deal with are:

98https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/SewTiffs.java
99https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/utils/SumPlanes.java
100https://github.com/openmicroscopy/bioformats/blob/v5.2.2/ant/toplevel.properties
101https://github.com/openmicroscopy/bioformats/blob/v5.2.2/build.xml#L240
• getting a quantity from a `get` method in the API
• converting a quantity to a desired unit
• setting a quantity with a `set` method in the API (possibly also requiring the creation of a quantity)

Examples of how to use units and quantities for these purposes are shown in the sections `Reading files` ("ReadPhysicalSize example which uses `getPixelsPhysicalSize` and also demonstrates unit conversion") and `Further details on exporting raw pixel data to OME-TIFF files` ("setPixelsPhysicalSize").

13.3 Exporting files using Bio-Formats

This guide pertains to version 4.2 and later.

13.3.1 Basic conversion

The first thing we need to do is set up a reader:

```java
// create a reader that will automatically handle any supported format
IFormatReader reader = new ImageReader();
// tell the reader where to store the metadata from the dataset
MetadataStore metadata;
try {
    ServiceFactory factory = new ServiceFactory();
    OMEXMLService service = factory.getInstance(OMEXMLService.class);
    metadata = service.createOMEXMLMetadata();
} catch (DependencyException exc) {
    throw new FormatException("Could not create OME-XML store.", exc);
} catch (ServiceException exc) {
    throw new FormatException("Could not create OME-XML store.", exc);
}
reader.setMetadataStore(metadata);
// initialize the dataset
reader.setId("/path/to/file");
```

Now, we set up our writer:

```java
// create a writer that will automatically handle any supported output format
IFormatWriter writer = new ImageWriter();
// give the writer a MetadataRetrieve object, which encapsulates all of the
// dimension information for the dataset (among many other things)
OMEXMLService service = factory.getInstance(OMEXMLService.class);
writer.setMetadataRetrieve(service.asRetrieve(reader.getMetadataStore()));
// initialize the writer
writer.setId("/path/to/output/file");
```

Note that the extension of the file name passed to `writer.setId(...)` determines the file format of the exported file.

Now that everything is set up, we can start writing planes:

```java
for (int series=0; series<reader.getSeriesCount(); series++) {
    reader.setSeries(series);
    writer.setSeries(series);
    for (int image=0; image<reader.getImageCount(); image++) {
        writer.saveBytes(image, reader.openBytes(image));
    }
}
```
Finally, make sure to close both the reader and the writer. Failure to do so can cause:

- file handle leaks
- memory leaks
- truncated output files

Fortunately, closing the files is very easy:

```java
reader.close();
writer.close();
```

13.3.2 Converting to multiple files

The recommended method of converting to multiple files is to use a single `IFormatWriter`, like so:

```java
// you should have set up a reader as in the first example
ImageWriter writer = new ImageWriter();
OMEXMLService service = factory.getInstance(OMEXMLService.class);
writer.setMetadataRetrieve(service.asRetrieve(reader.getMetadataStore()));
// replace this with your own filename definitions
// in this example, we're going to write half of the planes to one file
// and half of the planes to another file
String[] outputFiles = 
    new String[] {"/path/to/file/1.tiff", "/path/to/file/2.tiff"};
writer.setId(outputFiles[0]);

int planesPerFile = reader.getImageCount() / outputFiles.length;
for (int file=0; file<outputFiles.length; file++) {
    writer.changeOutputFile(outputFiles[file]);
    for (int image=0; image<planesPerFile; image++) {
        int index = file * planesPerFile + image;
        writer.saveBytes(image, reader.openBytes(index));
    }
}
reader.close();
writer.close();
```

The advantage here is that the relationship between the files is preserved when converting to formats that support multi-file datasets internally (namely OME-TIFF). If you are only converting to graphics formats (e.g. JPEG, AVI, MOV), then you could also use a separate `IFormatWriter` for each file, like this:

```java
OMEXMLService service = factory.getInstance(OMEXMLService.class);
// again, you should have set up a reader already
String[] outputFiles = new String[] {"/path/to/file/1.avi", "/path/to/file/2.avi"};
int planesPerFile = reader.getImageCount() / outputFiles.length;
for (int file=0; file<outputFiles.length; file++) {
    ImageWriter writer = new ImageWriter();
    writer.setMetadataRetrieve(service.asRetrieve(reader.getMetadataStore()));
    writer.setId(outputFiles[file]);
    for (int image=0; image<planesPerFile; image++) {
        int index = file * planesPerFile + image;
        writer.saveBytes(image, reader.openBytes(index));
    }
}
```
13.3.3 Known issues

List of Trac tickets

13.4 Further details on exporting raw pixel data to OME-TIFF files

This document explains how to export pixel data to OME-TIFF using Bio-Formats version 4.2 and later.

The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows:

```java
ServiceFactory factory = new ServiceFactory();
OMEXMLService service = factory.getInstance(OMEXMLService.class);
IMetadata omexml = service.createOMEXMLMetadata();
```

The `omexml` object can now be used in our code to store OME-XML metadata, and by the file format writer to retrieve OME-XML metadata.

Now that we have somewhere to put metadata, we need to populate as much metadata as we can. The minimum amount of metadata required is:

- endianness of the pixel data
- the order in which dimensions are stored
- the bit depth of the pixel data
- the number of channels
- the number of timepoints
- the number of Z sections
- the width (in pixels) of an image
- the height (in pixels) of an image
- the number of samples per channel (3 for RGB images, 1 otherwise)

We populate that metadata as follows:

```java
omexml.setImageID("Image:0", 0);
omexml.setPixelsID("Pixels:0", 0);

// specify that the pixel data is stored in big-endian order
// replace 'TRUE' with 'FALSE' to specify little-endian order
omexml.setPixelsBinDataBigEndian(Boolean.TRUE, 0, 0);

omexml.setPixelsDimensionOrder(DimensionOrder.XYCZT, 0);
omexml.setPixelsType(PixelType.UINT16, 0);
omexml.setPixelsSizeX(new PositiveInteger(width), 0);
omexml.setPixelsSizeY(new PositiveInteger(height), 0);
omexml.setPixelsSizeZ(new PositiveInteger(zSectionCount), 0);
omexml.setPixelsSizeC(new PositiveInteger(channelCount * samplesPerChannel), 0);
omexml.setPixelsSizeT(new PositiveInteger(timepointCount), 0);
```

for (int channel=0; channel<channelCount; channel++) {
 omexml.setChannelID("Channel:0:" + channel, 0, channel);
 omexml.setChannelSamplesPerPixel(new PositiveInteger(samplesPerChannel), 0, channel);
}

Unit<Length> unit = UNITS.MICROMETER;
Length physicalSizeX = new Length(1.0, unit);
Length physicalSizeY = new Length(1.5, unit);
Length physicalSizeZ = new Length(2, unit);
omexml.setPixelsPhysicalSizeX(physicalSizeX, 0);
omexml.setPixelsPhysicalSizeY(physicalSizeY, 0);
omexml.setPixelsPhysicalSizeZ(physicalSizeZ, 0);

There is much more metadata that can be stored; please see the Javadoc for loci.formats.meta.MetadataStore for a complete list.

Now that we have defined all of the metadata, we need to create a file writer:

ImageWriter writer = new ImageWriter();

Now we must associate the ‘omexml’ object with the file writer:

writer.setMetadataRetrieve(omexml);

The writer now knows to retrieve any metadata that it needs from ‘omexml’.

We now tell the writer which file it should write to:

writer.setId("output-file.ome.tiff");

It is critical that the file name given to the writer ends with ".ome.tiff” or "ome.tif”, as it is the file name extension that determines which format will be written.

Now that everything is set up, we can save the image data. This is done plane by plane, and we assume that the pixel data is stored in a 2D byte array ‘pixelData’:

 int sizeC = omexml.getPixelsSizeC(0).getValue();
 int sizeZ = omexml.getPixelsSizeZ(0).getValue();
 int sizeT = omexml.getPixelsSizeT(0).getValue();
 int samplesPerChannel = omexml.getChannelSamplesPerPixel(0).getValue();
 sizeC /= samplesPerChannel;
 int imageCount = sizeC * sizeZ * sizeT;
 for (int image=0; image<imageCount; image++) {
 writer.saveBytes(image, pixelData[image]);
 }
}

Finally, we must tell the writer that we are finished, so that the output file can be properly closed:

writer.close();

There should now be a complete OME-TIFF file at whichever path was specified above.

13.4. Further details on exporting raw pixel data to OME-TIFF files
13.5 Logging

13.5.1 Logging frameworks

Bio-Formats uses [SLF4J](http://www.slf4j.org) as a logging API. SLF4J is a facade and needs to be bound to a logging framework at deployment time. Two underlying logging frameworks are currently supported by Bio-Formats:

- **logback** is the recommended framework and natively implements the SLF4J API,
- **log4j** is the other logging framework supported by Bio-Formats and is mainly used in the MATLAB toolbox.

13.5.2 Initialization

The [DebugTools](http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/DebugTools.html) class contains a series of framework-agnostic methods for the initialization and control of the logging system. This class uses reflection to detect the underlying logging framework and delegate the method calls to either [Log4jTools](http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/Log4jTools.html) or [LogbackTools](http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/LogbackTools.html).

The main methods are described below:

- **DebugTools.enableLogging()** will initialize the underlying logging framework. This call will result in a no-op if logging has been initialized either via a binding-specific configuration file (see logback configuration) or via a prior call to DebugTools.enableLogging().
- **DebugTools.enableLogging(level)** will initialize the logging framework under the same conditions as described above and set the root logger level if the initialization was successful.
- **DebugTools.setRootLevel(level)** will override the level of the root logger independently of how the logging system was initialized.
- **DebugTools.enableIJLogging()** (logback-only) will add an ImageJ-specific appender to the root logger.

Changed in version 5.2.0: Prior to Bio-Formats 5.2.0, DebugTools.enableLogging(level) unconditionally set the logging and root logger level. Use DebugTools.setRootLevel(level) to restore this behavior.

13.6 Converting files from FV1000 OIB/OIF to OME-TIFF

This document explains how to convert a file from FV1000 OIB/OIF to OME-TIFF using Bio-Formats version 4.2 and later.

The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows:

```java
ServiceFactory factory = new ServiceFactory();
OMEXMLService service = factory.getInstance(OMEXMLService.class);
IMetadata omexml = service.createOMEXMLMetadata();
```

The ‘omexml’ object can now be used by both a file format reader and a file format writer for storing and retrieving OME-XML metadata.

Now that we have somewhere to put metadata, we need to create a file reader and writer:

```java
ImageReader reader = new ImageReader();
ImageWriter writer = new ImageWriter();
```

Now we must associate the ‘omexml’ object with the file reader and writer:

```java
ServiceFactory factory = new ServiceFactory();
OMEXMLService service = factory.getInstance(OMEXMLService.class);
IMetadata omexml = service.createOMEXMLMetadata();
```

Now that we have a place to store metadata, we need to create a file reader and writer:

```java
ImageReader reader = new ImageReader();
ImageWriter writer = new ImageWriter();
```

Now we must associate the ‘omexml’ object with the file reader and writer:

103http://www.slf4j.org
104http://logback.qos.ch/
105http://logging.apache.org/log4j
107http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/Log4jTools.html
reader.setMetadataStore(omexml);
writer.setMetadataRetrieve(omexml);

The reader now knows to store all of the metadata that it parses into ‘omexml’, and the writer knows to retrieve any metadata that it needs from ‘omexml’.

We now tell the reader and writer which files will be read from and written to, respectively:

reader.setId("input-file.oib");
writer.setId("output-file.ome.tiff");

It is critical that the file name given to the writer ends with ‘.ome.tiff’ or ‘.ome.tif’, as it is the file name extension that determines which format will be written.

Now that everything is set up, we can convert the image data. This is done plane by plane:

```java
for (int series=0; series<reader.getSeriesCount(); series++) {
    reader.setSeries(series);
    writer.setSeries(series);
    byte[] plane = new byte[FormatTools.getPlaneSize(reader)];
    for (int image=0; image<reader.getImageCount(); image++) {
        reader.openBytes(image, plane);
        writer.saveBytes(image, plane);
    }
}
```

The body of the outer ‘for’ loop may also be replaced with the following:

```java
reader.setSeries(series);
writer.setSeries(series);
for (int image=0; image<reader.getImageCount(); image++) {
    byte[] plane = reader.openBytes(image);
    writer.saveBytes(image, plane);
}
```

But note that this will be a little slower.

Finally, we must tell the reader and writer that we are finished, so that the input and output files can be properly closed:

```java
reader.close();
writer.close();
```

There should now be a complete OME-TIFF file at whichever path was specified above.

13.7 Using Bio-Formats in MATLAB

This section assumes that you have installed the MATLAB toolbox as instructed in the [MATLAB user information page](http://uk.mathworks.com/help/matlab/matlab_external/product-overview.html). Note the minimum supported MATLAB version is R2007b (7.5).

As described in [Using Java Libraries](http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/), every installation of MATLAB includes a JVM allowing use of the Java API and third-party Java libraries. All the helper functions included in the MATLAB toolbox make use of the Bio-Formats Java API. Please refer to the [Javadocs](http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/) for more information.
13.7.1 Increasing JVM memory settings

The default JVM settings in MATLAB can result in `java.lang.OutOfMemoryError: Java heap space exceptions` when opening large image files using Bio-Formats. Information about the Java heap space usage in MATLAB can be retrieved using:

```java
java.lang.Runtime.getRuntime.maxMemory
```

Default JVM settings can be increased by creating a `java.opts` file in the startup directory and overriding the default memory settings. We recommend using `-Xmx512m` in your `java.opts` file. Calling:

```matlab
bfCheckJavaMemory()
```

will also throw a warning if the runtime memory is lower than the recommended value.

If errors of type `java.lang.OutOfMemoryError: PermGen space` are thrown while using Bio-Formats with the Java bundled with MATLAB (Java 7), you may try to increase the default values of `-XX:MaxPermSize` and `-XX:PermSize` via the `java.opts` file.

See also:

- [http://www.mathworks.com/matlabcentral/answers/92813 How do I increase the heap space for the Java VM in MATLAB 6.0 (R12) and later versions?](http://lists.openmicroscopy.org.uk/mailman/listinfo/ome-users/2015-April/005331.html)
- [ome-users] Release of OMERO & Bio-Formats 5.1.1

13.7.2 Opening an image file

The first thing to do is initialize a file with the `bfopen` function:

```matlab
data = bfopen('/path/to/data/file');
```

This function returns an n-by-4 cell array, where n is the number of series in the dataset. If s is the series index between 1 and n:

- The `data{s, 1}` element is an m-by-2 cell array, where m is the number of planes in the s-th series. If t is the plane index between 1 and m:
 - The `data{s, 1}{t, 1}` element contains the pixel data for the t-th plane in the s-th series.
 - The `data{s, 1}{t, 2}` element contains the label for the t-th plane in the s-th series.
- The `data{s, 2}` element contains original metadata key/value pairs that apply to the s-th series.
- The `data{s, 3}` element contains color lookup tables for each plane in the s-th series.
- The `data{s, 4}` element contains a standardized OME metadata structure, which is the same regardless of the input file format, and contains common metadata values such as physical pixel sizes - see OME metadata below for examples.

Accessing planes

Here is an example of how to unwrap specific image planes for easy access:

```matlab
seriesCount = size(data, 1);
series1 = data{1, 1};
series2 = data{2, 1};
series3 = data{3, 1};
metadataList = data{1, 2};
% etc
```

113https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/matlab/bfopen.m
Displaying images

If you want to display one of the images, you can do so as follows:

```matlab
series1_colorMaps = data{1, 3};
figure('Name', series1_label1);
if (~isempty(series1_colorMaps{1}))
    colormap(gray);
else
    colormap(series1_colorMaps{1}{1,:});
end
imagesc(series1_plane1);
```

This will display the first image of the first series with its associated color map (if present). If you would prefer not to apply the color maps associated with each image, simply comment out the calls to `colormap`.

If you have the image processing toolbox, you could instead use:

```matlab
imshow(series1_plane1, []);
```

You can also create an animated movie (assumes 8-bit unsigned data):

```matlab
cmap = gray(256);
for p = 1 : size(series1, 1)
    M(p) = im2frame(uint8(series1{p, 1}), cmap);
end
if feature('ShowFigureWindows')
    movie(M);
end
```

Retrieving metadata

There are two kinds of metadata:

- **Original metadata** is a set of key/value pairs specific to the input format of the data. It is stored in the `data{s, 2}` element of the data structure returned by `bfopen`.

- **OME metadata** is a standardized metadata structure, which is the same regardless of input file format. It is stored in the `data{s, 4}` element of the data structure returned by `bfopen`, and contains common metadata values such as physical pixel sizes, instrument settings, and much more. See the [OME Model and Formats](http://www.openmicroscopy.org/site/support/ome-model/) documentation for full details.

Original metadata

To retrieve the metadata value for specific keys:
$ Query some metadata fields (keys are format-dependent)
metadata = data{1, 2};
subject = metadata.get('Subject');
title = metadata.get('Title');

To print out all of the metadata key/value pairs for the first series:

```
metadataKeys = metadata.keySet().iterator();
for i=1:metadata.size()
    key = metadataKeys.nextElement();
    value = metadata.get(key);
    fprintf('%s = %s\n', key, value)
end
```

OME metadata

Conversion of metadata to the OME standard is one of Bio-Formats’ primary features. The OME metadata is always stored the same way, regardless of input file format.

To access physical voxel and stack sizes of the data:

```
omeMeta = data{1, 4};
stackSizeX = omeMeta.getPixelsSizeX(0).getValue(); % image width, pixels
stackSizeY = omeMeta.getPixelsSizeY(0).getValue(); % image height, pixels
stackSizeZ = omeMeta.getPixelsSizeZ(0).getValue(); % number of Z slices

voxelSizeXdefaultValue = omeMeta.getPixelsPhysicalSizeX(0).value(); % returns value in default unit
voxelSizeXdefaultUnit = omeMeta.getPixelsPhysicalSizeX(0).unit().getSymbol(); % returns the default unit type
voxelSizeX = omeMeta.getPixelsPhysicalSizeX(0).value(ome.units.UNITS.MICROMETER); % in µm
voxelSizeXdouble = voxelSizeX.doubleValue(); % The numeric value represented by this object after conversion to type double
voxelSizeY = omeMeta.getPixelsPhysicalSizeY(0).value(ome.units.UNITS.MICROMETER); % in µm
voxelSizeYdouble = voxelSizeY.doubleValue(); % The numeric value represented by this object after conversion to type double
voxelSizeZ = omeMeta.getPixelsPhysicalSizeZ(0).value(ome.units.UNITS.MICROMETER); % in µm
voxelSizeZdouble = voxelSizeZ.doubleValue(); % The numeric value represented by this object after conversion to type double
```

For more information about the methods to retrieve the metadata, see the MetadataRetrieve\(^\text{115}\) Javadoc page.

To convert the OME metadata into a string, use the `dumpXML()` method:

```
omeXML = char(omeMeta.dumpXML());
```

13.7.3 Changing the logging level

By default, `bfopen` uses `bfInitLogging` to initialize the logging system at the `WARN` level. To change the root logging level, use the `DebugTools\(^\text{116}\)` methods as described in the *Logging* section.

```
% Set the logging level to DEBUG
loci.common.DebugTools.setRootLevel('DEBUG');
```

\(^{115}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/meta/MetadataRetrieve.html
13.7.4 Reading from an image file

The main inconvenience of the `bfopen.m` function is that it loads all the content of an image regardless of its size. To access the file reader without loading all the data, use the low-level `bfGetReader.m` function:

```matlab
reader = bfGetReader('path/to/data/file');
```

You can then access the OME metadata using the `getMetadataStore()` method:

```matlab
omeMeta = reader.getMetadataStore();
```

Individual planes can be queried using the `bfGetPlane.m` function:

```matlab
series1_plane1 = bfGetPlane(reader, 1);
```

To switch between series in a multi-image file, use the `setSeries(int)` method. To retrieve a plane given a set of \((z, c, t)\) coordinates, these coordinates must be linearized first using `getIndex(int, int, int)`

```matlab
% Read plane from series iSeries at Z, C, T coordinates (iZ, iC, iT)
% All indices are expected to be 1-based
reader.setSeries(iSeries - 1);
iPlane = reader.getIndex(iZ - 1, iC - 1, iT - 1) + 1;
I = bfGetPlane(reader, iPlane);
```

13.7.5 Saving files

The basic code for saving a 5D array into an OME-TIFF file is located in the `bfsave.m` function. For instance, the following code will save a single image of 64 pixels by 64 pixels with 8 unsigned bits per pixels:

```matlab
plane = zeros(64, 64, 'uint8');
bfsave(plane, 'single-plane.ome.tiff');
```

And the following code snippet will produce an image of 64 pixels by 64 pixels with 2 channels and 2 timepoints:

```matlab
plane = zeros(64, 64, 1, 2, 2, 'uint8');
bfsave(plane, 'multiple-planes.ome.tiff');
```

By default, `bfsave` will create a minimal OME-XML metadata object containing basic information such as the pixel dimensions, the dimension order and the pixel type. To customize the OME metadata, it is possible to create a metadata object from the input array using `createMinimalOMEXMLMetadata.m`, add custom metadata and pass this object directly to `bfsave`:

```matlab
plane = zeros(64, 64, 1, 2, 2, 'uint8');
metadata = createMinimalOMEXMLMetadata(plane);
pixelSize = ome.units.quantity.Length(java.lang.Double(.05), ome.units.UNITS.MICROMETER);
metadata.setPixelsPhysicalSizeX(pixelSize, 0);
metadata.setPixelsPhysicalSizeY(pixelSize, 0);
```

117] https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/matlab/bfopen.m
118] https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/matlab/bfGetReader.m
119] https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/matlab/bfGetPlane.m
121] http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#getIndex(int, int, int)
122] https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/matlab/bfsave.m
123] https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/matlab/createMinimalOMEXMLMetadata.m
pixelSizeZ = ome.units.quantity.Length(java.lang.Double(.2), ome.units.UNITS.MICROMETER);
metadata.setPixelsPhysicalSizeZ(pixelSizeZ, 0);
bfsave(plane, 'metadata.ome.tiff', 'metadata', metadata);

For more information about the methods to store the metadata, see the MetadataStore124 Javadoc page.

13.7.6 Improving reading performance

Initializing a Bio-Formats reader can consume substantial time and memory. Most of the initialization time is spent in the `setId(java.lang.String)`125 call. Various factors can impact the performance of this step including the file size, the amount of metadata in the image and also the file format itself.

One solution to improve reading performance is to use Bio-Formats memoization functionalities with the `loci.formats.Memoizer`126 reader wrapper. By essence, the speedup gained from memoization will only happen after the first initialization of the reader for a particular file.

The simplest way to make use the `Memoizer` functionalities in MATLAB is illustrated by the following example:

```matlab
% Construct an empty Bio-Formats reader
r = bfGetReader();
% Decorate the reader with the Memoizer wrapper
r = loci.formats.Memoizer(r);
% Initialize the reader with an input file
% If the call is longer than a minimal time, the initialized reader will
% be cached in a file under the same directory as the initial file
% name .large_file.bfmemo
r.setId(pathToFile);
% Perform work using the reader
% Close the reader
r.close()

% If the reader has been cached in the call above, re-initializing the
% reader will use the memo file and complete much faster especially for
% large data
r.setId(pathToFile);
% Perform additional work
% Close the reader
r.close()

If the time required to call `setId(java.lang.String)`\textsuperscript{127} method is larger than `DEFAULT_MINIMUM_ELAPSED`\textsuperscript{128} or the minimum value passed in the constructor, the initialized reader will be cached in a memo file under the same folder as the input file. Any subsequent call to `setId()` with a reader decorated by the `Memoizer` on the same input file will load the reader from the memo file instead of performing a full reader initialization.

More constructors are described in the `Memoizer` javadocs\textsuperscript{129} allowing to control the minimal initialization time required before caching the reader and/or to define a root directory under which the reader should be cached.

As Bio-Formats is not thread-safe, reader memoization offers a new solution to increase reading performance when doing parallel work. For instance, the following example shows how to combine memoization and MATLAB parfor to do work on a single file in a parallel loop:

\textsuperscript{124}http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/meta/MetadataStore.html
\textsuperscript{125}http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatHandler.html#setId(java.lang.String)
\textsuperscript{126}http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/Memoizer.html
\textsuperscript{127}http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/Memoizer.html#setId(java.lang.String)
\textsuperscript{128}http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/Memoizer.html#DEFAULT_MINIMUM_ELAPSED
\textsuperscript{129}http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/Memoizer.html
% Construct a Bio-Formats reader decorated with the Memoizer wrapper
r = loci.formats.Memoizer(bfGetReader(), 0);
% Initialize the reader with an input file to cache the reader
r.setId(pathToFile);
% Close reader
r.close()

nWorkers = 4;

% Enter parallel loop
parfor i = 1 : nWorkers
  % Initialize logging at INFO level
  bfInitLogging('INFO');
  % Initialize a new reader per worker as Bio-Formats is not thread safe
  r2 = javaObject('loci.formats.Memoizer', bfGetReader(), 0);
  % Initialization should use the memo file cached before entering the
  % parallel loop
  r2.setId(pathToFile);
  % Perform work
  % Close the reader
  r2.close()
end

13.8 Using Bio-Formats in Python

OME does not currently provide a Python implementation for Bio-Formats.
The CellProfiler project has implemented a Python wrapper around Bio-Formats used by the CellProfiler software which can be installed using `pip`:

```
pip install python-bioformats
```

See also:

https://pypi.python.org/pypi/python-bioformats  Source code of the CellProfiler Python wrapper for Bio-Formats

13.9 Interfacing with Bio-Formats from non-Java code

Bio-Formats is written in Java, and is easiest to use with other Java code. However, it is possible to call Bio-Formats from a program written in another language. But how to do so depends on your program’s needs.

Technologically, there are two broad categories of solutions: in-process approaches, and inter-process communication.

For details, see LOCI’s article Interfacing from non-Java code\(^\text{130}\).

Example in-process solution:  Bio-Formats JACE C++ bindings\(^\text{131}\) (note that this is a legacy project and no longer actively maintained).

\(^\text{130}\)http://loci.wisc.edu/software/interfacing-non-java-code
\(^\text{131}\)https://github.com/ome/bio-formats-jace
CHAPTER
FOURTEEN

USING BIO-FORMATS AS A NATIVE C++ LIBRARY

Note: See the OME-Files C++ downloads page\(^1\) for more information.

\(^1\)http://downloads.openmicroscopy.org/latest/ome-files-cpp/
CHAPTER
FIFTEEN

CONTRIBUTING TO BIO-FORMATS

15.1 Code formatting

Note, these guidelines do not cover:

- third-party code imported into the source tree, which is covered by the guidelines for the upstream projects
- released schema files which would require re-releasing if changed by reindenting

15.1.1 All languages

- Use spaces to indent; do not ever use tabs

15.1.2 Java

All Java code is formatted with:

- an indentation size of two spaces
- braces use the Java variant of K&R style

15.1.3 XML

All XML code is formatted with:

- an indentation size of two spaces
- attributes on multiple lines aligned vertically after the element name.

15.2 Testing code changes

15.2.1 Automated tests

The Bio-Formats testing framework component contains most of the infrastructure to run automated tests against the data repository.

After checking out source code and building all the JAR files (see Obtaining and building Bio-Formats), switch to the test-suite component and run the tests using the ant test-automated target:

$ cd components/test-suite
$ ant -Dtestng.directory=${DATA}/metamorph test-automated

1https://en.wikipedia.org/wiki/Indent_style#Variant:_Java
2https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/test-suite
where $DATA is the path to the full data repository.

Multiple options can be passed to the ant test-automated target by setting the testng.$(option) option via the command line. Useful options are described below.

**testng.directory** Mandatory option. Specifies the root of the data directory to be tested:

```
$ ant -Dtestng.directory=$DATA/metamorph test-automated
```

On Windows, the arguments to the test command must be quoted:

```
> ant "-Dtestng.directory=$DATA\metamorph" test-automated
```

**testng.configDirectory** Specifies the root of the directory containing the configuration files. This directory must have the same hierarchy as the one specified by testng.directory and contain .bioformats configuration files:

```
$ ant -Dtestng.directory=/path/to/data -Dtestng.configDirectory=/path/to/config test-automated
```

If no configuration directory is passed, the assumption is that it is the same as the data directory.

**testng.configSuffix** Specifies an optional suffix for the configuration files:

```
$ ant -Dtestng.directory=/path/to/data -Dtestng.configSuffix=win test-automated
```

**testng.memory** Specifies the amount of memory to be allocated to the JVM:

```
$ ant -Dtestng.directory=$DATA -Dtestng.memory=4g test-automated
```

Default: 512m.

**testng.threadCount** Specifies the number of threads to use for testing:

```
$ ant -Dtestng.directory=$DATA -Dtestng.threadCount=4 test-automated
```

Default: 1.

You should now see output similar to this:

Buildfile: build.xml

init-title:

[echo] 15.2. Testing code changes
The console output is also recorded under components/test-suite/target as bio-formats-software-test-main-$DATE.log where “$DATE” is the date on which the tests started in “yyyy-MM-dd_hh-mm-ss” format. The detailed report of each thread is recorded under bio-formats-software-pool-$POOL-thread-$THREAD-main-$DATE.log

Configuration files can be generated for files or directories using the ant gen-config target. This generation target supports the same options as ant test-automated:

$ ant -Dtestng.directory=/path/to/data -Dtestng.configDirectory=/path/to/config -Dtestng.memory=4g -Dtestng.multiplier=1.0 -Dtestng.in-memory=false -Dtestng.language=en -Dtestng.country=US gen-config

15.2.2 MATLAB tests

Tests for the Bio-Formats MATLAB toolbox are written using the xunit framework and are located under components/formats-gpl/test/matlab.

To run these tests, you will need to download or clone matlab-xunit4, a xUnit framework with JUnit-compatible XML output. Then add this package together with the Bio-Formats MATLAB to your MATLAB path:

$ ant -Dtestng.directory=/path/to/data -Dtestng.configDirectory=/path/to/config -Dtestng.memory=4g -Dtestng.multiplier=1.0 -Dtestng.in-memory=false -Dtestng.language=en -Dtestng.country=US gen-config

3https://github.com/openmicroscopy/bioformats/tree/v5.2.2/components/formats-gpl/test/matlab
4https://github.com/psexton/matlab-xunit

15.2. Testing code changes
% Add the matlab-xunit toolbox to the MATLAB path
addpath('/path/to/matlab-xunit');
% Add the Bio-Formats MATLAB source to the MATLAB path
% For developers working against the source code
addpath('/path/to/bioformats/components/formats-gpl/matlab');
addpath('/path/to/bioformats/artifacts');
% For developers working against a built artifact, e.g. a release
% addpath('/path/to/bfmatlab');

You can run all the MATLAB tests using runxunit:

cd /path/to/bioformats/components/formats-gpl/test/matlab
runxunit

Individual test classes can be run by passing the name of the class:

cd /path/to/bioformats/components/formats-gpl/test/matlab
runxunit TestBfsave

Individual test methods can be run by passing the name of the class and the name of the method:

cd /path/to/bioformats/components/formats-gpl/test/matlab
runxunit TestBfsave:testLZW

Finally to output the test results under XML format, you can use the -xmlfile option:

cd /path/to/bioformats/components/formats-gpl/test/matlab
runxunit -xmlfile test-output.xml

### 15.3 Generating test images

Sometimes it is nice to have a file of a specific size or pixel type for testing. To generate an image file (that contains a gradient image):

touch "my-special-test-file&pixelType=uint8&sizeX=8192&sizeY=8192.fake"

Whatever is before the first & is the image name; the remaining key-value pairs, each preceded with &, set the pixel type and image dimensions. Just replace the values with whatever you need for testing.

Additionally, you can put such values in a separate UTF-8 encoded .ini file:

touch my-special-test-file.fake
echo "pixelType=uint8" >> my-special-test-file.fake.ini
echo "sizeX=8192" >> my-special-test-file.fake.ini
echo "sizeY=8192" >> my-special-test-file.fake.ini

In fact, just the .fake.ini file alone suffices:

echo "pixelType=uint8" >> my-special-test-file.fake.ini
echo "sizeX=8192" >> my-special-test-file.fake.ini
echo "sizeY=8192" >> my-special-test-file.fake.ini
If you include a “[GlobalMetadata]” section to the ini file, then all the included values will be accessible from the global metadata map:

```bash
echo "[GlobalMetadata]" >> my-special-test-file.fake.ini
echo "my.key=some.value" >> my-special-test-file.fake.ini
```

Several keys have support for units and can be expressed as KEY=VALUE UNIT where UNIT is the symbol of the desired unit:

```bash
touch "physicalSizesUnits&physicalSizeX=1nm&physicalSizeY=1nm&physicalSizeZ=1.5km.fake"
echo "physicalSizeX=1 nm" >> physicalSizes.fake.ini
echo "physicalSizeY=10 pm" >> physicalSizes.fake.ini
echo "physicalSizeZ=.002 mm" >> physicalSizes.fake.ini
```

### 15.3.1 High-content screening

To generate a simple plate file:

```bash
touch "simple-plate&plates=1&plateAcqs=1&plateRows=1&plateCols=1&fields=1.fake"
touch "default-plate&plates=1.fake"
touch "default-plate&screens=0&plates=1.fake"
```

These will each create a single plate without a containing screen, by default in the first two cases. In the third case setting `screens` to zero is used to document the lack of a screen. As above a `.fake.ini` file can be used.

To generate a simple screen file:

```bash
touch "default-screen&screens=1.fake"
```

This will create a screen containing a single simple plate.

To generate a valid plate at least one of `screens`, `plates`, `plateAcqs`, `plateRows`, `plateCols` and `fields` must be greater than zero. If this condition is met then any other plate-specific values set to zero will be ignored and the defaults used. So, for example, the file:

```bash
one-key-set&screens=0&plates=0&plateRows=0&plateCols=0&plateAcqs=0&fields=1.fake
```

will create a simple plate with no screen.

### 15.3.2 Regions

To generate a fake file containing regions of interest:

```bash
touch "regions&points=10.fake"
touch "regions&ellipses=20.fake"
touch "regions&rectangles=5&lines=25.fake"
```

Replace `regions` in the above examples with the desired image or plate which will contain the regions, e.g.

```bash
touch "HCSanalysis&plates=1&plateRows=16&plateCols=24&rectangles=100.fake"
```

For each shape type, the value will specify the number of regions of interest to create where each region of interest contains a single shape of the input type. By convention, all generated regions of interests are not associated to any given Z, C or T plane.
15.3.3 Key-value pairs

There are several other keys that can be added, a complete list of these, with their default values, is shown below.

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>sizeX</td>
<td>number of pixels wide</td>
<td>512</td>
</tr>
<tr>
<td>sizeY</td>
<td>number of pixels tall</td>
<td>512</td>
</tr>
<tr>
<td>sizeZ</td>
<td>number of Z sections</td>
<td>1</td>
</tr>
<tr>
<td>sizeC</td>
<td>number of channels</td>
<td>1</td>
</tr>
<tr>
<td>sizeT</td>
<td>number of timepoints</td>
<td>1</td>
</tr>
<tr>
<td>thumbSizeX</td>
<td>number of pixels wide, for the thumbnail</td>
<td>0</td>
</tr>
<tr>
<td>thumbSizeY</td>
<td>number of pixels tall, for the thumbnail</td>
<td>0</td>
</tr>
<tr>
<td>pixelType</td>
<td>pixel type</td>
<td>uint8</td>
</tr>
<tr>
<td>bitsPerPixel</td>
<td>number of valid bits (&lt;= number of bits implied by pixel type)</td>
<td>0</td>
</tr>
<tr>
<td>rgb</td>
<td>number of channels that are merged together</td>
<td>1</td>
</tr>
<tr>
<td>dimOrder</td>
<td>dimension order (e.g. XYZCT)</td>
<td>XYZCT</td>
</tr>
<tr>
<td>orderCertain</td>
<td>whether or not the dimension order is certain</td>
<td>true</td>
</tr>
<tr>
<td>little</td>
<td>whether or not the pixel data should be little-endian</td>
<td>true</td>
</tr>
<tr>
<td>interleaved</td>
<td>whether or not merged channels are interleaved</td>
<td>false</td>
</tr>
<tr>
<td>indexed</td>
<td>whether or not a color lookup table is present</td>
<td>false</td>
</tr>
<tr>
<td>falseColor</td>
<td>whether or not the color lookup table is just for making the image look pretty</td>
<td>false</td>
</tr>
<tr>
<td>metadataComplete</td>
<td>whether or not CoreMetadata.thumbnail is set</td>
<td>true</td>
</tr>
<tr>
<td>thumbnail</td>
<td>whether or not CoreMetadata.thumbnail is set</td>
<td>false</td>
</tr>
<tr>
<td>series</td>
<td>number of series (Images)</td>
<td>1</td>
</tr>
<tr>
<td>lutLength</td>
<td>number of entries in the color lookup table</td>
<td>3</td>
</tr>
<tr>
<td>scaleFactor</td>
<td>the scaling factor for the pixel values on each plane</td>
<td>1</td>
</tr>
<tr>
<td>exposureTime</td>
<td>time of exposure</td>
<td>null</td>
</tr>
<tr>
<td>acquisitionDate</td>
<td>timestamp formatted as “yyyy-MM-dd_HH-mm-ss”</td>
<td>null</td>
</tr>
<tr>
<td>screens</td>
<td>number of screens</td>
<td>0</td>
</tr>
<tr>
<td>plates</td>
<td>number of plates to generate</td>
<td>0</td>
</tr>
<tr>
<td>plateAcqs</td>
<td>number of plate runs</td>
<td>0</td>
</tr>
<tr>
<td>plateRows</td>
<td>number of rows per plate</td>
<td>0</td>
</tr>
<tr>
<td>plateCols</td>
<td>number of rows per plane</td>
<td>0</td>
</tr>
<tr>
<td>fields</td>
<td>number of fields per well</td>
<td>0</td>
</tr>
<tr>
<td>withMicrobeam</td>
<td>whether or not a microbeam should be added to the experiment (HCS only)</td>
<td>false</td>
</tr>
<tr>
<td>annLong, annDouble, annMap, annComment, annBool, annTime, annTag, annTerm, annXml</td>
<td>number of annotations of the given type to generate</td>
<td>0</td>
</tr>
<tr>
<td>physicalSizeX</td>
<td>real width of the pixels, supports units defaulting to microns</td>
<td></td>
</tr>
<tr>
<td>physicalSizeY</td>
<td>real height of the pixels, supports units defaulting to microns</td>
<td></td>
</tr>
<tr>
<td>physicalSizeZ</td>
<td>real depth of the pixels, supports units defaulting to microns</td>
<td></td>
</tr>
<tr>
<td>color</td>
<td>the default color for all channels</td>
<td>null</td>
</tr>
<tr>
<td>color_x</td>
<td>the color for channel x, overrides the default color for that channel</td>
<td></td>
</tr>
<tr>
<td>ellipses, labels, lines, points, polygons, polylines, rectangles</td>
<td>the number of ROIs containing one shape of the given type to generate</td>
<td></td>
</tr>
</tbody>
</table>

For full details of these keys, how unset and default values are handled and further examples see loci.formats.in.FakeReader⁵.

You can often work with the .fake file directly, but in some cases support for those files is disabled and so you will need to convert the file to something else. Make sure that you have Bio-Formats built and the JARs in your CLASSPATH (individual JARs or just bioformats_package.jar):

```
bfconvert test&pixelType=uint8&sizeX=8192&sizeY=8192.fake test.tiff
```

⁵https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/FakeReader.java
15.4 Writing a new file format reader

This document is a brief guide to writing new Bio-Formats file format readers.

All format readers should extend either `loci.formats.FormatReader` or an existing reader.

15.4.1 Methods to override

- `isSingleFile(java.lang.String)` Whether or not the named file is expected to be the only file in the dataset. This only needs to be overridden for formats whose datasets can contain more than one file.
- `isThisType(loci.common.RandomAccessInputStream)` Check the first few bytes of a file to determine if the file can be read by this reader. You can assume that index 0 in the stream corresponds to the index 0 in the file. Return true if the file can be read; false if not (or if there is no way of checking).
- `fileGroupOption(java.lang.String)` Returns an indication of whether or not the files in a multi-file dataset can be handled individually. The return value should be one of the following:
  - `FormatTools.MUST_GROUP`: the files cannot be handled separately
  - `FormatTools.CAN_GROUP`: the files may be handled separately or as a single unit
  - `FormatTools.CANNOT_GROUP`: the files must be handled separately

This method only needs to be overridden for formats whose datasets can contain more than one file.

- `getSeriesUsedFiles(boolean)` You only need to override this if your format uses multiple files in a single dataset. This method should return a list of all files associated with the given file name and the current series (i.e. every file needed to display the current series). If the noPixels flag is set, then none of the files returned should contain pixel data. For an example of how this works, see `loci.formats.in.PerkinElmerReader`. It is recommended that the first line of this method be `FormatTools.assertId(currentId, true, 1)` - this ensures that the file name is non-null.

- `openBytes(int, byte[], int, int, int, int)` Returns a byte array containing the pixel data for a specified subimage from the given file. The dimensions of the subimage (upper left X coordinate, upper left Y coordinate, width, and height) are specified in the final four int parameters. This should throw a `FormatException` if the image number is invalid (less than 0 or >= the number of images). The ordering of the array returned by openBytes should correspond to the values returned by `isLittleEndian` and `isInterleaved`. Also, the length of the byte array should be [image width * image height * bytes per pixel]. Extra bytes will generally be truncated. It is recommended that the first line of this method be `FormatTools.checkPlaneParameters(this, no, buf.length, x, y, w, h)` - this ensures that all of the parameters are valid.

- `initFile(java.lang.String)` The majority of the file parsing logic should be placed in this method. The idea is to call this method once (and only once!) when the file is first opened. Generally, you will want to start by calling `super.initFile(String)`. You will also need to set up the stream for reading the file, as well as initializing any dimension information and metadata. Most of this logic is up to you; however, you should populate the `core` variable (see `loci.formats.CoreMetadata`).

---

7 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html
8 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#isInterleaved
9 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#isThisType(loci.common.RandomAccessInputStream)
10 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#initFile(String)
12 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#MUST_GROUP
13 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#CAN_GROUP
14 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatTools.html#CANNOT_GROUP
15 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#getSeriesUsedFiles(boolean)
16 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-gpl/src/loci/formats/in/PerkinElmerReader.java
17 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#openBytes(int, byte[], int, int, int, int)
18 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#FormatException.html
19 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#isLittleEndian()
20 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#isInterleaved()
22 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#core
23 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/CoreMetadata.html
Note that each variable is initialized to 0 or null when `super.initFile(String)` is called. Also, `super.initFile(String)` constructs a Hashtable called `metadata` where you should store any relevant metadata.

The most common way to set up the OME-XML metadata for the reader is to initialize the MetadataStore using the `makeFilterMetadata()` method and populate the Pixels elements of the metadata store from the `core` variable using the `MetadataTools.populatePixels(MetadataStore, FormatReader)` method:

```java
Initialize the OME-XML metadata from the core variable
MetadataStore store = makeFilterMetadata();
MetadataTools.populatePixels(store, this);
```

If the reader includes metadata at the plane level, you can initialize the Plane elements under the Pixels using `MetadataTools.populatePixels(MetadataStore, FormatReader, doPlane)`:

```java
MetadataTools.populatePixels(store, this, true);
```

Once the metadata store has been initialized with the core properties, additional metadata can be added to it using the setter methods. Note that for each of the model components, the `setObjectID()` method should be called before any of the `setObjectProperty()` methods, e.g.:

```java
Add an oil immersion objective with achromat
String objectiveID = MetadataTools.createLSID("Objective", 0, 0);
store.setObjectiveID(objectiveID, 0, 0);
store.setObjectiveImmersion(getImmersion("Oil"), 0, 0);
```

• `close(boolean)` Cleans up any resources used by the reader. Global variables should be reset to their initial state, and any open files or delegate readers should be closed.

Note that if the new format is a variant of a format currently supported by Bio-Formats, it is more efficient to make the new reader a subclass of the existing reader (rather than subclassing `loci.formats.FormatReader`). In this case, it is usually sufficient to override `initFile(java.lang.String)` and `isThisType(byte[])`.

Every reader also has an instance of `loci.formats.CoreMetadata`. All readers should populate the fields in CoreMetadata, which are essential to reading image planes.

If you read from a file using something other than `loci.common.RandomAccessInputStream` or `loci.common.Location`, you must use the file name returned by `Location.getMappedId(String)`, not the file name passed to the reader. Thus, a stub for `initFile(String)` might look like this:

```java
protected void initFile(String id) throws FormatException, IOException {
 super.initFile(id);

 RandomAccessInputStream in = new RandomAccessInputStream(id);
 // alternatively,
 // FileInputStream in = new FileInputStream(Location.getMappedId(id));

 // read basic file structure and metadata from stream
}
```

15.4. Writing a new file format reader

---

24 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#metadata
25 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#makeFilterMetadata()
28 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/IFormatReader.html#close(boolean)
29 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html
31 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#isThisType(byte[])
32 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/CoreMetadata.html
34 http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/Location.html
15.4.2 Variables to populate

There are a number of global variables defined in `loci.formats.FormatReader` that should be populated in the constructor of any implemented reader.

These variables are:

- `suffixNecessary`\(^{38}\): Indicates whether or not a file name suffix is required; true by default.
- `suffixSufficient`\(^{39}\): Indicates whether or not a specific file name suffix guarantees that this reader can open a particular file; true by default.
- `hasCompanionFiles`\(^{40}\): Indicates whether or not there is at least one file in a dataset of this format that contains only metadata (no images); false by default.
- `datasetDescription`\(^{41}\): A brief description of the layout of files in datasets of this format; only necessary for multi-file datasets.
- `domains`\(^{42}\): An array of imaging domains for which this format is used. Domains are defined in `loci.formats.FormatTools`\(^{43}\).

15.4.3 Other useful things

- `loci.common.RandomAccessInputStream`\(^{44}\) is a hybrid `RandomAccessFile/InputStream` class that is generally more efficient than either `RandomAccessFile` or `InputStream`, and implements the `DataInput` interface. It is recommended that you use this for reading files.
- `loci.common.Location`\(^{45}\) provides an API similar to `java.io.File`, and supports `File`-like operations on URLs. It is highly recommended that you use this instead of `File`. See the Javadocs\(^{46}\) for additional information.
- `loci.common.DataTools`\(^{47}\) provides a number of methods for converting bytes to shorts, ints, longs, etc. It also supports reading most primitive types directly from a `RandomAccessInputStream` (or other `DataInput` implementation).
- `loci.formats.ImageTools`\(^{48}\) provides several methods for manipulating primitive type arrays that represent images. Consult the source or Javadocs for more information.
- If your reader relies on third-party code which may not be available to all users, it is strongly suggested that you make a corresponding service class that interfaces with the third-party code. Please see `Bio-Formats service and dependency infrastructure` for a description of the service infrastructure, as well as the `loci.formats.services` package\(^{49}\).
- Several common image compression types are supported through subclasses of `loci.formats.codec.BaseCodec`\(^{50}\). These include JPEG, LZW, LZO, Base64, ZIP and RLE (PackBits).
- If you wish to convert a file’s metadata to OME-XML (strongly encouraged), please see `Bio-Formats metadata processing` for further information.
- Once you have written your file format reader, add a line to the `readers.txt` file with the fully qualified name of the reader, followed by a `#` and the file extensions associated with the file format. Note that `loci.formats.ImageReader`\(^{52}\), the master

\(^{35}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/Location.html#mapId(java.lang.String, java.lang.String)
\(^{36}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/Location.html#getMappedId(java.lang.String)
\(^{37}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html
\(^{38}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#suffixNecessary
\(^{39}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#suffixSufficient
\(^{40}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#hasCompanionFiles
\(^{41}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#datasetDescription
\(^{42}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/FormatReader.html#domains
\(^{43}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/services/package-summary.html
\(^{44}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/codec/BaseCodec.html
\(^{46}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/DataTools.html
\(^{47}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/DataTools.html
\(^{49}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/services/package-summary.html
\(^{50}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/codec/BaseCodec.html
\(^{51}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-api/src/loci/formats/readers.txt
\(^{52}\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/ImageReader.html
file format reader, tries to identify which format reader to use according to the order given in readers.txt\(^53\), so be sure to place your reader in an appropriate position within the list.

- The easiest way to test your new reader is by calling “java loci.formats.tools.ImageInfo <file name>”. If all goes well, you should see all of the metadata and dimension information, along with a window showing the images in the file. loci.formats.ImageReader\(^54\) can take additional parameters; a brief listing is provided below for reference, but it is recommended that you take a look at the contents of loci.formats.tools.ImageInfo\(^55\) to see exactly what each one does.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>-version</td>
<td>print the library version and exit</td>
</tr>
<tr>
<td>file</td>
<td>the image file to read</td>
</tr>
<tr>
<td>-nopix</td>
<td>read metadata only, not pixels</td>
</tr>
<tr>
<td>-nocom</td>
<td>do not output core metadata</td>
</tr>
<tr>
<td>-nometa</td>
<td>do not parse format-specific metadata table</td>
</tr>
<tr>
<td>-nofilter</td>
<td>do not filter metadata fields</td>
</tr>
<tr>
<td>-thumbs</td>
<td>read thumbnails instead of normal pixels</td>
</tr>
<tr>
<td>-minmax</td>
<td>compute min/max statistics</td>
</tr>
<tr>
<td>-merge</td>
<td>combine separate channels into RGB image</td>
</tr>
<tr>
<td>-nogroup</td>
<td>force multi-file datasets to be read as individual files</td>
</tr>
<tr>
<td>-stitch</td>
<td>stitch files with similar names</td>
</tr>
<tr>
<td>-separate</td>
<td>split RGB image into separate channels</td>
</tr>
<tr>
<td>-expand</td>
<td>expand indexed color to RGB</td>
</tr>
<tr>
<td>-omexml</td>
<td>populate OME-XML metadata</td>
</tr>
<tr>
<td>-normalize</td>
<td>normalize floating point images(^*)</td>
</tr>
<tr>
<td>-fast</td>
<td>paint RGB images as quickly as possible(^*)</td>
</tr>
<tr>
<td>-debug</td>
<td>turn on debugging output</td>
</tr>
<tr>
<td>-range</td>
<td>specify range of planes to read (inclusive)</td>
</tr>
<tr>
<td>-series</td>
<td>specify which image series to read</td>
</tr>
<tr>
<td>-swap</td>
<td>override the default input dimension order</td>
</tr>
<tr>
<td>-shuffle</td>
<td>override the default output dimension order</td>
</tr>
<tr>
<td>-map</td>
<td>specify file on which name should be mapped</td>
</tr>
<tr>
<td>-preload</td>
<td>pre-read entire file into a buffer; significantly reduces the time required to read the images, but requires more memory</td>
</tr>
<tr>
<td>-crop</td>
<td>crop images before displaying; argument is ‘x,y,w,h’</td>
</tr>
<tr>
<td>-autoscale</td>
<td>used in combination with ‘-fast’ to automatically adjust brightness and contrast</td>
</tr>
<tr>
<td>-novalid</td>
<td>do not perform validation of OME-XML</td>
</tr>
<tr>
<td>-omexml-</td>
<td>only output the generated OME-XML</td>
</tr>
<tr>
<td>only</td>
<td>-format</td>
</tr>
</tbody>
</table>

\(^*\) = may result in loss of precision

- If you wish to test using TestNG, loci.tests.testng.FormatReaderTest\(^56\) provides several basic tests that work with all Bio-Formats readers. See the FormatReaderTest source code for additional information.

- For more details, please look at the source code and Javadocs\(^57\). Studying existing readers is probably the best way to get a feel for the API; we would recommend first looking at loci.formats.in.ImarisReader\(^58\) (this is the most straightforward one). loci.formats.in.LIFReader\(^59\) and InCellReader\(^60\) are also good references that show off some of the nicer features of Bio-Formats.

If you have questions about Bio-Formats, please contact the OME team\(^61\).

---

\(^53\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-api/src/loci/formats/readers.txt
\(^54\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/formats/ImageReader.html
\(^55\)http://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/bio-formats-tools/src/loci/formats/tools/ImageInfo.java
\(^56\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/tests/testng/FormatReaderTest.html
\(^57\)http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/
\(^58\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ImarisReader.java
\(^59\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/LIFReader.java
\(^60\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/InCellReader.java
\(^61\)http://www.openmicroscopy.org/site/community

15.4. Writing a new file format reader 114
15.5 Adding format/reader documentation pages

Most documentation pages for the supported formats and readers are auto-generated. These pages should not be modified directly. This page explains how to amend/extend this part of the Bio-Formats documentation.

The Bio-Formats testing framework\footnote{https://github.com/openmicroscopy/bioformats/tree/v5.2.2/components/autogen} component contains most of the infrastructure to run automated tests against the data repository.

15.5.1 Formats

After checking out source code and building all the JAR files (see Obtaining and building Bio-Formats), the supported formats pages can be generated using the \texttt{ant gen-format-pages} target under the \texttt{autogen} component:

\texttt{
$ ant \ -f \ components/autogen/build.xml \ gen-format-pages$
}

This target will read the metadata for each format stored under \texttt{format-pages.txt}\footnote{https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/autogen/src/format-pages.txt} and generate a reStructuredText file for each format stored under \texttt{formats/<formatname>.txt} as well as an index page for all supported formats using \texttt{Velocity}\footnote{http://velocity.apache.org/}.

The \texttt{format-pages.txt} is an INI file where each section corresponds to a particular format given by the section header. Multiple key/values should be defined for each section:

- \texttt{pagename} The name of the output reStructuredText file. If unspecified, the section header will be used to generate the filename.
- \texttt{extensions} The list of extensions supported for the format
- \texttt{owner} The owner of the file format
- \texttt{developer} The developer of the file format
- \texttt{bsd} A \texttt{yes/no} flag specifying whether the format readers/writers are under the BSD license
- \texttt{versions} A comma-separated list of all versions supported for this format
- \texttt{weHave} A bullet-point list describing the supporting material we have for this format including specification and sample datasets
- \texttt{weWant} A bullet-point list describing the supporting material we would like to have for this format
- \texttt{pixelRating}, \texttt{metadataRating}, \texttt{opennessRating}, \texttt{presenceRating}, \texttt{utilityRating} See \texttt{Ratings legend and definitions}. Available choices are: \texttt{Poor}, \texttt{Fair}, \texttt{Good}, \texttt{Very Good}, \texttt{Outstanding}
- \texttt{reader} A string or a comma-separated list of all readers for this format
- \texttt{notes} Additional relevant information e.g. that we cannot distribute specification documents to third parties

15.5.2 Dataset structure table

After checking out source code and building all the JAR files (see Obtaining and building Bio-Formats), the summary table listing the extensions for each reader can be generated using the \texttt{ant gen-structure-table} target under the \texttt{autogen} component:

\texttt{
$ ant \ -f \ components/autogen/build.xml \ gen-structure-table$
}

This target will loop through all Bio-Formats readers (BSD and GPL), read their extensions and descriptions and create a reStructuredText file with a table summary of all file extensions.

15.5.3 Readers

After checking out source code and building all the JAR files (see Obtaining and building Bio-Formats), the metadata pages for each reader can be generated using the \texttt{ant gen-meta-support} target under the \texttt{autogen} component:
$ ant -f components/autogen/build.xml gen-meta-support

This target will loop through all Bio-Formats readers (BSD and GPL), parse their metadata support and create an intermediate 
meta-support.txt file. In a second step, this meta-support.txt file is converted into one reStructuredText page for 
each reader stored under metadata/\<reader>.txt as well as a metadata summary reStructuredText file using Velocity\[^65\].

### 15.6 Bio-Formats service and dependency infrastructure

#### 15.6.1 Description

The Bio-Formats service infrastructure is an interface driven pattern for dealing with external and internal dependencies. The 
design goal was mainly to avoid the cumbersome usage of ReflectedUniverse where possible and to clearly define both service 
dependency and interface between components. This is generally referred to as dependency injection\[^66\], dependency 
inversion\[^67\] or component based design\[^68\].

It was decided, at this point, to forgo the usage of potentially more powerful but also more complicated solutions such as:

- Spring (http://spring.io)
- Guice (http://code.google.com/p/google-guice/)
- ...

The Wikipedia page for dependency injection\[^69\] contains many other implementations in many languages.

An added benefit is the potential code reuse possibilities as a result of decoupling of dependency and usage in Bio-Formats readers. Implementations of the initial Bio-Formats services were completed as part of BioFormatsCleanup and tickets \#463\[^70\] and \#464\[^71\].

#### 15.6.2 Writing a service

- **Interface** – The basic form of a service is an interface which inherits from loci.common.services.Service\[^72\]. Here is a very 
  basic example using the (now removed) OMENotesService

  ```java
 public interface OMENotesService extends Service {
 /**
 * Creates a new OME Notes instance.
 * @param filename Path to the file to create a Notes instance for.
 */
 public void newNotes(String filename);
 }
  ```

- **Implementation** – This service then has an implementation, which is usually located in the Bio-Formats component or 
  package which imports classes from an external, dynamic or other dependency. Again looking at the OMENotesService:

  ```java
 public class OMENotesServiceImpl extends AbstractService
 implements OMENotesService {
 /**
 * Default constructor.
 */
 }
  ```

[^65]: http://velocity.apache.org/
[^70]: https://trac.openmicroscopy.org/ome/ticket/463
[^71]: https://trac.openmicroscopy.org/ome/ticket/464
[^72]: http://downloads.openmicroscopy.org/latest/bio-formats5.2/api/loci/common/services/Service.html
public OMENotesServiceImpl() {
    checkClassDependency(Notes.class);
}

/* (non-Javadoc)
 * @see loci.formats.dependency.OMENotesService#newNotes()
 */
public void newNotes(String filename) {
    new Notes(null, filename);
}

• Style
  – Extension of AbstractService to enable uniform runtime dependency checking is recommended. Java does not
    check class dependencies until classes are first instantiated so if you do not do this, you may end up with
    ClassNotChecked or the like exceptions being emitted from your service methods. This is to be strongly
discouraged. If a service has unresolvable classes on its CLASSPATH instantiation should fail, not service method
invocation.
  – Service methods should not burden the implementer with numerous checked exceptions. Also external dependency
exception instances should not be allowed to directly leak from a service interface. Please wrap these using a Ser-
viceException.
  – By convention both the interface and implementation are expected to be in a package named loci.*.services.
This is not a hard requirement but should be followed where possible.

• Registration – A service’s interface and implementation must finally be registered with the
loci.common.services.ServiceFactory via the services.properties file. Following the OMENotesService
again, here is an example registration:

... # OME notes service (implementation in legacy ome-notes component)
loci.common.services.OMENotesService=loci.ome.notes.services.OMENotesServiceImpl
...

See also:
loci.common.services.Service. Source code for loci.common.services.Service interface
loci.common.services.ServiceFactory. Source code for loci.common.services.Service interface

15.6.3 Using a service

OMENotesService service = null;
try {
    ServiceFactory factory = new ServiceFactory();
    service = factory.getInstance(OMENotesService.class);
} catch (DependencyException de) {
    LOGGER.info("", de);
} ...

73http://downloads.openmicroscopy.org/latest/bio-formats-5.2/api/loci/common/services/ServiceFactory.html
15.7 Code generation with xsd-fu

xsd-fu is a Python application designed to digest OME XML schema and produce an object-oriented Java infrastructure to ease work with an XML DOM tree. It is usually run automatically when building from source (see Building from source) and so running it by hand should not be needed. xsd-fu is primarily used to generate the OME-XML model objects, enums and enum handlers, plus the MetadataStore and MetadataRetrieve interfaces and implementations.

15.7.1 Available options

-d, --dry-run
Run all source generation processing, but don’t write output files. In combination with --print-depends or --print-generated, this option may be used to dynamically introspect command dependencies and output to create build rules on the fly for e.g. cmake.

--debug
Enable xsd-fu debugging messages and template debugging. The code templates contain diagnostic messages to debug the template processing, which are normally suppressed in the code output; enabling debugging will add these diagnostic messages to the generated code.

-l language, --language=language
Generate code for the specified language. Currently supported options are C++ and Java.

--metadata-package=package
Package or namespace for the metadata store and retrieve classes.

--ome-xml-metadata-package=package
Package or namespace for the OME-XML metadata classes.

--ome-xml-model-package=package
Package or namespace for the OME-XML model classes.

--ome-xml-model-enums-package=package
Package or namespace for the OME-XML model enum classes.

--ome-xml-model-enum-handlers-package=package
Package or namespace for the OME-XML model enum handler classes.

-o dir, --output-directory=dir
Output generated code into the specified directory. The directory will be created if it does not already exist. Note that the directory is the root of the source tree; generated classes will be placed into the appropriate module-specific locations under this root.

--print-depends
Print a list of the files required during template processing, including schema files, templates and custom template fragments. Particularly useful with --dry-run to introspect command dependencies.

--print-generated
Print a list of the files generated during template processing. Particularly useful with --dry-run to determine what a given command would generate.

-q, --quiet
Do not print names of generated files.

-t path, --template-path=path
Path to search for Genshi template files. Defaults to the language-specific template directory in components/xsd-fu.

-n, --xsd-namespace
XML schema namespace to use. Defaults to xsd:

-v, --verbose
Print names of generated files as they are processed.

15.7.2 Available commands

• doc_gen
15.7.3 Running the code generator

Run xsd-fu script with no arguments to examine the syntax:

```bash
./components/xsd-fu/xsd-fu
Error: Missing subcommand
```

xsd-fu: Generate classes from an OME-XML schema definition
Usage: ./components/xsd-fu/xsd-fu command [options...] -o output_dir schema_files...

Options:
- `--dry-run` Do not create output files
- `--debug` Enable xsd-fu and template debugging
- `--language=lang` Generated language
- `--metadata-package=pkg` Metadata package
- `--ome-xml-metadata-package=pkg` OME-XML metadata class package
- `--ome-xml-model-package=pkg` OME-XML model package
- `--ome-xml-model-enum-package=pkg` OME-XML model enum package
- `--ome-xml-model-enum-handler-package=pkg` OME-XML model enum handler package
- `--output-directory=dir` Generated output directory
- `--quiet` Do not output file names
- `--template-path=path` Genshi template path
- `--verbose` Output generated file names
- `--xsd-namespace=namespace` XML schema namespace

Available subcommands:
- `debug`
- `doc_gen`
- `omexml_model_enum_handlers`
- `omexml_model Enums`
- `omexml_model`
- `metadata`
- `omero_metadata`
- `omero_model`
- `omexml_metadata`
- `tab_gen`

Default XSD namespace: "xsd:"

Default Java OME-XML package: "ome.xml.model"
Default Java OME-XML enum package: "ome.xml.model.enums"
Default Java OME-XML enum handler package: "ome.xml.model.enums.handlers"
Default Java metadata package: "loci.formats.meta"
Default Java OME-XML metadata package: "loci.formats.ome"
Default C++ OME-XML package: "ome::xml::model"
Default C++ OME-XML enum package: "ome::xml::model::enums"
Default C++ metadata package: "ome::xml::meta"
Default C++ OME-XML metadata package: "ome::xml::meta"

Examples:
./components/xsd-fu/xsd-fu -l Java -n 'xsd:' --ome-xml-model-package=ome.xml.model -o omexml /path/to/schemas/ome.xsd
./components/xsd-fu/xsd-fu -l C++ -n 'xsd:' --ome-xml-model-package=ome::xml::model -o omexml /path/to/schemas/ome.xsd

Report bugs to OME Devel <ome-devel@lists.openmicroscopy.org.uk>

Note: It should not be necessary to run it by hand for a normal Bio-Formats build. xsd-fu is run automatically as part of the main Bio-Formats build from version 5.0 when building the ome-xml and scifio components. It is still useful to run by hand when debugging, or using non-standard targets.

15.7.4 Generating the OME-XML Java model and metadata classes

The following sections outline how to generate parts of the OME-XML Java interfaces and implementations for the object model and metadata store, which are composed of:

- OME model objects
- enumerations for OME model properties
- enumeration handlers for regular expression matching of enumeration strings
- Metadata store and Metadata retrieve interfaces for all OME model properties
- various implementations of Metadata store and/or Metadata retrieve interfaces

All of the above can be generated by this Ant command:

$ cd components/ome-xml
$ ant generate-source

Run:

$ ant generate-source -v

to see the command-line options used.

15.7.5 Working with Enumerations and Enumeration Handlers

XsdFu code generates enumeration regular expressions using a flexible configuration file.

Each enumeration has a key-value listing of regular expression to exact enumeration value matches. For example:

[Correction]
".*Pl.*Apo.*" = "PlanApo"
".*Pl.*Flu.*" = "PlanFluor"
".*Pl.*Fluc.*" = "PlanFluar"
".*S.*Flu.*" = "SuperFluor"
".*N.*Fluo.*" = "Neofluar"
".*Fluo.*" = "Fluotar"
".*Fluar.*" = "Fluor"
".*Fluc.*" = "Fluar"
".*Pl.*Apo.*" = "Apo"

https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/xsd-fu/cfg/enum_handler.cfg
15.7.6 Generate OMERO model specification files

Run xsd-fu with the omero_model subcommand.

15.7.7 Special thanks

A special thanks goes out to Dave Kuhlman\(^{77}\) for his fabulous work on generateDS\(^{78}\) which xsd-fu makes heavy use of internally.

15.8 Scripts for performing development tasks

The tools directory contains several scripts which are useful for building and performing routine updates to the code base.

15.8.1 bump_maven_version.py

This updates the Maven POM version numbers for all pom.xml files that set groupId to ome. The script takes a single argument, which is the new version. For example, to update the POM versions prior to release:

```
./tools/bump_maven_version.py 5.1.0
```

and to switch back to snapshot versions immediately after release:

```
./tools/bump_maven_version.py 5.1.1-SNAPSHOT
```

15.8.2 test-build

This is the script used by Travis to test each commit. It compiles and runs tests on each of the components in the Bio-Formats repository according to the arguments specified. Valid arguments are:

- clean: cleans the Maven build directories
- maven: builds all Java components using Maven and runs unit tests
- cpp: builds the native C++ code alone
- sphinx: builds the Sphinx documentation alone
- ant: builds all Java components using Ant and runs unit tests
- all: equivalent of clean maven sphinx ant

15.8.3 update_copyright

This updates the end year in the copyright blocks of all source code files. The command takes no arguments, and sets the end year to be the current year. As update_copyright is a Bash script, it is not intended to be run on Windows.

See open Trac tickets for Bio-Formats\(^{79}\) for information on work currently planned or in progress.

For more general guidance about how to contribute to OME projects, see the Contributing developers documentation\(^{80}\).

---

\(^{77}\)http://www.davekuhlman.org/

\(^{78}\)http://www.davekuhlman.org/generateDS.html

\(^{79}\)https://trac.openmicroscopy.org/ome/report/44

\(^{80}\)http://www.openmicroscopy.org/site/support/contributing/index.html
Part IV

Formats
Bio-Formats supports over 140 different file formats. The Dataset Structure Table explains the file extension you should choose to open/import a dataset in any of these formats, while the Supported Formats table lists all of the formats and gives an indication of how well they are supported and whether Bio-Formats can write, as well as read, each format. The Summary of supported metadata fields table shows an overview of the OME data model fields populated for each format.

**We are always looking for examples of files to help us provide better support for different formats.** If you would like to help, you can upload files using our QA system uploader\(^1\). If you have any questions, or would prefer not to use QA, please email the [ome-users mailing list]\(^2\). If your format is already supported, please refer to the ‘we would like to have’ section on the individual page for that format, to see if your dataset would be useful to us.

All the example files we have permission to share publicly are freely available from our [sample image downloads site]\(^3\).

---

\(^1\)[http://qa.openmicroscopy.org.uk/qa/upload/]

\(^2\)[http://www.openmicroscopy.org/site/community/mailing-lists]

\(^3\)[http://downloads.openmicroscopy.org/images/]
This table shows the extension of the file that you should choose if you want to open/import a dataset in a particular format.

<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM</td>
<td>.aim</td>
<td>Single file</td>
</tr>
<tr>
<td>ARF</td>
<td>.arf</td>
<td>Single file</td>
</tr>
<tr>
<td>Adobe Photoshop</td>
<td>.psd</td>
<td>Single file</td>
</tr>
<tr>
<td>Adobe Photoshop TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Alcon A/AL3D</td>
<td>.al3d</td>
<td>Single file</td>
</tr>
<tr>
<td>Amersham Biosciences GEL</td>
<td>.gel</td>
<td>Single file</td>
</tr>
<tr>
<td>Amira</td>
<td>.am, .amiramesh, .grey, .hx, .labels</td>
<td>Single file</td>
</tr>
<tr>
<td>Analyze 7.5</td>
<td>.img, .hdr</td>
<td>One .img file and one similarly-named .hdr file</td>
</tr>
<tr>
<td>Andor SIF</td>
<td>.sif</td>
<td>Single file</td>
</tr>
<tr>
<td>Animated PNG</td>
<td>.png</td>
<td>Single file</td>
</tr>
<tr>
<td>Aperio AFI</td>
<td>.afi</td>
<td>One .afi file and several similarly-named .svs files</td>
</tr>
<tr>
<td>Aperio SVS</td>
<td>.svs</td>
<td>Single file</td>
</tr>
<tr>
<td>Audio Video Interleave</td>
<td>.avi</td>
<td>Single file</td>
</tr>
<tr>
<td>BD Pathway</td>
<td>.exp, .tif</td>
<td>Multiple files (.exp, .dye, .ltp, …) plus one or more directories containing .tif and .bmp files</td>
</tr>
<tr>
<td>Bio-Rad GEL</td>
<td>.1sc</td>
<td>Single file</td>
</tr>
<tr>
<td>Bio-Rad PIC</td>
<td>.pic, .xml, .raw</td>
<td>One or more .pic files and an optional .lse.xml file</td>
</tr>
<tr>
<td>Bio-Rad SCN</td>
<td>.scn</td>
<td>Single file</td>
</tr>
<tr>
<td>Bitplane Imaris</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bitplane Imaris 3 (TIFF)</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bitplane Imaris 5.5 (HDF)</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bruker</td>
<td>(no extension)</td>
<td>One ‘fid’ and one ‘acqp’ plus several other metadata files and a ‘pdata’ directory</td>
</tr>
<tr>
<td>Burleigh</td>
<td>.img</td>
<td>Single file</td>
</tr>
<tr>
<td>Canon RAW</td>
<td>.cr2, .crw, .jpg, .thm, .wav</td>
<td>Single file</td>
</tr>
<tr>
<td>CellH5 (HDF)</td>
<td>.ch5</td>
<td>Single file</td>
</tr>
<tr>
<td>CellSens VSI</td>
<td>.vsi, .ets</td>
<td>One .vsi file and an optional directory with a similar name that contains at least one subdirectory with .ets files</td>
</tr>
<tr>
<td>CellVoyager</td>
<td>.tif, .xml</td>
<td>Directory with 2 master files ‘MeasurementResult.xml’ and ‘MeasurementResult.ome.xml’, used to stitch together several TIF files.</td>
</tr>
<tr>
<td>CellWorx</td>
<td>.pnl, .htd, .log</td>
<td>One .htd file plus one or more .pnl or .tif files and optionally one or more .log files</td>
</tr>
<tr>
<td>Cellomics C01</td>
<td>.c01, .dib</td>
<td>One or more .c01 files</td>
</tr>
<tr>
<td>Compix Simple-PCI</td>
<td>.cxd</td>
<td>Single file</td>
</tr>
<tr>
<td>DICOM</td>
<td>.dcm, .dcm, .dicom, .jp2, .j2ki, .j2kr, .raw, .ima</td>
<td>One or more .dcm or .dicom files</td>
</tr>
<tr>
<td>DNG</td>
<td>.cr2, .crw, .jpg, .thm, .wav, .tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Format name</td>
<td>File to choose</td>
<td>Structure of files</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Deltavision</td>
<td>.dv, .r3d, .r3d_d3d,</td>
<td>One .dv, .r3d, or .d3d file and up to two optional .log files</td>
</tr>
<tr>
<td>ECAT7</td>
<td>.v</td>
<td>Single file</td>
</tr>
<tr>
<td>Encapsulated PostScript</td>
<td>.eps, .epsi, .ps</td>
<td>Single file</td>
</tr>
<tr>
<td>Evotec Flex</td>
<td>.flex, .mea, .res</td>
<td>One directory containing one or more .flex files, and an optional directory containing an .mea and .res file. The .mea and .res files may also be in the same directory as the .flex file(s).</td>
</tr>
<tr>
<td>FEI TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>FEI/Philips</td>
<td>.img</td>
<td>Single file</td>
</tr>
<tr>
<td>Flexible Image Transport</td>
<td>.fits, .fts</td>
<td>Single file</td>
</tr>
<tr>
<td>FlowSight</td>
<td>.cif</td>
<td>Single file</td>
</tr>
<tr>
<td>Fuji LAS 3000</td>
<td>.img, .inf</td>
<td>Single file</td>
</tr>
<tr>
<td>Gatan DM2</td>
<td>.dm2</td>
<td>Single file</td>
</tr>
<tr>
<td>Gatan Digital Micrograph</td>
<td>.dm3, .dm4</td>
<td>Single file</td>
</tr>
<tr>
<td>Graphics Interchange Format</td>
<td>.gif</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu Aquacosmos</td>
<td>.naf</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu HIS</td>
<td>.his</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu NDPI</td>
<td>.ndpi</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu NDPIIS</td>
<td>.ndpis</td>
<td>One .ndpis file and at least one .ndpi file</td>
</tr>
<tr>
<td>Hamamatsu VMS</td>
<td>.vms</td>
<td>One .vms file plus several .jpg files</td>
</tr>
<tr>
<td>Hitachi</td>
<td>.txt</td>
<td>One .txt file plus one similarly-named .tif, .bmp, or .jpg file</td>
</tr>
<tr>
<td>I2I</td>
<td>.i2i</td>
<td>Single file</td>
</tr>
<tr>
<td>IMAGIC</td>
<td>.hed, .img</td>
<td>One .hed file plus one similarly-named .img file</td>
</tr>
<tr>
<td>IMOD</td>
<td>.mod</td>
<td>Single file</td>
</tr>
<tr>
<td>INR</td>
<td>.inr</td>
<td>Single file</td>
</tr>
<tr>
<td>IPLab</td>
<td>.ipl</td>
<td>Single file</td>
</tr>
<tr>
<td>IVision</td>
<td>.ipm</td>
<td>Single file</td>
</tr>
<tr>
<td>Imacon</td>
<td>.tif</td>
<td>Single file</td>
</tr>
<tr>
<td>Image Cytometry Standard</td>
<td>.ics, .ids</td>
<td>One .ics and possibly one .ids with a similar name</td>
</tr>
<tr>
<td>Image-Pro Sequence</td>
<td>.seq</td>
<td>Single file</td>
</tr>
<tr>
<td>Image-Pro Workspace</td>
<td>.ipw</td>
<td>Single file</td>
</tr>
<tr>
<td>Improvision TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>InCell 1000/2000</td>
<td>.xdce, .xml, .tiff,</td>
<td>One .xdce file with at least one .tif/.tiff or .im file</td>
</tr>
<tr>
<td>InCell 3000</td>
<td>.frm</td>
<td>Single file</td>
</tr>
<tr>
<td>Inveon</td>
<td>.hdr</td>
<td>One .hdr file plus one similarly-named file</td>
</tr>
<tr>
<td>JEOL</td>
<td>.dat, .img, .par</td>
<td>A single .dat file or an .img file with a similarly-named .par file</td>
</tr>
<tr>
<td>JPEG</td>
<td>.jpg, jpeg, .jpe</td>
<td>Single file</td>
</tr>
<tr>
<td>JPEG-2000</td>
<td>.jp2, .j2k, .jpf</td>
<td>Single file</td>
</tr>
<tr>
<td>JPK Instruments</td>
<td>.jpk</td>
<td>Single file</td>
</tr>
<tr>
<td>JPF</td>
<td>.jp[x]</td>
<td>Single file</td>
</tr>
<tr>
<td>Khoros XV</td>
<td>.xv</td>
<td>Single file</td>
</tr>
<tr>
<td>Kodak Molecular Imaging</td>
<td>.bip</td>
<td>Single file</td>
</tr>
<tr>
<td>LEO</td>
<td>.sxm, .tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>LI-FLIM</td>
<td>.fli</td>
<td>Single file</td>
</tr>
<tr>
<td>Laboratory Imaging</td>
<td>.lim</td>
<td>Single file</td>
</tr>
<tr>
<td>Lavision Inspector</td>
<td>.msr</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica</td>
<td>.lei, .tif, .tiff, .raw</td>
<td>One .lei file with at least one .tif/.tiff file and an optional .txt file</td>
</tr>
<tr>
<td>Leica Image File Format</td>
<td>.tif</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica SCN</td>
<td>.scn</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica TCS TIFF</td>
<td>.tif, .tiff, .xml</td>
<td>Single file</td>
</tr>
<tr>
<td>Format name</td>
<td>File to choose</td>
<td>Structure of files</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>Li-Cor L2D</td>
<td>.l2d, .scn, .tif</td>
<td>One .l2d file with one or more directories containing .tif/.tiff files</td>
</tr>
<tr>
<td>MIAS</td>
<td>.tif, .tiff, .txt</td>
<td>One directory per plate containing one directory per well, each with one or more .tif/.tiff files</td>
</tr>
<tr>
<td>MINC MRI</td>
<td>.mnc</td>
<td>Single file</td>
</tr>
<tr>
<td>Medical Research Council</td>
<td>.mrc, .st, .ali, .map, .rec, .mrcs</td>
<td>Single file</td>
</tr>
<tr>
<td>Metamorph STK</td>
<td>.stk, .nd, .tif, .tiff</td>
<td>One or more .stk or .tif/.tifffiles plus an optional .nd file</td>
</tr>
<tr>
<td>Metamorph TIFF</td>
<td>.tif, .tiff</td>
<td>One or more .tif/.tifffiles</td>
</tr>
<tr>
<td>Micro-Manager</td>
<td>.tif, .tif, .txt, .xml</td>
<td>A file ending in ‘metadata.txt’ plus one or more .tif files</td>
</tr>
<tr>
<td>Minolta MRW</td>
<td>.mrw</td>
<td>Single file</td>
</tr>
<tr>
<td>Molecular Imaging Graphics</td>
<td>.stp</td>
<td>Single file</td>
</tr>
<tr>
<td>Multiple-image Network</td>
<td>.mng</td>
<td>Single file</td>
</tr>
<tr>
<td>NIHII</td>
<td>.nii, .img, .hdr, .nii.gz</td>
<td>A single .nii file or a single .nii.gz file or one .img file and a similarly-named .hdr file</td>
</tr>
<tr>
<td>NOAA-HRD Gridded Data Format</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>NRRD</td>
<td>.nrrd, .nhdr</td>
<td>A single .nrrd file or one .nhdr file and one other file containing the pixels</td>
</tr>
<tr>
<td>Nikon Elements TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon ND2</td>
<td>.nd2</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon NEF</td>
<td>.nef, .tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>OBF</td>
<td>.obf, .msr</td>
<td>OBFF file</td>
</tr>
<tr>
<td>OME-TIFF</td>
<td>.ome.tiff, .ome.tif, .ome.tif2, .ome.tif8, .ome.btf, .openion.ome</td>
<td>One or more .ome.tif files</td>
</tr>
<tr>
<td>OME-XML</td>
<td>.ome, .ome.xml</td>
<td>Single file</td>
</tr>
<tr>
<td>Olympus APL</td>
<td>.apl, .plb, .mtb, .tif</td>
<td>One .apl file, one .mtb file, one .tab file, and a directory containing one or more .tif files</td>
</tr>
<tr>
<td>Olympus FV1000</td>
<td>.oib, .oif, .pty, .lut</td>
<td>Single .oib file or one .oif file and a similarly-named directory containing .tif/.tifffiles</td>
</tr>
<tr>
<td>Olympus Fluoview/ABD TIFF</td>
<td>.tif, .tiff</td>
<td>One or more .tif/.tifffiles, and an optional .txt file</td>
</tr>
<tr>
<td>Olympus SIS TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Olympus ScanR</td>
<td>.dat, .xml, .tif</td>
<td>One .xml file, one ‘data’ directory containing .tif/.tifffiles, and optionally two .dat files</td>
</tr>
<tr>
<td>Olympus Slidebook</td>
<td>.sld, .spl</td>
<td>Single file</td>
</tr>
<tr>
<td>Openlab LIFT</td>
<td>.liff</td>
<td>Single file</td>
</tr>
<tr>
<td>Openlab RAW</td>
<td>.raw</td>
<td>Single file</td>
</tr>
<tr>
<td>Oxford Instruments</td>
<td>.top</td>
<td>Single file</td>
</tr>
<tr>
<td>PCO-RAW</td>
<td>.pcoraw, .rec</td>
<td>A single .pcoraw file with a similarly-named .rec file</td>
</tr>
<tr>
<td>PCX</td>
<td>.pce</td>
<td>Single file</td>
</tr>
<tr>
<td>PICT</td>
<td>.pict, .pct</td>
<td>Single file</td>
</tr>
<tr>
<td>POV-Ray</td>
<td>.df3</td>
<td>Single file</td>
</tr>
<tr>
<td>Perkin Elmer Densitometer</td>
<td>.hdr, .img</td>
<td>One .hdr file and a similarly-named .img file</td>
</tr>
<tr>
<td>Perkin-Elmer Nuance IM3</td>
<td>.im3</td>
<td>Single file</td>
</tr>
<tr>
<td>PerkinElmer</td>
<td>.ano, .cfg, .csv, .htm, .rec, .tim, .zpo, .tif</td>
<td>One .htm file, several other metadata files (.tim, .ano, .csv, ....) and either .tif files or .2, .3, .4, etc. files</td>
</tr>
<tr>
<td>PerkinElmer Operetta</td>
<td>.tif, .tif, .xml</td>
<td>Directory with XML file and one .tif/.tifffile per plane</td>
</tr>
<tr>
<td>PicoQuant Bin</td>
<td>.bin</td>
<td>Single file</td>
</tr>
<tr>
<td>Portable Any Map</td>
<td>.pmb, .pgm, .ppm</td>
<td>Single file</td>
</tr>
<tr>
<td>Prairie TIFF</td>
<td>.tif, .tif, .cfg, .env, .xml</td>
<td>Single file</td>
</tr>
<tr>
<td>Princeton Instruments SPE</td>
<td>.spe</td>
<td>Single file</td>
</tr>
<tr>
<td>Pyramid TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
</tbody>
</table>

Continued on next page
Table 16.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quesant AFM</td>
<td>.afm</td>
<td>Single file</td>
</tr>
<tr>
<td>QuickTime</td>
<td>.mov</td>
<td>Single file</td>
</tr>
<tr>
<td>RHK Technologies</td>
<td>.sm2, .sm3</td>
<td>Single file</td>
</tr>
<tr>
<td>SBIG</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>SM Camera</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>SPC FIFO Data</td>
<td>.spc, .set</td>
<td>One .spc file and similarly named .set file</td>
</tr>
<tr>
<td>SPC Image Data</td>
<td>.sdt</td>
<td>Single file</td>
</tr>
<tr>
<td>SPIDER</td>
<td>.spi</td>
<td>Single file</td>
</tr>
<tr>
<td>Seiko</td>
<td>.xqdl, .xqf</td>
<td>Single file</td>
</tr>
<tr>
<td>SimplePCI TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Simulated data</td>
<td>.fake</td>
<td>Single file</td>
</tr>
<tr>
<td>Slidebook TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Tagged Image File Format</td>
<td>.tif, .tif2, .tif8, .tif6</td>
<td>Single file</td>
</tr>
<tr>
<td>Text</td>
<td>.txt, .csv</td>
<td>Single file</td>
</tr>
<tr>
<td>TillVision</td>
<td>.vws, .pst, .inf</td>
<td>One .vws file and possibly one similarly-named directory</td>
</tr>
<tr>
<td>TopoMetrix</td>
<td>.tfr, .ftr, .zfr, .zfp, .zf</td>
<td>Single file</td>
</tr>
<tr>
<td>Trestle</td>
<td>.tif</td>
<td>One .tif file plus several other similarly-named files (e.g. .FocalPlane-, .sl, .sdx, .ROI)</td>
</tr>
<tr>
<td>Truevision Targa</td>
<td>.tga</td>
<td>Single file</td>
</tr>
<tr>
<td>UBM</td>
<td>.pr3</td>
<td>Single file</td>
</tr>
<tr>
<td>Unisoku STM</td>
<td>.hdr, .dat</td>
<td>One .HDR file plus one similarly-named .DAT file</td>
</tr>
<tr>
<td>VG SAM</td>
<td>.dti</td>
<td>Single file</td>
</tr>
<tr>
<td>Varian FDF</td>
<td>.fdf</td>
<td>Single file</td>
</tr>
<tr>
<td>Veeco</td>
<td>.hdf</td>
<td>Single file</td>
</tr>
<tr>
<td>Visitech XYS</td>
<td>.xys, .html</td>
<td>One .html file plus one or more .xys files</td>
</tr>
<tr>
<td>Volocity Library</td>
<td>.mvd2, .aisf, .aiix, .dat, .atsf</td>
<td>One .mvd2 file plus a ‘Data’ directory</td>
</tr>
<tr>
<td>Volocity Library Clipping</td>
<td>.acff</td>
<td>Single file</td>
</tr>
<tr>
<td>WA Technology TOP</td>
<td>.wat</td>
<td>Single file</td>
</tr>
<tr>
<td>Windows Bitmap</td>
<td>.bmp</td>
<td>Single file</td>
</tr>
<tr>
<td>Woolz</td>
<td>.wlz</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss AxioVision TIFF</td>
<td>.tif, .xml</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss CZI</td>
<td>.czi</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss LMS</td>
<td>.lms</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss Laser-Scanning Microscopy</td>
<td>.lsm, .mdb</td>
<td>One or more .lsm files; if multiple .lsm files are present, an .mdb file should also be present</td>
</tr>
<tr>
<td>Zeiss Vision Image (ZVI)</td>
<td>.zvi</td>
<td>Single file</td>
</tr>
<tr>
<td>Zip</td>
<td>.zip</td>
<td>Single file</td>
</tr>
</tbody>
</table>

16.1 Flex Support

OMERO.importer supports importing analyzed Flex files from an Opera system.

Basic configuration is done via the `importer.ini`. Once the user has run the Importer once, this file will be in the following location:

- `C:\Documents and Settings\<username>\omero\importer.ini`

The user will need to modify or add the `[FlexReaderServerMaps]` section of the INI file as follows:

```
[FlexReaderServerMaps]
CIA-1 = \\hostname1\mount;\\archivehost1\mount
CIA-2 = \\hostname2\mount;\\archivehost2\mount
```

where the key of the INI file line is the value of the “Host” tag in the .mea measurement XML file (here: `<Host name="CIA-1">`) and the value is a semicolon-separated list of escaped UNC path names to the Opera workstations where the Flex files reside.

16.1. Flex Support
Once this resolution has been encoded in the configuration file and you have restarted the importer, you will be able to select the .mea measurement XML file from the Importer user interface as the import target.
## SUPPORTED FORMATS

### Ratings legend and definitions

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>BSD</th>
<th>Multiple Images</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>3i SlideBook</td>
<td>.sld</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andor Bio-Imaging Division (ABD) TIFF</td>
<td>.tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM</td>
<td>.aim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alicona 3D</td>
<td>.al3d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amersham Biosciences Gel</td>
<td>.gel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amira Mesh</td>
<td>.am, .ami-&lt;br&gt;ramesh, .grey, .hx, .labels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amnis FlowSight</td>
<td>.cif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyze 7.5</td>
<td>.img, .hdr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animated PNG</td>
<td>.png</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aperio AFI</td>
<td>.afi, .svs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aperio SVS TIFF</td>
<td>.svs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Precision CellWorX</td>
<td>.htd, .pnl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVI (Audio Video Interleave)</td>
<td>.avi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axon Raw Format</td>
<td>.arf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD Pathway</td>
<td>.exp, .tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Becker &amp; Hickl SPC FIFO</td>
<td>.spc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Becker &amp; Hickl SPC Image</td>
<td>.sdt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-Rad Gel</td>
<td>.lsc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-Rad PIC</td>
<td>.pic, .raw, .xml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-Rad SCN</td>
<td>.scn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitplane Imaris</td>
<td>.ims</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruker MRI</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Table 17.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>BSD</th>
<th>Multiple Images</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burleigh</td>
<td>.img</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canon DNG</td>
<td>.cr2, .crw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CellH5</td>
<td>.ch5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellomics</td>
<td>.c01, .dib</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cellSens VSI</td>
<td>.vsi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CellVoyager</td>
<td>.xml, .tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeltaVision</td>
<td>.dv, .r3d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DICOM</td>
<td>.dcm, .dicom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECAT7</td>
<td>.v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS (Encapsulated</td>
<td>.eps, .eps,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostScript)</td>
<td>.ps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evotec/PerkinElmer</td>
<td>.flex, .mea,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opera Flex</td>
<td>.res</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEI</td>
<td>.img</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEI TIFF</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FITS (Flexible Image</td>
<td>.fits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport System)</td>
<td></td>
</tr>
<tr>
<td>Gatan Digital Micrograph</td>
<td>.dm3, .dm4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gatan Digital Micrograph 2</td>
<td>.dm2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIF (Graphics Interchange Format)</td>
<td>.gif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamamatsu Aquacosmos NAF</td>
<td>.naf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamamatsu HIS</td>
<td>.his</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamamatsu ndpi</td>
<td>.ndpi, .ndpis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamamatsu VMS</td>
<td>.vms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hitachi S-4800</td>
<td>.txt, .tif, .bmp, .jpg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2I</td>
<td>.i2i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICS (Image Cytometry</td>
<td>.ics, .ids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard)</td>
<td></td>
</tr>
<tr>
<td>Imacon</td>
<td>.fff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ImagePro Sequence</td>
<td>.seq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ImagePro Workspace</td>
<td>.ipw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMAGIC</td>
<td>.hed, .img</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMOD</td>
<td>.mod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improvision Openlab LIFF</td>
<td>.liff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improvision Openlab Raw</td>
<td>.raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>BSD</th>
<th>Multiple Images</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvision TIFF</td>
<td>.tif</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Inspector OBF</td>
<td>.obf, .msr</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>InCell 1000/2000</td>
<td>.xdce, .tif</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>InCell 3000</td>
<td>.frm</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>INR</td>
<td>.inr</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Inveon</td>
<td>.hdr</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>IPLab</td>
<td>.ipl</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>IVision</td>
<td>.ipm</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>JEOL</td>
<td>.dat, .img, .par</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>JPEG</td>
<td>.jpg</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>JPEG 2000</td>
<td>.jp2</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>JPK</td>
<td>.jpk</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>JPX</td>
<td>.jpx</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Khoros VIFF (Visualization Image File Format) Bitmap</td>
<td>.xv</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Kodak BIP</td>
<td>.bip</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Lambert Instruments FLIM</td>
<td>.fli</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>LaVision Inspector</td>
<td>.msr</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Leica LCS LEI</td>
<td>.lei, .tif</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Leica LAS AF LIF (Leica Image File Format)</td>
<td>.lif</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Leica SCN</td>
<td>.scn</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>LEO</td>
<td>.sxm</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Li-Cor L2D</td>
<td>.12d, .tif, .scn</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>LIM (Laboratory Imaging/Nikon)</td>
<td>.lim</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>MetaMorph 7.5 TIFF</td>
<td>.tiff</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>MetaMorph Stack (STK)</td>
<td>.stk, .nd</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>MIAS (Maia Scientific)</td>
<td>.tif</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Micro-Manager</td>
<td>.tif, .txt, .xml</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>MINC MRI</td>
<td>.mnc</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Minolta MRW</td>
<td>.mrw</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>MNG (Multiple-image Network Graphics)</td>
<td>.mng</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Molecular Imaging</td>
<td>.stp</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>MRC (Medical Research Council)</td>
<td>.mrc</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>BSD</th>
<th>Multiple Images</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEF (Nikon Electronic Format)</td>
<td>.nef, .tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIFTI</td>
<td>.img, .hdr, .nii, .nii.gz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nikon Elements TIFF</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nikon EZ-C1 TIFF</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nikon NIS-Elements ND2</td>
<td>.nd2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRRD (Nearly Raw Raster Data)</td>
<td>.nrrd, .nhdr, .raw, .txt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olympus CellR/APL</td>
<td>.apl, .mtb, .tnb, .tif, .obsep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olympus FluoView FV1000</td>
<td>.oib, .oif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olympus FluoView TIFF</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olympus ScanR</td>
<td>.xml, .dat, .tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olympus SIS TIFF</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OME-TIFF</td>
<td>.ome.tiff, .ome.tif, .ome.tif2, .ome.tif8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OME-XML</td>
<td>.ome, .ome.xml2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxford Instruments</td>
<td>.top</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCORAW</td>
<td>.pcoraw, .rec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCX (PC Paintbrush)</td>
<td>.pcx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perkin Elmer Densitometer</td>
<td>.pds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PerkinElmer Nuance Operaetta</td>
<td>.im3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PerkinElmer UltraVIEW</td>
<td>.tiff, .xml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portable Any Map</td>
<td>.pbbm, .pgm, .ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adobe Photoshop PSD</td>
<td>.psd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photoshop TIFF</td>
<td>.tiff, .tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PicoQuant Bin</td>
<td>.bin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>BSD</th>
<th>Multiple Images</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICT (Macintosh Picture)</td>
<td>.pict</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNG (Portable Network Graphics)</td>
<td>.png</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prairie Technologies TIFF</td>
<td>.tif, .xml, .cfg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Princeton Instruments SPE</td>
<td>.spe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Questant</td>
<td>.afm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickTime Movie</td>
<td>.mov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHK</td>
<td>.sm2, .sm3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBIG</td>
<td></td>
</tr>
<tr>
<td>Seiko</td>
<td>.xqd, .xqf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SimplePCI &amp; HCImage</td>
<td>.cxd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SimplePCI &amp; HCImage TIFF</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM Camera</td>
<td></td>
</tr>
<tr>
<td>SPIDER</td>
<td>.spi, .stk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Targa</td>
<td>.tga</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>.txt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIFF (Tagged Image File Format)</td>
<td>.tiff, .tif, .tif2, .tif8, .btf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TillPhotonics TillVision</td>
<td>.vws</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topometrix</td>
<td>.tfr, .tfr, .zfr, .zfp, .2fl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trestle</td>
<td>.tifs, .sid, .jpg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UBM</td>
<td>.pr3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unisoku</td>
<td>.dat, .hdr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varian FDF</td>
<td>.fdf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veeo AFM</td>
<td>.hdf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VG SAM</td>
<td>.dti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VisiTech XYS</td>
<td>.xys, .html</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>.mvd2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volocity Library Clipping</td>
<td>.acff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WA-TOP</td>
<td>.wat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows Bitmap</td>
<td>.bmp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woolz</td>
<td>.wlz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeiss Axios CSM</td>
<td>.ims</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeiss AxioVision TIFF</td>
<td>.xml, .tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Bio-Formats currently supports 144 formats.

Ratings legend and definitions

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>BSD</th>
<th>Multiple Images</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Outstanding]</td>
<td>![Very good]</td>
<td>![Good]</td>
<td>![Fair]</td>
<td>![Poor]</td>
<td>![X]</td>
<td>![X]</td>
<td>![X]</td>
<td>![X]</td>
</tr>
</tbody>
</table>

**Pixels**  Our estimation of Bio-Formats’ ability to reliably extract complete and accurate pixel values from files in that format. The better this score, the more confident we are that Bio-Formats will successfully read your file without displaying an error message or displaying an erroneous image.

**Metadata**  Our certainty in the thoroughness and correctness of Bio-Formats’ metadata extraction and conversion from files of that format into standard OME-XML. The better this score, the more confident we are that all meaningful metadata will be parsed and populated as OME-XML.

**Openness**  This is not a direct expression of Bio-Formats’ performance, but rather indicates the level of cooperation the format’s controlling interest has demonstrated toward the scientific community with respect to the format. The better this score, the more tools (specification documents, source code, sample files, etc.) have been made available.

**Presence**  This is also not directly related to Bio-Formats, but instead represents our understanding of the format’s popularity, and is also as a measure of compatibility between applications. The better this score, the more common the format and the more software packages include support for it.

**Utility**  Our opinion of the format’s suitability for storing metadata-rich microscopy image data. The better this score, the wider the variety of information that can be effectively stored in the format.

**Export**  This indicates whether Bio-Formats is capable of writing the format (Bio-Formats can read every format on this list).

**BSD**  This indicates whether format is BSD-licensed. By default, format readers and writers are GPL-licensed.

**Multiple Images**  This indicates whether the format can store multiple Images (in OME-XML terminology) or series (in Bio-Formats API terminology).

**Pyramid**  This indicates whether the format can store a single image at multiple resolutions, typically referred to as an image pyramid.

### 17.1 3i SlideBook

Extensions: .sld

Developer: Intelligent Imaging Innovations

Owner: Intelligent Imaging Innovations


Support

BSD-licensed: ✓

Export: ✓

Officially Supported Versions: 4.1, 4.2, 5.0, 5.5, 6.0

Reader: SlidebookReader (Source Code⁶, Supported Metadata Fields)

We currently have:

• Numerous SlideBook datasets

We would like to have:

• A SlideBook specification document

• More SlideBook datasets (preferably acquired with the most recent SlideBook software)

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▲

Utility: ▼

Additional Information

We strongly encourage users to export their .sld files to OME-TIFF using the SlideBook software. Bio-Formats is not likely to support the full range of metadata that is included in .sld files, and so exporting to OME-TIFF from SlideBook is the best way to ensure that all metadata is preserved. Free software from 3i can export the files to OME-TIFF post-acquisition, see https://www.slidebook.com/reader.php.

3i also develops a native SlideBook reader which works with Bio-Formats. See http://www.openmicroscopy.org/info/slidebook for details.

See also:

Slidebook software overview⁷

17.2 Andor Bio-Imaging Division (ABD) TIFF

Extensions: .tif

Developer: Andor Bioimaging Department

Owner: Andor Technology⁸

Support

BSD-licensed: ✓

Export: ✓

Officially Supported Versions:

Reader: FluoviewReader (Source Code⁹, Supported Metadata Fields)

We currently have:

• an ABD-TIFF specification document (from 2005 November, in PDF)

⁶https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/SlidebookReader.java
⁷https://www.slidebook.com
⁸http://www.andor.com/
⁹https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/FluoviewReader.java
• a few ABD-TIFF datasets

We would like to have:

**Ratings**

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

**Additional Information**

Please note that while we have specification documents for this format, we are not able to distribute them to third parties. With a few minor exceptions, the ABD-TIFF format is identical to the Fluoview TIFF format.

### 17.3 AIM

Extensions: .aim

Developer: **SCANCO Medical AG**

**Support**

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:

Reader: AIMReader (*Source Code*[^11], *Supported Metadata Fields*)

We currently have:

• one .aim file

We would like to have:

• an .aim specification document

• more .aim files

**Ratings**

Pixels: ▼
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

### 17.4 Alicona 3D

Extensions: .al3d

Owner: **Alicona Imaging**[^12]

**Support**

[^10]: [http://www.scanco.ch](http://www.scanco.ch)
Bio-Formats Documentation, Release 5.2.2

BSD-licensed: ❌
Export: ❌

Officially Supported Versions: 1.0

Reader: AliconaReader (Source Code\textsuperscript{13}, Supported Metadata Fields)

We currently have:
- an AL3D specification document (v1.0, from 2003, in PDF)
- a few AL3D datasets

We would like to have:
- more AL3D datasets (Z series, T series, 16-bit)

\textbf{Ratings}

Pixels: ▶
Metadata: ▶
Openness: ▶
Presence: ▼
Utility: ▼

\textbf{Additional Information}

Known deficiencies:
- Support for 16-bit AL3D images is present, but has never been tested.
- Texture data is currently ignored.

\section*{17.5 Amersham Biosciences Gel}

Extensions: .gel
Developer: Molecular Dynamics
Owner: GE Healthcare Life Sciences\textsuperscript{14}

\textbf{Support}

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: GelReader (Source Code\textsuperscript{15}, Supported Metadata Fields)

We currently have:
- a GEL specification document (Revision 2, from 2001 Mar 15, in PDF)
- a few GEL datasets

We would like to have:

\textbf{Ratings}

Pixels: ▶
Metadata: ▶

\textsuperscript{13}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/AliconaReader.java
\textsuperscript{14}http://www.gelifesciences.com/
\textsuperscript{15}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/GelReader.java
Openness: ☐
Presence: ▼
Utility: ▼

Additional Information
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:
GEL Technical Overview 16

17.6 Amira Mesh

Extensions: .am, .amiramesh, .grey, .hx, .labels
Developer: Visage Imaging 17

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: AmiraReader (Source Code 18, Supported Metadata Fields)

We currently have:
• a few Amira Mesh datasets

We would like to have:
• more Amira Mesh datasets

Ratings
Pixels: ▲
Metadata: ☐
Openness: ▼
Presence: ▼
Utility: ▼

17.7 Amnis FlowSight

Extensions: .cif
Owner: Amnis 19

Support
BSD-licensed: ✔
Export: ✗

Officially Supported Versions:
Reader: FlowSightReader (Source Code 20, Supported Metadata Fields)

---
16 http://www.awaresystems.be/imaging/tiff/tifftags/docs/gel.html
17 http://www.amiravis.com/
18 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/AmiraReader.java
19 http://www.amnis.com/
20 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/FlowSightReader.java
We currently have:

- a few sample datasets

We would like to have:

**Ratings**

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

### 17.8 Analyze 7.5

Extensions: .img, .hdr

Developer: Mayo Foundation Biomedical Imaging Resource

Support

BSD-licensed: 
Export: 

Officially Supported Versions:


We currently have:

- an Analyze 7.5 specification document
- several Analyze 7.5 datasets

We would like to have:

**Ratings**

Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

### 17.9 Animated PNG

Extensions: .png

Developer: The Animated PNG Project

Support

BSD-licensed: ✔
Export: ✔

---

21[http://www.mayo.edu/bir](http://www.mayo.edu/bir)
22[https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/AnalyzeReader.java](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/AnalyzeReader.java)
Officially Supported Versions:

Reader: APNGReader (Source Code\textsuperscript{25}, Supported Metadata Fields)

Writer: APNGWriter (Source Code\textsuperscript{26})

Freely Available Software:

- Firefox 3+\textsuperscript{27}
- Opera 9.5+\textsuperscript{28}
- K'Squirrel\textsuperscript{29}

We currently have:

- a specification document\textsuperscript{30}
- several APNG files

We would like to have:

Ratings

Pixels: \(\uparrow\)

Metadata: \(\uparrow\)

Openness: \(\uparrow\)

Presence:

Utility: \(\downarrow\)

17.10 Aperio AFI

Extensions: .afi, .svs

Owner: Aperio\textsuperscript{31}

Support

BSD-licensed: \(\times\)

Export: \(\times\)

Officially Supported Versions:

Reader: AFIReader (Source Code\textsuperscript{32}, Supported Metadata Fields)

We currently have:

- several AFI datasets

We would like to have:

Ratings

Pixels: \(\uparrow\)

Metadata: \(\uparrow\)

Openness: \(\uparrow\)

Presence:

\textsuperscript{25}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/APNGReader.java

\textsuperscript{26}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/out/APNGWriter.java

\textsuperscript{27}http://www.mozilla.com/firefox

\textsuperscript{28}http://www.opera.com/download

\textsuperscript{29}http://ksquirrel.sourceforge.net/download.php

\textsuperscript{30}http://wiki.mozilla.org/APNG_Specification

\textsuperscript{31}http://www.aperio.com/

\textsuperscript{32}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/AFIReader.java
17.11 Aperio SVS TIFF

Extensions: .svs
Owner: Aperio
Support
BSD-licensed: 
Export: 
Officially Supported Versions: 8.0, 8.2, 9.0
Reader: SVSReader (Source Code, Supported Metadata Fields)

We currently have:
- many SVS datasets
- public sample images
- an SVS specification document
- the ability to generate additional SVS datasets

We would like to have:

Ratings
Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

Additional Information
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:
Aperio ImageScope

17.12 Applied Precision CellWorX

Extensions: .htd, .pnl
Developer: Applied Precision
Support

33http://www.leicabiosystems.com/index.php?id=8991
34http://www.aperio.com/
35https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/SVSReader.java
36http://downloads.openmicroscopy.org/images/SVS/
37http://www.leicabiosystems.com/index.php?id=8991
38http://www.api.com
17.13 AVI (Audio Video Interleave)

Extensions: .avi

Developer: Microsoft

Support

BSD-licensed: ✔

Export: ✔

Officially Supported Versions:

Reader: AVIReader (Source Code, Supported Metadata Fields)

Wecurrentlyhave:

• several AVI datasets

We would liketo have:

• more AVI datasets, including:
  – files with audio tracks and/or multiple video tracks
  – files compressed with a common unsupported codec
  – 2+ GB files

---

39https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/CellWorxReader.java
40http://www.microsoft.com/
41https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/AVIReader.java
42https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/out/AVIWriter.java
44http://rsb.info.nih.gov/j/plugins/avi.html
Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▲
Utility: ▼

Additional Information

- Bio-Formats can save image stacks as AVI (uncompressed).
- The following codecs are supported for reading:
  - Microsoft Run-Length Encoding (MSRLE)
  - Microsoft Video (MSV1)
  - Raw (uncompressed)
  - JPEG

See also:

AVI RIFF File Reference[^55] AVI on Wikipedia[^16]

17.14 Axon Raw Format

Extensions: .arf
Owner: INDECBioSystems[^17]

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: ARFReader ([Source Code][48], [Supported Metadata Fields](http://www.indecbiosystems.com/imagingworkbench/ApplicationNotes/IWAppNote11-ARF_File_Format.pdf))

We currently have:

- one ARF dataset
- a specification document[^19]

We would like to have:

- more ARF datasets

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

[^16]: http://en.wikipedia.org/wiki/Audio_Video_Interleave
[^17]: http://www.indecbiosystems.com/
[^48]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ARFReader.java
17.15 BD Pathway

Extensions: .exp, .tif
Owner: BD Biosciences

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: BDReader (Source Code, Supported Metadata Fields)

We currently have:
• a few BD Pathway datasets

We would like to have:
• more BD Pathway datasets

Ratings

Pixels: ▲
Metadata: ▲
Openness: ◼
Presence: ◼
Utility: ◼

17.16 Becker & Hickl SPC FIFO

Extensions: .spc
Owner: Becker-Hickl

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: SPCReader (Source Code, Supported Metadata Fields)

We currently have:
• an SPC specification document
• public sample images

We would like to have:
• more SPC sample files

---

50 http://wwwbdbiosciences.com
51 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/BDReader.java
52 http://www.becker-hickl.de/
53 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/SPCReader.java
54 http://www.becker-hickl.com/handbookphp.htm
55 http://downloads.openmicroscopy.org/images/SPC-FIFO/
Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

- Only files containing frame, line and pixel clock information are currently supported

17.17 Becker & Hickl SPCImage

Extensions: .sdt
Owner: Becker-Hickl

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: SDTReader (Source Code, Supported Metadata Fields)

We currently have:

- an SDT specification document (from 2008 April, in PDF)
- an SDT specification document (from 2006 June, in PDF)
- Becker & Hickl’s SPCImage software
- a large number of SDT datasets
- the ability to produce new datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

56 http://www.becker-hickl.de/
57 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/SDTReader.java
58 http://www.becker-hickl.de/software/tcspc/softwaretcpcspecial.htm
17.18 Bio-Rad Gel

Extensions: .1sc
Owner: Bio-Rad

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: BioRadGelReader (Source Code, Supported Metadata Fields)

We currently have:
• software that can read Bio-Rad Gel files
• several Bio-Rad Gel files

We would like to have:
• a Bio-Rad Gel specification
• more Bio-Rad Gel files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

17.19 Bio-Rad PIC

Extensions: .pic, .raw, .xml
Developer: Bio-Rad
Owner: Carl Zeiss, Inc.

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: BioRadReader (Source Code, Supported Metadata Fields)

Freely Available Software:
• Bio-Rad PIC reader plugin for ImageJ

We currently have:
• a PIC specification document (v4.5, in PDF)
• an older PIC specification document (v4.2, from 1996 December 16, in DOC)
• a large number of PIC datasets
• the ability to produce new datasets

We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▲
Utility: ▲

Additional Information
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

• Commercial applications that support this format include:
  – Bitplane Imaris
  – SVI Huygens

17.20 Bio-Rad SCN

Extensions: .scn
Developer: Bio-Rad
Owner: Bio-Rad

Support
BSD-licensed: ☒
Export: ☒

Officially Supported Versions:
Reader: BioRadSCNReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/BioRadSCNReader.java), [Supported Metadata Fields](#)

We currently have:
• a few Bio-Rad .scn files

We would like to have:

Ratings
Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

---

64[http://www.bitplane.com/]
65[http://svi.nl/]
66[http://www.bio-rad.com]
67[https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/BioRadSCNReader.java]
## 17.21 Bitplane Imaris

Extensions: .ims  
Owner: Bitplane

### Support

BSD-licensed: ☒  
Export: ☒

Officially Supported Versions: 2.7, 3.0, 5.5

Readers:


We currently have:

- an Imaris (RAW) specification document ([from no later than 1997 November 11, in HTML](http://flash.bitplane.com/wda/interfaces/public/faqs/faqsview.cfm?inCat=0&inQuestionID=104))
- Bitplane’s bfFileReaderImaris3N code (from no later than 2005, in C++)
- several older Imaris (RAW) datasets
- one Imaris 3 (TIFF) dataset
- several Imaris 5.5 (HDF) datasets

We would like to have:

- an Imaris 3 (TIFF) specification document
- more Imaris 3 (TIFF) datasets

### Ratings

- **Pixels:** 🔺
- **Metadata:** 🔺
- **Openness:** 🔺
- **Presence:** 🔻
- **Utility:** 🔻

### Additional Information

- **There are three distinct Imaris formats:**
  1. the old binary format (introduced in Imaris version 2.7)
  2. Imaris 3, a TIFF variant (introduced in Imaris version 3.0)
  3. Imaris 5.5, an HDF variant (introduced in Imaris version 5.5)

---

68http://www.bitplane.com/  
69[Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ImarisHDFReader.java)  
70[Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ImarisTiffReader.java)  
71[Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ImarisReader.java)  
72[Imaris FAQ](http://flash.bitplane.com/wda/interfaces/public/faqs/faqsview.cfm?inCat=0&inQuestionID=104)  
17.22 Bruker MRI

Developer: Bruker

Support
BSD-licensed: 
Export: 

Officially Supported Versions:
Reader: BrukerReader (Source Code, Supported Metadata Fields)

Freely Available Software:
- Bruker plugin for ImageJ

We currently have:
- a few Bruker MRI datasets

We would like to have:
- an official specification document

Ratings
Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

17.23 Burleigh

Extensions: .img
Owner: Burleigh Instruments

Support
BSD-licensed: 
Export: 

Officially Supported Versions:
Reader: BurleighReader (Source Code, Supported Metadata Fields)

We currently have:
- Pascal code that can read Burleigh files (from ImageSXM)
- a few Burleigh files

We would like to have:
- a Burleigh file format specification
- more Burleigh files

74 http://www.bruker.com/
75 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/BrukerReader.java
76 http://rsbweb.nih.gov/ij/plugins/bruker.html
77 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/BurleighReader.java
Ratings
Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.24 Canon DNG

Extensions: .cr2, .crw
Developer: Canon

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: DNGReader (Source Code, Supported Metadata Fields)
Freely Available Software:
• IrfanView

We currently have:
• a few example datasets
We would like to have:
• an official specification document

Ratings
Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.25 CellH5

Extensions: .ch5
Developer: CellH5

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:

78 http://canon.com
79 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/DNGReader.java
80 http://www.irfanview.com/
81 http://cellh5.org/
Reader: CellH5Reader (Source Code[^82], Supported Metadata Fields)
Writer: CellH5Writer (Source Code[^83])

Freely Available Software:
- CellH5[^84]

We currently have:
- a few CellH5 datasets

We would like to have:

Ratings
- Pixels: ▲
- Metadata: ▼
- Openness: ▲
- Presence: ▼
- Utility: ▲

17.26 Cellomics

Extensions: .c01, .dib
Developer: Thermo Fisher Scientific[^85]

Support
- BSD-licensed: ❌
- Export: ❌

Officially Supported Versions:
Reader: CellomicsReader (Source Code[^86], Supported Metadata Fields)

We currently have:
- a few Cellomics .c01 datasets
- public .dib sample images[^87]

We would like to have:
- a Cellomics .c01 specification document
- more Cellomics .c01 datasets

Ratings
- Pixels: ▲
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

[^82]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/CellH5Reader.java
[^83]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/out/CellH5Writer.java
[^84]: http://cellh5.org/
[^85]: http://www.thermofisher.com/
[^86]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/CellomicsReader.java
[^87]: http://downloads.openmicroscopy.org/images/HCS/BBBC/
17.27 cellSens VSI

Extensions: .vsi
Developer: Olympus

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: CellSensReader (Source Code, Supported Metadata Fields)
We currently have:
• a few example datasets
We would like to have:
• an official specification document

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

17.28 CellVoyager

Extensions: .xml, .tif
Owner: Yokogawa

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: CellVoyagerReader (Source Code, Supported Metadata Fields)
We currently have:
• a few example datasets
We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
17.29 DeltaVision

Extensions: .dv, .r3d
Owner: GE Healthcare (formerly Applied Precision)

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: DeltavisionReader (Source Code, Supported Metadata Fields)

Freely Available Software:

- DeltaVision Opener plugin for ImageJ

We currently have:

- a DV specification document (v2.10 or newer, in HTML)
- numerous DV datasets
- public sample images

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▲
Utility: ▲

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

- The Deltavision format is based on the Medical Research Council (MRC) file format.
- Commercial applications that support DeltaVision include:
  - Bitplane Imaris
  - SVI Huygens
  - Image-Pro Plus

---

93 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/DeltavisionReader.java
95 http://downloads.openmicroscopy.org/images/DV/
96 http://www.bitplane.com/
97 http://svi.nl/
98 http://www.mediacy.com/
17.30 DICOM

Extensions: .dcm, .dicom

Developer: National Electrical Manufacturers Association\(^{99}\)

Support

BSD-licensed: ✓
Export: ✗

Officially Supported Versions:

Reader: DicomReader (Source Code\(^{100}\), Supported Metadata Fields)

Freely Available Software:

• OsiriX Medical Imaging Software\(^{101}\)
• ezDICOM\(^{102}\)
• Wikipedia’s list of freeware health software\(^{103}\)

Sample Datasets:

• MRI Chest from FreeVol-3D web site\(^{104}\)
• Medical Image Samples from Sebastien Barre’s Medical Imaging page\(^{105}\)
• DICOM sample image sets from OsiriX web site\(^{106}\)

We currently have:

• DICOM specification documents\(^{107}\) (PS 3 - 2007, from 2006 December 28, in DOC and PDF)
• numerous DICOM datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

• DICOM stands for “Digital Imaging and Communication in Medicine”.
• Bio-Formats supports both compressed and uncompressed DICOM files.

If you have a problematic DICOM file which you cannot send us for privacy reasons, please send us the exact error message and be aware that it may take several attempts to fix the problem blind.

See also:

DICOM homepage\(^{108}\)

---

\(^{99}\)http://www.nema.org/
\(^{100}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/DicomReader.java
\(^{101}\)http://www.osirix-viewer.com/
\(^{102}\)http://www.sph.sc.edu/comd/rorden/ezdicom.html
\(^{103}\)http://en.wikipedia.org/wiki/List_of_freeware_health_software
\(^{104}\)http://members.tripod.com/%7Eclunis_immensus/free3d/hk-40.zip
\(^{105}\)http://www.barre.nom.fr/medical/samples/
\(^{106}\)http://osirix-viewer.com/datasets/
\(^{107}\)http://medical.nema.org/dicom/2007/
\(^{108}\)http://medical.nema.org/
17.31 ECAT7

Extensions: .v
Developer: Siemens

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: Ecat7Reader (Source Code, Supported Metadata Fields)
We currently have:
• a few ECAT7 files
We would like to have:
• an ECAT7 specification document
• more ECAT7 files

Ratings
Pixels: 
Metadata:
Openness:
Presence:
Utility:

17.32 EPS (Encapsulated PostScript)

Extensions: .eps, .epsi, .ps
Developer: Adobe

Support
BSD-licensed: ✔
Export: ✔

Officially Supported Versions:
Reader: EPSReader (Source Code, Supported Metadata Fields)
Writer: EPSWriter (Source Code)
Freely Available Software:
• EPS Writer plugin for ImageJ

We currently have:
• a few EPS datasets
• the ability to produce new datasets

---

109 http://www.siemens.com
110 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/Ecat7Reader.java
111 http://www.adobe.com/
112 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/EPSReader.java
113 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/out/EPSWriter.java
We would like to have:

Ratings

Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

Additional Information
- Bio-Formats can save individual planes as EPS.
- Certain types of compressed EPS files are not supported.

17.33 Evotec/PerkinElmer Opera Flex

Extensions: .flex, .mea, .res

Developer: Evotec Technologies, now PerkinElmer

Support

BSD-licensed: 
Export: 

Officially Supported Versions:

Reader: FlexReader (Source Code, Supported Metadata Fields)

We currently have:
- many Flex datasets

We would like to have:
- a freely redistributable LuraWave LWF decoder

Ratings

Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

Additional Information

The LuraWave LWF decoder library (i.e. lwf_jsdk2.6.jar) with license code is required to decode wavelet-compressed Flex files.

See also:
LuraTech (developers of the proprietary LuraWave LWF compression used for Flex image planes)
17.34 FEI

Extensions: .img
Developer: FEI

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: FEIReader (Source Code\textsuperscript{119}, Supported Metadata Fields)

We currently have:
• a few FEI files

We would like to have:
• a specification document
• more FEI files

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

17.35 FEI TIFF

Extensions: .tiff
Developer: FEI\textsuperscript{120}

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: FEITiffReader (Source Code\textsuperscript{121}, Supported Metadata Fields)

We currently have:
• a few FEI TIFF datasets

We would like to have:

Ratings
Pixels:
Metadata:
Openness:

\textsuperscript{118}http://www.fei.com/
\textsuperscript{119}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/FEIReader.java
\textsuperscript{120}http://www.fei.com
\textsuperscript{121}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/FEITiffReader.java
17.36 FITS (Flexible Image Transport System)

Extensions: .fits

Developer: National Radio Astronomy Observatory

Support

BSD-licensed: ✓

Export: ✗

Officially Supported Versions:

Reader: FitsReader (Source Code, Supported Metadata Fields)

We currently have:

• a FITS specification document (NIST 100-2.0, from 1999 March 29, in HTML)

• several FITS datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▲

Presence: ▼

Utility: ▼

Additional Information

See also:

MAST:FITS homepage, FITS Support Office

17.37 Gatan Digital Micrograph

Extensions: .dm3, .dm4

Owner: Gatan

Support

BSD-licensed: ✗

Export: ✗

Officially Supported Versions: 3, 4

Reader: GatanReader (Source Code, Supported Metadata Fields)

Freely Available Software:

122 http://www.nrao.edu/
123 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/FitsReader.java
124 http://archive.stsci.edu/fits/fits_standard/
125 http://archive.stsci.edu/fits/
126 http://fits.gsfc.nasa.gov/
127 http://www.gatan.com/
128 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/GatanReader.java
• DM3 Reader plugin for ImageJ\textsuperscript{129}
• EMAN\textsuperscript{130}

We currently have:
• Gatan’s ImageReader2003 code (from 2003, in C++)
• numerous DM3 datasets

We would like to have:
• a DM3 specification document

\textbf{Ratings}

Pixels: \(\uparrow\)
Metadata: \(\downarrow\)
Openness: \(\downarrow\)
Presence: \(\downarrow\)
Utility: \(\downarrow\)

\textbf{Additional Information}

Commercial applications that support .dm3 files include Datasqueeze\textsuperscript{131}.
Note that the Gatan Reader does not currently support stacks.

\textbf{17.38 Gatan Digital Micrograph 2}

Extensions: .dm2
Developer: Gatan\textsuperscript{132}

\textbf{Support}

BSD-licensed: \(\times\)
Export: \(\times\)
Officially Supported Versions: 2

Reader: GatanDM2Reader (Source Code\textsuperscript{133}, Supported Metadata Fields)

We currently have:
• Pascal code that can read DM2 files (from ImageSXM)
• a few DM2 files

We would like to have:
• an official DM2 specification document
• more DM2 files

\textbf{Ratings}

Pixels: \(\downarrow\)
Metadata: \(\downarrow\)
Openness: \(\downarrow\)

\textsuperscript{129}http://rsb.info.nih.gov/ij/plugins/DM3_Reader.html
\textsuperscript{130}http://blake.bcm.edu/EMAN/
\textsuperscript{131}http://www.datasqueezesoftware.com/
\textsuperscript{132}http://www.gatan.com
\textsuperscript{133}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/GatanDM2Reader.java
17.39 GIF (Graphics Interchange Format)

Extensions: .gif
Developer: CompuServe\textsuperscript{134}
Owner: Unisys\textsuperscript{135}

Support
BSD-licensed: ✔
Export: ✗

Officially Supported Versions:
Reader: GIFReader (Source Code\textsuperscript{136}, Supported Metadata Fields)

Freely Available Software:
• Animated GIF Reader plugin for ImageJ\textsuperscript{137}
• GIF Stack Writer plugin for ImageJ\textsuperscript{138}

We currently have:
• a GIF specification document\textsuperscript{139} (Version 89a, from 1990, in HTML)
• numerous GIF datasets
• the ability to produce new datasets

We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ✔
Utility: ▼

17.40 Hamamatsu Aquacosmos NAF

Extensions: .naf
Developer: Hamamatsu\textsuperscript{140}

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
\textsuperscript{134}http://www.compuserve.com/
\textsuperscript{135}http://www.unisys.com/
\textsuperscript{136}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/GIFReader.java
\textsuperscript{137}http://rsb.info.nih.gov/ij/plugins/agr.html
\textsuperscript{138}http://rsb.info.nih.gov/ij/plugins/gif-stack-writer.html
\textsuperscript{139}http://tronche.com/computer-graphics/gif/
\textsuperscript{140}http://www.hamamatsu.com/
Reader: NAFReader (*Source Code*[^141], *Supported Metadata Fields*)

We currently have:

- a few NAF files

We would like to have:

- a specification document
- more NAF files

**Ratings**

Pixels: 🟢

Metadata: 🔴

Openness: 🔴

Presence: 🔴

Utility: 🔴

### 17.41 Hamamatsu HIS

Extensions: .his

Owner: Hamamatsu[^142]

**Support**

BSD-licensed: ✗

Export: ✗

Officially Supported Versions:

Reader: HISReader (*Source Code*[^143], *Supported Metadata Fields*)

We currently have:

- Pascal code that can read HIS files (from ImageSXM)
- several HIS files

We would like to have:

- an HIS specification
- more HIS files

**Ratings**

Pixels: 🟢

Metadata: 🔴

Openness: 🔴

Presence: 🔴

Utility: 🔴

[^141]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/NAFReader.java

[^142]: http://www.hamamatsu.com

[^143]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/HISReader.java
17.42 Hamamatsu ndpi

Extensions: .ndpi, .ndpis
Developer: Hamamatsu

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Readers:
- NDPIReader (Source Code, Supported Metadata Fields)
- NDPISReader (Source Code, Supported Metadata Fields)

Freely Available Software:
- NDP.view

Sample Datasets:
- OpenSlide

We currently have:
- many example datasets

We would like to have:
- an official specification document

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.43 Hamamatsu VMS

Extensions: .vms
Developer: Hamamatsu

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: HamamatsuVMSReader (Source Code, Supported Metadata Fields)

Sample Datasets:

144http://www.hamamatsu.com
145https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/NDPIReader.java
146https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/NDPISReader.java
147http://www.olympusamerica.com/seg_section/seg_vm_downloads.asp
148http://openslide.cs.cmu.edu/download/openslide-testdata/Hamamatsu/
149http://www.hamamatsu.com
150https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/HamamatsuVMSReader.java
• OpenSlide\textsuperscript{151}

We currently have:
• a few example datasets
• developer documentation from the OpenSlide project\textsuperscript{152}

We would like to have:
• an official specification document
• more example datasets

\textbf{Ratings}

Pixels: 

Metadata: 

Openness: \downarrow

Presence: \downarrow

Utility: \downarrow

17.44 Hitachi S-4800

Extensions: .txt, .tif, .bmp, .jpg

Developer: Hitachi\textsuperscript{153}

\textbf{Support}

BSD-licensed: 

Export: 

Officially Supported Versions:

Reader: HitachiReader (Source Code\textsuperscript{154}, \textit{Supported Metadata Fields})

We currently have:
• several Hitachi S-4800 datasets

We would like to have:

\textbf{Ratings}

Pixels: 

Metadata: 

Openness: 

Presence: \downarrow

Utility: \downarrow

\textsuperscript{151}http://openslide.cs.cmu.edu/download/openslide-testdata/Hamamatsu-vms/
\textsuperscript{152}http://openslide.org/Hamamatsu%20format/
\textsuperscript{153}http://www.hitachi-hta.com/sites/default/files/technotes/Hitachi_4800_STEM.pdf
\textsuperscript{154}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/HitachiReader.java
17.45 I2I

Extensions: .i2i

Developer: Biomedical Imaging Group, UMass Medical School

Support

BSD-licensed: ✗

Export: ✗

Officially Supported Versions:

Reader: I2IReader (Source Code, Supported Metadata Fields)

We currently have:

- several example datasets
- a specification document
- an ImageJ plugin that can read I2I data

We would like to have:

Ratings

Pixels: ▲

Metadata: □

Openness: ▲

Presence: ▼

Utility: ▼

17.46 ICS (Image Cytometry Standard)

Extensions: .ics, .ids

Developer: P. Dean et al.

Support

BSD-licensed: ✔

Export: ✔

Officially Supported Versions: 1.0, 2.0

Reader: ICSReader (Source Code, Supported Metadata Fields)

Writer: ICSWriter (Source Code)

Freely Available Software:

- Libics (ICS reference library)
- ICS Opener plugin for ImageJ
- IrfanView

We currently have:

155http://invitro.umassmed.edu/
156https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/I2IReader.java
157https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/ICSReader.java
158https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/out/ICSWriter.java
159http://libics.sourceforge.net/
161http://www.irfanview.com/
• numerous ICS datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

• ICS version 1.0 datasets have two files - an .ics file that contains all of the metadata in plain-text format, and an .ids file that contains all of the pixel data.
• ICS version 2.0 datasets are a single .ics file that contains both pixels and metadata.

Commercial applications that can support ICS include:

• Bitplane Imaris
• SVI Huygens

17.47 Imacon

Extensions: .fff
Owner: Hasselblad

Support

BSD-licensed:
Export:

Officially Supported Versions:

Reader: ImaconReader (Source Code, Supported Metadata Fields)

We currently have:

• one Imacon file

We would like to have:

• more Imacon files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

162 http://www.bitplane.com/
163 http://svi.nl/
164 http://www.hasselbladusa.com/
165 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ImaconReader.java
17.48 ImagePro Sequence

Extensions: .seq
Owner: Media Cybernetics

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: SEQReader (Source Code, Supported Metadata Fields)

We currently have:
• the Image-Pro Plus software
• a few SEQ datasets
• the ability to produce more datasets

We would like to have:
• an official SEQ specification document

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

17.49 ImagePro Workspace

Extensions: .ipw
Owner: Media Cybernetics

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: IPWReader (Source Code, Supported Metadata Fields)

We currently have:
• the Image-Pro Plus software
• a few IPW datasets
• the ability to produce more datasets

We would like to have:

References:
166 http://www.mediacy.com/
167 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/SEQReader.java
169 http://www.mediacy.com/
170 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/IPWReader.java

17.48. ImagePro Sequence
• an official IPW specification document
• more IPW datasets:
  – multiple datasets in one file
  – 2+ GB files

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Bio-Formats uses a modified version of the [Apache Jakarta POI](http://jakarta.apache.org/poi/) library to read IPW files.

### 17.50 IMAGIC

Extensions: .hed, .img

Developer: [Image Science](http://www.imagescience.de)

Support
BSD-licensed: ✗
Export: ✗

Offically Supported Versions:

Freely Available Software:
• em2em

We currently have:
• one example dataset
• official file format documentation

We would like to have:
• more example datasets

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

See also:

173 [http://www.imagescience.de](http://www.imagescience.de)
175 [http://www.imagescience.de/em2em.html](http://www.imagescience.de/em2em.html)
IMAGIC specification

17.51 IMOD

Extensions: .mod
Developer: Boulder Laboratory for 3-Dimensional Electron Microscopy of Cells
Owner: Boulder Laboratory for 3-Dimensional Electron Microscopy of Cells

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: IMODReader (Source Code, Supported Metadata Fields)

Freely Available Software:
- IMOD

We currently have:
- a few sample datasets
- official documentation

We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

17.52 Improvision Openlab LIFF

Extensions: .liff
Developer: Improvision
Owner: PerkinElmer

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions: 2.0, 5.0
Reader: OpenlabReader (Source Code, Supported Metadata Fields)

---

176 http://www.imagescience.de/em2em.html
177 http://bio3d.colorado.edu
178 http://bio3d.colorado.edu
179 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/IMODReader.java
180 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/IMODReader.java
181 http://bio3d.colorado.edu/imod/doc/binspec.html
182 http://bio3d.colorado.edu/imod/doc/binspec.html
183 http://www.perkinelmer.com/cellular-imaging
184 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/OpenlabReader.java
We currently have:

- an Openlab specification document (from 2000 February 8, in DOC)
- Improvision’s XLIFFFileImporter code for reading Openlab LIFF v5 files (from 2006, in C++)
- several Openlab datasets

We would like to have:

- more Openlab datasets (preferably with 32-bit integer data)

**Ratings**

- Pixels: 
- Metadata: 
- Openness: 
- Presence: 
- Utility: 

**Additional Information**

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

### 17.53 Improvision Openlab Raw

**Extensions:** .raw

**Developer:** Improvision

**Owner:** PerkinElmer

**Support**

- BSD-licensed: ❌
- Export: ❌

**Officially Supported Versions:**

**Reader:** OpenlabRawReader (Source Code, Supported Metadata Fields)

We currently have:

- an Openlab Raw specification document (from 2004 November 09, in HTML)
- a few Openlab Raw datasets

We would like to have:

**Ratings**

- Pixels: 
- Metadata: 
- Openness: 
- Presence: 
- Utility: 

---

185 http://www.perkinelmer.com/cellular-imaging
186 http://www.perkinelmer.com/
188 http://cellularimaging.perkinelmer.com/support/technical_notes/detail.php?id=344
17.54 Improvision TIFF

Extensions: .tif
Developer: Improvision
Owner: PerkinElmer

Support

BSD-licensed:  
Export:  

Officially Supported Versions:
Reader: ImprovisionTiffReader (Source Code, Supported Metadata Fields)
We currently have:
  • an Improvision TIFF specification document
  • a few Improvision TIFF datasets

We would like to have:

Ratings

Pixels: [▲]
Metadata: [▲]
Openness: [▲]
Presence: [▼]
Utility: [■]

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

17.55 Imspector OBF

Extensions: .obf, .msr
Developer: Department of NanoBiophotonics, MPI-BPC
Owner: MPI-BPC

Support

BSD-licensed: [✓]
Export:  

Officially Supported Versions:
Reader: OBFReader (Source Code, Supported Metadata Fields)
We currently have:
  • a few .msr datasets
  • a specification document

189 http://www.perkinelmer.com/cellular-imaging
190 http://www.perkinelmer.com/
191 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ImprovisionTiffReader.java
192 https://imspector.mpibpc.mpg.de/index.html
193 http://www.mpibpc.mpg.de/
194 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/OBFReader.java
195 https://imspector.mpibpc.mpg.de/documentation/fileformat.html
We would like to have:

### Ratings

**Pixels:**

- ▲

**Metadata:**

- ▼

**Openness:**

- ▲

**Presence:**

- ▼

**Utility:**

- ▼

---

### 17.56 InCell 1000/2000

**Extensions:** .xdce, .tif  
**Developer:** GE

**Support**

- BSD-licensed: ❌
- Export: ❌

**Officially Supported Versions:**

**Reader:** InCellReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/InCellReader.java), [Supported Metadata Fields](http://gelifesciences.com/))

We currently have:

- a few InCell 1000 datasets
- public InCell 2000 sample images

We would like to have:

- an InCell 1000 specification document
- more InCell 1000 datasets

---

### Ratings

**Pixels:**

- ▲

**Metadata:**

- ▲

**Openness:**

- ▼

**Presence:**

- ▼

**Utility:**

- ▼

---

### 17.57 InCell 3000

**Extensions:** .frm  
**Developer:** GE

**Support**

- BSD-licensed: ❌
- Export: ❌

---

197 [https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/InCellReader.java](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/InCellReader.java)
Officially Supported Versions:

Reader: InCell3000Reader (Source Code\(^{200}\), Supported Metadata Fields)

Sample Datasets:

- Broad Bioimage Benchmark Collection\(^{201}\)

We currently have:

- a few example datasets

We would like to have:

- an official specification document

**Ratings**

- Pixels: ▼
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

### 17.58 INR

Extensions: .inr

**Support**

- BSD-licensed: ❌
- Export: ❌

Officially Supported Versions:

Reader: INRReader (Source Code\(^{202}\), Supported Metadata Fields)

We currently have:

- several sample .inr datasets

We would like to have:

**Ratings**

- Pixels: ▲
- Metadata: ▲
- Openness: ▼
- Presence: ▼
- Utility: ▼

### 17.59 Inveon

Extensions: .hdr

**Support**

\(^{200}\) https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/InCell3000Reader.java

\(^{201}\) http://www.broadinstitute.org/bbcc/BBBC013/

\(^{202}\) https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/INRReader.java
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: InveonReader (Source Code\textsuperscript{203}, Supported Metadata Fields)
We currently have:
a few Inveon datasets
We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

17.60 IPLab

Extensions: .ipl
Developer: Scanalytics
Owner: was BD Biosystems\textsuperscript{204}, now BioVision Technologies\textsuperscript{205}

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: IPLabReader (Source Code\textsuperscript{206}, Supported Metadata Fields)
Freely Available Software:
• IPLab Reader plugin for ImageJ\textsuperscript{207}

We currently have:
• an IPLab specification document (v3.6.5, from 2004 December 1, in PDF)
• several IPLab datasets
We would like to have:
• more IPLab datasets (preferably with 32-bit integer or floating point data)

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲

\textsuperscript{203}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/InveonReader.java
\textsuperscript{204}http://www.bdbiosciences.com/
\textsuperscript{205}http://www.biovis.com/iplab.htm
\textsuperscript{206}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/IPLabReader.java
\textsuperscript{207}http://rsb.info.nih.gov/ij/plugins/iplab-reader.html
Utility: ▼

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Commercial applications that support IPLab include:

- Bitplane Imaris\textsuperscript{208}
- SVI Huygens\textsuperscript{209}

See also:

IPLab software review\textsuperscript{210}

### 17.61 IVision

Extensions: .ipm

Owner: BioVision Technologies\textsuperscript{211}

Support

BSD-licensed: ❌

Export: ❌

Officially Supported Versions:

Reader: IvisionReader (Source Code\textsuperscript{212}, Supported Metadata Fields)

We currently have:

- a few iVision-Mac datasets
- a specification document

We would like to have:

- more iVision-Mac datasets

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▲

Presence: ▼

Utility: ▼

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

iVision-Mac was formerly called IPLab for Macintosh.

\textsuperscript{208} http://www.bitplane.com/

\textsuperscript{209} http://svi.nl/

\textsuperscript{210} http://www.biovis.com/iplab.htm

\textsuperscript{211} http://biovis.com/

\textsuperscript{212} https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/IvisionReader.java
17.62 JEOL

Extensions: .dat, .img, .par

Owner: JEOL

Support

BSD-licensed: ☒

Export: ☒

Officially Supported Versions:

Reader: JEOLReader (Source Code, Supported Metadata Fields)

We currently have:

- Pascal code that reads JEOL files (from ImageXSM)
- a few JEOL files

We would like to have:

- an official specification document
- more JEOL files

Ratings

Pixels: ☐

Metadata: ☐

Openness: ☐

Presence: ☐

Utility: ☐

17.63 JPEG

Extensions: .jpg

Developer: Independent JPEG Group

Support

BSD-licensed: ☑

Export: ☑

Officially Supported Versions:

Reader: JPEGReader (Source Code, Supported Metadata Fields)

Writer: JPEGWriter (Source Code)

We currently have:

- a JPEG specification document (v1.04, from 1992 September 1, in PDF)
- numerous JPEG datasets
- the ability to produce more datasets

---

213 http://www.jeol.com
214 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/JEOLReader.java
215 http://www.ijg.org/
216 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/JPEGReader.java
217 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/out/JPEGWriter.java
218 http://www.w3.org/Graphics/JPEG/jfif3.pdf
We would like to have:

**Ratings**

- **Pixels:**
- **Metadata:**
- **Openness:**
- **Presence:**
- **Utility:**

**Additional Information**

Bio-Formats can save individual planes as JPEG. Bio-Formats uses the Java Image I/O API to read and write JPEG files. JPEG stands for “Joint Photographic Experts Group”.

**See also:**

JPEG homepage[^220]

### 17.64 JPEG 2000

**Extensions:** .jp2

**Developer:** Independent JPEG Group[^221]

**Support**

- BSD-licensed: ✔
- Export: ✔

**Officially Supported Versions:**

**Reader:** JPEG2000Reader (Source Code[^222], Supported Metadata Fields)

**Writer:** JPEG2000Writer (Source Code[^223])

**Freely Available Software:**

- JJ2000 (JPEG 2000 library for Java)[^224]

We currently have:

- a JPEG 2000 specification document (free draft from 2000, no longer available online)
- a few .jp2 files

We would like to have:

**Ratings**

- **Pixels:**
- **Metadata:**
- **Openness:**
- **Presence:**
- **Utility:**

**Additional Information**

[^219]: http://docs.oracle.com/javase/7/docs/technotes/guides/imageio/
[^220]: http://www.jpeg.org/jpeg/index.html
[^221]: http://www.ijg.org/
[^222]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/JPEG2000Reader.java
Bio-Formats uses the JAI Image I/O Tools library to read JP2 files. JPEG stands for “Joint Photographic Experts Group”.

### 17.65 JPK

**Extensions:** .jpk

**Developer:** JPK Instruments

**Support**

- BSD-licensed: ✗
- Export: ✗

**Officially Supported Versions:**

**Reader:** JPKReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/JPKReader.java), [Supported Metadata Fields](#))

We currently have:

- Pascal code that can read JPK files (from ImageSXM)
- a few JPK files

We would like to have:

- an official specification document
- more JPK files

**Ratings**

- **Pixels:** 🅰️
- **Metadata:** 🅰️
- **Openness:** 🅰️
- **Presence:** 🅰️
- **Utility:** 🅰️

### 17.66 JPX

**Extensions:** .jpx

**Developer:** JPEG Committee

**Support**

- BSD-licensed: ✗
- Export: ✗

**Officially Supported Versions:**

**Reader:** JPXReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/JPXReader.java), [Supported Metadata Fields](#))

We currently have:

- a few .jpx files
We would like to have:

**Ratings**

- Pixels: ▲
- Metadata: ▲
- Openness: ▲
- Presence: ▲
- Utility: ▲

### 17.67 Khoros VIFF (Visualization Image File Format) Bitmap

**Extensions**: .xv

**Developer**: Khoroi

**Owner**: AccuSoft

**Support**

- BSD-licensed: ✗
- Export: ✗


**Sample Datasets**:

- VIFF Images

We currently have:

- several VIFF datasets

We would like to have:

**Ratings**

- Pixels: ▲
- Metadata: ▲
- Openness: ▲
- Presence: ▲
- Utility: ▲

### 17.68 Kodak BIP

**Extensions**: .bip

**Developer**: Kodak/Carestream

**Support**

- BSD-licensed: ✗

---

232 [https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/KhorosReader.java](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/KhorosReader.java)
234 [http://carestream.com](http://carestream.com)
Export: ❌
Officially Supported Versions:
Reader: KodakReader *(Source Code*[^235], *Supported Metadata Fields*)
We currently have:
- a few .bip datasets
We would like to have:
- an official specification document

### Ratings

- Pixels: ▲
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

### Additional Information

See also:

- Information on Image Station systems[^236]

#### 17.69 Lambert Instruments FLIM

Extensions: .fli
Developer: Lambert Instruments[^237]

### Support

- BSD-licensed: ❌
- Export: ❌

Officially Supported Versions:
Reader: LiFlimReader *(Source Code*[^238], *Supported Metadata Fields*)
We currently have:
- an LI-FLIM specification document
- several example LI-FLIM datasets
We would like to have:

### Ratings

- Pixels: ▲
- Metadata: ▲
- Openness: ▲
- Presence: ▼
- Utility: ▼

### Additional Information

[^235]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/KodakReader.java
[^236]: http://carestream.com/PublicContent.aspx?langType=1033&id=448953
[^237]: http://www.lambert-instruments.com
[^238]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/LiFlimReader.java
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

### 17.70 LaVision Imspector

**Extensions:** .msr

**Developer:** LaVision BioTec

**Support**

- BSD-licensed: 
- Export: 

**Officially Supported Versions:** 4.0, 4.1

**Reader:** InspectorReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ImspectorReader.java), [Supported Metadata Fields](https://www.lavisionbiotec.com/))

We currently have:

- a few .msr files

We would like to have:

**Ratings**

- **Pixels:** 
- **Metadata:** 
- **Openness:** 
- **Presence:** 
- **Utility:**

### 17.71 Leica LCS LEI

**Extensions:** .lei, .tif

**Developer:** Leica Microsystems CMS GmbH

**Owner:** Leica

**Support**

- BSD-licensed: 
- Export: 

**Officially Supported Versions:**

**Reader:** LeicaReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/LeicaReader.java), [Supported Metadata Fields](https://www.leica-microsystems.com/))

**Freely Available Software:**

- Leica LCS Lite ([Download](ftp://ftp.llt.de/softlib/LCSLite/LCSLite2611537.exe))

We currently have:

- an LEI specification document (beta 2.000, from no later than 2004 February 17, in PDF)
- many LEI datasets

---

243[https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/LeicaReader.java](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/LeicaReader.java)
We would like to have:

**Ratings**

- **Pixels:**
- **Metadata:**
- **Openness:**
- **Presence:**
- **Utility:**

**Additional Information**

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

LCS stands for “Leica Confocal Software”. LEI presumably stands for “Leica Experimental Information”.

Commercial applications that support LEI include:

- Bitplane Imaris™
- SVI Huygens
- Image-Pro Plus™

**17.72 Leica LAS AF LIF (Leica Image File Format)**

**Extensions:** .lif

**Developer:** Leica Microsystems CMS GmbH

**Owner:** Leica

**Support**

- BSD-licensed: ❌
- Export: ❌

**Officially Supported Versions:** 1.0, 2.0

**Reader:** LIFReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/LIFReader.java), [Supported Metadata Fields](http://www.leica-microsystems.com/products/microscope-software/software-for-life-science-research/las-x/))

**Freely Available Software:**

- Leica LAS AF Lite ([links at bottom of page](http://www.leica-microsystems.com/products/microscope-software/software-for-life-science-research/las-x/))

We currently have:

- a LIF specification document (version 2, from no later than 2007 July 26, in PDF)
- a LIF specification document (version 1, from no later than 2006 April 3, in PDF)
- numerous LIF datasets

We would like to have:

**Ratings**

- **Pixels:**
- **Metadata:**
Openness: ▲
Presence: ▼
Utility: ▲

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

LAS stands for “Leica Application Suite”. AF stands for “Advanced Fluorescence”.

Commercial applications that support LIF include:

- Bitplane Imaris
- SVI Huygens
- Amira

17.73 Leica SCN

Extensions: .scn
Developer: Leica Microsystems

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions: 2012-03-10

Reader: LeicaSCNReader (Source Code, Supported Metadata Fields)

We currently have:

- a few sample datasets

We would like to have:

- an official specification document
- sample datasets that cannot be opened

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.74 LEO

Extensions: .sxm

Owner: Zeiss

---

252 http://www.bitplane.com/
253 http://svi.nl/
254 http://www.amira.com/
255 http://www.leica-microsystems.com/
256 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/LeicaSCNReader.java
257 http://www.zeiss.de
Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: LEOReader (Source Code\textsuperscript{258}, Supported Metadata Fields)

We currently have:
• Pascal code that can read LEO files (from ImageSXM)
• a few LEO files

We would like to have:
• an official specification document
• more LEO files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.75 Li-Cor L2D

Extensions: .l2d, .tif, .scn
Owner: LiCor Biosciences\textsuperscript{259}

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: L2DReader (Source Code\textsuperscript{260}, Supported Metadata Fields)

We currently have:
• a few L2D datasets

We would like to have:
• an official specification document
• more L2D datasets

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼

\textsuperscript{258}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/LEOReader.java
\textsuperscript{259}http://www.licor.com/
\textsuperscript{260}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/L2DReader.java
L2D datasets cannot be imported into OME using server-side import. They can, however, be imported from ImageJ, or using the omeul utility.

17.76 LIM (Laboratory Imaging/Nikon)

Extensions: .lim
Owner: Laboratory Imaging
Support
BSD-licensed: 
Export: 
Officially Supported Versions:
Reader: LIMReader (Source Code, Supported Metadata Fields)
We currently have:
• several LIM files
• the ability to produce more LIM files
We would like to have:
• an official specification document
Ratings
Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 
Additional Information
Bio-Formats only supports uncompressed LIM files.
Commercial applications that support LIM include:
• NIS Elements

17.77 MetaMorph 7.5 TIFF

Extensions: .tiff
Owner: Molecular Devices
Support
BSD-licensed: 
Export: 
Officially Supported Versions:
Reader: MetamorphTiffReader (Source Code\textsuperscript{265}, Supported Metadata Fields)

We currently have:

- a few Metamorph 7.5 TIFF datasets

We would like to have:

**Ratings**

- Pixels: ▲
- Metadata: ▲
- Openness: ▲
- Presence: ▼
- Utility: ▼

**17.78 MetaMorph Stack (STK)**

Extensions: .stk, .nd

Owner: Molecular Devices\textsuperscript{266}

**Support**

BSD-licensed: ✗

Export: ✗

Officially Supported Versions:

Reader: MetamorphReader (Source Code\textsuperscript{267}, Supported Metadata Fields)

We currently have:

- an STK specification document (from 2006 November 21, in DOC)
- an older STK specification document (from 2005 March 25, in DOC)
- an ND specification document (from 2002 January 24, in PDF)
- a large number of datasets

We would like to have:

**Ratings**

- Pixels: ▲
- Metadata: ▲
- Openness: ▲
- Presence: ▲
- Utility: ▼

**Additional Information**

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Commercial applications that support STK include:

- Bitplane Imaris\textsuperscript{268}

\textsuperscript{265}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/MetamorphTiffReader.java

\textsuperscript{266}http://www.moleculardevices.com/

\textsuperscript{267}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/MetamorphReader.java

\textsuperscript{268}http://www.bitplane.com/
• SVI Huygens
• DIMIN

See also:
Metamorph imaging system overview

17.79 MIAS (Maia Scientific)

Extensions: .tif
Developer: Maia Scientific

Support
BSD-licensed: 
Export: 

Officially Supported Versions:
Reader: MIASReader (Source Code, Supported Metadata Fields)
We currently have:
• several MIAS datasets
We would like to have:

Ratings
Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

17.80 Micro-Manager

Extensions: .tif, .txt, .xml
Developer: Vale Lab

Support
BSD-licensed: 
Export: 

Officially Supported Versions:
Reader: MicromanagerReader (Source Code, Supported Metadata Fields)
Freely Available Software:
• Micro-Manager

269 http://svi.nl/
270 http://dimin.net/
271 http://www.metamorph.com/
272 http://www.selectscience.net/supplier/maia-scientific/?compID=6088
273 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/MIASReader.java
274 http://valelab.ucsf.edu/
275 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/MicromanagerReader.java
276 http://micro-manager.org/
We currently have:

- many Micro-manager datasets
- public sample images

We would like to have:

### Ratings

- Pixels: ▲
- Metadata: ▲
- Openness: ▲
- Presence: ▼
- Utility: ◀

### Additional Information

- Bio-Formats will recognize a *metadata.txt* file as part of a Micro-Manager fileset if pointed at it and will load the fileset including the companion TIFF files.
- If pointed at a companion `.ome.tif` file, Bio-Formats will recognize an OME-TIFF format instead. This means it may load the fileset if there are multiple `.ome.tif` but it will not include `*metadata.txt` in this fileset and therefore the extended Micro-Manager metadata will be skipped.
- See Micro-Manager for more information.

## 17.81 MINC MRI

### Extensions: .mnc

**Developer:** McGill University

**Support**

- BSD-licensed: ❌
- Export: ❌

**Officially Supported Versions:**

**Reader:** MINCReader *(Source Code, Supported Metadata Fields)*

**Freely Available Software:**

- MINC

We currently have:

- a few MINC files

We would like to have:

### Ratings

- Pixels: ▲
- Metadata: ◀
- Openness: ◀
- Presence: ◀
- Utility: ◀

---

279 [https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/MINCReader.java](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/MINCReader.java)
17.82 Minolta MRW

Extensions: .mrw
Developer: Minolta

Support

BSD-licensed: 
Export: 

Officially Supported Versions:
Reader: MRWReader (Source Code, Supported Metadata Fields)

Freely Available Software:

- dcraw

We currently have:

- several .mrw files

We would like to have:

Ratings

Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

17.83 MNG (Multiple-image Network Graphics)

Extensions: .mng
Developer: MNG Development Group

Support

BSD-licensed: ✔
Export: 

Officially Supported Versions:
Reader: MNGReader (Source Code, Supported Metadata Fields)

Freely Available Software:

- libmng (MNG reference library)

Sample Datasets:

- MNG sample files

We currently have:

[282] https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/MRWReader.java
[285] https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/MNGReader.java
• the libmng-testsuites\textsuperscript{288} package (from 2003 March 05, in C)
• a large number of MNG datasets

We would like to have:

\textbf{Ratings}

Pixels:  
Metadata:  
Openness:  
Presence:  
Utility:  

\textbf{Additional Information}

\textbf{See also:}  
MNG homepage\textsuperscript{289} MNG specification\textsuperscript{290}

\section*{17.84 \textbf{Molecular Imaging}}

Extensions: .stp

Owner: Molecular Imaging Corp, San Diego CA (closed)

\textbf{Support}

BSD-licensed:  

Export:  

\textbf{Officially Supported Versions:}

Reader: MolecularImagingReader (Source Code\textsuperscript{291}, Supported Metadata Fields)

We currently have:

• Pascal code that reads Molecular Imaging files (from ImageSXM)
• a few Molecular Imaging files

We would like to have:

• an official specification document
• more Molecular Imaging files

\textbf{Ratings}

Pixels:  
Metadata:  
Openness:  
Presence:  
Utility:  

\textsuperscript{288}http://downloads.sourceforge.net/libmng/MNGsuite-20030305.zip
\textsuperscript{289}http://www.libpng.org/pub/mng/
\textsuperscript{290}http://www.libpng.org/pub/mng/spec
\textsuperscript{291}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/MolecularImagingReader.java
17.85 MRC (Medical Research Council)

Extensions: .mrc
Developer: MRC Laboratory of Molecular Biology

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: MRCReader (Source Code, Supported Metadata Fields)

Sample Datasets:
• golgi.mrc

We currently have:
• an MRC specification document (in TXT)
• a few MRC datasets

We would like to have:

Ratings
Pixels:isma
Metadata:isma
Openness:isma
Presence:isma
Utility:isma

Additional Information
Commercial applications that support MRC include:
• Bitplane Imaris

See also:
MRC on Wikipedia

17.86 NEF (Nikon Electronic Format)

Extensions: .nef, .tif
Developer: Nikon

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: NikonReader *(Source Code[^299], Supported Metadata Fields)*

SampleDatasets:

- neffile1.zip[^300]
- Sample NEF images[^301]

We currently have:

- a NEF specification document (v0.1, from 2003, in PDF)
- several NEF datasets

We would like to have:

**Ratings**

- **Pixels:** ▲
- **Metadata:** ▲
- **Openness:** ▼
- **Presence:** ▼
- **Utility:** ▼

**Additional Information**

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:

- NEF Conversion[^302]

### 17.87 NIfTI

**Extensions:** .img, .hdr, .nii, .nii.gz

**Developer:** National Institutes of Health[^303]

**Support**

- BSD-licensed: ❌
- Export: ❌

**Officially Supported Versions:**

Reader: NiftiReader *(Source Code[^304], Supported Metadata Fields)*

SampleDatasets:

- Official test data[^305]

We currently have:

- NIfTI specification documents[^306]
- several NIfTI datasets
- public sample images[^307]

[^299]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/NikonReader.java
[^300]: http://www.outbackphoto.com/workshop/NEF_conversion/neffile1.zip
[^301]: http://www.nikondigital.org/articles/library/nikon_d2x_first_impressions.htm
[^302]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/NiftiReader.java
[^303]: http://www.nih.gov/
[^304]: http://www.outbackphoto.com/workshop/NEF_conversion/niftrcversion.html
[^307]: http://downloads.openmicroscopy.org/images/NIfTI/
We would like to have:

**Ratings**

Pixels: ▲

Metadata: ▼

Openness: ▲

Presence: ▼

Utility: ▼

### 17.88 Nikon Elements TIFF

Extensions: .tiff

Developer: Nikon[^308]

**Support**

BSD-licensed: ❌

Export: ❌

Officially Supported Versions:

Reader: NikonElementsTiffReader ([Source Code][^309], [Supported Metadata Fields](http://www.nikon.com))

We currently have:

- a few Nikon Elements TIFF files

We would like to have:

- more Nikon Elements TIFF files

**Ratings**

Pixels: ▼

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

### 17.89 Nikon EZ-C1 TIFF

Extensions: .tiff

Developer: Nikon[^310]

**Support**

BSD-licensed: ❌

Export: ❌

Officially Supported Versions:

Reader: NikonTiffReader ([Source Code][^311], [Supported Metadata Fields](http://www.nikon.com))

[^308]: http://www.nikon.com
[^309]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/NikonElementsTiffReader.java
[^310]: http://www.nikon.com/
[^311]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/NikonTiffReader.java
We currently have:

- a few Nikon EZ-C1 TIFF files

We would like to have:

**Ratings**

- Pixels: ▲
- Metadata: ▲
- Openness: ▼
- Presence: ▼
- Utility: ▼

### 17.90 Nikon NIS-Elements ND2

**Extensions:** .nd2

**Developer:** Nikon USA

**Support**

- BSD-licensed: ✗
- Export: ✗

**Officially Supported Versions:**

**Readers:**

- NativeND2Reader ([Source Code](http://www.nikonusa.com/), [Supported Metadata Fields](http://java.net/projects/jai-imageio))
- LegacyND2Reader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/LegacyND2Reader.java), [Supported Metadata Fields](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/LegacyND2Reader.java))

**Freely Available Software:**

- NIS-Elements Viewer from Nikon

We currently have:

- many ND2 datasets

We would like to have:

- an official specification document

**Ratings**

- Pixels: ▲
- Metadata: ▲
- Openness: ▼
- Presence: ▲
- Utility: ▲

**Additional Information**

There are two distinct versions of ND2: an old version, which uses JPEG-2000 compression, and a new version which is either uncompressed or Zip-compressed. We are not aware of the version number or release date for either format.

Bio-Formats uses the [JAI Image I/O Tools](http://java.net/projects/jai-imageio) library to read ND2 files compressed with JPEG-2000.

---

312 http://www.nikonusa.com/
313 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/NativeND2Reader.java
314 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/LegacyND2Reader.java
315 http://www.nikoninstruments.com/Products/Software/NIS-Elements-Advanced-Research/NIS-Elements-Viewer
316 http://java.net/projects/jai-imageio
There is also a legacy ND2 reader that uses Nikon’s native libraries. To use it, you must be using Windows 32-bit and have Nikon’s ND2 reader plugin for ImageJ installed. Additionally, you will need to download LegacyND2Reader.dll and place it in your ImageJ plugin folder. Note that this reader is unmaintained and no additional support effort will be made.

17.91 NRRD (Nearly Raw Raster Data)

Extensions: .nrrd, .nhdr, .raw, .txt
Developer: Teem developers

Support
BSD-licensed: ✔
Export: ✗

Officially Supported Versions:

Reader: NRRDReader (Source Code, Supported Metadata Fields)

Freely Available Software:
• nrrd (NRRD reference library)

Sample Datasets:
• Diffusion tensor MRI datasets

We currently have:
• an nrrd specification document (v1.9, from 2005 December 24, in HTML)
• a few nrrd datasets

We would like to have:

Ratings
Pixels: ✔
Metadata: ✔
Openness: ✔
Presence: ✗
Utility: ✔

17.92 Olympus CellR/APL

Extensions: .apl, .mtb, .tnb, .tif, .obsep
Owner: Olympus

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:

318 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/lib/LegacyND2Reader.dll?raw=true
319 http://teem.sourceforge.net/
320 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/NRRDReader.java
321 http://teem.sourceforge.net/nrrd/
322 http://www.sci.utah.edu/~gk/DTI-data/
323 http://teem.sourceforge.net/nrrd/format.html
324 http://www.olympus.com/
Reader: APLReader (Source Code\textsuperscript{325}, Supported Metadata Fields)

We currently have:

- a few CellR datasets

We would like to have:

- more CellR datasets
  - an official specification document

Ratings

- Pixels: 
- Metadata: 
- Openness: 
- Presence: 
- Utility: 

17.93 Olympus FluoView FV1000

Extensions: .oib, .oif

Owner: Olympus\textsuperscript{326}

Support

- BSD-licensed: x
- Export: x

Officially Supported Versions: 1.0, 2.0

Reader: FV1000Reader (Source Code\textsuperscript{327}, Supported Metadata Fields)

Freely Available Software:

- FV-Viewer from Olympus\textsuperscript{328}

We currently have:

- an OIF specification document (v2.0.0.0, from 2008, in PDF)
- an FV1000 specification document (v1.0.0.0, from 2004 June 22, in PDF)
- older FV1000 specification documents (draft, in DOC and XLS)
- many FV1000 datasets

We would like to have:

- more OIB datasets (especially 2+ GB files)
- more FV1000 version 2 datasets

Ratings

- Pixels: 
- Metadata: 
- Openness: 
- Presence: 

\textsuperscript{325}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/APLReader.java
\textsuperscript{326}http://www.olympus.com/
\textsuperscript{327}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/FV1000Reader.java
\textsuperscript{328}http://www.olympus.co.uk/microscopy/22_FluoView_FV1000__Confocal_Microscope.htm
Utility: ▲

**Additional Information**

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Bio-Formats uses a modified version of the [Apache Jakarta POI](http://jakarta.apache.org/poi/) library to read OIB files. OIF stands for “Original Imaging Format”. OIB stands for “Olympus Image Binary”. OIF is a multi-file format that includes an .oif file and a directory of .tif, .roi, .pty, .lut, and .bmp files. OIB is a single file format.

Commercial applications that support this format include:

- Bitplane Imaris
- SVI Huygens

See also:

[Olympus FluoView Resource Center](http://www.olympusfluoview.com)

### 17.94 Olympus FluoView TIFF

Extensions: .tif

Owner: [Olympus](http://www.olympus.com/)

**Support**

- BSD-licensed: ✗
- Export: ✗

Officially Supported Versions:

Reader: FluoviewReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/FluoviewReader.java), [Supported Metadata Fields](http://www.olympusfluoview.com))

Freely Available Software:

- [DIMIN](http://www.dimin.net/)

We currently have:

- a FluoView specification document (from 2002 November 14, in DOC)
- Olympus’ FluoView Image File Reference Suite (from 2002 March 1, in DOC)
- several FluoView datasets

We would like to have:

**Ratings**

- Pixels: ▲
- Metadata: ▲
- Openness: ▲
- Presence: ▲

Utility: ▲

**Additional Information**

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

---

331 [http://svi.nl/](http://svi.nl/)
332 [http://www.olympusfluoview.com](http://www.olympusfluoview.com)
334 [https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/FluoviewReader.java](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/FluoviewReader.java)
335 [http://www.dimin.net/](http://www.dimin.net/)
Commercial applications that support this format include:

- Bitplane Imaris
- SVI Huygens

17.95 Olympus ScanR

Extensions: .xml, .dat, .tif
Developer: Olympus
Owner: Olympus

Support
BSD-licensed: 
Export: 

Officially Supported Versions:
Reader: ScanRReader (Source Code, Supported Metadata Fields)

We currently have:
- several ScanR datasets

We would like to have:

Ratings
Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

17.96 Olympus SIS TIFF

Extensions: .tiff
Developer: Olympus

Support
BSD-licensed: 
Export: 

Officially Supported Versions:
Reader: SISReader (Source Code, Supported Metadata Fields)

We currently have:
- a few example SIS TIFF files

---

336 http://www.bitplane.com/
337 http://svi.nl/
338 http://www.olympus.com/
339 http://www.olympus.com/
340 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ScanRReader.java
341 http://www.olympus-sis.com/
342 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/SISReader.java
We would like to have:

**Ratings**

- Pixels: 
- Metadata: 
- Openness: 
- Presence: ✓
- Utility: 

### 17.97 OME-TIFF

**Extensions:** .ome.tiff, .ome.tif, .ome.tf2, .ome.tf8, .ome.btf

**Developer:** Open Microscopy Environment

**Support**

- BSD-licensed: ✓
- Export: ✓


**Reader:** OMETiffReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/OMETiffReader.java), [Supported Metadata Fields](http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/index.html))

**Writer:** OMETiffWriter ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/out/OMETiffWriter.java))

We currently have:

- an OME-TIFF specification document
- many OME-TIFF datasets
- public sample images
- the ability to produce additional datasets

We would like to have:

**Ratings**

- Pixels: ✓
- Metadata: ✓
- Openness: ✓
- Presence: ✓
- Utility: ✓

**Additional Information**

Bio-Formats can save image stacks as OME-TIFF.

Commercial applications that support OME-TIFF include:

- [Bitplane Imaris](http://www.bitplane.com/)

---

[^345]: [https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/OMETiffReader.java](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/OMETiffReader.java)
• SVI Huygens

See also:
OME-TIFF technical overview

17.98 OME-XML

Extensions: .ome, .ome.xml
Developer: Open Microscopy Environment

Support
BSD-licensed: ✓
Export: ✓


Reader: OMEXMLReader (Source Code, Supported Metadata Fields)
Writer: OMEXMLWriter (Source Code)

We currently have:
• OME-XML specification documents
• many OME-XML datasets
• public sample images
• the ability to produce more datasets

We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Bio-Formats uses the OME-XML Java library to read OME-XML files.

Commercial applications that support OME-XML include:
• Bitplane Imaris
• SVI Huygens

---

350http://svi.nl/
351http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/index.html
353http://www.openmicroscopy.org/
354https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/OMEXMLReader.java
355https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/out/OMEXMLWriter.java
356http://www.openmicroscopy.org/Schemas/
357http://downloads.openmicroscopy.org/images/OME-XML/
358http://www.bitplane.com/
359http://www.openmicroscopy.org/site/support/ome-model/ome-xml/java-library.html
360http://svi.nl/
17.99 Oxford Instruments

Extensions: .top
Owner: Oxford Instruments

Support
BSD-licensed: 
Export: 

Officially Supported Versions:
Reader: OxfordInstrumentsReader (Source Code, Supported Metadata Fields)

We currently have:
• Pascal code that can read Oxford Instruments files (from ImageSXM)
• a few Oxford Instruments files

We would like to have:
• an official specification document
• more Oxford Instruments files

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

17.100 PCORAW

Extensions: .pcoraw, .rec
Developer: PCO

Support
BSD-licensed: 
Export: 

Officially Supported Versions:
Reader: PCORAWReader (Source Code, Supported Metadata Fields)

We currently have:
• a few example datasets

We would like to have:

Ratings
Pixels:
Metadata:
17.101 PCX (PC Paintbrush)

Extensions: .pcx
Developer: ZSoft Corporation

Support
BSD-licensed: ✓
Export: ❌

Officially Supported Versions:
Reader: PCXReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/PCXReader.java), [Supported Metadata Fields](#))

We currently have:
- several .pcx files
- the ability to generate additional .pcx files

We would like to have:

Ratings

Pixels: ✓
Metadata: ❌
Openness: ❌
Presence: ❌
Utility: ❌

Additional Information

Commercial applications that support PCX include Zeiss LSM Image Browser[^366].

17.102 Perkin Elmer Densitometer

Extensions: .pds
Developer: Perkin Elmer[^367]

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: PDSReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/PDSReader.java), [Supported Metadata Fields](#))

We currently have:
- a few PDS datasets

[^365]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/PCXReader.java
[^367]: http://www.perkinelmer.com
[^368]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/PDSReader.java
We would like to have:

- an official specification document
- more PDS datasets

**Ratings**

Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

### 17.103 PerkinElmer Nuance

Extensions: .im3

Developer: PerkinElmer\(^{369}\)

**Support**

BSD-licensed: ✔
Export: ❌

Officially Supported Versions:
Reader: IM3Reader ([Source Code]\(^{370}\), [Supported Metadata Fields])

We currently have:

- a few sample datasets

We would like to have:

**Ratings**

Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

### 17.104 PerkinElmer Operetta

Extensions: .tiff, .xml

Developer: PerkinElmer\(^{371}\)

**Support**

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

[370]https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/IM3Reader.java
Reader: OperettaReader *(Source Code[^372], Supported Metadata Fields)*

We currently have:

- a few sample datasets
- public sample images[^373]

We would like to have:

- an official specification document
- more sample datasets

**Ratings**

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

### 17.105 PerkinElmer UltraVIEW

Extensions: .tif, .2, .3, .4, etc.

Owner: PerkinElmer[^374]

**Support**

BSD-licensed: ❌

Export: ❌

Officially Supported Versions:

Reader: PerkinElmerReader *(Source Code[^375], Supported Metadata Fields)*

We currently have:

- several UltraVIEW datasets

We would like to have:

**Ratings**

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

**Additional Information**

Other associated extensions include: .tim, .zpo, .csv, .htm, .cfg, .ano, .rec

Commercial applications that support this format include:

- Bitplane Imaris[^376]

[^372]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/OperettaReader.java
[^373]: http://downloads.openmicroscopy.org/images/HCS/Operetta/
[^374]: http://www.perkinelmer.com/
[^375]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/PerkinElmerReader.java
[^376]: http://www.bitplane.com/
• Image-Pro Plus

See also:
PerkinElmer UltraVIEW system overview

17.106 Portable Any Map

Extensions: .pbm, .pgm, .ppm
Developer: Netpbm developers

Support
BSD-licensed: ✔
Export: ✗

Officially Supported Versions:
Reader: PGMReader (Source Code, Supported Metadata Fields)

Freely Available Software:
• Netpbm graphics filter

We currently have:
• a PGM specification document (from 2003 October 3, in HTML)
• a few PBM, PPM and PGM files

We would like to have:

Ratings
Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

17.107 Adobe Photoshop PSD

Extensions: .psd
Developer: Adobe

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions: 1.0
Reader: PSDReader (Source Code, Supported Metadata Fields)

We currently have:

---
377 http://www.mediacy.com/
379 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/PGMReader.java
380 http://netpbm.sourceforge.net/
381 http://netpbm.sourceforge.net/doc/pgm.html
382 http://www.adobe.com/
383 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/PSDReader.java
• a PSD specification document (v3.0.4, 16 July 1995)
• a few PSD files

We would like to have:
• more PSD files

Ratings
Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

17.108 Photoshop TIFF

Extensions: .tif, .tiff
Developer: Adobe

Support
BSD-licensed: 
Export: 

Officially Supported Versions:
Reader: PhotoshopTiffReader (Source Code, Supported Metadata Fields)

We currently have:
• a Photoshop TIFF specification document
• a few Photoshop TIFF files

We would like to have:

Ratings
Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

17.109 PicoQuant Bin

Extensions: .bin
Developer: PicoQuant

Support
BSD-licensed: 

384http://www.adobe.com
385https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/PhotoshopTiffReader.java
386http://www.picoquant.com/
Export: ✗

Officially Supported Versions:

Reader: PQBinReader (Source Code\textsuperscript{387}, Supported Metadata Fields)

Freely Available Software:

• SymphoTime64\textsuperscript{388}

We currently have:

• a few example datasets

We would like to have:

\section*{Ratings}

Pixels: ▼

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

\subsection*{17.110 PICT (Macintosh Picture)}

Extensions: .pict

Developer: Apple Computer\textsuperscript{389}

\section*{Support}

BSD-licensed: ✓

Export: ✗

Officially Supported Versions:

Reader: PictReader (Source Code\textsuperscript{390}, Supported Metadata Fields)

We currently have:

• many PICT datasets

We would like to have:

\section*{Ratings}

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▲

Utility: ▼

\section*{Additional Information}

QuickTime for Java is required for reading vector files and some compressed files but note that this is no longer available from Apple.

See also:

\textsuperscript{387}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/PQBinReader.java

\textsuperscript{388}http://www.picoquant.com/products/category/software/symphotime-64-fluorescence-lifetime-imaging-and-correlation-software

\textsuperscript{389}http://www.apple.com

\textsuperscript{390}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/PictReader.java
17.111 PNG (Portable Network Graphics)

Extensions: .png
Developer: PNG Development Group

Support
BSD-licensed: ✅
Export: ✅

Officially Supported Versions:
Reader: APNGReader (Source Code, Supported Metadata Fields)
Writer: APNGWriter (Source Code)

Freely Available Software:
• PNG Writer plugin for ImageJ

We currently have:
• a PNG specification document (W3C/ISO/IEC version, from 2003 November 10, in HTML)
• several PNG datasets

We would like to have:

Ratings
Pixels: 🔺
Metadata: 🔺
Openness: 🔺
Presence: 🔺
Utility: 🔻

Additional Information
Bio-Formats uses the Java Image I/O API to read and write PNG files.

See also:
PNG technical overview

17.112 Prairie Technologies TIFF

Extensions: .tif, .xml, .cfg
Developer: Prairie Technologies

Support

2http://www.prepressure.com/formats/pict/fileformat.htm
3http://www.libpng.org/pub/png/pngnews.html
4http://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/in/APNGReader.java
5http://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/out/APNGWriter.java
7http://www.libpng.org/pub/png/spec/iso/
8http://docs.oracle.com/javase/7/docs/technotes/guides/imageio/
9http://www.prairie-technologies.com/
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: PrairieReader (Source Code\textsuperscript{401}, Supported Metadata Fields)

We currently have:
- many Prairie datasets

We would like to have:

**Ratings**

Pixels: ▲
Metadata: ◼
Openness: ◼
Presence: ◼
Utility: ◼

### 17.113 Princeton Instruments SPE

Extensions: .spe

Developer: Princeton Instruments\textsuperscript{402}

**Support**

BSD-licensed: ✗
Export: ✗

Officially Supported Versions: 3.0

Reader: SPEReader (Source Code\textsuperscript{403}, Supported Metadata Fields)

We currently have:
- An official specification document\textsuperscript{404}
- two SPE files

We would like to have:
- more SPE files

**Ratings**

Pixels: ◼
Metadata: ▲
Openness: ▲
Presence: ◼
Utility: ◼

\textsuperscript{401} https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/PrairieReader.java
\textsuperscript{402} http://www.princetoninstruments.com
\textsuperscript{403} https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/SPEReader.java
17.114 Quesant

Extensions: .afm
Developer: Quesant Instrument Corporation
Owner: KLA-Tencor Corporation

Support
BSD-licensed: 
Export: 

Officially Supported Versions:
Reader: QuesantReader (Source Code, Supported Metadata Fields)

We currently have:
- Pascal code that can read Quesant files (from ImageSXM)
- several Quesant files

We would like to have:
- an official specification document
- more Quesant files

Ratings
Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

17.115 QuickTime Movie

Extensions: .mov
Owner: Apple Computer

Support
BSD-licensed: 
Export: 

Officially Supported Versions:
Readers:
- NativeQTRenderer (Source Code, Supported Metadata Fields)
- LegacyQTRender (Source Code, Supported Metadata Fields)

Writer: QTWriter (Source Code)

Freely Available Software:

https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/QuesantReader.java
http://www.apple.com/
https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/NativeQTRenderer.java
https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/LegacyQTRender.java
https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/out/QTWriter.java
• QuickTime Player\footnote{https://support.apple.com/downloads/quicktime}

We currently have:

- a QuickTime specification document\footnote{http://developer.apple.com/documentation/Quicktime/QTFF/} (from 2001 March 1, in HTML)
- several QuickTime datasets
- the ability to produce more datasets

We would like to have:

- more QuickTime datasets, including:
  - files compressed with a common, unsupported codec
  - files with audio tracks and/or multiple video tracks

### Ratings

- Pixels: 
- Metadata: 
- Openness: 
- Presence: 
- Utility: 

### Additional Information

Bio-Formats has two modes of operation for QuickTime:

- The legacy QTJava mode requires QuickTime for Java which will only run with a 32-bit JVM and is no longer available from Apple.
- Native mode works on systems with no QuickTime (e.g. Linux).

Bio-Formats can save image stacks as QuickTime movies. The following table shows supported codecs:

<table>
<thead>
<tr>
<th>Codec</th>
<th>Description</th>
<th>Native</th>
<th>LegacyQTJava</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw</td>
<td>Full Frames (Uncompressed)</td>
<td>read &amp; write</td>
<td>read &amp; write</td>
</tr>
<tr>
<td>iraw</td>
<td>Intel YUV Uncompressed</td>
<td>read only</td>
<td>read &amp; write</td>
</tr>
<tr>
<td>rle</td>
<td>Animation (run length encoded RGB)</td>
<td>read only</td>
<td>read &amp; write</td>
</tr>
<tr>
<td>jpeg</td>
<td>Still Image JPEG DIB</td>
<td>read only</td>
<td>read only</td>
</tr>
<tr>
<td>rpza</td>
<td>Apple Video 16 bit “road pizza”</td>
<td>read only (partial)</td>
<td>read only</td>
</tr>
<tr>
<td>mjpb</td>
<td>Motion JPEG codec</td>
<td>read only</td>
<td>read only</td>
</tr>
<tr>
<td>cvid</td>
<td>Cinepak</td>
<td>*</td>
<td>read &amp; write</td>
</tr>
<tr>
<td>svq1</td>
<td>Sorenson Video</td>
<td>*</td>
<td>read &amp; write</td>
</tr>
<tr>
<td>svq3</td>
<td>Sorenson Video 3</td>
<td>*</td>
<td>read &amp; write</td>
</tr>
<tr>
<td>mp4v</td>
<td>MPEG-4</td>
<td>*</td>
<td>read &amp; write</td>
</tr>
<tr>
<td>h263</td>
<td>H.263</td>
<td>*</td>
<td>read &amp; write</td>
</tr>
</tbody>
</table>

See also:

QuickTime software overview\footnote{http://www.apple.com/quicktime/}
17.116 RHK

Extensions: .sm2, .sm3
Owner: RHK Technologies\textsuperscript{414}

Support
BSD-licensed: \xmark
Export: \xmark

Officially Supported Versions:
Reader: RHKReader (Source Code\textsuperscript{415}, Supported Metadata Fields)

We currently have:
\begin{itemize}
  \item Pascal code that can read RHK files (from ImageSXM)
  \item a few RHK files
\end{itemize}

We would like to have:
\begin{itemize}
  \item an official specification document
  \item more RHK files
\end{itemize}

Ratings
Pixels: \xmark
Metadata: \hash
Openness: \hash
Presence: \hash
Utility: \hash

17.117 SBIG

Owner: Santa Barbara Instrument Group (SBIG)\textsuperscript{416}

Support
BSD-licensed: \xmark
Export: \xmark

Officially Supported Versions:
Reader: SBIGReader (Source Code\textsuperscript{417}, Supported Metadata Fields)

We currently have:
\begin{itemize}
  \item an official SBIG specification document\textsuperscript{418}
  \item a few SBIG files
\end{itemize}

We would like to have:
\begin{itemize}
  \item more SBIG files
\end{itemize}

\textsuperscript{414}http://www.rhk-tech.com
\textsuperscript{415}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/RHKReader.java
\textsuperscript{416}http://www.sbig.com
\textsuperscript{417}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/SBIGReader.java
\textsuperscript{418}http://sbig.impulse.net/pdffiles/file.format.pdf
Ratings
Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ◻
Utility: ◻

17.118 Seiko

Extensions: .xqd, .xqf
Owner: Seiko\(^\text{419}\)

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: SeikoReader (Source Code\(^\text{420}\), Supported Metadata Fields)

We currently have:
• Pascal code that can read Seiko files (from ImageSXM)
• a few Seiko files

We would like to have:
• an official specification document
• more Seiko files

Ratings
Pixels: ◻
Metadata: ◻
Openness: ◻
Presence: ◻
Utility: ◻

17.119 SimplePCI & HClImage

Extensions: .cxd
Developer: Compix\(^\text{421}\)

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:

\(^{419}\)http://www.seiko.co.jp/en/index.php
\(^{420}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/SeikoReader.java
\(^{421}\)http://hcimage.com
Reader: PCIReader \((Source\ Code^{422},\ Supported\ Metadata\ Fields)\)

We currently have:

- several SimplePCI files

We would like to have:

Ratings

Pixels: ▲
Metadata: ●
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

Bio-Formats uses a modified version of the Apache Jakarta POI library\(^{423}\) to read CXD files.

See also:

SimplePCI software overview\(^{424}\)

17.120 SimplePCI & HCImage TIFF

Extensions: .tiff

Developer: Hamamatsu\(^{425}\)

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: SimplePCITiffReader \((Source\ Code^{426},\ Supported\ Metadata\ Fields)\)

We currently have:

- a few SimplePCI TIFF datasets

We would like to have:

- more SimplePCI TIFF datasets

Ratings

Pixels: ▲
Metadata: ●
Openness: ▲
Presence: ▼
Utility: ▼

\(^{422}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/PCIReader.java

\(^{423}\)http://jakarta.apache.org/poi/

\(^{424}\)http://hcimage.com/simple-pci-legacy/

\(^{425}\)http://hcimage.com/simple-pci-legacy/

\(^{426}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/SimplePCITiffReader.java
17.121 SM Camera

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: SMCameraReader (Source Code\(^{427}\), Supported Metadata Fields)

We currently have:

- Pascal code that can read SM-Camera files (from ImageSXM)
- a few SM-Camera files

We would like to have:

- an official specification document
- more SM-Camera files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.122 SPIDER

Extensions: .spi, .stk
Developer: Wadsworth Center\(^{428}\)

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: SpiderReader (Source Code\(^{429}\), Supported Metadata Fields)

Freely Available Software:

- SPIDER\(^{430}\)

We currently have:

- a few example datasets
- official file format documentation\(^{431}\)

We would like to have:

Ratings

Pixels: ▲

---

\(^{427}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/SMCameraReader.java
\(^{428}\)http://spider.wadsworth.org/spider_doc/spider/docs/spider.html
\(^{429}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/SpiderReader.java
\(^{430}\)http://spider.wadsworth.org/spider_doc/spider/docs/spider.html
\(^{431}\)http://spider.wadsworth.org/spider_doc/spider/docs/image_doc.html
17.123 Targa

Extensions: .tga
Developer: Truevision

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: TargaReader (Source Code, Supported Metadata Fields)
We currently have:
• a Targa specification document
• a few Targa files
We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ☐
Utility: ◯

17.124 Text

Extensions: .txt

Support
BSD-licensed: ✔
Export: ❌

Officially Supported Versions:
Reader: TextReader (Source Code, Supported Metadata Fields)
We currently have:
We would like to have:

Ratings
Pixels: ☐

---

432 http://www.truevision.com
433 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/TargaReader.java
434 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/TextReader.java
Metadata: 
Openness: 
Presence: 
Utility: 

Additional Information
Reads tabular pixel data produced by a variety of software.

17.125 TIFF (Tagged Image File Format)

Extensions: .tiff, .tif, .tf2, .tf8, .btf
Developer: Aldus and Microsoft
Owner: Adobe

Support
BSD-licensed: 
Export: 

Officially Supported Versions:
Reader: TiffReader (Source Code, Supported Metadata Fields)
Writer: TiffWriter (Source Code)

Sample Datasets:
• LZW TIFF data gallery
• Big TIFF

We currently have:
• a TIFF specification document (v6.0, from 1992 June 3, in PDF)
• many TIFF datasets
• a few Big TIFF datasets

We would like to have:

Ratings
Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

Additional Information
Bio-Formats can also read Big TIFF files (TIFF files larger than 4 GB). Bio-Formats can save image stacks as TIFF or Big TIFF.

See also:
435http://www.adobe.com
436https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/in/TiffReader.java
437https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-bsd/src/loci/formats/out/TiffWriter.java
438http://marlin.life.utsa.edu/Data_Gallery.html
439http://www.awaresystems.be/imaging/tiff/bigtiff.html#samples
17.126 TillPhotonics TillVision

Extensions: .vws
Developer: TILL Photonics

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: TillVisionReader (Source Code, Supported Metadata Fields)
We currently have:
• several TillVision datasets
We would like to have:
• an official specification document

Ratings
Pixels: 🍒
Metadata: 🍒
Openness: 🍒
Presence: 🍒
Utility: 🍒

17.127 Topometrix

Extensions: .tfr, .ffr, .zfr, .zfp, .2fl
Owner: TopoMetrix (now Veeco)

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: TopometrixReader (Source Code, Supported Metadata Fields)
We currently have:
• Pascal code that reads Topometrix files (from ImageSXM)
• a few Topometrix files
We would like to have:
• an official specification document

---

441 http://www.awaresystems.be/imaging/tiff/faq.html#q3
442 http://www.awaresystems.be/imaging/tiff/bigtiff.html
443 http://www.till-photonics.com/
444 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/TillVisionReader.java
445 http://www.veeco.com/
446 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/TopometrixReader.java
**more Topometrix files**

### Ratings

- Pixels:
- Metadata:
- Openness:
- Presence:
- Utility:

### 17.128 Trestle

**Extensions:** .tif, .sld, .jpg

**Support**

- BSD-licensed: ❌
- Export: ❌

**Officially Supported Versions:**

- Reader: TrestleReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/TrestleReader.java), [Supported Metadata Fields](http://openslide.cs.cmu.edu/download/openslide-testdata/Trestle/))

**Sample Datasets:**

- OpenSlide[^48]

**We currently have:**

- a few example datasets
- developer documentation from the OpenSlide project[^49]

**We would like to have:**

### Ratings

- Pixels:
- Metadata:
- Openness:
- Presence:
- Utility:

### 17.129 UBM

**Extensions:** .pr3

**Support**

- BSD-licensed: ❌
- Export: ❌

**Officially Supported Versions:**

- Reader: UBMReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/UBMReader.java), [Supported Metadata Fields](http://openslide.org/Trestle%20format/))

[^47]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/TrestleReader.java
[^48]: http://openslide.cs.cmu.edu/download/openslide-testdata/Trestle/
[^49]: http://openslide.org/Trestle%20format/
[^50]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/UBMReader.java
We currently have:

- Pascal code that can read UBM files (from ImageSXM)
- one UBM file

We would like to have:

- an official specification document
- more UBM files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.130 Unisoku

Extensions: .dat, .hdr
Owner: Unisoku

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:

Reader: UnisokuReader (Source Code, Supported Metadata Fields)

We currently have:

- Pascal code that can read Unisoku files (from ImageSXM)
- a few Unisoku files

We would like to have:

- an official specification document
- more Unisoku files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

451 http://www.unisoku.com
452 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/UnisokuReader.java
17.131 Varian FDF

Extensions: .fdf
Developer: Varian, Inc.
Owner: Agilent Technologies

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: VarianFDFReader (Source Code, Supported Metadata Fields)

We currently have:
• a few Varian FDF datasets

We would like to have:
• an official specification document
• more Varian FDF datasets

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

17.132 Veeco AFM

Extensions: .hdf
Developer: Veeco

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: VeecoReader (Source Code, Supported Metadata Fields)

We currently have:
• a few sample datasets

We would like to have:

Ratings
Pixels:
Metadata:

http://www.agilent.com/home
http://www.veeco.com

453 http://www.agilent.com/home
454 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/VarianFDFReader.java
455 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/VeecoReader.java
456

17.131. Varian FDF
Openness: ▲
Presence: ▼
Utility: ■

17.133 VG SAM

Extensions: .dti

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: VGSAMReader (Source Code[^457], Supported Metadata Fields)

We currently have:
• a few VG-SAM files

We would like to have:
• an official specification document
• more VG-SAM files

Ratings
Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

17.134 VisiTech XYS

Extensions: .xys, .html

Developer: VisiTech International[^458]

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: VisitechReader (Source Code[^459], Supported Metadata Fields)

We currently have:
• several VisiTech datasets

We would like to have:
• an official specification document

[^457]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/VGSAMReader.java
[^458]: http://www.visitech.co.uk/
[^459]: https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/VisitechReader.java
17.135 Volocity

Extensions: .mvd2
Developer: PerkinElmer

Support
BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: VolocityReader (Source Code, Supported Metadata Fields)

Sample Datasets:
• PerkinElmer Downloads

We currently have:
• many example Volocity datasets

We would like to have:
• an official specification document
• any Volocity datasets that do not open correctly

Ratings
Pixels: 
Metadata: 
Openness: 
Presence: 
Utility: 

Additional Information
.mvd2 files are Metakit database files.

17.136 Volocity Library Clipping

Extensions: .acff
Developer: PerkinElmer

Support

Additional Information
Volocity Library Clipping

17.135. Volocity
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: VolocityClippingReader (Source Code\(^{465}\), Supported Metadata Fields)

We currently have:
• several Volocity library clipping datasets

We would like to have:
• any datasets that do not open correctly
• an official specification document

Ratings
Pixels: 
Metadata: 
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
RGB .aef files are not yet supported. See \(#6413\(^{466}\).

17.137 WA-TOP

Extensions: .wat
Developer: WA Technology
Owner: Oxford Instruments\(^{467}\)

Support
BSD-licensed: ✗
Export: ✗

Officially Supported Versions:
Reader: WATOPReader (Source Code\(^{468}\), Supported Metadata Fields)

We currently have:
• Pascal code that can read WA-TOP files (from ImageSXM)
• a few WA-TOP files

We would like to have:
• an official specification document
• more WA-TOP files

Ratings
Pixels: 
Metadata: ▼

- \(^{465}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/VolocityClippingReader.java
- \(^{466}\)https://trac.openmicroscopy.org/ome/ticket/6413
- \(^{467}\)http://www.oxinst.com
- \(^{468}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/WATOPReader.java
17.138 Windows Bitmap

Extensions: .bmp
Developer: Microsoft and IBM

Support

BSD-licensed: ✓
Export: ✗

Officially Supported Versions:
Reader: BMPReader (Source Code\(^\text{469}\), Supported Metadata Fields)

Freely Available Software:
- BMP Writer plugin for Image\(^\text{470}\)

We currently have:
- many BMP datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▲
Utility: ▼

Additional Information

Compressed BMP files are currently not supported.

See also:
Technical Overview\(^\text{471}\)

17.139 Woolz

Extensions: .wlz
Developer: MRC Human Genetics Unit\(^\text{472}\)

Support

BSD-licensed: ✗
Export: ✓

Officially Supported Versions:

\(^{469}\)https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/format-bsd/src/loci/formats/in/BMPReader.java
\(^{472}\)http://www.emouseatlas.org/emap/analysis_tools_resources/software/woolz.html
Reader: WlzReader (Source Code\textsuperscript{473}, Supported Metadata Fields)

Writer: WlzWriter (Source Code\textsuperscript{474})

Freely Available Software:
- Woolz\textsuperscript{475}

We currently have:
- a few Woolz datasets

We would like to have:

\section*{Ratings}

Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

\section*{17.140 Zeiss Axio CSM}

Extensions: .lms

Developer: Carl Zeiss Microscopy GmbH\textsuperscript{476}
Owner: Carl Zeiss Microscopy GmbH\textsuperscript{477}

Support

BSD-licensed: ✗
Export: ✗

Officially Supported Versions:

Reader: ZeissLMSReader (Source Code\textsuperscript{478}, Supported Metadata Fields)

We currently have:
- one example dataset

We would like to have:

\section*{Ratings}

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

\section*{Additional Information}

This should not be confused with the more common Zeiss LSM format, which has a similar extension. As far as we know, the Axio CSM 700 system is the only one which saves files in the .lms format.

\textsuperscript{473}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/WlzReader.java
\textsuperscript{474}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/out/WlzWriter.java
\textsuperscript{475}http://www.emouseatlas.org/emap/analysis_tools_resources/software/woolz.html
\textsuperscript{476}http://www.zeiss.com/microscopy/
\textsuperscript{477}http://www.zeiss.com/microscopy/
\textsuperscript{478}https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ZeissLMSReader.java
17.141 Zeiss AxioVision TIFF

Extensions: .xml, .tiff
Developer: Carl Zeiss Microscopy GmbH
Owner: Carl Zeiss Microscopy GmbH

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions:
Reader: ZeissTIFFReader (Source Code, Supported Metadata Fields)

Freely Available Software:
- Zeiss ZEN Lite

We currently have:
- many example datasets

We would like to have:
- an official specification document

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

17.142 Zeiss AxioVision ZVI (Zeiss Vision Image)

Extensions: .zvi
Developer: Carl Zeiss Microscopy GmbH (AxioVision)
Owner: Carl Zeiss Microscopy GmbH

Support

BSD-licensed: ❌
Export: ❌

Officially Supported Versions: 1.0, 2.0
Reader: ZeissZVIReader (Source Code, Supported Metadata Fields)

Freely Available Software:
- Zeiss Axiovision LE

---

479 http://www.zeiss.com/microscopy/
480 http://www.zeiss.com/microscopy/
481 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ZeissTIFFReader.java
484 http://www.zeiss.com/microscopy/
485 https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ZeissZVIReader.java
We currently have:

- a ZVI specification document (v2.0.5, from 2010 August, in PDF)
- an older ZVI specification document (v2.0.2, from 2006 August 23, in PDF)
- an older ZVI specification document (v2.0.1, from 2005 April 21, in PDF)
- an older ZVI specification document (v1.0.26.01.01, from 2001 January 29, in DOC)
- Zeiss’ ZvImageReader code (v1.0, from 2001 January 25, in C++)
- many ZVI datasets

We would like to have:

**Ratings**

- Pixels: 🔺
- Metadata: 🔺
- Openness: 🔺
- Presence: □
- Utility: □

**Additional Information**

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Bio-Formats uses a modified version of the [Apache Jakarta POI library](http://jakarta.apache.org/poi/) to read ZVI files. ImageJ/FIJI will use the ZVI reader plugin in preference to Bio-Formats if both are installed. If you have a problem which is solved by opening the file using the Bio-Formats Importer plugin, you can just remove the ZVI_Reader.class from the plugins folder.

Commercial applications that support ZVI include [Bitplane Imaris](http://www.bitplane.com).

### 17.143 Zeiss CZI

**Extensions:** .czi

**Developer:** Carl Zeiss Microscopy GmbH

**Support**

- BSD-licensed: ❌
- Export: ❌

**Officially Supported Versions:**

**Reader:** ZeissCZIReader ([Source Code](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ZeissCZIReader.java), [Supported Metadata Fields](http://www.zeiss.com/czi))

**Freely Available Software:**

- Zeiss ZEN

We currently have:

- many example datasets
- official specification documents

---

489 [http://www.zeiss.com/czi](http://www.zeiss.com/czi)
490 [http://www.zeiss.com/czi](http://www.zeiss.com/czi)
491 [https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ZeissCZIReader.java](https://github.com/openmicroscopy/bioformats/blob/v5.2.2/components/formats-gpl/src/loci/formats/in/ZeissCZIReader.java)
We would like to have:

**Ratings**

- **Pixels:**
- **Metadata:**
- **Openness:**
- **Presence:**
- **Utility:**

**Additional Information**

Please note that while we have specification documents for this format, we are not able to distribute them to third parties. Bio-Formats does not support CZI files generated using JPEG-XR compression.

### 17.144 Zeiss LSM (Laser Scanning Microscope) 510/710

**Extensions:** .lsm, .mdb

**Owner:** Carl Zeiss Microscopy GmbH

**Support**

- BSD-licensed: 
- Export: ❌

**Officially Supported Versions:**

**Reader:** ZeissLSMReader (Source Code, Supported Metadata Fields)

**Freely Available Software:**

- Zeiss LSM Image Browser
- LSM Toolbox plugin for ImageJ
- LSM Reader plugin for ImageJ
- DIMIN

We currently have:

- LSM specification v3.2, from 2003 March 12, in PDF
- LSM specification v5.5, from 2009 November 23, in PDF
- LSM specification v6.0, from 2010 September 28, in PDF
- many LSM datasets

We would like to have:

**Ratings**

- **Pixels:**
- **Metadata:**
- **Openness:**
- **Presence:**
Utility:  

Additional Information

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Bio-Formats uses the MDB Tools Java port\(^{499}\)

Commercial applications that support this format include:

- SVI Huygens\(^{500}\)
- Bitplane Imaris\(^{501}\)
- Amira\(^{502}\)
- Image-Pro Plus\(^{503}\)

\(^{499}\)http://mdbtools.sourceforge.net/
\(^{500}\)https://svi.nl/HomePage
\(^{501}\)http://www.bitplane.com/
\(^{502}\)http://www.amira.com/
\(^{503}\)http://www.mediacy.com/
## SUMMARY OF SUPPORTED METADATA FIELDS

### 18.1 Format readers

<table>
<thead>
<tr>
<th>Reader</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFIReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>AIMReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>APLReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>APNGReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>ARFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>AVIReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>AliconaReader</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>AmiraReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>AnalyzeReader</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>BDReader</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>419</td>
</tr>
<tr>
<td>BIFFormatReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>BMPReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>BaseTiffReader</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>448</td>
</tr>
<tr>
<td>BaseZeissReader</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>393</td>
</tr>
<tr>
<td>BioRadGelReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>BioRadReader</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>436</td>
</tr>
<tr>
<td>BioRadSCNReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>447</td>
</tr>
<tr>
<td>BrukerReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>BurleighReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>CanonRawReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>CellH5Reader</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>435</td>
</tr>
<tr>
<td>CellSensReader</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>430</td>
</tr>
<tr>
<td>CellVoyagerReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>CellWorxReader</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>431</td>
</tr>
<tr>
<td>CellomicsReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>DNGReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>DeltavisionReader</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>424</td>
</tr>
<tr>
<td>DicomReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>EPSReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>Ecat7Reader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>FEIReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>FEITiffReader</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>437</td>
</tr>
<tr>
<td>FVI100Reader</td>
<td>113</td>
<td>0</td>
<td>0</td>
<td>363</td>
</tr>
<tr>
<td>FakeReader</td>
<td>84</td>
<td>0</td>
<td>0</td>
<td>392</td>
</tr>
<tr>
<td>FilePatternReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>FitsReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>FlexReader</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>407</td>
</tr>
<tr>
<td>FlowSightReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>FluoviewReader</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>427</td>
</tr>
<tr>
<td>FujiReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>GIFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>GatanDM2Reader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>Reader</td>
<td>Supported</td>
<td>Unsupported</td>
<td>Partial</td>
<td>Unknown/Missing</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>GatanReader</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>440</td>
</tr>
<tr>
<td>GelReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>HISReader</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>HRDGDFReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>HamamatsuVMSReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>HitachiReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>I2IReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>ICSReader</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>404</td>
</tr>
<tr>
<td>IM3Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>IMODReader</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>INRReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>IPLabReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>IPWReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ImaconReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>ImageIOReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>ImagicReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>ImarisHDFReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>ImarisReader</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td>ImarisTiffReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>ImprovisionTiffReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>InspectorReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>InCell3000Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>InCellReader</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>409</td>
</tr>
<tr>
<td>InveonReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>IvisionReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>JEOLReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>JPEG2000Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>JPEGReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>JPReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>JPXReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>KhorosReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>KodakReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>L2DReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>447</td>
</tr>
<tr>
<td>LEOReader</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>LIFReader</td>
<td>85</td>
<td>0</td>
<td>0</td>
<td>391</td>
</tr>
<tr>
<td>LIMReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>LegacyND2Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>LegacyQTReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>LeicaReader</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>420</td>
</tr>
<tr>
<td>LeicaSCNReader</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>LiFilmReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>MIASReader</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>411</td>
</tr>
<tr>
<td>MINCReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>MNGReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>MRCReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>MRWReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>MetamorphReader</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>430</td>
</tr>
<tr>
<td>MetamorphTiffReader</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>438</td>
</tr>
<tr>
<td>MicromanagerReader</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>435</td>
</tr>
<tr>
<td>MinimalTiffReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>MolecularImagingReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>NAFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>ND2Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>NDPReader</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>448</td>
</tr>
<tr>
<td>NDPISReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>NRRDReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>NativeND2Reader</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>424</td>
</tr>
<tr>
<td>NativeQTReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Reader</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiftiReader</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>NikonElementsTiffReader</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>426</td>
</tr>
<tr>
<td>NikonReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>NikonTiffReader</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>429</td>
</tr>
<tr>
<td>OBFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>OMETiffReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>OMEXMLReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>OpenlabRawReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>OpenlabReader</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td>OperettaReader</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>433</td>
</tr>
<tr>
<td>OxfordInstrumentsReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>PCIReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>447</td>
</tr>
<tr>
<td>PCORAWReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>PCXReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>PDSReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>PGMReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>PQBinReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>PSDReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>PerkinElmerReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>PhotoshopTiffReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>PictReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>PovrayReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>PrairieReader</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>430</td>
</tr>
<tr>
<td>PyramidTiffReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>QTRender</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>QuesantReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>RHKReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>SBIGReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>SDTReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>SEQReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>SIFReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>SISReader</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>SMCameraReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>SPCReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>SPEReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>SVSReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>447</td>
</tr>
<tr>
<td>ScanrReader</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>433</td>
</tr>
<tr>
<td>ScreenReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>SeikoReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>SimplePCITiffReader</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>SlidebookReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>SlidebookTiffReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>SpiderReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>TCSReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>TargaReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>TextReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>TiffDelegateReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>TiffJAIReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>TiffReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>TileJPEGReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>TillVisionReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>TopometrixReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>TrestleReader</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>UBMReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>UnisokuReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>VGSAMReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>VarianFDFReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>VeecoReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Reader</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisitechReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>VelocityClippingReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>VolocityReader</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>438</td>
</tr>
<tr>
<td>WATOPReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>WlReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>ZeissCZIReader</td>
<td>158</td>
<td>0</td>
<td>0</td>
<td>318</td>
</tr>
<tr>
<td>ZeissLMSReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>ZeissLSMReader</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>375</td>
</tr>
<tr>
<td>ZeissTIFFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>ZeissZVIReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
<tr>
<td>ZipReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>457</td>
</tr>
</tbody>
</table>

### 18.2 Metadata fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Arc - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Arc - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Arc - Model</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Arc - Power</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Arc - SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Arc - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>BooleanAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>BooleanAnnotation - Description</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>BooleanAnnotation - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>BooleanAnnotation - Namespace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>BooleanAnnotation - Value</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Channel - AcquisitionMode</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Channel - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Channel - Color</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Channel - ContrastMethod</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Channel - EmissionWavelength</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

2. [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber)
3. [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer)
6. [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber)
7. [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Arc_Type](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Arc_Type)
8. [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID)
9. [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Description](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Description)
10. [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID)
11. [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Name](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Name)
12. [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace)
13. [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Value](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Value)
14. [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_AcquisitionMode](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_AcquisitionMode)
15. [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_AnnotationRef](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_AnnotationRef)
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel - Excitation-Wavelength</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>152</td>
</tr>
<tr>
<td>Channel - FilterSetRef</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Channel - Fluor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Channel - ID</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel - IlluminationType</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsAttenuation</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsWavelength</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Channel - NDFilter</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Channel - Name</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>136</td>
</tr>
<tr>
<td>Channel - Pinhole-Size</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Channel - PockelCellSetting</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Channel - SamplesPerPixel</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CommentAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>CommentAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>CommentAnnotation - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>CommentAnnotation - Namespace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>CommentAnnotation - Value</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Dataset - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Dataset - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Dataset - ExperimenterGroupRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Dataset - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Dataset - ImageRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Dataset - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Detector - AmplificationGain</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Detector - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Detector - Gain</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Detector - ID</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>134</td>
</tr>
<tr>
<td>Detector - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Detector - Manufacturer</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>Detector - Model</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>Detector - Offset</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Detector - SerialNumber</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Detector - Type</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Detector - Voltage</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Detector - Zoom</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>DetectorSettings - Binning</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>DetectorSettings - Gain</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>DetectorSettings - ID</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>136</td>
</tr>
<tr>
<td>DetectorSettings - Offset</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>DetectorSettings - ReadOutRate</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>DetectorSettings - Voltage</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Dichroic - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Dichroic - ID</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
</tbody>
</table>

Continued on next page

42. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Dataset_Name
43. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_AmplificationGain
44. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
47. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
51. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
52. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
54. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Zoom
58. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ReadOutRate
60. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichroic - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Dichroic - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Dichroic - Model</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Dichroic - Serial-Number</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>DoubleAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>DoubleAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>DoubleAnnotation - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>DoubleAnnotation - Namespace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>DoubleAnnotation - Value</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Ellipse - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Ellipse - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - ID</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Ellipse - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - RadiusX</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Ellipse - RadiusY</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Ellipse - Stroke-Color</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - StrokeDashArray</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - StrokeWidth</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Ellipse - Text</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Ellipse - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Ellipse - TheT</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Ellipse - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellipse - Transform</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Ellipse - X</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Ellipse - Y</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Experiment - AnnotationRef</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Experiment - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Experiment - ExperimenterRef</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>Experiment - ID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>Experimenter - AnnotationRef</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Experimenter - FirstName</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>Experimenter - ID</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Experimenter - Institution</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Experimenter - LastName</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>Experimenter - MiddleName</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Experimenter - UserName</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>ExperimenterGroup - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ExperimenterGroup - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ExperimenterGroup - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ExperimenterGroup - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ExperimenterGroup - Leader</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ExperimenterGroup - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

88http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
89http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_X
90http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_Y
91http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
92http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Description
93http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID
94http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_ID
95http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Type
96http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
97http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_Email
98http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_FirstName
99http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_ID
100http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_Institution
101http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
102http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_MiddleName
103http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_UserName
104http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID
105http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterGroup_Description
106http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID
107http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterGroup_ID
108http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Leader_ID
109http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterGroup_Name

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament-ID</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Filament - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Filament - Manufacturer</td>
<td>112</td>
<td>1</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Filament - Model</td>
<td>113</td>
<td>1</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Filament - Power</td>
<td>114</td>
<td>1</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Filament - SerialNumber</td>
<td>115</td>
<td>1</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Filament - Type</td>
<td>116</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>FileAnnotation - AnnotationRef</td>
<td>117</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>FileAnnotation - Description</td>
<td>118</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>FileAnnotation - ID</td>
<td>119</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>FileAnnotation - Namespace</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Filter - AnnotationRef</td>
<td>121</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Filter - FilterWheel</td>
<td>122</td>
<td>2</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Filter - ID</td>
<td>123</td>
<td>8</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Filter - LotNumber</td>
<td>124</td>
<td>1</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Filter - Manufacturer</td>
<td>125</td>
<td>1</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Filter - Model</td>
<td>126</td>
<td>8</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Filter - SerialNumber</td>
<td>127</td>
<td>1</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Filter - Type</td>
<td>128</td>
<td>2</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>FilterSet - DichroicRef</td>
<td>129</td>
<td>2</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>FilterSet - EmissionFilter</td>
<td>130</td>
<td>2</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>FilterSet - ExcitationFilter</td>
<td>131</td>
<td>2</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>FilterSet - ID</td>
<td>132</td>
<td>2</td>
<td>0</td>
<td>167</td>
</tr>
</tbody>
</table>

110 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_ID
111 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
112 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
113 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
114 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
115 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
116 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FIlament_Type
117 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
118 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Description
119 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID
120 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace
121 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
122 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_FIlterWheel
123 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FIlter_ID
124 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
125 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
126 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
127 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
128 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
129 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DichroicRef_ID
130 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterRef_ID
131 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterRef_ID
132 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterSet_ID

18.2. Metadata fields
### Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>FilterSet - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>FilterSet - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>FilterSet - Model</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>FilterSet - SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Folder - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Folder - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Folder - FolderRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Folder - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Folder - ImageRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Folder - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Folder - ROIF Ref</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Image - AcquisitionDate</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - AnnotationRef</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Image - Description</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>Image - ExperimenterRef</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Image - ExperimenterGroupRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Image - ExperimenterRef</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Image - ID</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - InstrumentRef</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>124</td>
</tr>
<tr>
<td>Image - MicrobeamManipulationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Image - Name</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - ROIRef</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>ImagingEnvironment - AirPressure</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
</tbody>
</table>

**Continued on next page**

---

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Maker">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Maker</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Folder_Description">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Folder_Description</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FolderRef_ID">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FolderRef_ID</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Folder_ID">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Folder_ID</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Folder_Name">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Folder_Name</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIFRef_ID">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIFRef_ID</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimentRef_ID">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimentRef_ID</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterGroupRef_ID">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterGroupRef_ID</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_AirPressure">http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_AirPressure</a></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Supported</td>
<td>Unsupported</td>
<td>Partial</td>
<td>Unknown/Missing</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>ImagingEnvironment - CO2Percent</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>ImagingEnvironment - Humidity</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>ImagingEnvironment - Temperature</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Instrument - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ImagingEnvironment - Humidity</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Instrument - ID</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td>118</td>
</tr>
<tr>
<td>Label - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Label - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Label - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Label - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Label - Locked</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>Label - StrokeColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Laser - Frequency-Multiplication</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Laser - ID</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>Laser - Laser-Medium</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
</tbody>
</table>

156 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_CO2Percent
157 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_Humidity
158 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_Temperature
159 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
160 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
161 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillColor
162 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillRule
163 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontFamily
164 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
165 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontStyle
166 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
167 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Locked
168 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor
169 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray
170 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
171 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
172 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheC
173 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
174 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
175 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
176 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Label_X
177 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Label_Y
178 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_FrequencyMultiplication
179 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_ID
180 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_LaserMedium

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser - LotNumber181</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Laser - Manufacturer182</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Laser - Model183</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Laser - PockelCell184</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Laser - Power185</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Laser - Pulse186</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Laser - Pump187</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Laser - Repetition-Rate188</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Laser - SerialNumber189</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Laser - Tuneable190</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Laser - Type191</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Laser - Wavelength192</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>162</td>
</tr>
<tr>
<td>LightEmittingDiode - ID193</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>LightEmittingDiode - LotNumber194</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>LightEmittingDiode - Manufacturer195</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>LightEmittingDiode - Model196</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>LightEmittingDiode - Power197</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>LightPath - AnnotationRef199</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>LightPath - DichroicRef200</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>LightPath - EmissionFilterRef201</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>LightPath - ExcitationFilterRef202</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Line - FillColor203</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

18.2. Metadata fields

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line - FillRule 204</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - FontFamily 205</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - FontSize 206</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Line - FontStyle 207</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - ID 208</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Line - Locked 209</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - MarkerEnd 210</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - MarkerStart 211</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - StrokeColor 212</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - StrokeDashArray 213</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - StrokeWidth 214</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Line - Text 215</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Line - TheC 216</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Line - TheT 217</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Line - TheZ 218</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Line - Transform 219</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Line - X1 220</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Line - X2 221</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Line - Y1 222</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Line - Y2 223</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>ListAnnotation - AnnotationRef 224</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ListAnnotation - Description 225</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ListAnnotation - ID 226</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ListAnnotation - Namespace 227</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>LongAnnotation - AnnotationRef 228</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>LongAnnotation - Description 229</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page

---

204 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillRule  
205 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontFamily  
206 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize  
207 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontStyle  
208 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID  
209 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Locked  
210 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_MarkerEnd  
211 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_MarkerStart  
212 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_StrokeColor  
213 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_StrokeDashArray  
214 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth  
215 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text  
216 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheC  
217 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT  
218 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ  
219 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform  
220 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_X1  
221 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_X2  
222 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_Y1  
223 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_Y2  
224 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID  
225 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Description  
226 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID  
227 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace  
228 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID  
229 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Description
### Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>LongAnnotation - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>LongAnnotation - Namespace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>LongAnnotation - Value</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Mask - BinData</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Mask - BinDataBigEndian</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Mask - BinDataBigLength</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - BinDataCompression</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - FillColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Mask - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - FontSize</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - Height</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Mask - ID</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Mask - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Mask - StrokeDashArray</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - StrokeWidth</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - Text</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - TheT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - TheZ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - Transform</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Mask - Width</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Mask - X</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Mask - Y</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
</tbody>
</table>

Continued on next page

---

230http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID
231http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace
232http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LongAnnotation_Value
233http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#BinData
234http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#BinData_BigEndian
235http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#BinData_Length
236http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#BinData_Compression
237http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillColor
238http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillRule
239http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontFamily
240http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
241http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Height
242http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
243http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Locked
244http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor
245http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray
246http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
247http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
248http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheC
249http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
250http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
251http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
252http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Width
253http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_X
254http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Y

18.2. Metadata fields

---

243
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicrobeamManipulation-ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>MicrobeamManipulation-ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>MicrobeamManipulation-ROIRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>MicrobeamManipulation-Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>MicrobeamManipulationLightSourceSettings-Attenuation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>MicrobeamManipulationLightSourceSettings-ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>MicrobeamManipulationLightSourceSettings-Wavelength</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Microscope - Lot-Number</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Microscope - Manufacturer</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Microscope - Model</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Microscope - Serial-Number</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Microscope - Type</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Objective - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Objective - CalibratedMagnification</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>Objective - Correction</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Objective - ID</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>132</td>
</tr>
<tr>
<td>Objective - Immersion</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Objective - Iris</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Objective - LensNA</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Objective - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Objective - Manufacturer</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
</tbody>
</table>

Continued on next page
### Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective - Model</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Objective - Nominal-Magnification</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Objective - Serial-Number</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Objective - Working-Distance</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>ObjectiveSettings - CorrectionCollar</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>ObjectiveSettings - ID</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>137</td>
</tr>
<tr>
<td>ObjectiveSettings - Medium</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Pixels - Annotation-ref</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Pixels - BigEndian</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - DimensionOrder</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - ID</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - Interleaved</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - Physical-SizeX</td>
<td>87</td>
<td>0</td>
<td>0</td>
<td>82</td>
</tr>
<tr>
<td>Pixels - Physical-SizeY</td>
<td>87</td>
<td>0</td>
<td>0</td>
<td>82</td>
</tr>
<tr>
<td>Pixels - Physical-SizeZ</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>126</td>
</tr>
<tr>
<td>Pixels - Significant-Bits</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - Size</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeT</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeX</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeY</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeZ</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - TimeIncrement</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>153</td>
</tr>
</tbody>
</table>

276 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
277 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
278 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
279 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_WorkingDistance
280 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_CorrectionCollar
281 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
282 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_Medium
283 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
284 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
285 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
286 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
287 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
288 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
289 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
290 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
291 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
292 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
293 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
294 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
295 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
296 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
297 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement

Continued on next page
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels-Type</td>
<td>299</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane-Annotation-Ref</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Plane-DeltaT</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>Plane-Exposure-Time</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>138</td>
</tr>
<tr>
<td>Plane-HashSHA1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Plane-PositionX</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>Plane-PositionY</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>Plane-PositionZ</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>Plane-TheC</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane-TheT</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane-TheZ</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plate-Annotation-Ref</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Plate-ColumnNamingConvention</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Plate-Columns</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Plate-Description</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Plate-ExternalIdentifier</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Plate-ID</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Plate-Name</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Plate-RowNamingConvention</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Plate-Rows</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Plate-Status</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Plate-WellOriginX</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Plate-WellOriginY</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>PlateAcquisition-AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>PlateAcquisition-Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page

299 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
300 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
301 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
302 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
303 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_HashSHA1
304 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
305 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
306 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
307 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
308 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
309 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
310 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ColumnNamingConvention
311 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Columns
312 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Description
313 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ExternalIdentifier
314 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
315 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
316 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_OriginX
317 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_OriginY
318 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_OriginZ
319 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Status
320 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_TheC
321 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_TheT
322 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_TheZ
323 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_Description

18.2. Metadata fields
### Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlateAcquisition - EndTime</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>PlateAcquisition - ID</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>PlateAcquisition - MaximumFieldCount</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>PlateAcquisition - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>PlateAcquisition - StartTime</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>PlateAcquisition - WellSampleRef</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>162</td>
</tr>
<tr>
<td>Point - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - FontSize</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Point - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - ID</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Point - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Point - StrokeDashArray</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Point - StrokeWidth</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Point - Text</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Point - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Point - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Point - Transform</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Point - X</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Point - Y</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Polygon - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polygon - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

324 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_EndTime
325 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
326 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
327 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_Name
328 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_StartTime
329 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSampleRef_ID
330 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillColor
331 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillRule
332 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontFamily
333 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
334 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontStyle
335 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
336 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor
337 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray
338 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
339 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
340 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheC
341 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
342 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
343 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
344 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_X
345 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_Y
346 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillColor
347 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillRule

18.2. Metadata fields

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygon - FontFamily</td>
<td></td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>Polygon - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Polygon - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polygon - ID</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Polygon - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polygon - Points</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td>Polygon - StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Polygon - StrokeDashArray</td>
<td></td>
<td></td>
<td>1</td>
<td>168</td>
</tr>
<tr>
<td>Polygon - StrokeWidth</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Polygon - Text</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Polygon - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polygon - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Polygon - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Polygon - Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Polyline - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - FontFamily</td>
<td></td>
<td></td>
<td>2</td>
<td>167</td>
</tr>
<tr>
<td>Polyline - FontSize</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - FontStyle</td>
<td></td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>Polyline - ID</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>Polyline - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - MarkerEnd</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - MarkerStart</td>
<td></td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>Polyline - Points</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>163</td>
</tr>
</tbody>
</table>

Continued on next page

349 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontFamily
350 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
351 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontStyle
352 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
353 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Locked
354 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polygon_Points
355 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor
356 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray
357 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
358 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
359 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheC
360 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
361 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
362 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
363 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_MarkerEnd
364 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_TheC
365 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_TheT
366 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_TheZ
367 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_ID
368 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_Locked
369 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_Points
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyline - Stroke-Color</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Polyline - StrokeDashArray</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Polyline - StrokeWidth</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Polyline - Text</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Polyline - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Polyline - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Polyline - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Polyline - Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Project - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Project - DatasetRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Project - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Project - ExperimenterGroupRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Project - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ROI - AnnotationRef</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>ROI - ID</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>ROI - Name</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Reagent - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Reagent - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Reagent - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Reagent - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Reagent - ReagentIdentifier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page

---

373. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor
375. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
376. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
378. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
379. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
381. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
387. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Project_Name
394. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Reagent_Name
### Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle - Fill-Color&lt;sup&gt;397&lt;/sup&gt;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Rectangle - Fill-Rule&lt;sup&gt;398&lt;/sup&gt;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Rectangle - FontFamily&lt;sup&gt;399&lt;/sup&gt;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Rectangle - Font-Size&lt;sup&gt;400&lt;/sup&gt;</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Rectangle - FontStyle&lt;sup&gt;401&lt;/sup&gt;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Rectangle - Height&lt;sup&gt;402&lt;/sup&gt;</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Rectangle - ID&lt;sup&gt;403&lt;/sup&gt;</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Rectangle - Locked&lt;sup&gt;404&lt;/sup&gt;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Rectangle - Stroke-Color&lt;sup&gt;405&lt;/sup&gt;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Rectangle - StrokeDashArray&lt;sup&gt;406&lt;/sup&gt;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Rectangle - StrokeWidth&lt;sup&gt;407&lt;/sup&gt;</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Rectangle - Text&lt;sup&gt;408&lt;/sup&gt;</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>Rectangle - TheC&lt;sup&gt;409&lt;/sup&gt;</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Rectangle - TheT&lt;sup&gt;410&lt;/sup&gt;</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Rectangle - TheZ&lt;sup&gt;411&lt;/sup&gt;</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>Rectangle - Transform&lt;sup&gt;412&lt;/sup&gt;</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Rectangle - Width&lt;sup&gt;413&lt;/sup&gt;</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Rectangle - X&lt;sup&gt;414&lt;/sup&gt;</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Rectangle - Y&lt;sup&gt;415&lt;/sup&gt;</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Screen - AnnotationRef&lt;sup&gt;416&lt;/sup&gt;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Screen - Description&lt;sup&gt;417&lt;/sup&gt;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Screen - ID&lt;sup&gt;418&lt;/sup&gt;</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Screen - Name&lt;sup&gt;419&lt;/sup&gt;</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Screen - PlateRef&lt;sup&gt;420&lt;/sup&gt;</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
</tbody>
</table>

Continued on next page

---

<sup>397</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillColor](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillColor)

<sup>398</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillRule](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FillRule)

<sup>399</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontFamily](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontFamily)

<sup>400</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize)

<sup>401</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontStyle](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontStyle)

<sup>402</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Height](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Height)

<sup>403</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID)

<sup>404</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Locked](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Locked)

<sup>405</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor)

<sup>406</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray)

<sup>407</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth)

<sup>408</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheC](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheC)

<sup>409</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT)

<sup>410</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ)

<sup>411</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform)

<sup>412</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X)

<sup>413</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_TheC](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_TheC)

<sup>414</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_TheT](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_TheT)

<sup>415</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_TheZ](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_TheZ)

<sup>416</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID)

<sup>417</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_Description](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_Description)

<sup>418</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_ID)

<sup>419</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_Name](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_Name)

<sup>420</sup> [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_Screen_PlateRef_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_Screen_PlateRef_ID)
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen - ProtocolDescription^421</td>
<td></td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>Screen - ProtocolIdentifier^422</td>
<td></td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>Screen - ReagentSetDescription^423</td>
<td></td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>Screen - ReagentSetIdentifier^424</td>
<td></td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>Screen - Type^425</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>StageLabel - Name^426</td>
<td></td>
<td></td>
<td></td>
<td>166</td>
</tr>
<tr>
<td>StageLabel - X^427</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>StageLabel - Y^428</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>167</td>
</tr>
<tr>
<td>StageLabel - Z^429</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>TagAnnotation - AnnotationRef^430</td>
<td></td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>TagAnnotation - Description^431</td>
<td></td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>TagAnnotation - ID^432</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TagAnnotation - Namespace^433</td>
<td></td>
<td></td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>TagAnnotation - Value^434</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TermAnnotation - AnnotationRef^435</td>
<td></td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>TermAnnotation - Description^436</td>
<td></td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>TermAnnotation - ID^437</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TermAnnotation - Namespace^438</td>
<td></td>
<td></td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>TermAnnotation - Value^439</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TiffData - FirstC^440</td>
<td></td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>TiffData - FirstT^441</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>TiffData - FirstZ^442</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>TiffData - IFD^443</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page

---

[^421]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_ProtocolDescription](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_ProtocolDescription)
[^423]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_ReagentSetDescription](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_ReagentSetDescription)
[^424]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_ReagentSetIdentifier](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_ReagentSetIdentifier)
[^425]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_Type](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Screen_Type)
[^426]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Name](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Name)
[^427]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_X](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_X)
[^428]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Y](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Y)
[^429]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Z](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Z)
[^430]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID)
[^431]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Description](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Description)
[^432]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID)
[^433]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace)
[^434]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TermAnnotation_Value](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TermAnnotation_Value)
[^435]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID)
[^436]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Description](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Description)
[^437]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID)
[^438]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace)
[^439]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TermAnnotation_Value](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TermAnnotation_Value)
[^440]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_FirstC](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_FirstC)
[^441]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_FirstT](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_FirstT)
[^442]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_FirstZ](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_FirstZ)
[^443]: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_IFD](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_IFD)
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiffData PlaneCount</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>TimestampAnnotation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Value</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TransmittanceRange CutIn</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>TransmittanceRange CutInTolerance</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TransmittanceRange CutOut</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>TransmittanceRange CutOutTolerance</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>TransmittanceRange Transmittance</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>UUID - FileName</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>UUID - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Well AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Well Color</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Well - Column</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Well - ExternalDescription</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Well - ExternalIdentifier</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>Well ID</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Well - ReagentRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Well - Row</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Well - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>WellSample - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
</tbody>
</table>

Continued on next page

444 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_PlaneCount
445 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
446 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Description
447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Name
448 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace
449 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TimestampAnnotation_Value
450 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutIn
451 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutInTolerance
452 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutOut
453 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutOutTolerance
454 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_Transmittance
455 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TiffData_TiffData_UUID_FileName
456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#UniversallyUniqueIdentifier
457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Color
459 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
460 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ExternalDescription
461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ExternalIdentifier
462 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
463 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ReagentRef_ID
464 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row
465 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Type
466 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID

18.2. Metadata fields

252
18.2.1 AFIReader

This page lists supported metadata fields for the Bio-Formats Aperio AFI format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 30 of them (6%).
- Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Aperio AFI format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Channel: SamplesPerPixel

Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>WellSample - ID</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>WellSample - ImageRef</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>WellSample - Index</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>WellSample - PositionX</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>WellSample - PositionY</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>164</td>
</tr>
<tr>
<td>WellSample - Timepoint</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>XMLAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>XMLAnnotation - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>XMLAnnotation - Namespace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
<tr>
<td>XMLAnnotation - Value</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>168</td>
</tr>
</tbody>
</table>

467 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
468 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
469 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
470 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionX
471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionY
472 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Timepoint
473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#AnnotationRef_ID
474 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_ID
475 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Annotation_Namespace
476 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#XMLAnnotation_Value
477 http://www.openmicroscopy.org/site/support/ome-model/
478 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
479 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
480 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
481 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
482 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Objective: ID
• Objective: NominalMagnification
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 30

Total unknown or missing: 446
18.2.2 AIMReader

This page lists supported metadata fields for the Bio-Formats AIM format reader.

These fields are from the OME data model\(^{508}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats AIM format reader:

- Channel : ID\(^{509}\)
- Channel : SamplesPerPixel\(^{510}\)
- Image : AcquisitionDate\(^{511}\)
- Image : ID\(^{512}\)
- Image : Name\(^{513}\)
- Pixels : BigEndian\(^{514}\)
- Pixels : DimensionOrder\(^{515}\)
- Pixels : ID\(^{516}\)
- Pixels : Interleaved\(^{517}\)
- Pixels : PhysicalSizeX\(^{518}\)
- Pixels : PhysicalSizeY\(^{519}\)
- Pixels : PhysicalSizeZ\(^{520}\)
- Pixels : SignificantBits\(^{521}\)
- Pixels : SizeC\(^{522}\)
- Pixels : SizeT\(^{523}\)
- Pixels : SizeX\(^{524}\)
- Pixels : SizeY\(^{525}\)
- Pixels : SizeZ\(^{526}\)
- Pixels : Type\(^{527}\)

508\ http://www.openmicroscopy.org/site/support/ome-model/
509\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
510\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
511\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
512\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
513\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
514\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
515\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
516\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
517\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
518\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
519\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
520\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
521\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
522\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
523\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
524\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
525\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
526\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
527\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.3 APLReader

This page lists supported metadata fields for the Bio-Formats Olympus APL format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus APL format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeT

[533]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[534]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

18.2. Metadata fields
18.2.4 APNGReader

This page lists supported metadata fields for the Bio-Formats Animated PNG format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Animated PNG format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits

---

546 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
547 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
548 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
549 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
550 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
551 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
552 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
553 http://www.openmicroscopy.org/site/support/ome-model/
554 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
555 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
556 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
557 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
558 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
559 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
560 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
561 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
562 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
563 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.5 ARFReader

This page lists supported metadata fields for the Bio-Formats ARF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats ARF format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Type

564 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
565 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
566 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
567 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
568 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
569 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
570 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
571 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
572 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
573 http://www.openmicroscopy.org/site/support/ome-model/
574 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
575 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
576 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
577 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
578 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
579 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
580 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
581 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.6 AVIReader

This page lists supported metadata fields for the Bio-Formats Audio Video Interleave format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Audio Video Interleave format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian

582 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
583 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
584 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
585 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
586 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
587 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
588 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
589 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
590 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
591 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
592 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
593 http://www.openmicroscopy.org/site/support/ome-model/
594 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
595 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
596 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
597 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
598 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
599 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.7 AliconaReader

This page lists supported metadata fields for the Bio-Formats Alicona AL3D format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 33 of them (6%).
• Of those, Bio-Formats fully or partially converts 33 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Alicona AL3D format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Type

600 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
601 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
602 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
603 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
604 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
605 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
606 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
607 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
608 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
609 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
610 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
611 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
612 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
613 http://www.openmicroscopy.org/site/support/ome-model/
614 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
615 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
616 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
617 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type

18.2. Metadata fields
• DetectorSettings : ID
• DetectorSettings : Voltage
• Image : AcquisitionDate
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Objective : CalibratedMagnification
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : WorkingDistance
• ObjectiveSettings : ID
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type

618 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
619 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Voltage
620 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
621 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
622 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
623 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
624 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_CalibratedMagnification
625 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
626 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
627 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
628 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_WorkingDistance
629 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
630 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
631 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
632 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
633 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
634 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
635 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
636 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
637 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
638 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
639 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
640 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
641 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
642 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 33
Total unknown or missing: 443

18.2.8 AmiraReader

This page lists supported metadata fields for the Bio-Formats Amira format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Amira format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/

18.2. Metadata fields
Total supported: 22

Total unknown or missing: 454

18.2.9 AnalyzeReader

This page lists supported metadata fields for the Bio-Formats Analyze 7.5 format reader.

These fields are from the OME data model\(^670\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 24 of them (5%).
- Of those, Bio-Formats fully or partially converts 24 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Analyze 7.5 format reader:

- Channel: ID\(^671\)
- Channel: SamplesPerPixel\(^672\)
- Image: AcquisitionDate\(^673\)
- Image: Description\(^674\)
- Image: ID\(^675\)
- Image: Name\(^676\)
- Pixels: BigEndian\(^677\)
- Pixels: DimensionOrder\(^678\)
- Pixels: ID\(^679\)

\(^{662}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{663}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{664}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^{665}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\(^{666}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{667}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{668}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{669}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{670}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{671}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{672}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{673}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{674}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
\(^{675}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{676}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{677}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{678}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{679}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 24
Total unknown or missing: 452

18.2.10 BDReader

This page lists supported metadata fields for the Bio-Formats BD Pathway format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 57 of them (11%).
• Of those, Bio-Formats fully or partially converts 57 (100%).

Supported fields

These fields are fully supported by the Bio-Formats BD Pathway format reader:

• Channel: EmissionWavelength
• Channel: ExcitationWavelength

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
• Channel: ID
• Channel: Name
• Channel: SamplesPerPixel
• Detector: ID
• DetectorSettings: Binning
• DetectorSettings: Gain
• DetectorSettings: ID
• DetectorSettings: Offset
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• Image: ROIRef
• Instrument: ID
• Objective: ID
• Objective: LensNA
• Objective: Manufacturer
• Objective: NominalMagnification
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT

698 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
699 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
700 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
701 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
702 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
703 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
704 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
705 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
706 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
707 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
708 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
709 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID
710 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
711 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
712 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
713 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
714 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Settings_ID
715 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_BigEndian
716 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_DimensionOrder
717 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
718 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
719 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
720 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
721 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
722 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
723 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT

18.2. Metadata fields
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• Plate : ColumnNamingConvention
• Plate : Description
• Plate : ID
• Plate : Name
• Plate : RowNamingConvention
• PlateAcquisition : ID
• PlateAcquisition : MaximumFieldCount
• PlateAcquisition : WellSampleRef
• ROI : ID
• Rectangle : Height
• Rectangle : ID
• Rectangle : Width
• Rectangle : X
• Rectangle : Y
• Well : Column
• Well : ID
• Well : Row

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ColumnNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_RowNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSampleRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Width
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row

18.2. Metadata fields
18.2.11 BIFormatReader

This page lists supported metadata fields for the Bio-Formats BIFormatReader.

These fields are from the OME data model\(^7\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

**Of the 476 fields documented in the metadata summary table:**

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats BIFormatReader:

- Channel : ID\(^5\)
- Channel : SamplesPerPixel\(^5\)
- Image : AcquisitionDate\(^6\)
- Image : ID\(^7\)
- Image : Name\(^8\)
- Pixels : BigEndian\(^9\)
- Pixels : DimensionOrder\(^10\)
- Pixels : ID\(^11\)
- Pixels : Interleaved\(^12\)
- Pixels : SignificantBits\(^13\)
- Pixels : SizeC\(^14\)
- Pixels : SizeT\(^15\)
- Pixels : SizeX\(^16\)
- Pixels : SizeY\(^17\)

\(^5\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID]
\(^6\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate]
\(^7\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID]
\(^8\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name]
\(^9\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian]
\(^10\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder]
\(^11\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID]
\(^12\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved]
\(^13\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits]
\(^14\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC]
\(^15\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT]
\(^16\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX]
\(^17\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY]
18.2.12 BMPReader

This page lists supported metadata fields for the Bio-Formats Windows Bitmap format reader. These fields are from the OME data model\(^773\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Windows Bitmap format reader:

- Channel : ID\(^774\)
- Channel : SamplesPerPixel\(^775\)
- Image : AcquisitionDate\(^776\)
- Image : ID\(^777\)
- Image : Name\(^778\)
- Pixels : BigEndian\(^779\)
- Pixels : DimensionOrder\(^780\)
- Pixels : ID\(^781\)
- Pixels : Interleaved\(^782\)
- Pixels : PhysicalSizeX\(^783\)
- Pixels : PhysicalSizeY\(^784\)
- Pixels : SignificantBits\(^785\)

\(^{768}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ

\(^{769}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

\(^{770}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC

\(^{771}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT

\(^{772}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

\(^{773}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{774}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID

\(^{775}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{776}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

\(^{777}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID

\(^{778}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name

\(^{779}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian

\(^{780}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder

\(^{781}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID

\(^{782}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved

\(^{783}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX

\(^{784}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY

\(^{785}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
Bio-Formats Documentation, Release 5.2.2

- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 21
Total unknown or missing: 455

18.2.13 BaseTiffReader

This page lists supported metadata fields for the Bio-Formats BaseTiffReader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 28 of them (5%).
- Of those, Bio-Formats fully or partially converts 28 (100%).

Supported fields

These fields are fully supported by the Bio-Formats BaseTiffReader:
- Channel: ID
- Channel: SamplesPerPixel
- Experimenter: Email
- Experimenter: FirstName
- Experimenter: ID
- Experimenter: LastName
- Image: AcquisitionDate
- Image: Description

---

786 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
787 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
788 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
789 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
790 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
791 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
792 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
793 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
794 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
795 http://www.openmicroscopy.org/site/support/ome-model/
796 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
797 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
798 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_Email
799 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_FirstName
800 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_ID
801 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
802 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
803 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description

---

18.2. Metadata fields
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 28
Total unknown or missing: 448

18.2.14 BaseZeissReader

This page lists supported metadata fields for the Bio-Formats BaseZeissReader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
• The file format itself supports 83 of them (17%).
• Of those, Bio-Formats fully or partially converts 83 (100%).

Supported fields

These fields are fully supported by the Bio-Formats BaseZeissReader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Type
- DetectorSettings: Gain
- DetectorSettings: ID
- DetectorSettings: Offset
- Ellipse: ID
- Ellipse: RadiusX
- Ellipse: RadiusY
- Ellipse: Text
- Ellipse: X
- Ellipse: Y
- Experimenter: FirstName
- Experimenter: ID
- Experimenter: Institution
- Experimenter: LastName
- Image: AcquisitionDate
- Image: Description
- Image: ID

825 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
826 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
827 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
829 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
830 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
832 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
833 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
834 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
835 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
836 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_RadiusX
837 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_RadiusY
839 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_X
840 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_Y
841 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_FirstName
844 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
846 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
847 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
18.2. Metadata fields

- Image: InstrumentRef
- Image: Name
- Image: ROIRef
- Instrument: ID
- Label: ID
- Label: Text
- Label: X
- Label: Y
- Line: ID
- Line: Text
- Line: X1
- Line: X2
- Line: Y1
- Line: Y2
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: LensNA
- Objective: NominalMagnification
- Objective: WorkingDistance
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
18.2. Metadata fields

- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: DeltaT
- Plane: ExposureTime
- Plane: PositionX
- Plane: PositionY
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Point: ID
- Point: Text
- Point: X
- Point: Y
- Polygon: ID
- Polygon: Points
- Polygon: Text
- Polyline: ID
- Polyline: Points
- Polyline: Text

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polygon_Points
18.2.15 BioRadGelReader

This page lists supported metadata fields for the Bio-Formats Bio-Rad GEL format reader. These fields are from the OME data model\cite{ome-model}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bio-Rad GEL format reader:

- Channel: ID\cite{channel-id}
- Channel: SamplesPerPixel\cite{channel-number}
- Image: AcquisitionDate\cite{image-period}
- Image: ID\cite{image-id}
- Image: Name\cite{image-name}
- Pixels: BigEndian\cite{pixels-order}
- Pixels: DimensionOrder\cite{pixels-order}
- Pixels: ID\cite{pixels-id}
- Pixels: Interleaved\cite{pixels-interleaved}

\cite{channel-id} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
\cite{channel-number} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_Name
\cite{image-period} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Height
\cite{image-id} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
\cite{image-name} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
\cite{pixels-order} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Width
\cite{pixels-id} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X
\cite{pixels-interleaved} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Y
\cite{channel-number} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\cite{channel-number} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\cite{image-period} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\cite{image-id} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\cite{image-name} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\cite{pixels-order} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\cite{pixels-order} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\cite{pixels-order} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
• Pixels : PhysicalSizeX\(^918\)
• Pixels : PhysicalSizeY\(^919\)
• Pixels : SignificantBits\(^920\)
• Pixels : SizeC\(^921\)
• Pixels : SizeT\(^922\)
• Pixels : SizeX\(^923\)
• Pixels : SizeY\(^924\)
• Pixels : SizeZ\(^925\)
• Pixels : Type\(^926\)
• Plane : TheC\(^927\)
• Plane : TheT\(^928\)
• Plane : TheZ\(^929\)

Total supported: 21
Total unknown or missing: 455

18.2.16 BioRadReader

This page lists supported metadata fields for the Bio-Formats Bio-Rad PIC format reader.

These fields are from the OME data model\(^930\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 40 of them (8%).
• Of those, Bio-Formats fully or partially converts 40 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bio-Rad PIC format reader:

• Channel : ID\(^931\)
• Channel : SamplesPerPixel\(^932\)
• Detector : Gain\(^933\)
• Detector : ID\(^934\)
• Detector : Offset\(^935\)

\(^{918}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{919}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{920}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{921}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{922}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{923}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{924}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^{925}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\(^{926}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{927}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{928}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{929}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{930}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{931}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{932}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{933}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Gain
\(^{934}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
\(^{935}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Offset
• Detector: Type
• DetectorSettings: Gain
• DetectorSettings: ID
• DetectorSettings: Offset
• Experiment: ID
• Experiment: Type
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• Objective: NominalMagnification
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits

936 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
937 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
938 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
939 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
940 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_ID
941 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Type
942 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
943 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
944 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
945 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
946 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
947 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
948 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
949 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
950 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
951 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
952 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
953 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
954 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
955 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
956 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
957 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
958 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
959 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
960 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
961 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 40
Total unknown or missing: 436

18.2.17 BioRadSCNReader

This page lists supported metadata fields for the Bio-Formats Bio-Rad SCN format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 29 of them (6%).
- Of those, Bio-Formats fully or partially converts 29 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bio-Rad SCN format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Detector : ID
• DetectorSettings : Binning
• DetectorSettings : Gain
• DetectorSettings : ID
• Image : AcquisitionDate
• Image : ID
• Image: Name\textsuperscript{980}
• Instrument: ID\textsuperscript{981}
• Microscope: Model\textsuperscript{982}
• Microscope: SerialNumber\textsuperscript{983}
• Pixels: BigEndian\textsuperscript{984}
• Pixels: DimensionOrder\textsuperscript{985}
• Pixels: ID\textsuperscript{986}
• Pixels: Interleaved\textsuperscript{987}
• Pixels: PhysicalSizeX\textsuperscript{988}
• Pixels: PhysicalSizeY\textsuperscript{989}
• Pixels: SignificantBits\textsuperscript{990}
• Pixels: SizeC\textsuperscript{991}
• Pixels: SizeT\textsuperscript{992}
• Pixels: SizeX\textsuperscript{993}
• Pixels: SizeY\textsuperscript{994}
• Pixels: SizeZ\textsuperscript{995}
• Pixels: Type\textsuperscript{996}
• Plane: ExposureTime\textsuperscript{997}
• Plane: TheC\textsuperscript{998}
• Plane: TheT\textsuperscript{999}
• Plane: TheZ\textsuperscript{1000}

Total supported: 29
Total unknown or missing: 447

18.2.18 BrukerReader

This page lists supported metadata fields for the Bio-Formats Bruker format reader.

These fields are from the OME data model\textsuperscript{1001}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

\textsuperscript{980}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\textsuperscript{981}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
\textsuperscript{982}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
\textsuperscript{983}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
\textsuperscript{984}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\textsuperscript{985}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\textsuperscript{986}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\textsuperscript{987}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\textsuperscript{988}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\textsuperscript{989}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\textsuperscript{990}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\textsuperscript{991}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\textsuperscript{992}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\textsuperscript{993}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\textsuperscript{994}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\textsuperscript{995}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\textsuperscript{996}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\textsuperscript{997}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
\textsuperscript{998}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\textsuperscript{999}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\textsuperscript{1000}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\textsuperscript{1001}http://www.openmicroscopy.org/site/support/ome-model/
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bruker format reader:

- **Channel**: ID
- **Channel**: SamplesPerPixel
- **Experimenter**: ID
- **Experimenter**: Institution
- **Experimenter**: LastName
- **Image**: AcquisitionDate
- **Image**: ExperimenterRef
- **Image**: ID
- **Image**: Name
- **Pixels**: BigEndian
- **Pixels**: DimensionOrder
- **Pixels**: ID
- **Pixels**: Interleaved
- **Pixels**: SignificantBits
- **Pixels**: SizeC
- **Pixels**: SizeT
- **Pixels**: SizeX
- **Pixels**: SizeY
- **Pixels**: SizeZ
- **Pixels**: Type
- **Plane**: TheC
- **Plane**: TheT

[1003]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[1006]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
[1007]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[1021]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
• Plane: TheZ

Total supported: 23
Total unknown or missing: 453

18.2.19 BurleighReader

This page lists supported metadata fields for the Bio-Formats Burleigh format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Burleigh format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX

1024 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1025 http://www.openmicroscopy.org/Site/support/ome-model/
1026 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1027 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1028 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1029 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1030 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1031 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1032 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1033 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1034 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1035 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
1036 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
1037 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
1038 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1039 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1040 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1041 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.20 CanonRawReader

This page lists supported metadata fields for the Bio-Formats Canon RAW format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Canon RAW format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC

1042 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1043 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1044 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1045 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1046 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1047 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1048 http://www.openmicroscopy.org/site/support/ome-model/
1049 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1050 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1051 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1052 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1053 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1054 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1055 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1056 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1057 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1058 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1059 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
18.2.21 CellH5Reader

This page lists supported metadata fields for the Bio-Formats CellH5 (HDF) format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 41 of them (8%).
- Of those, Bio-Formats fully or partially converts 41 (100%).

Supported fields

These fields are fully supported by the Bio-Formats CellH5 (HDF) format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Image: ROIRef
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID

Total supported: 19
Total unknown or missing: 457

[1064] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[1070] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[1071] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
Bio-Formats Documentation, Release 5.2.2

- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Plate: ID
- Plate: Name
- ROI: ID
- ROI: Name
- Rectangle: Height
- Rectangle: ID
- Rectangle: StrokeColor
- Rectangle: Text
- Rectangle: TheC
- Rectangle: TheT
- Rectangle: TheZ
- Rectangle: Width
- Rectangle: X
- Rectangle: Y
- Well: Column

18.2. Metadata fields

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#ROI_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Rectangle_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Shape_StrokeColor
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Shape_Text
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Shape_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Rectangle_Width
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Rectangle_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Rectangle_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome xsd.html#Well_Column
- Well: ExternalIdentifier\(^{104}\)
- Well: ID\(^{105}\)
- Well: Row\(^{106}\)
- WellSample: ID\(^{107}\)
- WellSample: ImageRef\(^{108}\)
- WellSample: Index\(^{109}\)

**Total supported: 41**

**Total unknown or missing: 435**

### 18.2.22 **CellSensReader**

This page lists supported metadata fields for the Bio-Formats CellSens VSI format reader.

These fields are from the OME data model\(^{1110}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

**Of the 476 fields documented in the metadata summary table:**

- The file format itself supports 46 of them (9%).
- Of those, Bio-Formats fully or partially converts 46 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats CellSens VSI format reader:

- Channel: EmissionWavelength\(^{1111}\)
- Channel: ID\(^{1112}\)
- Channel: Name\(^{1113}\)
- Channel: SamplesPerPixel\(^{1114}\)
- Detector: Gain\(^{1115}\)
- Detector: ID\(^{1116}\)
- Detector: Manufacturer\(^{1117}\)
- Detector: Model\(^{1118}\)
- Detector: Offset\(^{1119}\)
- Detector: SerialNumber\(^{1120}\)
- Detector: Type\(^{1121}\)

\(^{1104}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ExternalIdentifier

\(^{1105}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID

\(^{1106}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row

\(^{1107}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID

\(^{1108}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID

\(^{1109}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index

\(^{1110}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{1111}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength

\(^{1112}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID

\(^{1113}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name

\(^{1114}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{1115}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Gain

\(^{1116}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID

\(^{1117}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Maker

\(^{1118}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model

\(^{1119}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber

\(^{1120}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Type

\(^{1121}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
• DetectorSettings : Binning
• DetectorSettings : Gain
• DetectorSettings : ID
• DetectorSettings : Offset
• Image : AcquisitionDate
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Objective : ID
• Objective : LensNA
• Objective : Model
• Objective : NominalMagnification
• Objective : WorkingDistance
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 46
Total unknown or missing: 430

18.2.23 CellVoyagerReader

This page lists supported metadata fields for the Bio-Formats CellVoyager format reader.

These fields are from the OME data model. Bio- Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 34 of them (7%).
• Of those, Bio-Formats fully or partially converts 34 (100%).

Supported fields

These fields are fully supported by the Bio-Formats CellVoyager format reader:
• Channel: ID
• Channel: Name
• Channel: PinholeSize
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: TheC
• Plane: TheT
• Plane: TheZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
• Pixels : DimensionOrder 1166
• Pixels : ID 1167
• Pixels : Interleaved 1168
• Pixels : SignificantBits 1169
• Pixels : SizeC 1170
• Pixels : SizeT 1171
• Pixels : SizeX 1172
• Pixels : SizeY 1173
• Pixels : SizeZ 1174
• Pixels : Type 1175
• Plane : TheC 1176
• Plane : TheT 1177
• Plane : TheZ 1178
• Plate : Columns 1179
• Plate : Rows 1180
• PlateAcquisition : EndTime 1181
• PlateAcquisition : ID 1182
• PlateAcquisition : MaximumFieldCount 1183
• PlateAcquisition : StartTime 1184
• Well : Column 1185
• Well : ID 1186
• Well : Row 1187
• WellSample : ID 1188
• WellSample : Index 1189
• WellSample : PositionX 1190
• WellSample : PositionY 1191

1166 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1167 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1168 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1169 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1170 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1171 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1172 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
1173 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1174 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1175 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1176 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1177 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1178 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Columns
1179 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Rows
1180 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_EndTime
1181 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
1182 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
1183 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_StartTime
1184 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
1185 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
1186 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row
1187 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
1188 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
1189 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionX
1190 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionY
Total supported: 34
Total unknown or missing: 442

18.2.24 CellWorxReader

This page lists supported metadata fields for the Bio-Formats CellWorx format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 45 of them (9%).
- Of those, Bio-Formats fully or partially converts 45 (100%).

Supported fields

These fields are fully supported by the Bio-Formats CellWorx format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- DetectorSettings: Gain
- DetectorSettings: ID
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Microscope: SerialNumber
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Plate: ID
- Plate: Name
- PlateAcquisition: EndTime
- PlateAcquisition: ID
- PlateAcquisition: MaximumFieldCount
- PlateAcquisition: StartTime
- PlateAcquisition: WellSampleRef
- Well: Column
- Well: ID
- Well: Row
- WellSample: ID
- WellSample: ImageRef
- WellSample: Index

[1219] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[1224] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
[1225] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_EndTime
[1226] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
[1227] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
[1228] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_StartTime
[1235] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index

18.2. Metadata fields

289
• WellSample: PositionX\textsuperscript{1236}
• WellSample: PositionY\textsuperscript{1237}

Total supported: 45
Total unknown or missing: 431

18.2.25 CellomicsReader

This page lists supported metadata fields for the Bio-Formats Cellomics C01 format reader. These fields are from the OME data model\textsuperscript{1238}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 31 of them (6%).
• Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Cellomics C01 format reader:

• Channel: ID\textsuperscript{1239}
• Channel: SamplesPerPixel\textsuperscript{1240}
• Image: AcquisitionDate\textsuperscript{1241}
• Image: ID\textsuperscript{1242}
• Image: Name\textsuperscript{1243}
• Pixels: BigEndian\textsuperscript{1244}
• Pixels: DimensionOrder\textsuperscript{1245}
• Pixels: ID\textsuperscript{1246}
• Pixels: Interleaved\textsuperscript{1247}
• Pixels: PhysicalSizeX\textsuperscript{1248}
• Pixels: PhysicalSizeY\textsuperscript{1249}
• Pixels: SignificantBits\textsuperscript{1250}
• Pixels: SizeC\textsuperscript{1251}
• Pixels: SizeT\textsuperscript{1252}
• Pixels: SizeX\textsuperscript{1253}

\textsuperscript{1236}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionX
\textsuperscript{1237}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionY
\textsuperscript{1238}http://www.openmicroscopy.org/Site/support/ome-model/
\textsuperscript{1239}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\textsuperscript{1240}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\textsuperscript{1241}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\textsuperscript{1242}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\textsuperscript{1243}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\textsuperscript{1244}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\textsuperscript{1245}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\textsuperscript{1246}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\textsuperscript{1247}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\textsuperscript{1248}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\textsuperscript{1249}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\textsuperscript{1250}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\textsuperscript{1251}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\textsuperscript{1252}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\textsuperscript{1253}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
18.2. Metadata fields

This page lists supported metadata fields for the Bio-Formats DNG format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats DNG format reader:

- Channel: ID

---

1254 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1255 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1256 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1257 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1258 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1259 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1260 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ColumnNamingConvention
1261 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
1262 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
1263 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_RowNamingConvention
1264 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
1265 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
1266 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row
1267 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
1268 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
1269 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
1270 http://www.openmicroscopy.org/site/support/ome-model/
1271 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.27 DeltavisionReader

This page lists supported metadata fields for the Bio-Formats Deltavision format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 52 of them (10%).
• Of those, Bio-Formats fully or partially converts 52 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Deltavision format reader:

- Channel : EmissionWavelength
- Channel : ExcitationWavelength
- Channel : ID
- Channel : NDFilter
- Channel : Name
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Model
- Detector : Type
- DetectorSettings : Binning
- DetectorSettings : Gain
- DetectorSettings : ID
- DetectorSettings : ReadOutRate
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : InstrumentRef
- Image : Name
- ImagingEnvironment : Temperature
- Instrument : ID
- Objective : CalibratedMagnification
- Objective : Correction
- Objective : ID
- Objective : Immersion
• Objective: LensNA
• Objective: Manufacturer
• Objective: Model
• Objective: NominalMagnification
• Objective: WorkingDistance
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC

1315 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
1316 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
1317 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
1318 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
1319 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_WorkingDistance
1320 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
1321 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1322 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1323 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1324 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1325 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
1326 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
1327 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
1328 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1329 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1330 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1331 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
1332 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1333 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1334 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1335 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
1336 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
1337 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
1338 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
1339 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
1340 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
• Plane: TheT
• Plane: TheZ

Total supported: 52
Total unknown or missing: 424

18.2.28 DicomReader

This page lists supported metadata fields for the Bio-Formats DICOM format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 23 of them (4%).
• Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats DICOM format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC

18.2. Metadata fields
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 23
Total unknown or missing: 453

18.2.29 EPSReader

This page lists supported metadata fields for the Bio-Formats Encapsulated PostScript format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Encapsulated PostScript format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved

1359http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1360http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
1361http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1362http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1363http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1364http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1365http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1366http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1367http://www.openmicroscopy.org/site/support/ome-model/
1368http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1369http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1370http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1371http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1372http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1373http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1374http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1375http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1376http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.30 Ecat7Reader

This page lists supported metadata fields for the Bio-Formats ECAT7 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 23 of them (4%).
• Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats ECAT7 format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
18.2. Metadata fields

18.2.31 FEIReader

This page lists supported metadata fields for the Bio-Formats FEI/Philips format reader.

These fields are from the OME data model[^111]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats FEI/Philips format reader:

- Channel : ID[^112]
- Plane : TheC[^110]
- Plane : TheT[^109]
- Plane : TheZ[^108]
- Pixels : DimensionOrder[^1395]
- Pixels : ID[^1396]
- Pixels : Interleaved[^1397]
- Pixels : PhysicalSizeX[^1398]
- Pixels : PhysicalSizeY[^1399]
- Pixels : PhysicalSizeZ[^1400]
- Pixels : SignificantBits[^1401]
- Pixels : SizeC[^1402]
- Pixels : SizeT[^1403]
- Pixels : SizeX[^1404]
- Pixels : SizeY[^1405]
- Pixels : SizeZ[^1406]
- Pixels : Type[^1407]
- Plane : TheC[^1408]
- Plane : TheT[^1409]
- Plane : TheZ[^1410]

Total supported: 23

Total unknown or missing: 453
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.32 FEITiffReader

This page lists supported metadata fields for the Bio-Formats FEI TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 39 of them (8%).
• Of those, Bio-Formats fully or partially converts 39 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats FEI TIFF format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Model
- Detector: Type
- Experimenter: ID
- Experimenter: LastName
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Microscope: Model
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: NominalMagnification
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY

1432 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1433 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1434 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
1435 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
1436 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
1437 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
1438 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1439 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
1440 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1441 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1442 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
1443 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
1444 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
1445 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Impression
1446 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
1447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_DimensionOrder
1448 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
1449 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PhysicalSizeX
1450 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• StageLabel: Name
• StageLabel: X
• StageLabel: Y
• StageLabel: Z

Total supported: 39
Total unknown or missing: 437

18.2.33 FV1000Reader

This page lists supported metadata fields for the Bio-Formats Olympus FV1000 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 113 of them (23%).
• Of those, Bio-Formats fully or partially converts 113 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus FV1000 format reader:
• Channel: EmissionWavelength
• Channel: ExcitationWavelength

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Z
http://www.openmicroscopy.org/site/support/ome-model/

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
18.2. Metadata fields

- Channel: ID
- Channel: IlluminationType
- Channel: LightSourceSettingsID
- Channel: LightSourceSettingsWavelength
- Channel: Name
- Channel: SamplesPerPixel
- Detector: Gain
- Detector: ID
- Detector: Type
- Detector: Voltage
- DetectorSettings: ID
- Dichroic: ID
- Dichroic: Model
- Ellipse: FontSize
- Ellipse: ID
- Ellipse: RadiusX
- Ellipse: RadiusY
- Ellipse: StrokeWidth
- Ellipse: TheT
- Ellipse: TheZ
- Ellipse: Transform
- Ellipse: X
- Ellipse: Y
- Filter: ID
- Filter: Model
- Image: AcquisitionDate

1474 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1475 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_IlluminationType
1476 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_ID
1477 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_Wavelength
1478 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
1479 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1480 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Gain
1481 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
1482 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
1483 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Voltage
1484 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
1485 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Dichroic_ID
1486 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
1487 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
1488 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
1489 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_RadiusX
1490 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_RadiusY
1491 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_StrokeWidth
1492 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
1493 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
1494 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
1495 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_X
1496 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_Y
18.2. Metadata fields

- Image: ID
- Image: InstrumentRef
- Image: Name
- Image: ROIRef
- Instrument: ID
- Laser: ID
- Laser: LaserMedium
- Laser: Type
- Laser: Wavelength
- LightPath: DichroicRef
- LightPath: EmissionFilterRef
- Line: FontSize
- Line: ID
- Line: StrokeWidth
- Line: TheT
- Line: TheZ
- Line: Transform
- Line: X1
- Line: X2
- Line: Y1
- Line: Y2
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: LensNA
- Objective: Model

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_LaserMedium
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Wavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DichroicRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_X1
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_X2
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_Y1
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_Y2
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
• Objective: NominalMagnification
• Objective: WorkingDistance
• Objective Settings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Point: FontSize

18.2. Metadata fields
- **Point**: ID
- **Point**: StrokeWidth
- **Point**: TheT
- **Point**: TheZ
- **Point**: X
- **Point**: Y
- **Polygon**: FontSize
- **Polygon**: ID
- **Polygon**: Points
- **Polygon**: StrokeWidth
- **Polygon**: TheT
- **Polygon**: TheZ
- **Polygon**: Transform
- **Polyline**: FontSize
- **Polyline**: ID
- **Polyline**: Points
- **Polyline**: StrokeWidth
- **Polyline**: TheT
- **Polyline**: TheZ
- **Polyline**: Transform
- **ROI**: ID
- **Rectangle**: FontSize
- **Rectangle**: Height
- **Rectangle**: ID
- **Rectangle**: StrokeWidth
- **Rectangle**: TheT

---

18.2. Metadata fields

[1552]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
[1553]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
[1554]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
[1555]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
[1556]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_X
[1557]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_Y
[1558]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
[1559]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
[1560]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polygon_Points
[1561]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
[1562]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
[1563]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
[1564]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
[1565]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
[1566]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
[1567]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
[1568]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_Points
[1569]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
[1570]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
[1571]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
[1572]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
[1573]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
[1574]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
[1575]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
[1576]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
[1577]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
18.2.34 FakeReader

This page lists supported metadata fields for the Bio-Formats Simulated data format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 84 of them (17%).
- Of those, Bio-Formats fully or partially converts 84 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Simulated data format reader:

- BooleanAnnotation : ID
- BooleanAnnotation : Namespace
- BooleanAnnotation : Value
- Channel : Color
- Channel : ID
- Channel : SamplesPerPixel
- CommentAnnotation : ID
- CommentAnnotation : Namespace
- CommentAnnotation : Value
- DoubleAnnotation : ID
- Rectangle : TheZ
- Rectangle : Transform
- Rectangle : Width
- Rectangle : X
- Rectangle : Y
- TransmittanceRange : CutIn
- TransmittanceRange : CutOut

Total supported: 113
Total unknown or missing: 363
18.2. Metadata fields

- DoubleAnnotation: Namespace
- DoubleAnnotation: Value
- Ellipse: ID
- Ellipse: RadiusX
- Ellipse: RadiusY
- Ellipse: X
- Ellipse: Y
- Image: AcquisitionDate
- Image: AnnotationRef
- Image: ID
- Image: Name
- Image: ROIRef
- Label: ID
- Label: Text
- Label: X
- Label: Y
- Line: ID
- Line: X1
- Line: X2
- Line: Y1
- Line: Y2
- LongAnnotation: ID
- LongAnnotation: Namespace
- LongAnnotation: Value
- Mask: BinData
- Mask: BinDataBigEndian

[1603] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[1621] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#BinData_BigEndian
Bio-Formats Documentation, Release 5.2.2

- Mask: Height
- Mask: ID
- Mask: Width
- Mask: X
- Mask: Y
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: ExposureTime
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Point: ID
- Point: X
- Point: Y

1622 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_Height
1623 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
1624 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_Width
1625 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_X
1626 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_Y
1627 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1628 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1629 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1630 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1631 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
1632 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
1633 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
1634 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1635 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1636 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1637 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
1638 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1639 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
1640 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1641 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
1642 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1643 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1644 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1645 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_ID
1646 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_X
1647 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_Y

18.2. Metadata fields
• Polygon: ID
• Polygon: Points
• Polyline: ID
• Polyline: Points
• ROI: ID
• Rectangle: Height
• Rectangle: ID
• Rectangle: Width
• Rectangle: X
• Rectangle: Y
• TagAnnotation: ID
• TagAnnotation: Namespace
• TagAnnotation: Value
• TermAnnotation: ID
• TermAnnotation: Namespace
• TermAnnotation: Value
• TimestampAnnotation: ID
• TimestampAnnotation: Namespace
• TimestampAnnotation: Value
• XMLAnnotation: ID
• XMLAnnotation: Namespace
• XMLAnnotation: Value

Total supported: 84
Total unknown or missing: 392

18.2.35 FilePatternReader

This page lists supported metadata fields for the Bio-Formats File pattern format reader.
These fields are from the OME data model\(^{1670}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

**Of the 476 fields documented in the metadata summary table:**

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats File pattern format reader:

- Channel: ID\(^{1671}\)
- Channel: SamplesPerPixel\(^{1672}\)
- Image: AcquisitionDate\(^{1673}\)
- Image: ID\(^{1674}\)
- Image: Name\(^{1675}\)
- Pixels: BigEndian\(^{1676}\)
- Pixels: DimensionOrder\(^{1677}\)
- Pixels: ID\(^{1678}\)
- Pixels: Interleaved\(^{1679}\)
- Pixels: SignificantBits\(^{1680}\)
- Pixels: SizeC\(^{1681}\)
- Pixels: SizeT\(^{1682}\)
- Pixels: SizeX\(^{1683}\)
- Pixels: SizeY\(^{1684}\)
- Pixels: SizeZ\(^{1685}\)
- Pixels: Type\(^{1686}\)
- Plane: TheC\(^{1687}\)
- Plane: TheT\(^{1688}\)
- Plane: TheZ\(^{1689}\)

Total supported: 19

Total unknown or missing: 457

\(^{1670}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{1671}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{1672}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{1673}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{1674}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{1675}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{1676}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{1677}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{1678}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{1679}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{1680}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{1681}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{1682}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{1683}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{1684}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^{1685}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\(^{1686}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{1687}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{1688}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{1689}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
18.2.36 FitsReader

This page lists supported metadata fields for the Bio-Formats Flexible Image Transport System format reader. These fields are from the OME data model\[^{1690}\]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the *metadata summary table*:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats Flexible Image Transport System format reader:

- `Channel : ID`\[^{1691}\]
- `Channel : SamplesPerPixel`\[^{1692}\]
- `Image : AcquisitionDate`\[^{1693}\]
- `Image : ID`\[^{1694}\]
- `Image : Name`\[^{1695}\]
- `Pixels : BigEndian`\[^{1696}\]
- `Pixels : DimensionOrder`\[^{1697}\]
- `Pixels : ID`\[^{1698}\]
- `Pixels : Interleaved`\[^{1699}\]
- `Pixels : SignificantBits`\[^{1700}\]
- `Pixels : SizeC`\[^{1701}\]
- `Pixels : SizeT`\[^{1702}\]
- `Pixels : SizeX`\[^{1703}\]
- `Pixels : SizeY`\[^{1704}\]
- `Pixels : SizeZ`\[^{1705}\]
- `Pixels : Type`\[^{1706}\]
- `Plane : TheC`\[^{1707}\]
- `Plane : TheT`\[^{1708}\]

---

\[^{1690}\]http://www.openmicroscopy.org/site/support/ome-model/
\[^{1691}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\[^{1692}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\[^{1693}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\[^{1694}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\[^{1695}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\[^{1696}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\[^{1697}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\[^{1698}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\[^{1699}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\[^{1700}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\[^{1701}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\[^{1702}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\[^{1703}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\[^{1704}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\[^{1705}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\[^{1706}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\[^{1707}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\[^{1708}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
18.2.37 FlexReader

This page lists supported metadata fields for the Bio-Formats Evotec Flex format reader.

These fields are from the OME data model\(^\text{1709}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 69 of them (14%).
- Of those, Bio-Formats fully or partially converts 69 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Evotec Flex format reader:

- Channel: ID\(^\text{1711}\)
- Channel: LightSourceSettingsID\(^\text{1712}\)
- Channel: Name\(^\text{1713}\)
- Channel: SamplesPerPixel\(^\text{1714}\)
- Detector: ID\(^\text{1715}\)
- Detector: Type\(^\text{1716}\)
- DetectorSettings: Binning\(^\text{1717}\)
- DetectorSettings: ID\(^\text{1718}\)
- Dichroic: ID\(^\text{1719}\)
- Dichroic: Model\(^\text{1720}\)
- Filter: FilterWheel\(^\text{1721}\)
- Filter: ID\(^\text{1722}\)
- Filter: Model\(^\text{1723}\)
- Image: AcquisitionDate\(^\text{1724}\)
- Image: ID\(^\text{1725}\)
- Image: InstrumentRef\(^\text{1726}\)

\(^{1709}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{1710}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{1711}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{1712}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_ID
\(^{1713}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
\(^{1714}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{1715}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
\(^{1716}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
\(^{1717}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
\(^{1718}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
\(^{1719}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Dichroic_ID
\(^{1720}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
\(^{1721}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_FilterWheel
\(^{1722}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_ID
\(^{1723}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
\(^{1724}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{1725}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{1726}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
18.2. Metadata fields

- Image: Name<sup>1727</sup>
- Instrument: ID<sup>1728</sup>
- Laser: ID<sup>1729</sup>
- Laser: LaserMedium<sup>1730</sup>
- Laser: Type<sup>1731</sup>
- Laser: Wavelength<sup>1732</sup>
- LightPath: DichroicRef<sup>1733</sup>
- LightPath: EmissionFilterRef<sup>1734</sup>
- LightPath: ExcitationFilterRef<sup>1735</sup>
- Objective: CalibratedMagnification<sup>1736</sup>
- Objective: Correction<sup>1737</sup>
- Objective: ID<sup>1738</sup>
- Objective: Immersion<sup>1739</sup>
- Objective: LensNA<sup>1740</sup>
- ObjectiveSettings: ID<sup>1741</sup>
- Pixels: BigEndian<sup>1742</sup>
- Pixels: DimensionOrder<sup>1743</sup>
- Pixels: ID<sup>1744</sup>
- Pixels: Interleaved<sup>1745</sup>
- Pixels: PhysicalSizeX<sup>1746</sup>
- Pixels: PhysicalSizeY<sup>1747</sup>
- Pixels: SignificantBits<sup>1748</sup>
- Pixels: SizeC<sup>1749</sup>
- Pixels: SizeT<sup>1750</sup>
- Pixels: SizeX<sup>1751</sup>
- Pixels: SizeY<sup>1752</sup>
• Pixels: SizeZ

• Pixels: Type

• Plane: DeltaT

• Plane: ExposureTime

• Plane: PositionX

• Plane: PositionY

• Plane: PositionZ

• Plane: TheC

• Plane: TheT

• Plane: TheZ

• Plate: ColumnNamingConvention

• Plate: ExternalIdentifier

• Plate: ID

• Plate: Name

• Plate: RowNamingConvention

• PlateAcquisition: ID

• PlateAcquisition: MaximumFieldCount

• PlateAcquisition: StartTime

• PlateAcquisition: WellSampleRef

• Well: Column

• Well: ID

• Well: Row

• WellSample: ID

• WellSample: ImageRef

• WellSample: Index

• WellSample: PositionX
• WellSample : PositionY

Total supported: 69
Total unknown or missing: 407

18.2.38 FlowSightReader

This page lists supported metadata fields for the Bio-Formats FlowSight format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats FlowSight format reader:

• Channel : ID
• Channel : Name
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ

1779 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionY
1780 http://www.openmicroscopy.org/site/support/ome-model/
1781 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1782 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
1783 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1784 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1785 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1786 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1787 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
1788 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
1789 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
1790 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
1791 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
1792 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
1793 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
1794 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
1795 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
1796 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 20
Total unknown or missing: 456

18.2.39 FluoviewReader

This page lists supported metadata fields for the Bio-Formats Olympus Fluoview/ABD TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 49 of them (10%).
• Of those, Bio-Formats fully or partially converts 49 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus Fluoview/ABD TIFF format reader:
• Channel : ID
• Channel : Name
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Manufacturer
• Detector : Model
• Detector : Type
• DetectorSettings : Gain
• DetectorSettings : ID
• DetectorSettings : Offset
• DetectorSettings : ReadOutRate
• DetectorSettings : Voltage
• Image : AcquisitionDate

1797 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1798 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1799 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1800 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1801 http://www.openmicroscopy.org/site/support/ome-model/
1802 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1803 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
1804 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1805 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
1806 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Measure
1807 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
1808 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
1809 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
1810 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
1811 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Resolution
1812 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ReadOutRate
1813 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Voltage
1814 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

18.2. Metadata fields
• Image : Description
• Image : ID
• Image : InstrumentRef
• Image : Name
• ImagingEnvironment : Temperature
• Instrument : ID
• Objective : CalibratedMagnification
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Model
• ObjectiveSettings : ID
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ

18.2. Metadata fields
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 49
Total unknown or missing: 427

18.2.40 FujiReader

This page lists supported metadata fields for the Bio-Formats Fuji LAS 3000 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 23 of them (4%).
• Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Fuji LAS 3000 format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Instrument: ID
• Microscope: Model

1841 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
1842 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
1843 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
1844 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
1845 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
1846 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
1847 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
1848 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
1849 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
1850 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
1851 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
1852 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
1853 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
1854 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
1855 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
1856 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
GIFReader

This page lists supported metadata fields for the Bio-Formats Graphics Interchange Format format reader.

These fields are from the OME data model[^1]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Graphics Interchange Format format reader:

- Channel : ID[^2]
This page lists supported metadata fields for the Bio-Formats Gatan DM2 format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 30 of them (6%).
- Of those, Bio-Formats fully or partially converts 30 (100%).

18.2.42 GatanDM2Reader

http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Gatan DM2 format reader:

- Channel: ID \(^\text{1896}\)
- Channel: SamplesPerPixel \(^\text{1897}\)
- Detector: ID \(^\text{1898}\)
- DetectorSettings: Binning \(^\text{1899}\)
- DetectorSettings: ID \(^\text{1900}\)
- Experimenter: FirstName \(^\text{1901}\)
- Experimenter: ID \(^\text{1902}\)
- Experimenter: LastName \(^\text{1903}\)
- Image: AcquisitionDate \(^\text{1904}\)
- Image: ExperimenterRef \(^\text{1905}\)
- Image: ID \(^\text{1906}\)
- Image: InstrumentRef \(^\text{1907}\)
- Image: Name \(^\text{1908}\)
- Instrument: ID \(^\text{1909}\)
- Pixels: BigEndian \(^\text{1910}\)
- Pixels: DimensionOrder \(^\text{1911}\)
- Pixels: ID \(^\text{1912}\)
- Pixels: Interleaved \(^\text{1913}\)
- Pixels: PhysicalSizeX \(^\text{1914}\)
- Pixels: PhysicalSizeY \(^\text{1915}\)
- Pixels: SignificantBits \(^\text{1916}\)
- Pixels: SizeC \(^\text{1917}\)
- Pixels: SizeT \(^\text{1918}\)
- Pixels: SizeX \(^\text{1919}\)

\(^\text{1896}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^\text{1897}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^\text{1898}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
\(^\text{1899}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
\(^\text{1900}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
\(^\text{1901}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_FirstName
\(^\text{1902}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_ID
\(^\text{1903}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
\(^\text{1904}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^\text{1905}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Ref_ID
\(^\text{1906}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^\text{1907}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
\(^\text{1908}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
\(^\text{1909}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^\text{1910}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^\text{1911}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^\text{1912}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^\text{1913}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^\text{1914}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^\text{1915}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^\text{1916}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^\text{1917}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^\text{1918}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 30
Total unknown or missing: 446

18.2.43 GatanReader

This page lists supported metadata fields for the Bio-Formats Gatan Digital Micrograph format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
  • The file format itself supports 36 of them (7%).
  • Of those, Bio-Formats fully or partially converts 36 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Gatan Digital Micrograph format reader:

• Channel: AcquisitionMode
• Channel: ID
• Channel: SamplesPerPixel
• Detector: ID
• DetectorSettings: ID
• DetectorSettings: Voltage
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Instrument: ID
• Objective: Correction

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_AcquisitionMode
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Voltage
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
• Objective: ID
• Objective: Immersion
• Objective: NominalMagnification
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 36

Total unknown or missing: 440
18.2.44 GelReader

This page lists supported metadata fields for the Bio-Formats Amersham Biosciences GEL format reader. These fields are from the OME data model\(^{1963}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Amersham Biosciences GEL format reader:

- Channel: ID\(^{1964}\)
- Channel: SamplesPerPixel\(^{1965}\)
- Image: AcquisitionDate\(^{1966}\)
- Image: ID\(^{1967}\)
- Image: Name\(^{1968}\)
- Pixels: BigEndian\(^{1969}\)
- Pixels: DimensionOrder\(^{1970}\)
- Pixels: ID\(^{1971}\)
- Pixels: Interleaved\(^{1972}\)
- Pixels: PhysicalSizeX\(^{1973}\)
- Pixels: PhysicalSizeY\(^{1974}\)
- Pixels: SignificantBits\(^{1975}\)
- Pixels: SizeC\(^{1976}\)
- Pixels: SizeT\(^{1977}\)
- Pixels: SizeX\(^{1978}\)
- Pixels: SizeY\(^{1979}\)
- Pixels: SizeZ\(^{1980}\)
- Pixels: Type\(^{1981}\)

\(^{1963}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{1964}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Channel_ID
\(^{1965}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{1966}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{1967}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Image_ID
\(^{1968}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Image_Name
\(^{1969}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{1970}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{1971}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Pixels_ID
\(^{1972}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{1973}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{1974}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{1975}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{1976}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Pixels_SizeC
\(^{1977}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Pixels_SizeT
\(^{1978}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Pixels_SizeX
\(^{1979}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Pixels_SizeY
\(^{1980}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Pixels_SizeZ
\(^{1981}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMED-2016-06/ome_xsd.html#Pixels_Type
• Plane: TheC\textsuperscript{1982}
• Plane: TheT\textsuperscript{1983}
• Plane: TheZ\textsuperscript{1984}

Total supported: 21
Total unknown or missing: 455

18.2.45 HISReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu HIS format reader.

These fields are from the OME data model\textsuperscript{1985}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 27 of them (5%).
• Of those, Bio-Formats fully or partially converts 27 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu HIS format reader:

• Channel: ID\textsuperscript{1986}
• Channel: SamplesPerPixel\textsuperscript{1987}
• Detector: ID\textsuperscript{1988}
• Detector: Offset\textsuperscript{1989}
• Detector: Type\textsuperscript{1990}
• DetectorSettings: Binning\textsuperscript{1991}
• DetectorSettings: ID\textsuperscript{1992}
• Image: AcquisitionDate\textsuperscript{1993}
• Image: ID\textsuperscript{1994}
• Image: InstrumentRef\textsuperscript{1995}
• Image: Name\textsuperscript{1996}
• Instrument: ID\textsuperscript{1997}
• Pixels: BigEndian\textsuperscript{1998}
• Pixels: DimensionOrder\textsuperscript{1999}

\textsuperscript{1982}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\textsuperscript{1983}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\textsuperscript{1984}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\textsuperscript{1985}http://www.openmicroscopy.org/site/support/ome-model/
\textsuperscript{1986}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\textsuperscript{1987}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\textsuperscript{1988}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
\textsuperscript{1989}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Offset
\textsuperscript{1990}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
\textsuperscript{1991}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
\textsuperscript{1992}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
\textsuperscript{1993}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\textsuperscript{1994}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\textsuperscript{1995}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
\textsuperscript{1996}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
\textsuperscript{1997}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\textsuperscript{1998}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 27
Total unknown or missing: 449

18.2.46 HRDGDFReader

This page lists supported metadata fields for the Bio-Formats NOAA-HRD Gridded Data Format format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats NOAA-HRD Gridded Data Format format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID

[2016] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 21
Total unknown or missing: 455

18.2.47 HamamatsuVMSReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu VMS format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 26 of them (5%).
- Of those, Bio-Formats fully or partially converts 26 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu VMS format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Instrument: ID
- Objective: ID
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC

References:

- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveNominalMagnification
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
• Plane: T
• Plane: Z

Total supported: 26
Total unknown or missing: 450

18.2.48 HitachiReader

This page lists supported metadata fields for the Bio-Formats Hitachi format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 31 of them (6%).
• Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hitachi format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Microscope: Model
• Microscope: SerialNumber
• Objective: ID
• Objective: WorkingDistance
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_WorkingDistance
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
Bio-Formats Documentation, Release 5.2.2

• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SignificantBits
• Pixels : Size
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 31
Total unknown or missing: 445

18.2.49 I2IReader

This page lists supported metadata fields for the Bio-Formats I2I format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats I2I format reader:
• Channel : ID

18.2. Metadata fields
This page lists supported metadata fields for the Bio-Formats Image Cytometry Standard format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 72 of them (15%).
- Of those, Bio-Formats fully or partially converts 72 (100%).

Total supported: 19
Total unknown or missing: 457

18.2.50 ICSReader

ICSReader
Supported fields

These fields are fully supported by the Bio-Formats Image Cytometry Standard format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: Name
- Channel: PinholeSize
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Manufacturer
- Detector: Model
- Detector: Type
- DetectorSettings: Gain
- DetectorSettings: ID
- Dichroic: ID
- Dichroic: Model
- Experiment: ID
- Experiment: Type
- Experimenter: ID
- Experimenter: LastName
- Filter: ID
- Filter: Model
- FilterSet: DichroicRef
- FilterSet: EmissionFilterRef
- FilterSet: ExcitationFilterRef
- FilterSet: ID
• FilterSet: Model
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Laser: ID
• Laser: LaserMedium
• Laser: Manufacturer
• Laser: Model
• Laser: Power
• Laser: RepetitionRate
• Laser: Type
• Laser: Wavelength
• Microscope: Manufacturer
• Microscope: Model
• Objective: CalibratedMagnification
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• Objective: WorkingDistance
• ObjectiveSettings: ID
• Pixels: BigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_RepetitionRate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Wavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_CalibratedMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_WorkingDistance
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 72
Total unknown or missing: 404

18.2.51 IM3Reader

This page lists supported metadata fields for the Bio-Formats Perkin-Elmer Nuance IM3 format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

18.2. Metadata fields
data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Perkin-Elmer Nuance IM3 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19

Total unknown or missing: 457

---

2188 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
2189 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
2190 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AquisitionDate
2191 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
2192 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
2193 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
2194 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
2195 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
2196 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
2197 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2198 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2199 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2200 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2201 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
2202 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
2203 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
2204 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
2205 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
2206 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
18.2.52 IMODReader

This page lists supported metadata fields for the Bio-Formats IMOD format reader.

These fields are from the OME data model\(^{2207}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 44 of them (9%).
- Of those, Bio-Formats fully or partially converts 44 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IMOD format reader:

- Channel : ID\(^{2208}\)
- Channel : SamplesPerPixel\(^{2209}\)
- Image : AcquisitionDate\(^{2210}\)
- Image : ID\(^{2211}\)
- Image : Name\(^{2212}\)
- Image : ROIRef\(^{2213}\)
- Pixels : BigEndian\(^{2214}\)
- Pixels : DimensionOrder\(^{2215}\)
- Pixels : ID\(^{2216}\)
- Pixels : Interleaved\(^{2217}\)
- Pixels : PhysicalSizeX\(^{2218}\)
- Pixels : PhysicalSizeY\(^{2219}\)
- Pixels : PhysicalSizeZ\(^{2220}\)
- Pixels : SignificantBits\(^{2221}\)
- Pixels : SizeC\(^{2222}\)
- Pixels : SizeT\(^{2223}\)
- Pixels : SizeX\(^{2224}\)
- Pixels : SizeY\(^{2225}\)

\(^{2207}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2208}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{2209}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2210}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{2211}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{2212}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{2213}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID
\(^{2214}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{2215}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{2216}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{2217}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{2218}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{2219}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{2220}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
\(^{2221}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{2222}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{2223}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{2224}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{2225}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Point: ID
• Point: StrokeColor
• Point: StrokeDashArray
• Point: StrokeWidth
• Point: TheZ
• Point: X
• Point: Y
• Polygon: ID
• Polygon: Points
• Polygon: StrokeColor
• Polygon: StrokeDashArray
• Polygon: StrokeWidth
• Polygon: TheZ
• Polyline: ID
• Polyline: Points
• Polyline: StrokeColor
• Polyline: StrokeDashArray
• Polyline: StrokeWidth
• Polyline: TheZ
• ROI: ID
• ROI: Name

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Point_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_Points
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeColor
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeDashArray
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_Name
Total supported: 44
Total unknown or missing: 432

18.2.53 INRReader

This page lists supported metadata fields for the Bio-Formats INR format reader. These fields are from the OME data model\(^{2252}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats INR format reader:

- **Channel**: ID\(^{2253}\)
- **Channel**: SamplesPerPixel\(^{2254}\)
- **Image**: AcquisitionDate\(^{2255}\)
- **Image**: ID\(^{2256}\)
- **Image**: Name\(^{2257}\)
- **Pixels**: BigEndian\(^{2258}\)
- **Pixels**: DimensionOrder\(^{2259}\)
- **Pixels**: ID\(^{2260}\)
- **Pixels**: Interleaved\(^{2261}\)
- **Pixels**: PhysicalSizeX\(^{2262}\)
- **Pixels**: PhysicalSizeY\(^{2263}\)
- **Pixels**: PhysicalSizeZ\(^{2264}\)
- **Pixels**: SignificantBits\(^{2265}\)
- **Pixels**: SizeC\(^{2266}\)
- **Pixels**: SizeT\(^{2267}\)
- **Pixels**: SizeX\(^{2268}\)
- **Pixels**: SizeY\(^{2269}\)

\(^{2252}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2253}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{2254}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2255}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{2256}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{2257}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{2258}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{2259}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{2260}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{2261}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{2262}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{2263}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{2264}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
\(^{2265}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{2266}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{2267}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{2268}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{2269}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
18.2.54 IPLabReader

This page lists supported metadata fields for the Bio-Formats IPLab format reader. These fields are from the OME data model\textsuperscript{2275}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 31 of them (6%).
- Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IPLab format reader:

- Channel : ID\textsuperscript{2276}
- Channel : SamplesPerPixel\textsuperscript{2277}
- Image : AcquisitionDate\textsuperscript{2278}
- Image : Description\textsuperscript{2279}
- Image : ID\textsuperscript{2280}
- Image : Name\textsuperscript{2281}
- Image : ROIRef\textsuperscript{2282}
- Pixels : BigEndian\textsuperscript{2283}
- Pixels : DimensionOrder\textsuperscript{2284}
- Pixels : ID\textsuperscript{2285}
- Pixels : Interleaved\textsuperscript{2286}
- Pixels : PhysicalSizeX\textsuperscript{2287}

18.2. Metadata fields
18.2.55 IPWReader

This page lists supported metadata fields for the Bio-Formats Image-Pro Workspace format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

2288 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
2289 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2290 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2291 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2292 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2293 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
2294 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
2295 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
2296 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
2297 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
2298 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
2299 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
2300 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
2301 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
2302 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Height
2303 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_ID
2304 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Width
2305 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X
2306 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Y
2307 http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Image-Pro Workspace format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 20

Total unknown or missing: 456

18.2.56 ImaconReader

This page lists supported metadata fields for the Bio-Formats Imacon format reader.

18.2. Metadata fields
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Imacon format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Experimenter : FirstName
- Experimenter : ID
- Experimenter : LastName
- Image : AcquisitionDate
- Image : ExperimenterRef
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 23
Total unknown or missing: 453

18.2.57 ImageIOReader

This page lists supported metadata fields for the Bio-Formats ImageIOReader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats ImageIOReader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.58 ImagicReader

This page lists supported metadata fields for the Bio-Formats IMAGIC format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IMAGIC format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/

18.2. Metadata fields
Total supported: 22
Total unknown or missing: 454

18.2.59 ImarisHDFReader

This page lists supported metadata fields for the Bio-Formats Bitplane Imaris 5.5 (HDF) format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bitplane Imaris 5.5 (HDF) format reader:

- Channel: Color
- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian

---

2385 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2386 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2387 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2388 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2389 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
2390 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
2391 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
2392 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
2393 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
2394 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Color
2395 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
2396 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
2397 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
2398 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
2399 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 23
Total unknown or missing: 453

18.2.60 ImarisReader

This page lists supported metadata fields for the Bio-Formats Bitplane Imaris format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 32 of them (6%).
• Of those, Bio-Formats fully or partially converts 32 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bitplane Imaris format reader:
• Channel: ID
• Channel: PinholeSize
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Type
• DetectorSettings: Gain
• DetectorSettings: ID
• DetectorSettings: Offset
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ

2421 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_PinholeSize
2422 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
2423 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
2424 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
2425 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
2426 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
2427 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
2428 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
2429 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
2430 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
2431 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
2432 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
2433 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
2434 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
2435 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
2436 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
2437 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
2438 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
2439 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
2440 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
2441 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2442 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2443 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2444 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2445 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
2446 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ

18.2. Metadata fields
18.2.61 ImarisTiffReader

This page lists supported metadata fields for the Bio-Formats Bitplane Imaris 3 (TIFF) format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bitplane Imaris 3 (TIFF) format reader:

- Channel : EmissionWavelength
- Channel : ExcitationWavelength
- Channel : ID
- Channel : Name
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID

Total supported: 32
Total unknown or missing: 444

---

2448 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type)
2449 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC)
2450 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT)
2451 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ)
2454 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ChannelExcitationWavelength](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ChannelExcitationWavelength)
2455 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ChannelID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ChannelID)
2456 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ChannelName](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ChannelName)
2457 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ChannelSamplesPerPixel](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ChannelSamplesPerPixel)
2458 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageAcquisitionDate](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageAcquisitionDate)
2459 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageDescription](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageDescription)
2461 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageName](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageName)
2462 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PixelsBigEndian](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PixelsBigEndian)
2463 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PixelsDimensionOrder](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PixelsDimensionOrder)
2464 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PixelsID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PixelsID)
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 23
Total unknown or missing: 453

18.2.62 Improvision TiffReader

This page lists supported metadata fields for the Bio-Formats Improvision TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 25 of them (5%).
• Of those, Bio-Formats fully or partially converts 25 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Improvision TIFF format reader:

• Channel: ID
• Channel: Name
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 25
Total unknown or missing: 451

18.2.63 ImspectorReader

This page lists supported metadata fields for the Bio-Formats Lavision Imspector format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
**Supported fields**

These fields are fully supported by the Bio-Formats Lavision Inspector format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: **19**

Total unknown or missing: **457**

### 18.2.64 InCell3000Reader

This page lists supported metadata fields for the Bio-Formats InCell 3000 format reader.

These fields are from the [OME data model](http://www.openmicroscopy.org/site/support/ome-model/). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

---

2503: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID)

2504: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel)

2505: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate)


2507: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name)

2508: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian)

2509: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder)

2510: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID)

2511: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved)

2512: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits)

2513: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC)

2514: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT)

2515: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX)

2516: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY)

2517: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ)

2518: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type)

2519: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC)

2520: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT)

2521: [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ)

---

18.2. Metadata fields
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats InCell 3000 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19

Total unknown or missing: 457
18.2.65 InCellReader

This page lists supported metadata fields for the Bio-Formats InCell 1000/2000 format reader. These fields are from the OME data model\(^\text{2542}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 67 of them (14%).
- Of those, Bio-Formats fully or partially converts 67 (100%).

Supported fields

These fields are fully supported by the Bio-Formats InCell 1000/2000 format reader:

- Channel: EmissionWavelength\(^\text{2543}\)
- Channel: ExcitationWavelength\(^\text{2544}\)
- Channel: ID\(^\text{2545}\)
- Channel: Name\(^\text{2546}\)
- Channel: SamplesPerPixel\(^\text{2547}\)
- Detector: ID\(^\text{2548}\)
- Detector: Model\(^\text{2549}\)
- Detector: Type\(^\text{2550}\)
- DetectorSettings: Binning\(^\text{2551}\)
- DetectorSettings: Gain\(^\text{2552}\)
- DetectorSettings: ID\(^\text{2553}\)
- Experiment: ID\(^\text{2554}\)
- Experiment: Type\(^\text{2555}\)
- Image: AcquisitionDate\(^\text{2556}\)
- Image: Description\(^\text{2557}\)
- Image: ExperimentRef\(^\text{2558}\)
- Image: ID\(^\text{2559}\)
- Image: InstrumentRef\(^\text{2560}\)
- Image: Name\(^\text{2561}\)

\(^{2542}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2543}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
\(^{2544}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
\(^{2545}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{2546}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
\(^{2547}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2548}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
\(^{2549}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
\(^{2550}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
\(^{2551}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
\(^{2552}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
\(^{2553}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
\(^{2554}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_ID
\(^{2555}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Type
\(^{2556}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{2557}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
\(^{2558}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{2559}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
\(^{2560}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{2561}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
- ImagingEnvironment: Temperature
- Instrument: ID
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: LensNA
- Objective: Manufacturer
- Objective: NominalMagnification
- ObjectiveSettings: ID
- ObjectiveSettings: RefractiveIndex
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: DeltaT
- Plane: ExposureTime
- Plane: PositionX

2562 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#ImagingEnvironment_Temperature
2563 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Instrument_ID
2564 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Objective_Correction
2565 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Objective_ID
2566 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Objective_Immersion
2567 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Objective_LensNA
2568 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
2569 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Objective_NominalMagnification
2570 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#ObjectiveSettings_ID
2571 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
2572 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Pixels_BigEndian
2573 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Pixels_DimensionOrder
2574 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Pixels_ID
2575 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Pixels_Interleaved
2576 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
2577 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
2578 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Pixels_SignificantBits
2579 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Pixels_SizeC
2580 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Pixels_SizeT
2581 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Pixels_SizeX
2582 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Pixels_SizeY
2583 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Pixels_SizeZ
2584 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Pixels_Type
2585 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Plane_DeltaT
2586 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Plane_ExposureTime
2587 http://www.openmicroscopy.org/Schemas/Documentation/OMERO-2016-06/ome_xsd.html#Plane_PositionX

18.2. Metadata fields
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: ColumnNamingConvention
• Plate: ID
• Plate: Name
• Plate: RowNamingConvention
• Plate: WellOriginX
• Plate: WellOriginY
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: WellSampleRef
• Well: Column
• Well: ID
• Well: Row
• WellSample: ID
• WellSample: ImageRef
• WellSample: Index
• WellSample: PositionX
• WellSample: PositionY

Total supported: 67
Total unknown or missing: 409

18.2.66 InveonReader

This page lists supported metadata fields for the Bio-Formats Inveon format reader.

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ColumnNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_RowNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_WellOriginX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_WellOriginY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSampleRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionY
These fields are from the OME data model\textsuperscript{2610}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

**Of the 476 fields documented in the metadata summary table:**

- The file format itself supports 30 of them (6%).
- Of those, Bio-Formats fully or partially converts 30 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats Inveon format reader:

- **Channel**: ID\textsuperscript{2611}
- **Channel**: SamplesPerPixel\textsuperscript{2612}
- **Experimenter**: ID\textsuperscript{2613}
- **Experimenter**: Institution\textsuperscript{2614}
- **Experimenter**: UserName\textsuperscript{2615}
- **Image**: AcquisitionDate\textsuperscript{2616}
- **Image**: Description\textsuperscript{2617}
- **Image**: ExperimenterRef\textsuperscript{2618}
- **Image**: ID\textsuperscript{2619}
- **Image**: InstrumentRef\textsuperscript{2620}
- **Image**: Name\textsuperscript{2621}
- **Instrument**: ID\textsuperscript{2622}
- **Microscope**: Model\textsuperscript{2623}
- **Pixels**: BigEndian\textsuperscript{2624}
- **Pixels**: DimensionOrder\textsuperscript{2625}
- **Pixels**: ID\textsuperscript{2626}
- **Pixels**: Interleaved\textsuperscript{2627}
- **Pixels**: PhysicalSizeX\textsuperscript{2628}
- **Pixels**: PhysicalSizeY\textsuperscript{2629}
- **Pixels**: PhysicalSizeZ\textsuperscript{2630}

\textsuperscript{2610}http://www.openmicroscopy.org/site/support/ome-model/
\textsuperscript{2611}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\textsuperscript{2612}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\textsuperscript{2613}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_ID
\textsuperscript{2614}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_Institution
\textsuperscript{2615}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_UserName
\textsuperscript{2616}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\textsuperscript{2617}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
\textsuperscript{2618}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID
\textsuperscript{2619}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\textsuperscript{2620}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
\textsuperscript{2621}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\textsuperscript{2622}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
\textsuperscript{2623}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
\textsuperscript{2624}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\textsuperscript{2625}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\textsuperscript{2626}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\textsuperscript{2627}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\textsuperscript{2628}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\textsuperscript{2629}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\textsuperscript{2630}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
18.2.67 IvisionReader

This page lists supported metadata fields for the Bio-Formats IVision format reader.

These fields are from the OME data model[2641]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 34 of them (7%).
- Of those, Bio-Formats fully or partially converts 34 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IVision format reader:

- Channel : ID[2642]
- Channel : SamplesPerPixel[2643]
- Detector : ID[2644]
- Detector : Type[2645]
- DetectorSettings : Binning[2646]
- DetectorSettings : Gain[2647]
- DetectorSettings : ID[2648]
18.2. Metadata fields

- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: LensNA
- Objective: NominalMagnification
- ObjectiveSettings: ID
- ObjectiveSettings: RefractiveIndex
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: TimeIncrement
- Pixels: Type
- Plane: TheC
- Plane: TheT
18.2. Metadata fields

18.2.68 JEOLReader

This page lists supported metadata fields for the Bio-Formats JEOL format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JEOL format reader:
- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type

2675 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
2676 http://www.openmicroscopy.org/site/support/ome-model/
2677 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
2678 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
2679 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
2680 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
2681 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
2682 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
2683 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
2684 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
2685 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
2686 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2687 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
2688 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
2689 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
2690 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
2691 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
2692 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
• Plane: TheC\textsuperscript{2693}
• Plane: TheT\textsuperscript{2694}
• Plane: TheZ\textsuperscript{2695}

Total supported: 19
Total unknown or missing: 457

18.2.69 JPEG2000Reader

This page lists supported metadata fields for the Bio-Formats JPEG-2000 format reader.

These fields are from the OME data model\textsuperscript{2696}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPEG-2000 format reader:
• Channel: ID\textsuperscript{2697}
• Channel: SamplesPerPixel\textsuperscript{2698}
• Image: AcquisitionDate\textsuperscript{2699}
• Image: ID\textsuperscript{2700}
• Image: Name\textsuperscript{2701}
• Pixels: BigEndian\textsuperscript{2702}
• Pixels: DimensionOrder\textsuperscript{2703}
• Pixels: ID\textsuperscript{2704}
• Pixels: Interleaved\textsuperscript{2705}
• Pixels: SignificantBits\textsuperscript{2706}
• Pixels: SizeC\textsuperscript{2707}
• Pixels: SizeT\textsuperscript{2708}
• Pixels: SizeX\textsuperscript{2709}
• Pixels: SizeY\textsuperscript{2710}

\textsuperscript{2693}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\textsuperscript{2694}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\textsuperscript{2695}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\textsuperscript{2696}http://www.openmicroscopy.org/site/support/ome-model/
\textsuperscript{2697}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\textsuperscript{2698}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\textsuperscript{2699}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\textsuperscript{2700}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\textsuperscript{2701}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\textsuperscript{2702}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\textsuperscript{2703}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\textsuperscript{2704}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\textsuperscript{2705}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\textsuperscript{2706}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\textsuperscript{2707}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\textsuperscript{2708}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\textsuperscript{2709}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\textsuperscript{2710}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

18.2. Metadata fields

360
Total supported: 19
Total unknown or missing: 457

18.2.70 JPEGReader

This page lists supported metadata fields for the Bio-Formats JPEG format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPEG format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT

18.2. Metadata fields
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.71 JPKReader

This page lists supported metadata fields for the Bio-Formats JPK Instruments format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPK Instruments format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Bio-Formats Documentation, Release 5.2.2

- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.72 JPXReader

This page lists supported metadata fields for the Bio-Formats JPX format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPX format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID

18.2. Metadata fields 363
This page lists supported metadata fields for the Bio-Formats Khoros XV format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Khoros XV format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.74 KodakReader

This page lists supported metadata fields for the Bio-Formats Kodak Molecular Imaging format reader.
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 26 of them (5%).
• Of those, Bio-Formats fully or partially converts 26 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Kodak Molecular Imaging format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
This page lists supported metadata fields for the Bio-Formats Li-Cor L2D format reader. These fields are from the [OME data model](http://www.openmicroscopy.org/site/support/ome-model/). Bio-Formats standardizes each format’s original metadata to and from the OME.
data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 29 of them (6%).
- Of those, Bio-Formats fully or partially converts 29 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats Li-Cor L2D format reader:

- Channel: ID
- Channel: LightSourceSettingsID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Laser: ID
- Laser: LaserMedium
- Laser: Type
- Laser: Wavelength
- Microscope: Model
- Microscope: Type
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC

---

2824 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
2825 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_ID
2826 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
2827 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
2828 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
2829 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
2830 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
2831 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
2832 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
2833 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Microscope_Type
2834 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
2835 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_ID
2836 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_LaserMedium
2837 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Type
2838 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Wavelength
2839 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
2840 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
2841 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
2842 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
2843 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
2844 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
18.2.76 LEOReader

This page lists supported metadata fields for the Bio-Formats LEO format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 27 of them (5%).
- Of those, Bio-Formats fully or partially converts 27 (100%).

Supported fields

These fields are fully supported by the Bio-Formats LEO format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: Correction
- Objective: ID

Total supported: 29
Total unknown or missing: 447

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
- Objective: Immersion
- Objective: Working Distance
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 27
Total unknown or missing: 449

18.2.77 LIFReader

This page lists supported metadata fields for the Bio-Formats Leica Image File Format format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 85 of them (17%).
- Of those, Bio-Formats fully or partially converts 85 (100%).

[2865] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
[2877] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
Supported fields

These fields are fully supported by the Bio-Formats Leica Image File Format format reader:

- Channel: Color
- Channel: ExcitationWavelength
- Channel: ID
- Channel: LightSourceSettings:Attenuation
- Channel: LightSourceSettings:ID
- Channel: Name
- Channel: PinholeSize
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Model
- Detector: Offset
- Detector: Type
- Detector: Zoom
- DetectorSettings: Gain
- DetectorSettings: ID
- DetectorSettings: Offset
- Filter: ID
- Filter: Model
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Image: ROIRef

---

2882 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Color
2883 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
2884 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
2885 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_Attenuation
2886 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_ID
2887 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
2888 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_PinholeSize
2889 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
2890 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
2891 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
2892 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Offset
2893 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
2894 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Zoom
2895 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
2896 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
2897 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
2898 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_ID
2899 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
2900 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
2901 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
2902 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
2903 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
2904 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
2905 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID

---

18.2. Metadata fields
• Instrument : ID
• Label : FontSize
• Label : ID
• Label : StrokeWidth
• Label : Text
• Label : X
• Label : Y
• Laser : ID
• Laser : LaserMedium
• Laser : Type
• Laser : Wavelength
• LightPath : EmissionFilterRef
• Line : ID
• Line : X1
• Line : X2
• Line : Y1
• Line : Y2
• Microscope : Model
• Microscope : Type
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Model
• Objective : NominalMagnification
• Objective : SerialNumber

18.2. Metadata fields
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• Polygon : ID
Bio-Formats Documentation, Release 5.2.2

- Polygon : Points
- ROI : ID
- Rectangle : Height
- Rectangle : ID
- Rectangle : Width
- Rectangle : X
- Rectangle : Y
- TransmittanceRange : CutIn
- TransmittanceRange : CutOut

Total supported: 85
Total unknown or missing: 391

18.2.78 LIMReader

This page lists supported metadata fields for the Bio-Formats Laboratory Imaging format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Laboratory Imaging format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html

18.2. Metadata fields
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.79 LegacyND2Reader

This page lists supported metadata fields for the Bio-Formats Nikon ND2 (Legacy) format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon ND2 (Legacy) format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : Size
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 457

18.2.80 LegacyQTReader

This page lists supported metadata fields for the Bio-Formats QuickTime format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats QuickTime format reader:
• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID

18.2. Metadata fields
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.81 LeicaReader

This page lists supported metadata fields for the Bio-Formats Leica format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 56 of them (11%).
• Of those, Bio-Formats fully or partially converts 56 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Leica format reader:
• Channel: Color
• Channel: EmissionWavelength

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Color
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
• Channel: ExcitationWavelength
• Channel: ID
• Channel: Name
• Channel: PinholeSize
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Offset
• Detector: Type
• Detector: Voltage
• DetectorSettings: ID
• Filter: ID
• Filter: Model
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• LightPath: EmissionFilterRef
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• Objective: NominalMagnification
• Objective: SerialNumber
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• StageLabel : Name
• StageLabel : Z

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Z
18.2.82 LeicaSCNReader

This page lists supported metadata fields for the Bio-Formats Leica SCN format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 33 of them (6%).
- Of those, Bio-Formats fully or partially converts 33 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Leica SCN format reader:

- Channel : ID
- Channel : IlluminationType
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Objective : CalibratedMagnification
- Objective : ID
- Objective : LensNA
- Objective : NominalMagnification
- ObjectiveSettings : ID
- Pixels : BigEndian

---

3082 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutIn
3083 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutOut
3084 http://www.openmicroscopy.org/site/support/ome-model/
3085 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3086 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_IlluminationType
3087 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3088 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
3089 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
3090 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
3091 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
3092 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
3093 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
3094 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_CalibratedMagnification
3095 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
3096 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
3097 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
3098 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
3099 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: PositionX
• Plane: PositionY
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 33
Total unknown or missing: 443

18.2.83 LiFlimReader

This page lists supported metadata fields for the Bio-Formats LI-FLIM format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 25 of them (5%).
• Of those, Bio-Formats fully or partially converts 25 (100%).
Supported fields

These fields are fully supported by the Bio-Formats LI-FLIM format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Image: ROIRef
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: DeltaT
- Plane: ExposureTime
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Polygon: ID
- Polygon: Points
Total supported: 25
Total unknown or missing: 451

18.2.84 MIASReader

This page lists supported metadata fields for the Bio-Formats MIAS format reader.

These fields are from the OME data model[3144]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 65 of them (13%).
- Of those, Bio-Formats fully or partially converts 65 (100%).

Supported fields

These fields are fully supported by the Bio-Formats MIAS format reader:

- Channel: Color[3145]
- Channel: ID[3146]
- Channel: Name[3147]
- Channel: SamplesPerPixel[3148]
- Ellipse: ID[3149]
- Ellipse: RadiusX[3150]
- Ellipse: RadiusY[3151]
- Ellipse: Text[3152]
- Ellipse: TheT[3153]
- Ellipse: TheZ[3154]
- Ellipse: X[3155]
- Ellipse: Y[3156]
- Experiment: Description[3157]
- Experiment: ID[3158]
- Experiment: Type[3159]
- Image: AcquisitionDate[3160]

3143: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
3144: http://www.openmicroscopy.org/site/support/ome-model/
3145: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Color
3146: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
3147: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3148: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
3149: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text
3150: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheT
3151: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_TheZ
3152: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_X
3153: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Y
3154: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Description
3155: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_ID
3156: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Type
3157: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
• Image: ExperimentRef
• Image: ID
• Image: InstrumentRef
• Image: Name
• Image: ROIRef
• Instrument: ID
• Mask: BinData
• Mask: FillColor
• Mask: Height
• Mask: ID
• Mask: StrokeColor
• Mask: Width
• Mask: X
• Mask: Y
• Objective: ID
• Objective: Model
• Objective: NominalMagnification
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT

18.2. Metadata fields
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : ExposureTime
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• Plate : ColumnNamingConvention
• Plate : ExternalIdentifier
• Plate : ID
• Plate : Name
• Plate : RowNamingConvention
• PlateAcquisition : ID
• PlateAcquisition : MaximumFieldCount
• PlateAcquisition : WellSampleRef
• ROI : ID
• Well : Column
• Well : ID
• Well : Row
• WellSample : ID
• WellSample : ImageRef
• WellSample : Index

Total supported: 65

Total unknown or missing: 411
18.2.85 MINCReader

This page lists supported metadata fields for the Bio-Formats MINC MRI format reader. These fields are from the OME data model\[3210]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats MINC MRI format reader:

- Channel: ID\[3211]
- Channel: SamplesPerPixel\[3212]
- Image: AcquisitionDate\[3213]
- Image: Description\[3214]
- Image: ID\[3215]
- Image: Name\[3216]
- Pixels: BigEndian\[3217]
- Pixels: DimensionOrder\[3218]
- Pixels: ID\[3219]
- Pixels: Interleaved\[3220]
- Pixels: PhysicalSizeX\[3221]
- Pixels: PhysicalSizeY\[3222]
- Pixels: PhysicalSizeZ\[3223]
- Pixels: SignificantBits\[3224]
- Pixels: SizeC\[3225]
- Pixels: SizeT\[3226]
- Pixels: SizeX\[3227]
- Pixels: SizeY\[3228]

\[3210]\ http://www.openmicroscopy.org/site/support/ome-model/
\[3211]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\[3212]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\[3213]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\[3214]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
\[3215]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\[3216]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\[3217]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\[3218]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\[3219]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\[3220]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\[3221]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\[3222]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\[3223]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
\[3224]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\[3225]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\[3226]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\[3227]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\[3228]\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
This page lists supported metadata fields for the Bio-Formats Multiple-image Network Graphics format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Multiple-image Network Graphics format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT

---

18.2. Metadata fields

---

[3230] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[3236] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[3237] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
18.2.87 MRCReader

This page lists supported metadata fields for the Bio-Formats Medical Research Council format reader.

These fields are from the OME data model\(^\text{3254}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Medical Research Council format reader:

- Channel: ID\(^\text{3255}\)
- Channel: SamplesPerPixel\(^\text{3256}\)
- Image: AcquisitionDate\(^\text{3257}\)
- Image: ID\(^\text{3258}\)
- Image: Name\(^\text{3259}\)
- Pixels: BigEndian\(^\text{3260}\)
- Pixels: DimensionOrder\(^\text{3261}\)
- Pixels: ID\(^\text{3262}\)
- Pixels: Interleaved\(^\text{3263}\)
- Pixels: PhysicalSizeX\(^\text{3264}\)

\(^{3247}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{3248}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^{3249}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\(^{3250}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{3251}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{3252}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{3253}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{3254}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{3255}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{3256}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{3257}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{3258}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{3259}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{3260}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{3261}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{3262}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{3263}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{3264}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.88 MRWReader

This page lists supported metadata fields for the Bio-Formats Minolta MRW format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Minolta MRW format reader:
- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name

[3272] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[3278] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[3279] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
• Pixels::BigEndian
• Pixels::DimensionOrder
• Pixels::ID
• Pixels::Interleaved
• Pixels::SignificantBits
• Pixels::SizeC
• Pixels::SizeT
• Pixels::SizeX
• Pixels::SizeY
• Pixels::SizeZ
• Pixels::Type
• Plane::TheC
• Plane::TheT
• Plane::TheZ

Total supported: 19
Total unknown or missing: 457

18.2.89 MetamorphReader

This page lists supported metadata fields for the Bio-Formats Metamorph STK format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 46 of them (9%).
• Of those, Bio-Formats fully or partially converts 46 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Metamorph STK format reader:

• Channel::ID
• Channel::LightSourceSettingsID
• Channel::LightSourceSettingsWavelength

3283 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
3284 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
3285 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
3286 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
3287 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
3288 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
3289 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
3290 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
3291 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
3292 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
3293 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
3294 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
3295 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
3296 http://www.openmicroscopy.org/site/support/ome-model/
3297 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3298 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_ID
3300 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSourceSettings_Wavelength

18.2. Metadata fields
• Channel: Name
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Type
• DetectorSettings: Binning
• DetectorSettings: Gain
• DetectorSettings: ID
• DetectorSettings: ReadOutRate
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• ImagingEnvironment: Temperature
• Instrument: ID
• Laser: ID
• Laser: LaserMedium
• Laser: Type
• Objective: ID
• Objective: LensNA
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
18.2.90 MetamorphTiffReader

This page lists supported metadata fields for the Bio-Formats Metamorph TIFF format reader.

These fields are from the OME data model\(^{3344}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 38 of them (7%).
- Of those, Bio-Formats fully or partially converts 38 (100%).

\(^{3327}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{3328}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
\(^{3329}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{3330}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{3331}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{3332}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{3333}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^{3334}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{3335}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
\(^{3336}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
\(^{3337}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
\(^{3338}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
\(^{3339}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
\(^{3340}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{3341}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{3342}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{3344}\)http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Metamorph TIFF format reader:

- **Channel**: ID
- **Channel**: Name
- **Channel**: SamplesPerPixel
- **Image**: AcquisitionDate
- **Image**: Description
- **Image**: ID
- **Image**: Name
- **ImagingEnvironment**: Temperature
- **Pixels**: BigEndian
- **Pixels**: DimensionOrder
- **Pixels**: ID
- **Pixels**: Interleaved
- **Pixels**: PhysicalSizeX
- **Pixels**: PhysicalSizeY
- **Pixels**: PhysicalSizeZ
- **Pixels**: SignificantBits
- **Pixels**: SizeC
- **Pixels**: SizeT
- **Pixels**: SizeX
- **Pixels**: SizeY
- **Pixels**: SizeZ
- **Pixels**: Type
- **Plane**: DeltaT
- **Plane**: ExposureTime
18.2.91 MicromanagerReader

This page lists supported metadata fields for the Bio-Formats Micro-Manager format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 41 of them (8%).
- Of those, Bio-Formats fully or partially converts 41 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Micro-Manager format reader:
- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ColumnNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_RowNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
• Detector : ID^3387
• Detector : Manufacturer^3388
• Detector : Model^3389
• Detector : SerialNumber^3390
• Detector : Type^3391
• DetectorSettings : Binning^3392
• DetectorSettings : Gain^3393
• DetectorSettings : ID^3394
• DetectorSettings : Voltage^3395
• Image : AcquisitionDate^3396
• Image : Description^3397
• Image : ID^3398
• Image : InstrumentRef^3399
• Image : Name^3400
• ImagingEnvironment : Temperature^3401
• Instrument : ID^3402
• Pixels : BigEndian^3403
• Pixels : DimensionOrder^3404
• Pixels : ID^3405
• Pixels : Interleaved^3406
• Pixels : PhysicalSizeX^3407
• Pixels : PhysicalSizeY^3408
• Pixels : PhysicalSizeZ^3409
• Pixels : SignificantBits^3410
• Pixels : SizeC^3411
• Pixels : SizeT^3412

^3387http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
^3388http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
^3389http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
^3390http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
^3391http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
^3392http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
^3393http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
^3394http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
^3395http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Voltage
^3396http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
^3397http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
^3398http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
^3399http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
^3400http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
^3401http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_Temperature
^3402http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
^3403http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
^3404http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
^3405http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
^3406http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
^3407http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
^3408http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
^3409http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
^3410http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
^3411http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
^3412http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 41
Total unknown or missing: 435

### 18.2.92 MinimalTiffReader

This page lists supported metadata fields for the Bio-Formats Minimal TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

**Of the 476 fields documented in the metadata summary table:**

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats Minimal TIFF format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name

[3416] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[3427] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[3428] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.93 MolecularImagingReader

This page lists supported metadata fields for the Bio-Formats Molecular Imaging format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Molecular Imaging format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate

3431 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
3432 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
3433 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
3434 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
3435 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
3436 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
3437 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
3438 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
3439 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
3440 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
3441 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
3442 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
3443 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
3444 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
3445 http://www.openmicroscopy.org/site/support/ome-model/
3446 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3448 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
18.2.94 NAFReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu Aquacosmos format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Total supported: 21
Total unknown or missing: 455

18.2. Metadata fields
Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu Aquacosmos format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19

Total unknown or missing: 457

18.2.95 ND2Reader

This page lists supported metadata fields for the Bio-Formats Nikon ND2 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

[3469] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[3470] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[3478] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
[3483] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats Nikon ND2 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

**Total supported: 19**

**Total unknown or missing: 457**
18.2.96 NDPIReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu NDPI format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 28 of them (5%).
- Of those, Bio-Formats fully or partially converts 28 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu NDPI format reader:
- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Microscope: Model
- Objective: ID
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits

3507 http://www.openmicroscopy.org/site/support/ome-model/
3508 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3509 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3510 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
3511 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
3512 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
3513 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
3514 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
3515 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
3516 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
3517 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
3518 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
3519 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
3520 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
3521 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
3522 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
3523 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
3524 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
3525 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
3526 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
Total supported: 28
Total unknown or missing: 448

18.2.97 NDPISReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu NDPIS format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu NDPIS format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Type

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
• Pixels: Interleaved\(^{3545}\)
• Pixels: SignificantBits\(^{3546}\)
• Pixels: SizeC\(^{3547}\)
• Pixels: SizeT\(^{3548}\)
• Pixels: SizeX\(^{3549}\)
• Pixels: SizeY\(^{3550}\)
• Pixels: SizeZ\(^{3551}\)
• Pixels: Type\(^{3552}\)
• Plane: TheC\(^{3553}\)
• Plane: TheT\(^{3554}\)
• Plane: TheZ\(^{3555}\)

Total supported: 19

Total unknown or missing: 457

18.2.98 NRRDReader

This page lists supported metadata fields for the Bio-Formats NRRD format reader.

These fields are from the OME data model\(^{3556}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats NRRD format reader:

• Channel: ID\(^{3557}\)
• Channel: SamplesPerPixel\(^{3558}\)
• Image: AcquisitionDate\(^{3559}\)
• Image: ID\(^{3560}\)
• Image: Name\(^{3561}\)
• Pixels: BigEndian\(^{3562}\)

\(^{3545}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{3546}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{3547}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{3548}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{3549}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{3550}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^{3551}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\(^{3552}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{3553}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{3554}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{3555}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{3556}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{3557}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{3558}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{3559}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{3560}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{3561}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{3562}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.99 NativeND2Reader

This page lists supported metadata fields for the Bio-Formats Nikon ND2 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 52 of them (10%).
• Of those, Bio-Formats fully or partially converts 52 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon ND2 format reader:
• Channel: AcquisitionMode

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
• Channel: Color
• Channel: EmissionWavelength
• Channel: ExcitationWavelength
• Channel: ID
• Channel: Name
• Channel: PinholeSize
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Model
• Detector: Type
• DetectorSettings: Binning
• DetectorSettings: Gain
• DetectorSettings: ID
• DetectorSettings: ReadOutRate
• DetectorSettings: Voltage
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• ImagingEnvironment: Temperature
• Instrument: ID
• Objective: CalibratedMagnification
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Color
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_PinholeSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ReadOutRate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Voltage
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_Temperature
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_CalibratedMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
• Objective: Model
• ObjectiveSettings: ID
• ObjectiveSettings: RefractiveIndex
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 52
Total unknown or missing: 424

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
18.2.100 NativeQTReader

This page lists supported metadata fields for the Bio-Formats QuickTime format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats QuickTime format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT

http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.101 NiftiReader

This page lists supported metadata fields for the Bio-Formats NIfTI format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 24 of them (5%).
• Of those, Bio-Formats fully or partially converts 24 (100%).

Supported fields

These fields are fully supported by the Bio-Formats NIfTI format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 24
Total unknown or missing: 452

18.2.102 NikonElementsTiffReader

This page lists supported metadata fields for the Bio-Formats Nikon Elements TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 50 of them (10%).
• Of those, Bio-Formats fully or partially converts 50 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon Elements TIFF format reader:

• Channel : AcquisitionMode
• Channel : EmissionWavelength
• Channel : ExcitationWavelength
• Channel : ID
• Channel : Name
• Channel : PinholeSize
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Model

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/Channel_AcquisitionMode
http://www.openmicroscopy.org/site/support/ome-model/Channel_EmissionWavelength
http://www.openmicroscopy.org/site/support/ome-model/Channel_ExcitationWavelength
http://www.openmicroscopy.org/site/support/ome-model/Channel_ID
http://www.openmicroscopy.org/site/support/ome-model/Channel_Name
http://www.openmicroscopy.org/site/support/ome-model/Channel_PinholeSize
http://www.openmicroscopy.org/site/support/ome-model/Channel_SamplesPerPixel
http://www.openmicroscopy.org/site/support/ome-model/ManufacturerSpec_Model
• Detector: Type
• DetectorSettings: Binning
• DetectorSettings: Gain
• DetectorSettings: ID
• DetectorSettings: ReadOutRate
• DetectorSettings: Voltage
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• ImagingEnvironment: Temperature
• Instrument: ID
• Objective: CalibratedMagnification
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• ObjectiveSettings: ID
• ObjectiveSettings: RefractiveIndex
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 50
Total unknown or missing: 426

18.2.103 NikonReader

This page lists supported metadata fields for the Bio-Formats Nikon NEF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon NEF format reader:

• Channel : ID
• Channel : SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.104 NikonTiffReader

This page lists supported metadata fields for the Bio-Formats Nikon TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 47 of them (9%).
- Of those, Bio-Formats fully or partially converts 47 (100%).

3731 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
3732 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
3733 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
3734 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
3735 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
3736 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
3737 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
3738 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
3739 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
3740 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
3741 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
3742 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
3743 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
3744 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
3745 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
3746 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
3747 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
3748 http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Nikon TIFF format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: PinholeSize
- Channel: SamplesPerPixel
- Detector: Gain
- Detector: ID
- Detector: Type
- Dichroic: ID
- Dichroic: Model
- Filter: ID
- Filter: Model
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Laser: ID
- Laser: LaserMedium
- Laser: Model
- Laser: Type
- Laser: Wavelength
- Objective: Correction
- Objective: ID\textsuperscript{3773}
- Objective: Immersion\textsuperscript{3774}
- Objective: LensNA\textsuperscript{3775}
- Objective: NominalMagnification\textsuperscript{3776}
- Objective: WorkingDistance\textsuperscript{3777}
- ObjectiveSettings: ID\textsuperscript{3778}
- Pixels: BigEndian\textsuperscript{3779}
- Pixels: DimensionOrder\textsuperscript{3780}
- Pixels: ID\textsuperscript{3781}
- Pixels: Interleaved\textsuperscript{3782}
- Pixels: PhysicalSizeX\textsuperscript{3783}
- Pixels: PhysicalSizeY\textsuperscript{3784}
- Pixels: PhysicalSizeZ\textsuperscript{3785}
- Pixels: SignificantBits\textsuperscript{3786}
- Pixels: Size\textsuperscript{3787}
- Pixels: SizeT\textsuperscript{3788}
- Pixels: SizeX\textsuperscript{3789}
- Pixels: SizeY\textsuperscript{3790}
- Pixels: SizeZ\textsuperscript{3791}
- Pixels: Type\textsuperscript{3792}
- Plane: TheC\textsuperscript{3793}
- Plane: TheT\textsuperscript{3794}
- Plane: TheZ\textsuperscript{3795}

Total supported: 47

Total unknown or missing: 429

\textsuperscript{3773} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
\textsuperscript{3774} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
\textsuperscript{3775} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
\textsuperscript{3776} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
\textsuperscript{3777} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_WorkingDistance
\textsuperscript{3778} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
\textsuperscript{3779} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\textsuperscript{3780} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\textsuperscript{3781} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\textsuperscript{3782} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\textsuperscript{3783} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\textsuperscript{3784} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\textsuperscript{3785} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
\textsuperscript{3786} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\textsuperscript{3787} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Size
\textsuperscript{3788} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\textsuperscript{3789} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\textsuperscript{3790} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\textsuperscript{3791} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\textsuperscript{3792} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\textsuperscript{3793} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\textsuperscript{3794} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\textsuperscript{3795} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

18.2. Metadata fields
18.2.105 OBFReader

This page lists supported metadata fields for the Bio-Formats OBF format reader.

These fields are from the OME data model\textsuperscript{3796}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats OBF format reader:

- Channel: ID\textsuperscript{3797}
- Channel: SamplesPerPixel\textsuperscript{3798}
- Image: AcquisitionDate\textsuperscript{3799}
- Image: ID\textsuperscript{3800}
- Image: Name\textsuperscript{3801}
- Pixels: BigEndian\textsuperscript{3802}
- Pixels: DimensionOrder\textsuperscript{3803}
- Pixels: ID\textsuperscript{3804}
- Pixels: Interleaved\textsuperscript{3805}
- Pixels: SignificantBits\textsuperscript{3806}
- Pixels: SizeC\textsuperscript{3807}
- Pixels: SizeT\textsuperscript{3808}
- Pixels: SizeX\textsuperscript{3809}
- Pixels: SizeY\textsuperscript{3810}
- Pixels: SizeZ\textsuperscript{3811}
- Pixels: Type\textsuperscript{3812}
- Plane: TheC\textsuperscript{3813}
- Plane: TheT\textsuperscript{3814}

\textsuperscript{3796}http://www.openmicroscopy.org/site/support/ome-model/
\textsuperscript{3797}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\textsuperscript{3798}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\textsuperscript{3799}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\textsuperscript{3800}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\textsuperscript{3801}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\textsuperscript{3802}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\textsuperscript{3803}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\textsuperscript{3804}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\textsuperscript{3805}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\textsuperscript{3806}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\textsuperscript{3807}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\textsuperscript{3808}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\textsuperscript{3809}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\textsuperscript{3810}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\textsuperscript{3811}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\textsuperscript{3812}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\textsuperscript{3813}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\textsuperscript{3814}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
18.2.106 OMETiffReader

This page lists supported metadata fields for the Bio-Formats OME-TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats OME-TIFF format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.107 OMEXMLReader

This page lists supported metadata fields for the Bio-Formats OME-XML format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats OME-XML format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
18.2.108 OpenlabRawReader

This page lists supported metadata fields for the Bio-Formats Openlab RAW format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Openlab RAW format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.109 OpenlabReader

This page lists supported metadata fields for the Bio-Formats Openlab LIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 32 of them (6%).
• Of those, Bio-Formats fully or partially converts 32 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Openlab LIFF format reader:

• Channel: ID
• Channel: Name
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Type
• DetectorSettings: Gain
• DetectorSettings: ID
• DetectorSettings: Offset
• Image: AcquisitionDate
• Image: ID

3869 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
3870 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
3871 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
3872 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
3873 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
3874 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
3875 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
3876 http://www.openmicroscopy.org/site/support/ome-model/
3877 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3878 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
3879 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3880 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
3881 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
3882 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Gain
3883 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Offset
3884 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
3885 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID

18.2. Metadata fields
18.2.110 OperettaReader

This page lists supported metadata fields for the Bio-Formats PerkinElmer Operetta format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME.

Total supported: 32
Total unknown or missing: 444

18.2. Metadata fields
data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

**Of the 476 fields documented in the metadata summary table:**

- The file format itself supports 43 of them (9%).
- Of those, Bio-Formats fully or partially converts 43 (100%).

### Supported fields

These fields are fully supported by the Bio-Formats PerkinElmer Operetta format reader:

- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Experimenter: ID
- Experimenter: LastName
- Image: AcquisitionDate
- Image: ExperimenterRef
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ

---

3910 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
3911 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
3912 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
3913 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_ID
3914 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
3915 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
3916 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID
3917 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
3918 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
3919 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
3920 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
3921 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
3922 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
3923 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
3924 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
3925 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
3926 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
3927 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
3928 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
3929 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
3930 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
• Pixels: Type
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plane: Columns
• Plate: Description
• Plate: ExternalIdentifier
• Plate: ID
• Plate: Name
• Plate: Rows
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: WellSampleRef
• Well: Column
• Well: ID
• Well: Row
• WellSample: ID
• WellSample: ImageRef
• WellSample: Index

Total supported: 43
Total unknown or missing: 433

18.2.111 OxfordInstrumentsReader

This page lists supported metadata fields for the Bio-Formats Oxford Instruments format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Columns
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ExternalIdentifier
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Rows
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_Machine
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MachineID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MachineSerialnumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MotherPlate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_MotherPlateID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#PlateAcquisition_WellSampleRef
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Column
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Well_Row
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
http://www.openmicroscopy.org/site/support/ome-model/
data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Oxford Instruments format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT

---

954: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
955: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
956: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
957: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
958: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
959: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
960: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
961: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
962: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
963: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
964: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
965: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
966: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
967: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
968: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
969: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
970: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
971: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
972: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
973: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
974: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
• Plane : TheZ

Total supported: 22
Total unknown or missing: 454

18.2.112 PCIReader

This page lists supported metadata fields for the Bio-Formats Compix Simple-PCI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 29 of them (6%).
• Of those, Bio-Formats fully or partially converts 29 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Compix Simple-PCI format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Type
• DetectorSettings : Binning
• DetectorSettings : ID
• Image : AcquisitionDate
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
18.2.113 PCORAWReader

This page lists supported metadata fields for the Bio-Formats PCO-RAW format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

**Of the 476 fields documented in the metadata summary table:**
- The file format itself supports 26 of them (5%).
- Of those, Bio-Formats fully or partially converts 26 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats PCO-RAW format reader:
- Channel: ID
- Channel: SamplesPerPixel
- Detector: ID
- Detector: SerialNumber
- Plane: DeltaT
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 29
Total unknown or missing: 447
• DetectorSettings : Binning
• DetectorSettings : ID
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : Name
• Instrument : ID
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : ExposureTime
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 26
Total unknown or missing: 450

18.2.114 PCXReader

This page lists supported metadata fields for the Bio-Formats PCX format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME

4011 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
4012 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
4013 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4014 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
4015 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4016 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4017 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
4018 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
4019 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4020 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
4021 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4022 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4023 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4024 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
4025 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
4026 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
4027 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
4028 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
4029 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
4030 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
4031 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4032 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
4033 http://www.openmicroscopy.org/site/support/ome-model/
Bio-Formats Documentation, Release 5.2.2

data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats PCX format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 19

Total unknown or missing: 457

---

4034 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID)
4035 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel)
4036 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate)
4038 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name)
4039 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian)
4040 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder)
4042 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved)
4043 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits)
4044 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC)
4045 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT)
4046 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX)
4047 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY)
4048 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ)
4049 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type)
4050 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC)
4051 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT)
4052 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ)
18.2.115 PDSReader

This page lists supported metadata fields for the Bio-Formats Perkin Elmer Densitometer format reader.

These fields are from the OME data model\(^{4053}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Perkin Elmer Densitometer format reader:

- **Channel**: ID\(^{4054}\)
- **Channel**: SamplesPerPixel\(^{4055}\)
- **Image**: AcquisitionDate\(^{4056}\)
- **Image**: ID\(^{4057}\)
- **Image**: Name\(^{4058}\)
- **Pixels**: BigEndian\(^{4059}\)
- **Pixels**: DimensionOrder\(^{4060}\)
- **Pixels**: ID\(^{4061}\)
- **Pixels**: Interleaved\(^{4062}\)
- **Pixels**: PhysicalSizeX\(^{4063}\)
- **Pixels**: PhysicalSizeY\(^{4064}\)
- **Pixels**: SignificantBits\(^{4065}\)
- **Pixels**: SizeC\(^{4066}\)
- **Pixels**: SizeT\(^{4067}\)
- **Pixels**: SizeX\(^{4068}\)
- **Pixels**: SizeY\(^{4069}\)
- **Pixels**: SizeZ\(^{4070}\)
- **Pixels**: Type\(^{4071}\)

\(^{4053}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{4054}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{4055}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{4056}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{4057}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{4058}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{4059}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{4060}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{4061}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{4062}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{4063}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{4064}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{4065}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{4066}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{4067}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{4068}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{4069}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^{4070}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\(^{4071}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
Total supported: 23
Total unknown or missing: 453

18.2.116 PGMReader

This page lists supported metadata fields for the Bio-Formats Portable Any Map format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Portable Any Map format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT

---

18.2. Metadata fields
18.2.117 PQBinReader

This page lists supported metadata fields for the Bio-Formats PicoQuant Bin format reader.

These fields are from the OME data model\(^{4097}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PicoQuant Bin format reader:

- Channel: ID\(^{4098}\)
- Channel: SamplesPerPixel\(^{4099}\)
- Image: AcquisitionDate\(^{4100}\)
- Image: ID\(^{4101}\)
- Image: Name\(^{4102}\)
- Pixels: BigEndian\(^{4103}\)
- Pixels: DimensionOrder\(^{4104}\)
- Pixels: ID\(^{4105}\)
- Pixels: Interleaved\(^{4106}\)
- Pixels: PhysicalSizeX\(^{4107}\)

---

\(^{4097}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{4098}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{4099}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{4100}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{4101}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{4102}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{4103}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{4104}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{4105}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{4106}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{4107}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX

18.2. Metadata fields
Total supported: 21
Total unknown or missing: 455

18.2.118 PSDReader

This page lists supported metadata fields for the Bio-Formats Adobe Photoshop format reader.

These fields are from the OME data model\[4119]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Adobe Photoshop format reader:

- Channel : ID\[4120]
- Channel : SamplesPerPixel\[4121]
- Image : AcquisitionDate\[4122]
- Image : ID\[4123]
- Image : Name\[4124]
- Pixels : BigEndian\[4125]
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.119 PerkinElmerReader

This page lists supported metadata fields for the Bio-Formats PerkinElmer format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 30 of them (6%).
- Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PerkinElmer format reader:
- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: DeltaT
- Plane: ExposureTime
- Plane: PositionX
- Plane: PositionY
- Plane: PositionZ
- Plane: TheC
- Plane: TheT
- Plane: TheZ
Total supported: 30
Total unknown or missing: 446

18.2.120 PhotoshopTiffReader

This page lists supported metadata fields for the Bio-Formats Adobe Photoshop TIFF format reader.

These fields are from the OME data model\(^{4170}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Adobe Photoshop TIFF format reader:

- Channel : ID\(^{4171}\)
- Channel : SamplesPerPixel\(^{4172}\)
- Image : AcquisitionDate\(^{4173}\)
- Image : ID\(^{4174}\)
- Image : Name\(^{4175}\)
- Pixels : BigEndian\(^{4176}\)
- Pixels : DimensionOrder\(^{4177}\)
- Pixels : ID\(^{4178}\)
- Pixels : Interleaved\(^{4179}\)
- Pixels : SignificantBits\(^{4180}\)
- Pixels : SizeC\(^{4181}\)
- Pixels : SizeT\(^{4182}\)
- Pixels : SizeX\(^{4183}\)
- Pixels : SizeY\(^{4184}\)
- Pixels : SizeZ\(^{4185}\)
- Pixels : Type\(^{4186}\)
- Plane : TheC\(^{4187}\)

\(^{4170}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{4171}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID

\(^{4172}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{4173}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

\(^{4174}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID

\(^{4175}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name

\(^{4176}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian

\(^{4177}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder

\(^{4178}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID

\(^{4179}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved

\(^{4180}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits

\(^{4181}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC

\(^{4182}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT

\(^{4183}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX

\(^{4184}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

\(^{4185}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ

\(^{4186}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

\(^{4187}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
### 18.2.1.21 PictReader

This page lists supported metadata fields for the Bio-Formats PICT format reader. These fields are from the OME data model[^150]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

**Of the 476 fields documented in the metadata summary table:**
- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

#### Supported fields

These fields are fully supported by the Bio-Formats PICT format reader:

- Channel: ID[^4191]
- Channel: SamplesPerPixel[^4192]
- Image: AcquisitionDate[^4193]
- Image: ID[^4194]
- Image: Name[^4195]
- Pixels: BigEndian[^4196]
- Pixels: DimensionOrder[^4197]
- Pixels: ID[^4198]
- Pixels: Interleaved[^4199]
- Pixels: SignificantBits[^4200]
- Pixels: SizeC[^4201]
- Pixels: SizeT[^4202]
- Pixels: SizeX[^4203]
- Pixels: SizeY[^4204]
- Pixels: SizeZ[^4205]

[^4188]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
[^4189]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
[^4190]: http://www.openmicroscopy.org/site/support/ome-model/
[^4191]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
[^4192]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[^4193]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[^4194]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
[^4195]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
[^4196]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
[^4197]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
[^4198]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
[^4199]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
[^4200]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
[^4201]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
[^4202]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
[^4203]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
[^4204]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
[^4205]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
Total supported: 19

Total unknown or missing: 457

18.2.122 PovrayReader

This page lists supported metadata fields for the Bio-Formats POV-Ray format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats POV-Ray format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
Supported fields

These fields are fully supported by the Bio-Formats Prairie TIFF format reader:

- Channel: EmissionWavelength
- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Type
- Detector: Zoom
- DetectorSettings: Gain
- DetectorSettings: ID
- DetectorSettings: Offset
- Image: AcquisitionDate

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 46 of them (9%).
- Of those, Bio-Formats fully or partially converts 46 (100%).
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Laser: ID
• Laser: Power
• Microscope: Model
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Manufacturer
• Objective: NominalMagnification
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ

18.2. Metadata fields
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 46
Total unknown or missing: 430

18.2.124 PyramidTiffReader

This page lists supported metadata fields for the Bio-Formats Pyramid TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Pyramid TIFF format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 457

18.2.125 QTReader

This page lists supported metadata fields for the Bio-Formats QuickTime format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats QuickTime format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian

4286 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4287 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4288 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4289 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
4290 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
4291 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
4292 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
4293 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
4294 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
4295 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4296 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
4297 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4298 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4300 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4301 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4302 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4303 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
18.2.126 QuesantReader

This page lists supported metadata fields for the Bio-Formats Quesant AFM format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Quesant AFM format reader:
- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description

Total supported: 19
Total unknown or missing: 457

---

4304 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4305 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
4306 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4307 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4308 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4309 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
4310 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
4311 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
4312 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
4313 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
4314 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
4315 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4316 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
4317 http://www.openmicroscopy.org/site/support/ome-model/
4318 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4319 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4320 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4321 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
18.2.127 RHKReader

This page lists supported metadata fields for the Bio-Formats RHK Technologies format reader. These fields are from the OME data model\(^\text{4340}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

\[ \text{Total supported: 22} \]
\[ \text{Total unknown or missing: 454} \]

18.2. Metadata fields

\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT} \]
\[ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ} \]
\[ \text{http://www.openmicroscopy.org/site/support/ome-model/} \]
Supported fields

These fields are fully supported by the Bio-Formats RHK Technologies format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 22
Total unknown or missing: 454
18.2.128 SBIGReader

This page lists supported metadata fields for the Bio-Formats SBIG format reader.

These fields are from the OME data model\textsuperscript{4363}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SBIG format reader:

- Channel: ID\textsuperscript{4364}
- Channel: SamplesPerPixel\textsuperscript{4365}
- Image: AcquisitionDate\textsuperscript{4366}
- Image: Description\textsuperscript{4367}
- Image: ID\textsuperscript{4368}
- Image: Name\textsuperscript{4369}
- Pixels: BigEndian\textsuperscript{4370}
- Pixels: DimensionOrder\textsuperscript{4371}
- Pixels: ID\textsuperscript{4372}
- Pixels: Interleaved\textsuperscript{4373}
- Pixels: PhysicalSizeX\textsuperscript{4374}
- Pixels: PhysicalSizeY\textsuperscript{4375}
- Pixels: SignificantBits\textsuperscript{4376}
- Pixels: SizeC\textsuperscript{4377}
- Pixels: SizeT\textsuperscript{4378}
- Pixels: SizeX\textsuperscript{4379}
- Pixels: SizeY\textsuperscript{4380}
- Pixels: SizeZ\textsuperscript{4381}
- Pixels: Type\textsuperscript{4382}

\textsuperscript{4363}http://www.openmicroscopy.org/site/support/ome-model/
\textsuperscript{4364}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\textsuperscript{4365}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\textsuperscript{4366}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\textsuperscript{4367}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
\textsuperscript{4368}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\textsuperscript{4369}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\textsuperscript{4370}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\textsuperscript{4371}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\textsuperscript{4372}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\textsuperscript{4373}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\textsuperscript{4374}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
\textsuperscript{4375}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
\textsuperscript{4376}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\textsuperscript{4377}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\textsuperscript{4378}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\textsuperscript{4379}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\textsuperscript{4380}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\textsuperscript{4381}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
\textsuperscript{4382}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

18.2. Metadata fields
**18.2.129 SDTReader**

This page lists supported metadata fields for the Bio-Formats SPCImage Data format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats SPCImage Data format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY

---

18.2. Metadata fields
18.2.130 SEQReader

This page lists supported metadata fields for the Bio-Formats Image-Pro Sequence format reader. These fields are from the OME data model[^4406]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Image-Pro Sequence format reader:

- Channel: ID[^4407]
- Channel: SamplesPerPixel[^4408]
- Image: AcquisitionDate[^4409]
- Image: ID[^4410]
- Image: Name[^4411]
- Pixels: BigEndian[^4412]
- Pixels: DimensionOrder[^4413]
- Pixels: ID[^4414]
- Pixels: Interleaved[^4415]
- Pixels: SignificantBits[^4416]
- Pixels: Size[^4417]
- Pixels: Size[^4418]

[^4401]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
[^4402]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[^4403]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
[^4404]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
[^4405]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
[^4406]: http://www.openmicroscopy.org/site/support/ome-model/
[^4407]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
[^4408]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[^4409]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[^4410]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
[^4411]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
[^4412]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
[^4413]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
[^4414]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
[^4415]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
[^4416]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
[^4417]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
[^4418]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
18.2.13 SIFReader

This page lists supported metadata fields for the Bio-Formats Andor SIF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Andor SIF format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits

Total supported: 19

Total unknown or missing: 457
Bio-Formats Documentation, Release 5.2.2

• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 20
Total unknown or missing: 456

18.2.132 SISReader

This page lists supported metadata fields for the Bio-Formats Olympus SIS TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 33 of them (6%).
• Of those, Bio-Formats fully or partially converts 33 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus SIS TIFF format reader:

• Channel: ID
• Channel: Name
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Model
• Detector: Type
• DetectorSettings: ID

18.2. Metadata fields
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: NominalMagnification
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

4455 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
4458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4459 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
4460 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
4461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
4462 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
4463 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
4464 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
4465 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4466 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
4467 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4468 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
4469 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
4470 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4472 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
4473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
4474 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
4475 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
4476 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
4477 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
4478 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4479 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ

18.2. Metadata fields
Total supported: 33
Total unknown or missing: 443

18.2.133 SMCameraReader

This page lists supported metadata fields for the Bio-Formats SM Camera format reader. These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SM Camera format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC

---

18.2. Metadata fields

---
Total supported: 19
Total unknown or missing: 457

18.2.134 SPCReader

This page lists supported metadata fields for the Bio-Formats SPC FIFO Data format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SPC FIFO Data format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ

---

4499 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4500 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
4501 http://www.openmicroscopy.org/site/support/ome-model/
4502 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4503 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4504 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4505 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4506 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4507 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
4508 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4509 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
4510 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4511 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4512 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4513 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
4514 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
4515 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
4516 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 457

18.2.135 SPEReader

This page lists supported metadata fields for the Bio-Formats Princeton Instruments SPE format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 30 of them (6%).
• Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Princeton Instruments SPE format reader:
• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Image : ROIRef
• Label : ID
• Label : Text
• Label : X
• Label : Y
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• ROI: ID
• Rectangle: Height
• Rectangle: ID
• Rectangle: Width
• Rectangle: X
• Rectangle: Y

Total supported: 30
Total unknown or missing: 446

18.2.136 SVSReader

This page lists supported metadata fields for the Bio-Formats Aperio SVS format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 29 of them (6%).
• Of those, Bio-Formats fully or partially converts 29 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Aperio SVS format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: ID
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY

453 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
454 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
455 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
459 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
460 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
462 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
463 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
464 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
465 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
466 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
467 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
468 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
469 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
470 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
472 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
474 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
475 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
476 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 29
Total unknown or missing: 447

#### 18.2.137 ScanrReader

This page lists supported metadata fields for the Bio-Formats Olympus ScanR format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

**Of the 476 fields documented in the metadata summary table:**

- The file format itself supports 43 of them (9%).
- Of those, Bio-Formats fully or partially converts 43 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats Olympus ScanR format reader:

- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY

---

4577: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
4578: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
4579: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
4580: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4581: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
4582: http://www.openmicroscopy.org/site/support/ome-model/
4583: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4584: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
4585: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4586: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4587: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4588: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4589: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
4590: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4591: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
4592: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4593: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
4594: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: ColumnNamingConvention
• Plate: Columns
• Plate: ID
• Plate: Name
• Plate: RowNamingConvention
• Plate: Rows
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: WellSampleRef
• Well: Column
• Well: ID
• Well: Row
• WellSample : ID\textsuperscript{4621}
• WellSample : ImageRef\textsuperscript{4622}
• WellSample : Index\textsuperscript{4623}
• WellSample : PositionX\textsuperscript{4624}
• WellSample : PositionY\textsuperscript{4625}

Total supported: 43

Total unknown or missing: 433

18.2.138 ScreenReader

This page lists supported metadata fields for the Bio-Formats Screen format reader.

These fields are from the OME data model\textsuperscript{4626}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 34 of them (7%).
• Of those, Bio-Formats fully or partially converts 34 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Screen format reader:

• Channel : ID\textsuperscript{4627}
• Channel : SamplesPerPixel\textsuperscript{4628}
• Image : AcquisitionDate\textsuperscript{4629}
• Image : ID\textsuperscript{4630}
• Image : Name\textsuperscript{4631}
• Pixels : BigEndian\textsuperscript{4632}
• Pixels : DimensionOrder\textsuperscript{4633}
• Pixels : ID\textsuperscript{4634}
• Pixels : Interleaved\textsuperscript{4635}
• Pixels : SignificantBits\textsuperscript{4636}
• Pixels : SizeC\textsuperscript{4637}
• Pixels : SizeT\textsuperscript{4638}

\textsuperscript{4621}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_ID
\textsuperscript{4622}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImageRef_ID
\textsuperscript{4623}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_Index
\textsuperscript{4624}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionX
\textsuperscript{4625}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#WellSample_PositionY
\textsuperscript{4626}http://www.openmicroscopy.org/site/support/ome-model/
\textsuperscript{4627}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\textsuperscript{4628}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\textsuperscript{4629}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\textsuperscript{4630}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\textsuperscript{4631}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\textsuperscript{4632}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\textsuperscript{4633}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\textsuperscript{4634}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\textsuperscript{4635}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\textsuperscript{4636}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\textsuperscript{4637}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\textsuperscript{4638}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT

18.2. Metadata fields
18.2.139 SeikoReader

This page lists supported metadata fields for the Bio-Formats Seiko format reader.

Total supported: 34
Total unknown or missing: 442
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Seiko format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC

http://www.openmicroscopy.org/site/support/ome-model/

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
• Plane : TheT
• Plane : TheZ

Total supported: 22
Total unknown or missing: 454

18.2.140 SimplePCI_TiffReader

This page lists supported metadata fields for the Bio-Formats SimplePCI TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 33 of them (6%).
- Of those, Bio-Formats fully or partially converts 33 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SimplePCI TIFF format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Model
- Detector : Type
- DetectorSettings : Binning
- DetectorSettings : ID
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Objective : ID
- Objective : Immersion

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion

18.2. Metadata fields
• Objective: NominalMagnification
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 33
Total unknown or missing: 443

18.2.141 SlidebookReader

This page lists supported metadata fields for the Bio-Formats Olympus Slidebook format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 34 of them (7%).
- Of those, Bio-Formats fully or partially converts 34 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Olympus Slidebook format reader:

- Channel: ID
- Channel: NDFilter
- Channel: Name
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: Model
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits

4719 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4720 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_NDFilter
4721 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
4722 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4723 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4724 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
4725 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4726 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
4727 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4728 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
4729 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
4730 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
4731 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
4732 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
4733 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
4734 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
4735 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
4736 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4737 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4738 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
4739 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
4740 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
4741 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
18.2. Metadata fields

- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: ExposureTime
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 34
Total unknown or missing: 442

18.2.142 SlidebookTiffReader

This page lists supported metadata fields for the Bio-Formats Slidebook TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 30 of them (6%).
- Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Slidebook TIFF format reader:
- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Instrument: ID

---

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: NominalMagnification
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 30
Total unknown or missing: 446

4761 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
4762 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
4763 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
4764 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
4765 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
4766 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4767 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
4768 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4769 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
4770 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
4771 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4772 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4773 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
4774 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
4775 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
4776 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
4777 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
4778 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
4779 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
4780 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
4781 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
4782 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
4783 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
18.2.143 SpiderReader

This page lists supported metadata fields for the Bio-Formats SPIDER format reader.

These fields are from the OME data model[^784]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SPIDER format reader:

- Channel : ID[^785]
- Channel : SamplesPerPixel[^786]
- Image : AcquisitionDate[^787]
- Image : ID[^788]
- Image : Name[^789]
- Pixels : BigEndian[^790]
- Pixels : DimensionOrder[^791]
- Pixels : ID[^792]
- Pixels : Interleaved[^793]
- Pixels : PhysicalSizeX[^794]
- Pixels : PhysicalSizeY[^795]
- Pixels : SignificantBits[^796]
- Pixels : SizeC[^797]
- Pixels : SizeT[^798]
- Pixels : SizeX[^799]
- Pixels : SizeY[^800]
- Pixels : SizeZ[^801]
- Pixels : Type[^802]

[^784]: http://www.openmicroscopy.org/site/support/ome-model/
[^785]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
[^786]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
[^787]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[^788]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
[^789]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
[^790]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
[^791]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
[^792]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
[^793]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
[^794]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
[^795]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
[^796]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
[^797]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
[^798]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
[^799]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
[^800]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
[^801]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
[^802]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 21
Total unknown or missing: 455

18.2.144 TCSReader

This page lists supported metadata fields for the Bio-Formats Leica TCS TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Leica TCS TIFF format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
18.2.145 TargaReader

This page lists supported metadata fields for the Bio-Formats Truevision Targa format reader.

These fields are from the OME data model\(^{4829}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Truevision Targa format reader:

- Channel: ID\(^{4830}\)
- Channel: SamplesPerPixel\(^{4831}\)
- Image: AcquisitionDate\(^{4832}\)
- Image: Description\(^{4833}\)
- Image: ID\(^{4834}\)
- Image: Name\(^{4835}\)
- Pixels: BigEndian\(^{4836}\)
- Pixels: DimensionOrder\(^{4837}\)
- Pixels: ID\(^{4838}\)
Bio-Formats Documentation, Release 5.2.2

• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 20
Total unknown or missing: 456

18.2.146 TextReader

This page lists supported metadata fields for the Bio-Formats Text format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Text format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
18.2.147 TiffDelegateReader

This page lists supported metadata fields for the Bio-Formats Tagged Image File Format format reader. These fields are from the OME data model\(^\text{4870}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

**Of the 476 fields documented in the metadata summary table:**
- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats Tagged Image File Format format reader:

- Channel : ID\(^\text{4871}\)
- Channel : SamplesPerPixel\(^{4872}\)
- Image : AcquisitionDate\(^{4873}\)
- Image : ID\(^{4874}\)

---

\(^{4857}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder)

\(^{4858}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID)

\(^{4859}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved)

\(^{4860}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits)

\(^{4861}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC)

\(^{4862}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT)

\(^{4863}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX)

\(^{4864}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY)

\(^{4865}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ)

\(^{4866}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type)

\(^{4867}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC)

\(^{4868}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT)

\(^{4869}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ)

\(^{4870}\) [http://www.openmicroscopy.org/site/support/ome-model/](http://www.openmicroscopy.org/site/support/ome-model/)

\(^{4871}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID)

\(^{4872}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel)

\(^{4873}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate)

\(^{4874}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID)
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.148 TiffJAIReader

This page lists supported metadata fields for the Bio-Formats Tagged Image File Format format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Tagged Image File Format format reader:
• Channel: ID
• Channel: SamplesPerPixel

18.2. Metadata fields
18.2.149 TiffReader

This page lists supported metadata fields for the Bio-Formats Tagged Image File Format format reader.

These fields are from the OME data model[^1]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

---

[^1]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
[^2]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
[^3]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
[^4]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
[^5]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
[^6]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
[^7]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
[^8]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
[^9]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
[^10]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
[^12]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
[^13]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
[^14]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
[^15]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
[^16]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
[^17]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
Supported fields

These fields are fully supported by the Bio-Formats Tagged Image File Format format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: TimeIncrement
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 22

Total unknown or missing: 454
This page lists supported metadata fields for the Bio-Formats Tile JPEG format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Tile JPEG format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
18.2.151 TillVisionReader

This page lists supported metadata fields for the Bio-Formats TillVision format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats TillVision format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Experiment: ID
- Experiment: Type
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY

4952 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
4953 http://www.openmicroscopy.org/site/support/ome-model/
4954 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
4955 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
4956 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_ID
4957 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experiment_Type
4958 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
4959 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
4960 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
4961 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
4962 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
4963 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
4964 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
4965 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
4966 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
4967 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
4968 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
4969 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY

18.2. Metadata fields
Bio-Formats Documentation, Release 5.2.2

- Pixels: SizeZ
- Pixels: Type
- Plane: ExposureTime
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.152 TopometrixReader

This page lists supported metadata fields for the Bio-Formats Topometrix format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Topometrix format reader:
- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX

18.2. Metadata fields

474
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.153 TrestleReader

This page lists supported metadata fields for the Bio-Formats Trestle format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 27 of them (5%).
• Of those, Bio-Formats fully or partially converts 27 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Trestle format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Image: ROIRef

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID

18.2. Metadata fields
18.2 Metadata fields 476

This page lists supported metadata fields for the Bio-Formats UBM format reader.

These fields are from the OME data model5027. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

• Mask : BinData5006
• Mask : Height5007
• Mask : ID5008
• Mask : Width5009
• Mask : X5010
• Mask : Y5011
• Pixels : BigEndian5012
• Pixels : DimensionOrder5013
• Pixels : ID5014
• Pixels : Interleaved5015
• Pixels : SignificantBits5016
• Pixels : SizeC5017
• Pixels : SizeT5018
• Pixels : SizeX5019
• Pixels : SizeY5020
• Pixels : SizeZ5021
• Pixels : Type5022
• Plane : TheC5023
• Plane : TheT5024
• Plane : TheZ5025
• ROI : ID5026

Total supported: 27

Total unknown or missing: 449

18.2.154 UBMReader

This page lists supported metadata fields for the Bio-Formats UBM format reader.

These fields are from the OME data model5027. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

5006 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#BinData
5007 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_Height
5008 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
5009 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_Width
5010 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_X
5011 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Mask_Y
5012 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
5013 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
5014 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
5015 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
5016 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
5017 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
5018 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
5019 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
5020 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
5021 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
5022 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
5023 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
5024 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
5025 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
5026 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
5027 http://www.openmicroscopy.org/site/support/ome-model/
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats UBM format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 19

Total unknown or missing: 457
18.2.155 UnisokuReader

This page lists supported metadata fields for the Bio-Formats Unisoku STM format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Unisoku STM format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type

5047 http://www.openmicroscopy.org/site/support/ome-model
5048 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
5049 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
5050 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
5051 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
5052 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
5053 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
5054 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
5055 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
5056 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
5057 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
5058 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
5059 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
5060 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
5061 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
5062 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
5063 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
5064 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
5065 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
5066 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
18.2.156 VGSAMReader

This page lists supported metadata fields for the Bio-Formats VGSAM format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats VGSAM format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY

---

5067 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
5068 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
5069 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
5070 http://www.openmicroscopy.org/site/support/ome-model/
5071 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
5072 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
5073 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
5074 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
5075 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
5076 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
5077 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
5078 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
5079 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
5080 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
5081 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
5082 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
5083 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
5084 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.157 VarianFDFReader

This page lists supported metadata fields for the Bio-Formats Varian FDF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 25 of them (5%).
• Of those, Bio-Formats fully or partially converts 25 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Varian FDF format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 25
Total unknown or missing: 451

18.2.158 VeecoReader

This page lists supported metadata fields for the Bio-Formats Veeco format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:
• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats Veeco format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID

---

5103: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
5104: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
5105: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
5106: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
5107: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
5108: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
5109: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
5110: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
5111: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
5112: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
5113: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
5114: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
5115: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
5116: http://www.openmicroscopy.org/site/support/ome-model/
5117: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
5118: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
5119: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
5120: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
18.2.159 VisitechReader

This page lists supported metadata fields for the Bio-Formats Visitech XYS format reader.

These fields are from the OME data model\(^{5136}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

**Supported fields**

These fields are fully supported by the Bio-Formats Visitech XYS format reader:

- Channel : ID\(^{5137}\)
- Channel : SamplesPerPixel\(^{5138}\)

\(^{5121}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{5122}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{5123}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{5124}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{5125}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{5126}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
\(^{5127}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
\(^{5128}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
\(^{5129}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
\(^{5130}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
\(^{5131}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
\(^{5132}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
\(^{5133}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
\(^{5134}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
\(^{5135}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{5136}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{5137}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.160 VolocityClippingReader

This page lists supported metadata fields for the Bio-Formats Volocity Library Clipping format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).
Bio-Formats Documentation, Release 5.2.2

Supported fields

These fields are fully supported by the Bio-Formats Volocity Library Clipping format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.161 VolocityReader

This page lists supported metadata fields for the Bio-Formats Volocity Library format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

18.2. Metadata fields
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 38 of them (7%).
- Of those, Bio-Formats fully or partially converts 38 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Volocity Library format reader:

- Channel: ID\(^{5177}\)
- Channel: Name\(^{5178}\)
- Channel: SamplesPerPixel\(^{5179}\)
- Detector: ID\(^{5180}\)
- Detector: Model\(^{5181}\)
- DetectorSettings: ID\(^{5182}\)
- Image: AcquisitionDate\(^{5183}\)
- Image: Description\(^{5184}\)
- Image: ID\(^{5185}\)
- Image: InstrumentRef\(^{5186}\)
- Image: Name\(^{5187}\)
- Instrument: ID\(^{5188}\)
- Objective: Correction\(^{5189}\)
- Objective: ID\(^{5190}\)
- Objective: Immersion\(^{5191}\)
- Objective: NominalMagnification\(^{5192}\)
- ObjectiveSettings: ID\(^{5193}\)
- Pixels: BigEndian\(^{5194}\)
- Pixels: DimensionOrder\(^{5195}\)
- Pixels: ID\(^{5196}\)
- Pixels: Interleaved\(^{5197}\)
- Pixels: PhysicalSizeX\(^{5198}\)

\(^{5177}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
\(^{5178}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
\(^{5179}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{5180}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
\(^{5181}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
\(^{5182}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DetectorSettings_ID
\(^{5183}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
\(^{5184}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
\(^{5185}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
\(^{5186}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
\(^{5187}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
\(^{5188}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
\(^{5189}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
\(^{5190}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
\(^{5191}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
\(^{5192}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
\(^{5193}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
\(^{5194}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
\(^{5195}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
\(^{5196}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
\(^{5197}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
\(^{5198}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
• Pixels: PhysicalSizeY\textsuperscript{5199}  
• Pixels: PhysicalSizeZ\textsuperscript{5200}  
• Pixels: SignificantBits\textsuperscript{5201}  
• Pixels: SizeC\textsuperscript{5202}  
• Pixels: SizeT\textsuperscript{5203}  
• Pixels: SizeX\textsuperscript{5204}  
• Pixels: SizeY\textsuperscript{5205}  
• Pixels: SizeZ\textsuperscript{5206}  
• Pixels: Type\textsuperscript{5207}  
• Plane: DeltaT\textsuperscript{5208}  
• Plane: PositionX\textsuperscript{5209}  
• Plane: PositionY\textsuperscript{5210}  
• Plane: PositionZ\textsuperscript{5211}  
• Plane: TheC\textsuperscript{5212}  
• Plane: TheT\textsuperscript{5213}  
• Plane: TheZ\textsuperscript{5214}

Total supported: 38

Total unknown or missing: 438

18.2.162 WATOPReader

This page lists supported metadata fields for the Bio-Formats WA Technology TOP format reader.

These fields are from the OME data model\textsuperscript{5215}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats WA Technology TOP format reader:

• Channel: ID\textsuperscript{5216}

\textsuperscript{5199}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY  
\textsuperscript{5200}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ  
\textsuperscript{5201}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits  
\textsuperscript{5202}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC  
\textsuperscript{5203}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT  
\textsuperscript{5204}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX  
\textsuperscript{5205}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY  
\textsuperscript{5206}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ  
\textsuperscript{5207}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type  
\textsuperscript{5208}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT  
\textsuperscript{5209}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX  
\textsuperscript{5210}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY  
\textsuperscript{5211}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ  
\textsuperscript{5212}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC  
\textsuperscript{5213}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT  
\textsuperscript{5214}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ  
\textsuperscript{5215}http://www.openmicroscopy.org/site/support/ome-model/  
\textsuperscript{5216}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 454

18.2.163 WlzReader

This page lists supported metadata fields for the Bio-Formats Woolz format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

5217 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
5218 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
5219 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
5220 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
5221 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
5222 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
5223 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
5224 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
5225 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
5226 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
5227 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
5228 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
5229 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
5230 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
5231 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
5232 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
5233 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
5234 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
5235 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
5236 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
5237 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
5238 http://www.openmicroscopy.org/site/support/ome-model/
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 26 of them (5%).
- Of those, Bio-Formats fully or partially converts 26 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Woolz format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

5239 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
5240 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
5241 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
5242 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
5243 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
5244 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
5245 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
5246 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
5247 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
5248 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
5249 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
5250 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
5251 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
5252 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
5253 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
5254 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
5255 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
5256 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
5257 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
5258 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
5259 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
5260 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
18.2.164 ZeissCZIReader

This page lists supported metadata fields for the Bio-Formats Zeiss CZI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 158 of them (33%).
- Of those, Bio-Formats fully or partially converts 158 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss CZI format reader:

- Arc : LotNumber
- Arc : Manufacturer
- Arc : Model
- Arc : Power
- Arc : SerialNumber
- Channel : AcquisitionMode
- Channel : Color
- Channel : EmissionWavelength
- Channel : ExcitationWavelength
- Channel : FilterSetRef
- Channel : Fluor
- Channel : ID
- Channel : IlluminationType

References:

- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Name
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_X
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Y
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#StageLabel_Z
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_AcquisitionMode
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Color
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_EmissionWavelength
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ExcitationWavelength
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterSetRef_ID
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Fluor
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_IlluminationType
- Channel: Name
- Channel: PinholeSize
- Channel: SamplesPerPixel
- Detector: AmplificationGain
- Detector: Gain
- Detector: ID
- Detector: LotNumber
- Detector: Manufacturer
- Detector: Model
- Detector: Offset
- Detector: SerialNumber
- Detector: Type
- Detector: Zoom
- DetectorSettings: Binning
- DetectorSettings: Gain
- DetectorSettings: ID
- Dichroic: ID
- Dichroic: LotNumber
- Dichroic: Manufacturer
- Dichroic: Model
- Dichroic: SerialNumber
- Ellipse: ID
- Ellipse: RadiusX
- Ellipse: RadiusY
- Ellipse: Text
- Ellipse: X

[5279] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
[5281] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
• Ellipse: Y
• Experimenter: Email
• Experimenter: FirstName
• Experimenter: ID
• Experimenter: Institution
• Experimenter: LastName
• Experimenter: MiddleName
• Experimenter: UserName
• Filament: LotNumber
• Filament: Manufacturer
• Filament: Model
• Filament: Power
• Filament: SerialNumber
• Filter: FilterWheel
• Filter: ID
• Filter: LotNumber
• Filter: Manufacturer
• Filter: Model
• Filter: SerialNumber
• Filter: Type
• FilterSet: DichroicRef
• FilterSet: EmissionFilterRef
• FilterSet: ExcitationFilterRef
• FilterSet: ID
• FilterSet: LotNumber
• FilterSet: Manufacturer

5305 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Ellipse_Y
5306 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_Email
5307 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_FirstName
5308 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_ID
5309 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_Institution
5310 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_LastName
5311 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_MiddleName
5312 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_UserName
5313 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
5314 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
5315 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power
5316 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
5317 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
5318 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_FiltWheel
5319 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_ID
5320 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
5321 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
5322 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
5323 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber
5324 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_Type
5325 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DichroicRef_ID
5326 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
5327 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterRef_ID
5328 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterSet_ID
5329 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber
5330 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer
18.2. Metadata fields

- FilterSet: Model\(^{5331}\)
- FilterSet: SerialNumber\(^{5332}\)
- Image: AcquisitionDate\(^{5333}\)
- Image: Description\(^{5334}\)
- Image: ExperimenterRef\(^{5335}\)
- Image: ID\(^{5336}\)
- Image: InstrumentRef\(^{5337}\)
- Image: Name\(^{5338}\)
- Image: ROIRef\(^{5339}\)
- ImagingEnvironment: AirPressure\(^{5340}\)
- ImagingEnvironment: CO2Percent\(^{5341}\)
- ImagingEnvironment: Humidity\(^{5342}\)
- ImagingEnvironment: Temperature\(^{5343}\)
- Instrument: ID\(^{5344}\)
- Laser: LotNumber\(^{5345}\)
- Laser: Manufacturer\(^{5346}\)
- Laser: Model\(^{5347}\)
- Laser: Power\(^{5348}\)
- Laser: SerialNumber\(^{5349}\)
- LightEmittingDiode: LotNumber\(^{5350}\)
- LightEmittingDiode: Manufacturer\(^{5351}\)
- LightEmittingDiode: Model\(^{5352}\)
- LightEmittingDiode: Power\(^{5353}\)
- LightEmittingDiode: SerialNumber\(^{5354}\)
- Line: ID\(^{5355}\)
- Line: Text\(^{5356}\)

\(^{5331}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model]

\(^{5332}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber]

\(^{5333}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate]

\(^{5334}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description]

\(^{5335}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ExperimenterRef_ID]

\(^{5336}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID]

\(^{5337}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID]

\(^{5338}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name]

\(^{5339}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID]

\(^{5340}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_AirPressure]

\(^{5341}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_CO2Percent]

\(^{5342}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_Humidity]

\(^{5343}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ImagingEnvironment_Temperature]

\(^{5344}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_LotNumber]

\(^{5345}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer]

\(^{5346}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power]

\(^{5347}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model]

\(^{5348}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_Power]

\(^{5349}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber]

\(^{5350}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber]

\(^{5351}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Manufacturer]

\(^{5352}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model]

\(^{5353}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model]

\(^{5354}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_SerialNumber]

\(^{5355}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID]

\(^{5356}\) [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text]
18.2. Metadata fields
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• Polygon : ID
• Polygon : Points
• Polygon : Text
• Polyline : ID
• Polyline : Points

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Points
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polyline_Points

18.2. Metadata fields
18.2.165 ZeissLMSReader

This page lists supported metadata fields for the Bio-Formats Zeiss LMS format reader. These fields are from the OME data model\(^{5424}\). Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss LMS format reader:

- Channel: ID\(^{5425}\)
- Channel: SamplesPerPixel\(^{5426}\)

---

\(^{5409}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Text

\(^{5410}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_Description

\(^{5411}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID

\(^{5412}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_Name

\(^{5413}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Height

\(^{5414}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_ID

\(^{5415}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Text

\(^{5416}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Width

\(^{5417}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X

\(^{5418}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Y

\(^{5419}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutIn

\(^{5420}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutInTolerance

\(^{5421}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutOut

\(^{5422}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutOutTolerance

\(^{5423}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_Transmittance

\(^{5424}\) http://www.openmicroscopy.org/site/support/ome-model/

\(^{5425}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID

\(^{5426}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
Bio-Formats Documentation, Release 5.2.2

- Image: AcquisitionDate
- Image: ID
- Image: Name
- Instrument: ID
- Objective: ID
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 23
Total unknown or missing: 453

18.2.166 ZeissLSMReader

This page lists supported metadata fields for the Bio-Formats Zeiss Laser-Scanning Microscopy format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.
Of the 476 fields documented in the metadata summary table:

- The file format itself supports 101 of them (21%).
- Of those, Bio-Formats fully or partially converts 101 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss Laser-Scanning Microscopy format reader:

- Channel: Color
- Channel: ID
- Channel: Name
- Channel: PinholeSize
- Channel: SamplesPerPixel
- Detector: AmplificationGain
- Detector: Gain
- Detector: ID
- Detector: Type
- Detector: Zoom
- DetectorSettings: Binning
- DetectorSettings: ID
- Dichroic: ID
- Dichroic: Model
- Ellipse: FontSize
- Ellipse: ID
- Ellipse: RadiusX
- Ellipse: RadiusY
- Ellipse: StrokeWidth
- Ellipse: Transform
- Ellipse: X
- Ellipse: Y

5449 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Color
5450 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
5451 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_Name
5452 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_PinholeSize
5453 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
5454 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_AmplificationGain
5455 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Gain
5456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_ID
5457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Type
5458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Settings_Binning
5459 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Settings_ID
5460 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Detector_Settings_PID
5461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
5462 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
5463 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
5464 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_PinholeSize
5465 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_RadiusX
5466 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_RadiusY
5467 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
5468 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Transform
5469 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_X
5470 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_Y
• Experimenter: ID
• Experimenter: UserName
• Filter: ID
• Filter: Model
• Filter: Type
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• Image: ROIRef
• Instrument: ID
• Label: FontSize
• Label: ID
• Label: StrokeWidth
• Label: Text
• Label: X
• Label: Y
• Laser: ID
• Laser: LaserMedium
• Laser: Model
• Laser: Type
• Laser: Wavelength
• LightPath: DichroicRef
• LightPath: EmissionFilterRef
• Line: FontSize

5471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_ID
5472 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Experimenter_UserName
5473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_ID
5474 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
5475 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Filter_Type
5476 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
5477 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Description
5478 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
5479 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#InstrumentRef_ID
5480 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
5481 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROIRef_ID
5482 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Instrument_ID
5483 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
5484 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#LightSource_ID
5485 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Label_X
5486 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Label_Y
5487 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_LaserMedium
5488 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ManufacturerSpec_Model
5489 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Type
5490 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Laser_Wavelength
5491 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#DichroicRef_ID
5492 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#FilterRef_ID
5493 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize

18.2. Metadata fields
• Line : ID
• Line : StrokeWidth
• Line : X1
• Line : X2
• Line : Y1
• Line : Y2
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : Iris
• Objective : LensNA
• Objective : NominalMagnification
• ObjectiveSettings : ID
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ

5497 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
5498 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
5499 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_X1
5500 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_X2
5501 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_Y1
5502 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Line_Y2
5503 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Correction
5504 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_ID
5505 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Immersion
5506 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_Iris
5507 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_LensNA
5508 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Objective_NominalMagnification
5509 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ObjectiveSettings_ID
5510 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
5511 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
5512 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
5513 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
5514 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeX
5515 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeY
5516 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_PhysicalSizeZ
5517 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
5518 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
5519 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
5520 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
5521 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
5522 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeZ
18.2. Metadata fields

- Pixels: TimeIncrement
- Pixels: Type
- Plane: DeltaT
- Plane: PositionX
- Plane: PositionY
- Plane: PositionZ
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Polygon: FontSize
- Polygon: ID
- Polygon: Points
- Polygon: StrokeWidth
- Polyline: FontSize
- Polyline: ID
- Polyline: Points
- Polyline: StrokeWidth
- ROI: ID
- Rectangle: FontSize
- Rectangle: Height
- Rectangle: ID
- Rectangle: StrokeWidth
- Rectangle: Width
- Rectangle: X
- Rectangle: Y
- TransmittanceRange: CutIn

5523 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_TimeIncrement
5524 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Type
5525 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_DeltaT
5526 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionX
5527 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionY
5528 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_PositionZ
5529 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
5530 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
5531 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
5532 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
5533 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
5534 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polygon_Points
5535 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
5536 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
5537 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
5538 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Polygon_Points
5539 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
5540 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#ROI_ID
5541 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_FontSize
5542 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Height
5543 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_ID
5544 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Shape_StrokeWidth
5545 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_StrokeWidth
5546 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_X
5547 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Rectangle_Y
5548 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#TransmittanceRange_CutIn
• TransmittanceRange : CutOut

Total supported: 101
Total unknown or missing: 375

18.2.167 ZeissTIFFReader

This page lists supported metadata fields for the Bio-Formats Zeiss AxioVision TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss AxioVision TIFF format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type

18.2. Metadata fields
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 457

18.2.168 ZeissZVIReader

This page lists supported metadata fields for the Bio-Formats Zeiss Vision Image (ZVI) format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

• The file format itself supports 19 of them (3%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss Vision Image (ZVI) format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html#Pixels_SizeY
18.2.169 ZipReader

This page lists supported metadata fields for the Bio-Formats Zip format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 476 fields documented in the metadata summary table:

- The file format itself supports 19 of them (3%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zip format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT

Total supported: 19
Total unknown or missing: 457
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 457
Individual files can be grouped together into a single fileset using a pattern file. This works for any single-file format that Bio-Formats supports, as long as all files are in the same format. It is most useful for sets of TIFF, JPEG, PNG, etc. files that do not have any associated metadata.

All files to be grouped together should be in the same folder. The pattern file should be in the same folder as the other files; it can have any name, but must have the .pattern extension. The pattern file is what must be opened or imported, so it may be helpful to give it a descriptive or easily-recognizable name.

The pattern file contains a single line of text that is specially formatted to describe how the files should be grouped. The file can be created in any text editor.

The text in the pattern file can take one of several forms. To illustrate, consider a folder with the following file names:

red.tiff
green.tiff
blue.tiff
test_Z0_C0.png
test_Z1_C0.png
test_Z0_C1.png
test_Z1_C1.png
test_Z0_C2.png
test_Z1_C2.png
test_Z00.tiff
test_Z01.tiff

A pattern file that groups red.tiff, green.tiff, and blue.tiff in that order would look like:

<red,green,blue>.tiff

A pattern that groups test_Z0_C0.png, test_Z1_C0.png, test_Z0_C2.png, and test_Z1_C2.png:

test_Z<0-1>_C<0-2:2>.png

The <> notation in general can accept a single literal value, a comma-separated list of literal values, a range of integer values, or a range of integer values with a step value greater than 1 (the range and step are separated by :). Note that inverting the values in a range (e.g. <2-0>) is not supported and will cause an exception to be thrown.

The characters immediately preceding the < can affect which dimension is assigned to the specified values. The values will be interpreted as:

• channels, if c, ch, w, or wavelength precede <
• timepoints, if t, tl, tp, or timepoint precede <
• Z sections, if z, zs, sec, fp, focal, or focalplane precede <
• series, if s, sp, or series precede <

Note that the listed dimension specifier characters are case insensitive. A separator character (underscore or space) must precede the dimension specifier if it is not at the beginning of the filename. In the above example, 2 Z sections and 2 out of 3 channels would be detected according to the dimension specifiers.
Leading zeros in the integer values must be specified. To group `test_Z00.tiff` and `test_Z01.tiff`:

```
test_Z<00-01>.tiff
```

or:

```
test_Z0<0-1>.tiff
```

Note that this pattern would not group the files correctly:

```
test_Z<0-1>.tiff
```

A pattern file that groups all PNG files beginning with `test_` would look like:

```
test_.*.png
```

This and most other Java-style regular expressions can be used in place of the <> notation above. See the `java.util.regex.Pattern` Javadoc\(^1\) for more information on constructing regular expressions.

\(^1\)http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
Symbols

- `--debug` command line option, 118
- `--metadata-package=package` command line option, 118
- `--ome-xml-metadata-package` command line option, 118
- `--ome-xml-model-enum-handlers-package=package` command line option, 118
- `--ome-xml-model-enums-package=package` command line option, 118
- `--ome-xml-model-package=package` command line option, 118
- `--print-depends` command line option, 118
- `--print-generated` command line option, 118
- `--autoscale` showinf command line option, 54
- `--bigtiff` bfconvert command line option, 56
- `--cache` showinf command line option, 54
- `--cache-dir DIR` showinf command line option, 54
- `--channel CHANNEL` bfconvert command line option, 55
- `--columns COLUMNS` mkfake command line option, 60
- `--compression COMPRESSION` bfconvert command line option, 55
- `--crop X,Y,WIDTH,HEIGHT` showinf command line option, 53
- `--dry-run` command line option, 118
- `--debug` showinf command line option, 54
- `--debug DEBUG` mkfake command line option, 60
- `--fast` showinf command line option, 54
- `--fields FIELDS` mkfake command line option, 60
- `--help` formatlist command line option, 59
- `--html` formatlist command line option, 58
- `--language`, `--language=language` command line option, 118
- `--n`, `--xsd-namespace` command line option, 118
- `--no-core` showinf command line option, 53
- `--no-upgrade` showinf command line option, 53
- `--no-valid` showinf command line option, 53
- `--nolookup` bfconvert command line option, 56
- `--nooverwrite` bfconvert command line option, 56
- `--nopix` showinf command line option, 53
- `--o dir`, `--output-directory=dir` command line option, 118
- `--omexml` showinf command line option, 53
- `--omexml-only` showinf command line option, 53
- `--overwrite` bfconvert command line option, 56
- `--padded` bfconvert command line option, 56
- `--plates PLATES` mkfake command line option, 60
- `--q`, `--quiet` command line option, 118
- `--range START END` bfconvert command line option, 55
- `--rows ROWS` mkfake command line option, 60
- `--runs RUNS` mkfake command line option, 60
- `--series SERIES` bfconvert command line option, 54
- `--t path`, `--template-path=path` command line option, 118
- `--tilex TILEX`, `--tiley TILEY` bfconvert command line option, 55
- `--timepoint TIMEPOINT` bfconvert command line option, 55
- `--txt` formatlist command line option, 58
- `--v`, `--verbose` command line option, 118
- `--xml`
formatlist command line option, 58

-bfconvert command line option, 55

.1sc, 145
.2, 203
.2fl, 217
.3, 203
.4, 203
.acff, 222
.afl, 140
.afm, 208
.aim, 136
.al3d, 136
.am, 138
.amiramesh, 138
.apl, 194
.arf, 143
.avi, 142
.bin, 205
.bip, 178
.bmp, 163, 224
.btf, 216
.c01, 151
.cfg, 207
.ch5, 150
.cif, 138
.cr2, 150
.crw, 150
.cxd, 212
.czi, 227
.dat, 174, 197, 219
.dcm, 153
.dib, 151
.dicom, 153
.dm2, 159
.dm3, 158
.dm4, 158
.dti, 221
.dv, 153
.eps, 155
.epsi, 155
.exp, 143
.fdf, 219
.iff, 165
.ffr, 217
.fits, 158
.flex, 156
.fli, 179
.frm, 171
.gel, 137
.gif, 160
.grey, 138
.hdf, 220
.hdr, 139, 172, 191, 219
.hed, 167
.his, 161
.htd, 141
.html, 221
.hx, 138
.i2i, 163
.ics, 164
.ids, 164
.im3, 202
.img, 139, 149, 156, 167, 174, 191
.ims, 147
.inr, 172
.ipl, 173
.ipm, 174
.ipw, 166
.jp2, 176
.jpg, 163, 175, 218
.jpke, 177
.jpke, 177
.l2d, 183
.labels, 138
.lei, 180
.lif, 181
.liff, 168
.lim, 184
.lms, 225
.lsm, 228
.mdb, 228
.mea, 156
.mnc, 187
.mng, 188
.mod, 168
.mov, 209
.mrc, 189
.mrw, 187
.msr, 170, 180
.mtb, 194
.mvd2, 222
.naf, 160
.nd, 185
.nd2, 193
.ndpi, 161
.ndpis, 161
.nef, 190
.nhdr, 194
.nii, 191
.nii.gz, 191
.nrrd, 194
.obf, 170
.obsep, 194
.obv, 195
.ofw, 195
.ome, 199
.ome.btf, 198
.ome.tf2, 198
.ome.tf8, 198
.ome.tif, 198
.ome.tiff, 198
.ome.xml, 199
.par, 174
.pbm, 204
.pcoraw, 200
.pcx, 201
.pds, 201
.pgm, 204
.pic, 146
.pict, 206
.png, 139, 207
A

Adobe Photoshop PSD, 204
AIM, 136
Alicona 3D, 136
Amersham Biosciences Gel, 137
Amira Mesh, 138
Amnis FlowSight, 138
Analyze 7.5, 139
Andor Bio-Imaging Division (ABD) TIFF, 135
Animated PNG, 139
Aperio AFI, 140
Aperio SVS TIFF, 141
Applied Precision CellWorX, 141
AVI (Audio Video Interleave), 142
Axon Raw Format, 143

B

BD Pathway, 143
Becker & Hickl SPC FIFO, 144
Becker & Hickl SPCImage, 145
BF_DEVEL, 52
BF_PROFILE, 52
bfconvert, 51

bfconvert command line option

-bigtiff, 56
-channel CHANNEL, 55
-compression COMPRESSION, 55
-nolookup, 56
-nooverwrite, 56
-overwrite, 56
-padded, 56
-range START END, 55
-series SERIES, 54
-tilex TILEX, -tiley TILLEY, 55
-timepoint TIMEPOINT, 55
-z Z, 55

Bio-Rad Gel, 145
Bio-Rad PIC, 146
Bio-Rad SCN, 147
Bitplane Imaris, 147
Bruker MRI, 148
BSD, 134
bsd, 115
Burleigh, 149

C

Canon DNG, 150
CellH5, 150
Cellomics, 151
cellSens VSI, 151
CellVoyager, 152
CLASSPATH, 110

command line option

–debug, 118
–metadata-package=package, 118
–ome-xml-metadata-package, 118
–ome-xml-model-enum-handlers-package=package, 118
–ome-xml-model-enums-package=package, 118
–ome-xml-model-package=package, 118
–print-depends, 118
–print-generated, 118
-d, –dry-run, 118
-l language, –language=language, 118
-n, –xsd-namespace, 118
-o dir, –output-directory=dir, 118
-q, –quiet, 118
-t path, –template-path=path, 118
-v, –verbose, 118

D

DeltaVision, 153
developer, 115
DICOM, 153
domainlist, 51

E
ECAT7, 154
evironment variable
  BF_DEVEL, 52
  BF_PROFILE, 52
  CLASSPATH, 110
  PYTHONPATH, 79
EPS (Encapsulated PostScript), 155
Evotec/PerkinElmer Opera Flex, 156
Export, 134
extensions, 115

F
FEI, 156
FEI TIFF, 157
FITs (Flexible Image Transport System), 158
formatlist, 51
formatlist command line option
  -help, 59
  -html, 58
  -txt, 58
  -xml, 58

G
Gatan Digital Micrograph, 158
Gatan Digital Micrograph 2, 159
GIF (Graphics Interchange Format), 160

H
Hamamatsu Aquacosmos NAF, 160
Hamamatsu HIS, 161
Hamamatsu ndpi, 161
Hamamatsu VMS, 162
Hitachi S-4800, 163

I
I2I, 163
ICS (Image Cytometry Standard), 164
ijview, 51
Imacon, 165
ImagePro Sequence, 165
ImagePro Workspace, 166
IMAGIC, 167
IMOD, 168
Improvision Openlab LIFF, 168
Improvision Openlab Raw, 169
Improvision TIFF, 169
Imspecror OBF, 170
InCell 1000/2000, 171
InCell 3000, 171
INR, 172
Inveon, 172
IPLab, 173
IVision, 174

J
JEOL, 174
JPEG, 175
JPEG 2000, 176
JP2, 177
JPX, 177

K
Khoros VIFF (Visualization Image File Format) Bitmap, 178
Kodak BIP, 178

L
Lambert Instruments FLIM, 179
LaVision Inspector, 180
Leica LAS AF LIF (Leica Image Format), 181
Leica OLS LEI, 180
Leica SCN, 182
LEO, 182
Li-Cor L2D, 183
LIM (Laboratory Imaging/Nikon), 184

M
Metadata, 134
metadataRating, 115
MetaMorph 7.5 TIFF, 184
MetaMorph Stack (STK), 185
MIAS (Maia Scientific), 186
Micro-Manager, 186
MINC MRI, 187
Minolta MRW, 187
mkfake, 51
mkfake command line option
  -columns COLUMNS, 60
  -debug DEBUG, 60
  -fields FIELDS, 60
  -plates PLATES, 60
  -rows ROWS, 60
  -runs RUNS, 60
MNG (Multiple-image Network Graphics), 188
Molecular Imaging, 189
MRC (Medical Research Council), 189
Multiple Images, 134

N
NEF (Nikon Electronic Format), 190
NIIFTI, 191
Nikon Elements TIFF, 192
Nikon EZ-C1 TIFF, 192
Nikon NIS-Elements ND2, 193
notes, 115
NRRD (Nearly Raw Raster Data), 194

O
Olympus CellR/APL, 194
Olympus FluoView FV1000, 195
Olympus FluoView TIFF, 196
Olympus ScanR, 197
Olympus SIS Tiff, 197
OME-TIFF, 198
OME-XML, 199
Openness, 134
opennessRating, 115
owner, 115
Oxford Instruments, 199

P

pagename, 115
PCORAW, 200
PCX (PC Paintbrush), 201
Perkin Elmer Densitometer, 201
PerkinElmer Nuance, 202
PerkinElmer Operetta, 202
PerkinElmer UltraVIEW, 203
Photoshop TIFF, 205
PicoQuant Bin, 205
PICT (Macintosh Picture), 206
pixelRating, 115
Pixels, 134
PNG (Portable Network Graphics), 207
Portable Any Map, 204
Prairie Technologies TIFF, 207
Presence, 134
presenceRating, 115
Princeton Instruments SPE, 208
Pyramid, 134
PYTHONPATH, 79

Q

Quesant, 208
QuickTime Movie, 209

R

Ratings legend and definitions, 134
reader, 115
RHK, 210

S

SBIG, 211
Seiko, 212
showinf, 51
showinf command line option
  -autoscale, 54
  -cache, 54
  -cache-dir DIR, 54
  -crop X,Y,WIDTH,HEIGHT, 53
  -debug, 54
  -fast, 54
  -no-core, 53
  -no-upgrade, 53
  -no-valid, 53
  -nopix, 53
  -omexml, 53
  -omexml-only, 53
  -range START END, 53
  -series SERIES, 53
SimplePCI & HCImage, 212
SimplePCI & HCImage TIFF, 213
SM Camera, 213
SPIDER, 214

T

Targa, 215

Text, 215
TIFF (Tagged Image File Format), 216
tiffcomment, 51
TillPhotonics TillVision, 217
Topometrix, 217
Trestle, 218

U

UBM, 218
Unisoku, 219
Utility, 134
utilityRating, 115

V

Varian FDF, 219
Veeco AFM, 220
versions, 115
VG SAM, 221
VisiTech XYS, 221
Volocity, 222
Volocity Library Clipping, 222

W

WA-TOP, 223
weHave, 115
weWant, 115
Windows Bitmap, 224
Woolz, 224

X

xmlindent, 51
xmlvalid, 51

Z

Zeiss Axio CSM, 225
Zeiss AxioVision TIFF, 225
Zeiss AxioVision ZVI (Zeiss Vision Image), 226
Zeiss CZI, 227
Zeiss LSM (Laser Scanning Microscope) 510/710, 228