CONTENTS

I About Bio-Formats

1 Why Java? 4

2 Bio-Formats metadata processing 5

3 Help
 3.1 Reporting a bug 6
 3.2 Troubleshooting 7

4 Bio-Formats versions
 4.1 Version history 9

II User Information

5 Using Bio-Formats with ImageJ and Fiji
 5.1 ImageJ .. 25
 5.2 Fiji ... 26
 5.3 Bio-Formats features in ImageJ and Fiji .. 27
 5.4 Installing Bio-Formats in ImageJ 27
 5.5 Using Bio-Formats to load images into ImageJ . 29
 5.6 Managing memory in ImageJ/Fiji using Bio-Formats ... 33
 5.7 Upgrading the Bio-Formats importer for ImageJ to the latest trunk build . 36

6 OMERO .. 41

7 Image server applications
 7.1 BISQUE 42
 7.2 OME Server 42

8 Libraries and scripting applications
 8.1 Command line tools 45
 8.2 FARSIGHT 46
 8.3 i3dcore 46
 8.4 ImgLib 47
 8.5 ITK .. 47
 8.6 Qu for MATLAB 48
 8.7 Subimager 48

9 Numerical data processing applications
 9.1 IDL .. 49
 9.2 KNIME 49
 9.3 MATLAB 49
 9.4 VisAD 50

10 Visualization and analysis applications
 10.1 Bitplane Imaris 51
 10.2 CellProfiler 51
 10.3 Comstat2 51
III Developer Documentation

11 Using Bio-Formats
 11.1 An in-depth guide to using Bio-Formats 57
 11.2 Generating test images ... 57

12 Bio-Formats as a Java library
 12.1 API documentation ... 61
 12.2 Examples .. 62

13 Interfacing from non-Java code
 13.1 Interfacing with Bio-Formats from non-Java code 72
 13.2 Bio-Formats C++ bindings .. 72
 13.3 Build instructions for C++ bindings 72
 13.4 Building C++ bindings in Windows 74
 13.5 Building C++ bindings in Mac OS X 75
 13.6 Building C++ bindings in Linux 76

14 SCIFIO
 14.1 SCientific Imaging Formats Input and Output 77

15 Writing new Bio-Formats file format readers
 15.1 Bio-Formats file format reader guide 78

16 Contributing to Bio-Formats
 16.1 Developing Bio-Formats .. 82
 16.2 Testing individual commits (internal developers) 83
 16.3 Public test data ... 84
 16.4 Bio-Formats service and dependency infrastructure 87
 16.5 Code generation with xsd-fu 89

IV Formats

17 Dataset Structure Table
 17.1 Flex Support .. 98

18 Supported Formats
 18.1 3i SlideBook .. 104
 18.2 Andor Bio-Imaging Division (ABD) TIFF 105
 18.3 AIM .. 105
 18.4 Alicona 3D ... 106
 18.5 Amersham Biosciences Gel 107
 18.6 Amira Mesh ... 108
 18.7 Analyze 7.5 .. 108
 18.8 Animated PNG ... 109
 18.9 Aperio API ... 110
 18.10 Aperio SVS TIFF ... 110
 18.11 Applied Precision CellWorX 111
18.12 AVI (Audio Video Interleave) .. 112
18.13 Axon Raw Format... 113
18.14 BD Pathway .. 113
18.15 Becker & Hickl SPCImage ... 114
18.16 Bio-Rad Gel .. 115
18.17 Bio-Rad PIC ... 115
18.18 Bio-Rad SCN .. 116
18.19 Bitplane Imaris .. 117
18.20 Bruker MRI .. 118
18.21 Burleigh ... 118
18.22 Canon DNG .. 119
18.23 Cellomics ... 120
18.24 cellSens VSI ... 121
18.25 CellVoyager .. 121
18.26 DeltaVision ... 122
18.27 DICOM ... 123
18.28 ECAT7 ... 124
18.29 EPS (Encapsulated PostScript) 124
18.30 Evotec/PerkinElmer Opera Flex 125
18.31 FEI ... 126
18.32 FEI TIFF .. 127
18.33 FITS (Flexible Image Transport System) 127
18.34 Gatan Digital Micrograph ... 128
18.35 Gatan Digital Micrograph 2 129
18.36 GIF (Graphics Interchange Format) 129
18.37 Hamamatsu Aquacosmos NAF 130
18.38 Hamamatsu HIS .. 131
18.39 Hamamatsu ndpi .. 131
18.40 Hamamatsu VMS ... 132
18.41 Hitachi S-4800 ... 133
18.42 ICS (Image Cytometry Standard) 134
18.43 Imac... 134
18.44 ImagePro Sequence .. 135
18.45 ImagePro Workspace .. 136
18.46 IMAGIC ... 137
18.47 IMOD ... 137
18.48 Improvision Openlab LIFF ... 138
18.49 Improvision Openlab Raw .. 139
18.50 Improvision TIFF ... 140
18.51 Improvisor OBF ... 140
18.52 InCell 1000 ... 141
18.53 InCell 3000 ... 142
18.54 INR ... 142
18.55 Inveon ... 143
18.56 IPLab ... 143
18.57 IPLab-Mac .. 144
18.58 JEOL ... 145
18.59 JPEG ... 146
18.60 JPEG 2000 ... 146
18.61 JPX ... 147
18.62 JPX ... 148
18.63 Khoros VIFF (Visualization Image File Format) Bitmap 148
18.64 Kodak BIP .. 149
18.65 Lambert Instruments FLIM ... 150
18.66 LaVision Inspector ... 151
18.67 Leica LCS LEI .. 151
18.68 Leica LAS AF LIF (Leica Image File Format) 152
18.69 Leica SCN ... 153
18.70 LEO ... 154
18.71 Li-Cor L2D ... 154
18.72 LIM (Laboratory Imaging/Nikon) 155
The following documentation is split into four parts. *About Bio-Formats* explains the goal of the software, discusses how it processes metadata, and provides other useful information such as version history and how to report bugs. *User Information* focuses on how to use Bio-Formats as a plugin for ImageJ and Fiji, and also gives details of other software packages which can use Bio-Formats to read and write microscopy formats. *Developer Documentation* covers more indepth information on using Bio-Formats as a Java library and how to interface from non-Java codes. Finally, *Formats* is a guide to all the file formats currently supported by Bio-Formats.
Part I

About Bio-Formats
Bio-Formats is a standalone Java library for reading and writing life sciences image file formats. It is capable of parsing both pixels and metadata for a large number of formats, as well as writing to several formats.

The primary goal of Bio-Formats is to facilitate the exchange of microscopy data between different software packages and organizations. It achieves this by converting proprietary microscopy data into an open standard called the OME data model\(^1\), particularly into the OME-TIFF\(^2\) file format.

We believe the standardization of microscopy metadata to a common structure is of vital importance to the community. A brief article on the benefits of standardization\(^3\) from thinkstandards.net\(^4\) provides an excellent summary. See also LOCI’s article on open source software in science\(^5\).

\(^1\)http://genomebiology.com/2005/6/5/R47
\(^2\)http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
\(^3\)http://www.thinkstandards.net/benefits.html
\(^4\)http://www.thinkstandards.net/
\(^5\)http://loci.wisc.edu/software/oss
From a practical perspective, Bio-Formats is written in Java because it is cross-platform and widely used, with a vast array of libraries for handling common programming tasks. Java is one of the easiest languages from which to deploy cross-platform software. In contrast to C++, which has a large number of complex platform issues to consider, and Python, which leans heavily on C and C++ for many of its components (e.g., NumPy and SciPy), Java code is compiled one time into platform-independent byte code, which can be deployed as is to all supported platforms. And despite this enormous flexibility, Java manages to provide time performance nearly equal to C++, often better in the case of I/O operations (see further discussion on the comparative speed of Java on the LOCI site\(^1\)).

There are also historical reasons associated with the fact that the project grew out of work on the VisAD Java component library\(^2\). You can read more about the origins of Bio-Formats on the LOCI Bio-Formats homepage\(^3\).

1\[^1\]http://loci.wisc.edu/faq/isnt-java-too-slow
2\[^2\]http://visad.ssec.wisc.edu
3\[^3\]http://loci.wisc.edu/software/bio-formats
Pixels in microscopy are almost always very straightforward, stored on evenly spaced rectangular grids. It is the metadata (details about the acquisition, experiment, user, and other information) that can be complex. Using the OME data model enables applications to support a single metadata format, rather than the multitude of proprietary formats available today.

Every file format has a distinct set of metadata, stored differently. Bio-Formats processes and converts each format’s metadata structures into a standard form called the OME data model\(^1\), according to the OME-XML\(^2\) specification. We have defined an open exchange format called OME-TIFF\(^3\) that stores its metadata as OME-XML. Any software package that supports OME-TIFF is also compatible with the dozens of formats listed on the Bio-Formats page, because Bio-Formats can convert your files to OME-TIFF format.

To facilitate support of OME-XML, we have created a library in Java\(^4\) for reading and writing OME-XML\(^5\) metadata.

There are three types of metadata in Bio-Formats, which we call core metadata, original metadata, and OME metadata.

1. **Core metadata** only includes things necessary to understand the basic structure of the pixels: image resolution; number of focal planes, time points, channels, and other dimensional axes; byte order; dimension order; color arrangement (RGB, indexed color or separate channels); and thumbnail resolution.

2. **Original metadata** is information specific to a particular file format. These fields are key/value pairs in the original format, with no guarantee of cross-format naming consistency or compatibility. Nomenclature often differs between formats, as each vendor is free to use their own terminology.

3. **OME metadata** is information from #1 and #2 converted by Bio-Formats into the OME data model. **Performing this conversion is the primary purpose of Bio-Formats.** Bio-Formats uses its ability to convert proprietary metadata into OME-XML as part of its integration with the OME and OMERO servers—essentially, they are able to populate their databases in a structured way because Bio-Formats sorts the metadata into the proper places. This conversion is nowhere near complete or bug free, but we are constantly working to improve it. We would greatly appreciate any and all input from users concerning missing or improperly converted metadata fields.

\(^1\)http://genomebiology.com/2005/6/5/R47
\(^2\)http://www.openmicroscopy.org/site/support/ome-model/ome-xml
\(^3\)http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
\(^4\)http://www.openmicroscopy.org/site/support/ome-model/ome-xml/java-library.html
\(^5\)http://www.openmicroscopy.org/site/support/ome-model/ome-xml
For help, see the Bio-Formats\(^1\), File Formats\(^2\) and OME-XML and OME-TIFF\(^3\) sections of the OME FAQ\(^4\) for answers to some common questions. Please contact us\(^5\) if you have any questions or problems with Bio-Formats. There is a guide for reporting bugs here.

For advanced users and developers, further information is available on the troubleshooting page.

3.1 Reporting a bug

3.1.1 Before filing a bug report

If you think you have found a bug in Bio-Formats, the first thing to do is update your version of Bio-Formats to the latest trunk version. It is possible that the problem has already been addressed. For both Fiji and ImageJ users, select Update LOCI Plugins under the LOCI menu. Select Trunk Build.

You can also download the newest version of Bio-Formats\(^6\). If you are not sure which version you need, select the Trunk Build under LOCI Tools complete bundle.

3.1.2 Sending a bug report

If you can still reproduce the bug after updating to the newest version of Bio-Formats, please send us a bug report. To ensure that any inquiries you make are resolved promptly, please include the following information:

- **Exact error message.** Copy and paste any error messages into the text of your email. Alternatively, attach a screenshot of the relevant windows.

- **Version information.** Indicate which release of Bio-Formats, which operating system, and which version of Java you are using.

- **Non-working data.** If possible, please send a non-working file. This helps us ensure that the problem is fixed for next release and will not reappear in later releases. We can provide you with an FTP server for uploading your file(s) if needed. Note that any data provided is used for internal testing only; we do not make images publicly available unless given explicit permission to do so.

- **Metadata and screenshots.** If possible, include any additional information about your data. We are especially interested in the expected dimensions (width, height, number of channels, Z slices, and timepoints). Screenshots of the image being successfully opened in other software are also useful.

- **Format details.** If you are requesting support for a new format, we ask that you send as much data as you have regarding this format (sample files, specifications, vendor/manufacturer information, etc.). This helps us to better support the format and ensures future versions of the format are also supported.

\(^1\)http://www.openmicroscopy.org/site/support/faq/bio-formats
\(^2\)http://www.openmicroscopy.org/site/support/faq/file-formats
\(^3\)http://www.openmicroscopy.org/site/support/faq/ome-xml-and-ome-tiff
\(^4\)http://www.openmicroscopy.org/site/support/faq
\(^5\)http://www.openmicroscopy.org/site/community/mailing-lists
\(^6\)http://downloads.openmicroscopy.org/bio-formats/
Once you have gathered all the relevant information, send it as an e-mail to the OME Users mailing list.

Please be patient - it may be a few days until you receive a response, but we reply to every email inquiry we receive.

3.2 Troubleshooting

This page is aimed at anyone who is responsible for supporting Bio-Formats, but may also be useful for advanced users looking to troubleshoot their own problems. Eventually, it might be best to move some of this to the FAQ or other documentation.

3.2.1 General tips

- Make sure to read the FAQ, particularly the “File Formats”, “Bio-Formats”, and “OME-XML & OME-TIFF” sections.
- If this page doesn’t help, it is worth quickly checking the following places where questions are commonly asked and/or bugs are reported:
 - OME Trac
 - Fiji Bugzilla (for ImageJ/Fiji issues)
 - ome-devel mailing list (searchable using google with ‘site:lists.openmicroscopy.org.uk’)
 - ome-users mailing list (searchable using google with ‘site:lists.openmicroscopy.org.uk’)
 - ImageJ mailing list (for ImageJ/Fiji issues)
- Make sure to ask for a _specific_ error message or description of the unexpected behavior, if one is not provided (“it does not work” is obviously not adequate).
- “My (12, 14, 16)-bit images look all black when I open them” is a common issue. In ImageJ/Fiji, this is almost always fixable by checking the “Autoscale” option; with the command line tools, the “--autoscale -fast” options should work. The problem is typically that the pixel values are very, very small relative to the maximum possible pixel value (4095, 16383, and 65535, respectively), so when displayed the pixels are effectively black.
- If the file is very, very small (4096 bytes) and any exception is generated when reading the file, then make sure it is not a Mac OS X resource fork. The ‘file’ command should tell you:

```bash
$ file /path/to/suspicious-file
suspicious-file: AppleDouble encoded Macintosh file
```

3.2.2 Tips for ImageJ/Fiji

- The Bio-Formats version being used can be found by selecting “Help > About Plugins > LOCI Plugins”.
- “How do I make the options window go away?” is a common question. There are a few ways to do this:
 - To disable the options window only for files in a specific format, select “Plugins > LOCI > LOCI Plugins Configuration”, then pick the format from the list and make sure the “Windowless” option is checked.
 - To avoid the options window entirely, use the “Plugins > LOCI > Bio-Formats Windowless Importer” menu item to import files.
 - Open files by calling the Bio-Formats importer plugin from a macro.

8 http://www.openmicroscopy.org/site/support/faq
9 http://trac.openmicroscopy.org.uk/ome
10 http://fiji.sc/cgi-bin/bugzilla/index.cgi
• A not uncommon cause of problems is that the user has multiple copies of loci_tools.jar in their ImageJ plugins folder, or has a copy of loci_tools.jar and a copy of bio-formats.jar. It is often difficult to determine for sure that this is the problem - the only error message that pretty much guarantees it is a “NoSuchMethodException”. If the user maintains that they downloaded the latest version and whatever error message/odd behavior they are seeing looks like it was fixed already, then it is worth suggesting that they remove all copies of loci_tools.jar and download a fresh version.

3.2.3 Tips for command line tools

• When run with no arguments, all of the command line tools will print information on usage.

• When run with the ‘-version’ argument, ‘showinf’ and ‘bfconvert’ will display the version of Bio-Formats that is being used (version number, build date, and Git commit reference).

3.2.4 Tips by format

3I/Olympus Slidebook (.sld)

• Slidebook support is generally not great, despite a lot of effort. This is the one format for which it is recommended to just export to OME-TIFF from the acquisition software and work with the exported files. Happily, there is free software from 3I which can do the export post-acquisition: https://www.slidebook.com/reader.php

DICOM

• Health care or institutional regulations often prevent users from sending problematic files, so often we have to solve the problem blind. In these cases, it is important to get the exact error message, and inform the user that fixing the problem may be an iterative process (i.e. they might have to try a couple of trunk builds before we can finally fix the problem).

ZVI

• If the ZVI reader plugin is installed in ImageJ/Fiji, then it will be used instead of Bio-Formats to read ZVI files. To check if this is the cause of the problem, make sure that the file opens correctly using “Plugins > LOCI > Bio-Formats Importer”; if that works, then just remove ZVI_Reader.class from the plugins folder.
BIO-FORMATS VERSIONS

Bio-Formats is updated whenever a new version of OMERO1 is released. The version number is three numbers separated by dots; e.g., 4.0.0. See the version history2 for a list of major changes in each release.

The stable version of Bio-Formats is 4.4. For future development directions, see the 5.02 roadmap.

4.1 Version history

4.1.1 5.0.0-RC1 (2013 Dec 19)

- Updated Maven build system and launched new Artifactory repository (http://artifacts.openmicroscopy.org)
- Added support for:
 - Bio-Rad SCN
 - Yokogawa CellVoyager (thanks to Jean-Yves Tinevez)
 - LaVision Inspector
 - PCORAW
 - Woolz (thanks to Bill Hill)
- Added support for populating and parsing ModuloAlong\{Z, C, T\} annotations for FLIM/SPIM data
- Updated netCDF and slf4j version requirements - netCDF 4.3.19 and slf4j 1.7.2 are now required
- Updated and improved MATLAB users and developers documentation
- Many bug fixes including for Nikon ND2, Zeiss CZI, and CellWorX formats

4.1.2 5.0.0-beta1 (2013 June 20)

- Updated to 2013-06 OME-XML schema3
- Improved the performance in tiled formats
- Added caching of Reader metadata using http://code.google.com/p/kryo/
- Added support for:
 - Aperio AFI
 - Inveon
 - MPI-BPC Inspector
- Many bug fixes, including:
 - Add ZEN 2012/Lightsheet support to Zeiss CZI
 - Improved testing of autogenerated code

1http://www.openmicroscopy.org/site/support/omero5/
2http://trac.openmicroscopy.org.uk/ome/query?group=status&component=Bio-Formats&milestone=OMERO-5
3http://www.openmicroscopy.org/site/support/ome-model/
4.1.3 4.4.9 (2013 Oct 16)

- Many bug fixes including improvements to support for ND2 format
- Java 1.6 is now the minimum supported version; Java 1.5 is no longer supported

4.1.4 4.4.8 (2013 May 2)

- No changes - release to keep version numbers in sync with OMERO

4.1.5 4.4.7 (2013 April 25)

- Many bug fixes to improve support for more than 20 formats
- Improved export to multi-file datasets
- Now uses slf4j for logging rather than using log4j directly, enabling other logging implementations to be used, for example when Bio-Formats is used as a component in other software using a different logging system.

4.1.6 4.4.6 (2013 February 11)

- Many bug fixes
- Further documentation improvements

4.1.7 4.4.5 (2012 November 13)

- Restructured and improved documentation
- Many bug fixes, including:
 - File grouping in many multi-file formats
 - Maven build fixes
 - ITK plugin fixes

4.1.8 4.4.4 (2012 September 24)

- Many bug fixes

4.1.9 4.4.2 (2012 August 22)

- Security fix for OMERO plugins for ImageJ

4.1.10 4.4.1 (2012 July 20)

- Fix a bug that prevented BigTIFF files from being read
- Fix a bug that prevented PerkinElmer .flex files from importing into OMERO
4.1.11 4.4.0 (2012 July 13)

• Many, many bug fixes
• Added support for:
 – .nd2 files from Nikon Elements version 4
 – PerkinElmer Operetta data
 – MJPEG-compressed AVIs
 – MicroManager datasets with multiple positions
 – Zeiss CZI data
 – IMOD data

4.1.12 4.3.3 (2011 October 18)

• Many bug fixes, including:
 – Speed improvements to HCImage/SimplePCI and Zeiss ZVI files
 – Reduce memory required by Leica LIF reader
 – More accurately populate metadata for Prairie TIFF datasets
 – Various fixes to improve the security of the OMERO plugin for ImageJ
 – Better dimension detection for Bruker MRI datasets
 – Better thumbnail generation for histology (SVS, NDPI) datasets
 – Fix stage position parsing for Metamorph TIFF datasets
 – Correctly populate the channel name for PerkinElmer Flex files

4.1.13 4.3.2 (2011 September 15)

• Many bug fixes, including:
 – Better support for Volocity datasets that contain compressed data
 – More accurate parsing of ICS metadata
 – More accurate parsing of cellSens .vsi files
• Added support for a few new formats
 – .inr
 – Canon DNG
 – Hitachi S-4800
 – Kodak .bip
 – JPX
 – Volocity Library Clipping (.acff)
 – Bruker MRI
• Updated Zeiss LSM reader to parse application tags
• Various performance improvements, particularly for reading/writing TIFFs
• Updated OMERO ImageJ plugin to work with OMERO 4.3.x
4.1.14 4.3.1 (2011 July 8)

- Several bug fixes, including:
 - Fixes for multi-position Deltavision files
 - Fixes for MicroManager 1.4 data
 - Fixes for 12 and 14-bit JPEG-2000 data
 - Various fixes for reading Volocity .mvd2 datasets
- Added various options to the ‘showinf’ and ‘bfconvert’ command line tools
- Added better tests for OME-XML backwards compatibility
- Added the ability to roughly stitch tiles in a multi-position dataset

4.1.15 4.3.0 (2011 June 14)

- Many bug fixes, including:
 - Many fixes for reading and writing sub-images
 - Fixes for stage position parsing in the Zeiss formats
 - File type detection fixes
- Updated JPEG-2000 reading and writing support to be more flexible
- Added support for 9 new formats:
 - InCell 3000
 - Trestle
 - Hamamatsu .ndpi
 - Hamamatsu VMS
 - SPIDER
 - Volocity .mvd2
 - Olympus SIS TIFF
 - IMAGIC
 - cellSens VSI
- Updated to 2011-06 OME-XML schema
- Minor speed improvements in many formats
- Switched version control system from SVN to Git
- Moved all Trac tickets into the OME Trac: http://trac.openmicroscopy.org.uk
- Improvements to testing frameworks
- Added Maven build system as an alternative to the existing Ant build system
- Added pre-compiled C++ bindings to the download page

4.1.16 4.2.2 (2010 December 6)

- Several bug fixes, notably:
 - Metadata parsing fixes for Zeiss LSM, Metamorph STK, and FV1000
 - Prevented leaked file handles when exporting to TIFF/OME-TIFF
 - Fixed how BufferedImages are converted to byte arrays
- Proper support for OME-XML XML annotations
• Added support for SCANCO Medical .aim files
• Minor improvements to ImageJ plugins
• Added support for reading JPEG-compressed AVI files

4.1.17 4.2.1 (2010 November 12)

• Many, many bug fixes
• **Added support for 7 new formats:**
 – CellWorX .pnl
 – ECAT7
 – Varian FDF
 – Perkin Elmer Densitometer
 – FEI TIFF
 – Compix/SimplePCI TIFF
 – Nikon Elements TIFF
• Updated Zeiss LSM metadata parsing, with generous assistance from Zeiss, FMI, and MPI-CBG
• Lots of work to ensure that converted OME-XML validates
• Improved file stitching functionality; non-numerical file patterns and limited regular expression-style patterns are now supported

4.1.18 4.2.0 (2010 July 9)

• Fixed many, many bugs in all aspects of Bio-Formats
• Reworked ImageJ plugins to be more user- and developer-friendly
• Added many new unit tests
• Added support for approximately 25 new file formats, primarily in the SPM domain
• Rewrote underlying I/O infrastructure to be thread-safe and based on Java NIO
• Rewrote OME-XML parsing/generation layer; OME-XML 2010-06 is now supported
• Improved support for exporting large images
• Improved support for exporting to multiple files
• Updated logging infrastructure to use slf4j and log4j

4.1.19 4.1.1 (2009 December 3)

• Fixed many bugs in popular file format readers

4.1 (2009 October 21):
• Fixed many bugs in most file format readers
• Significantly improved confocal and HCS metadata parsing
• Improved C++ bindings
• Eliminated references to Java AWT classes in core Bio-Formats packages
• Added support for reading Flex datasets from multiple servers
• Improved OME-XML generation; generated OME-XML is now valid
• Added support for Olympus ScanR data
• Added OSGi information to JARs
• Added support for Amira Mesh files
• Added support for LI-FLIM files
• Added more informative exceptions
• Added support for various types of ICS lifetime data
• Added support for Nikon EZ-C1 TIFFs
• Added support for Maia Scientific MIAS data

4.1.20 4.0.1 (2009 June 1)

• Lots of bug fixes in most format readers and writers
• Added support for Analyze 7.1 files
• Added support for Nifti files
• Added support for Cellomics .c01 files
• Refactored ImageJ plugins
• Bio-Formats, the common package, and the ImageJ plugins now require Java 1.5
• Eliminated native library dependency for reading lossless JPEGs
• Changed license from GPL v3 or later to GPL v2 or later
• Updated Olympus FV1000, Zeiss LSM, Zeiss ZVI and Nikon ND2 readers to parse ROI data
• Added option to ImageJ plugin for displaying ROIs parsed from the chosen dataset
• Fixed BufferedImage construction for signed data and unsigned int data

4.1.21 4.0.0 (2009 March 3)

• Improved OME data model population for Olympus FV1000, Nikon ND2, Metamorph STK, Leica LEI, Leica LIF, InCell 1000 and MicroManager
• Added TestNG tests for format writers
• Added option to ImageJ plugin to specify custom colors when customizing channels
• Added ability to upgrade the ImageJ plugin from within ImageJ
• Fixed bugs in Nikon ND2, Leica LIF, BioRad PIC, TIFF, PSD, and OME-TIFF
• Fixed bugs in Data Browser and Exporter plugins
• Added support for Axon Raw Format (ARF), courtesy of Johannes Schindelin
• Added preliminary support for IPLab-Mac file format

4.1.22 2008 December 29

• Improved metadata support for Deltavision, Zeiss LSM, MicroManager, and Leica LEI
• Restructured code base/build system to be component-driven
• Added support for JPEG and JPEG-2000 codecs within TIFF, OME-TIFF and OME-XML
• Added support for 16-bit compressed Flex files
• Added support for writing JPEG-2000 files
• Added support for Minolta MRW format
• Added support for the 2008-09 release of OME-XML

4.1. Version history
• Removed dependency on JMagick
• Re-added caching support to data browser plugin
• Updated loci.formats.Codec API to be more user-friendly
• Expanded loci.formats.MetadataStore API to better represent the OME-XML model
• Improved support for Nikon NEF
• Improved support for TillVision files
• Improved ImageJ import options dialog
• Fixed bugs with Zeiss LSM files larger than 4 GB
• Fixed minor bugs in most readers
• Fixed bugs with exporting from an Image5D window
• Fixed several problems with virtual stacks in ImageJ

4.1.23 2008 August 30

• Fixed bugs in many file format readers
• Fixed several bugs with swapping dimensions
• Added support for Olympus CellIR/APL files
• Added support for MINC MRI files
• Added support for Aperio SVS files compressed with JPEG 2000
• Added support for writing OME-XML files
• Added support for writing APNG files
• Added faster LZW codec
• Added drag and drop support to ImageJ shortcut window
• Re-integrated caching into the data browser plugin

4.1.24 2008 July 1

• Fixed bugs in most file format readers
• Fixed bugs in OME and OMERO download functionality
• Fixed bugs in OME server-side import
• Improved metadata storage/retrieval when uploading to and downloading from the OME Perl server
• Improved Bio-Formats ImageJ macro extensions
• Major updates to MetadataStore API
• Updated OME-XML generation to use 2008-02 schema by default
• Addressed time and memory performance issues in many readers
• Changed license from LGPL to GPL
• Added support for the FEI file format
• Added support for uncompressed Hamamatsu Aquacosmos NAF files
• Added support for Animated PNG files
• Added several new options to Bio-Formats ImageJ plugin
• Added support for writing ICS files
4.1.25 2008 April 17

- Fixed bugs in Slidebook, ND2, FV1000 OIB/OIF, Perkin Elmer, TIFF, Prairie, Openlab, Zeiss LSM, MNG, Molecular Dynamics GEL, and OME-TIFF
- Fixed bugs in OME and OMERO download functionality
- Fixed bugs in OME server-side import
- Fixed bugs in Data Browser
- Added support for downloading from OMERO 2.3 servers
- Added configuration plugin
- Updates to MetadataStore API
- Updates to OME-XML generation - 2007-06 schema used by default
- Added support for Li-Cor L2D format
- Major updates to TestNG testing framework
- Added support for writing multi-series OME-TIFF files
- Added support for writing BigTIFF files

4.1.26 2008 Feb 12

- Fixed bugs in QuickTime, SimplePCI and DICOM
- Fixed a bug in channel splitting logic

4.1.27 2008 Feb 8

- Many critical bug fixes in format readers and ImageJ plugins
- Newly reborn Data Browser for 5D image visualization
 - some combinations of import options do not work yet

4.1.28 2008 Feb 1

- Fixed bugs in Zeiss LSM, Metamorph STK, FV1000 OIB/OIF, Leica LEI, TIFF, Zeiss ZVI, ICS, Prairie, Openlab LIFF, Gatan, DICOM, QuickTime
- Fixed bug in OME-TIFF writer
- Major changes to MetadataStore API
- Added support for JPEG-compressed TIFF files
- Added basic support for Aperio SVS files
 - JPEG2000 compression is still not supported
- Improved “crop on import” functionality
- Improvements to bfconvert and bfview
- Improved OME-XML population for several formats
- Added support for JPEG2000-compressed DICOM files
- EXIF data is now parsed from TIFF files
4.1.29 2007 Dec 28

- Fixed bugs in Leica LEI, Leica TCS, SDT, Leica LIF, Visitech, DICOM, Imaris 5.5 (HDF), and Slidebook readers
- Better parsing of comments in TIFF files exported from ImageJ
- Fixed problem with exporting 48-bit RGB data
- Added logic to read multi-series datasets spread across multiple files
- Improved channel merging in ImageJ - requires ImageJ 1.39l
- Support for hyperstacks and virtual stacks in ImageJ - requires ImageJ 1.39l
- Added API for reading directly from a byte array or InputStream
- Metadata key/value pairs are now stored in ImageJ’s “Info” property
- Improved OMERO download plugin - it is now much faster
- Added “open all series” option to ImageJ importer
- ND2 reader based on Nikon’s SDK now uses our own native bindings
- Fixed metadata saving bug in ImageJ
- Added sub-channel labels to ImageJ windows
- Major updates to 4D Data Browser
- Minor updates to automated testing suite

4.1.30 2007 Dec 1

- Updated OME plugin for ImageJ to support downloading from OMERO
- Fixed bug with floating point TIFFs
- Fixed bugs in Visitech, Zeiss LSM, Imaris 5.5 (HDF)
- Added alternate ND2 reader that uses Nikon’s native libraries
- Fixed calibration and series name settings in importer
- Added basic support for InCell 1000 datasets

4.1.31 2007 Nov 21

- Fixed bugs in ND2, Leica LIF, DICOM, Zeiss ZVI, Zeiss LSM, FV1000 OIB, FV1000 OIF, BMP, Evotec Flex, BioRad PIC, Slidebook, TIFF
- Added new ImageJ plugins to slice stacks and do “smart” RGB merging
- **Added “windowless” importer plugin**
 - uses import parameters from IJ_Prefs.txt, without prompting the user
- Improved stack slicing and colorizing logic in importer plugin
- **Added support for DICOM files compressed with lossless JPEG**
 - requires native libraries
- Fixed bugs with signed pixel data
- Added support for Imaris 5.5 (HDF) files
- Added 4 channel merging to importer plugin
- Added API methods for reading subimages
- Major updates to the 4D Data Browser
4.1.32 2007 Oct 17

- Critical OME-TIFF bugfixes
- Fixed bugs in Leica LIF, Zeiss ZVI, TIFF, DICOM, and AVI readers
- Added support for JPEG-compressed ZVI images
- Added support for BigTIFF
- Added importer plugin option to open each plane in a new window
- Added MS Video 1 codec for AVI

4.1.33 2007 Oct 1

- Added support for compressed DICOM images
- Added support for uncompressed LIM files
- Added support for Adobe Photoshop PSD files
- Fixed bugs in DICOM, OME-TIFF, Leica LIF, Zeiss ZVI, Visitech, PerkinElmer and Metamorph
- Improved indexed color support
- Addressed several efficiency issues
- Fixed how multiple series are handled in 4D data browser
- Added option to reorder stacks in importer plugin
- Added option to turn off autoscaling in importer plugin
- Additional metadata convenience methods

4.1.34 2007 Sept 11

- Major improvements to ND2 support; lossless compression now supported
- Support for indexed color images
- Added support for Simple-PCI .cxd files
- Command-line OME-XML validation
- Bugfixes in most readers, especially Zeiss ZVI, Metamorph, PerkinElmer and Leica LEI
- Initial version of Bio-Formats macro extensions for ImageJ

4.1.35 2007 Aug 1

- Added support for latest version of Leica LIF
- Fixed several issues with Leica LIF, Zeiss ZVI
- Better metadata mapping for Zeiss ZVI
- Added OME-TIFF writer
- Added MetadataRetrieve API for retrieving data from a MetadataStore
- Miscellaneous bugfixes
4.1.36 2007 July 16

- Fixed several issues with ImageJ plugins
- Better support for Improvision and Leica TCS TIFF files
- Minor improvements to Leica LIF, ICS, QuickTime and Zeiss ZVI readers
- Added searchable metadata window to ImageJ importer

4.1.37 2007 July 2

- Fixed issues with ND2, Openlab LIFF and Slidebook
- Added support for Visitech XYS
- Added composite stack support to ImageJ importer

4.1.38 2007 June 18

- Fixed issues with ICS, ND2, MicroManager, Leica LEI, and FV1000 OIF
- Added support for large (> 2 GB) ND2 files
- Added support for new version of ND2
- Minor enhancements to ImageJ importer
- Implemented more flexible logging
- Updated automated testing framework to use TestNG
- Added package for caching images produced by Bio-Formats

4.1.39 2007 June 6

- Fixed OME upload/download bugs
- Fixed issues with ND2, EPS, Leica LIF, and OIF
- Added support for Khoros XV
- Minor improvements to the importer

4.1.40 2007 May 24

- Better Slidebook support
- Added support for Quicktime RPZA
- Better Leica LIF metadata parsing
- Added support for BioRad PIC companion files
- Added support for bzip2-compressed files
- Improved ImageJ plugins
- Native support for FITS and PGM
4.1.41 2007 May 2

- Added support for NRRD
- Added support for Evotec Flex (requires LuraWave Java SDK with license code)
- Added support for gzip-compressed files
- Added support for compressed QuickTime headers
- Fixed QuickTime Motion JPEG-B support
- Fixed some memory issues (repeated small array allocations)
- Fixed issues reading large (> 2 GB) files
- Removed “ignore color table” logic, and replaced with Leica-specific solution
- Added status event reporting to readers
- Added API to toggle metadata collection
- Support for multiple dimensions rasterized into channels
- Deprecated reader and writer methods that accept the ‘id’ parameter
- Deprecated IFormatWriter.save in favor of saveImage and saveBytes
- Moved dimension swapping and min/max calculation logic to delegates
- Separate GUI logic into isolated loci.formats.gui package
- Miscellaneous bugfixes and tweaks in most readers and writers
- Many other bugfixes and improvements

4.1.42 2007 Mar 16

- Fixed calibration bugs in importer plugin
- Enhanced metadata support for additional formats
- Fixed LSM bug

4.1.43 2007 Mar 7

- Added support for Micro-Manager file format
- Fixed several bugs – Leica LIF, Leica LEI, ICS, ND2, and others
- Enhanced metadata support for several formats
- Load series preview thumbnails in the background
- Better implementation of openBytes(String, int, byte[]) for most readers
- Expanded unit testing framework

4.1.44 2007 Feb 28

- Better series preview thumbnails
- Fixed bugs with multi-channel Leica LEI
- Fixed bugs with “ignore color tables” option in ImageJ plugin
4.1.45 2007 Feb 26

- Many bug fixes: Leica LEI, ICS, FV1000 OIB, OME-XML and others
- Better metadata parsing for BioRad PIC files
- Enhanced API for calculating channel minimum and maximum values
- Expanded MetadataStore API to include more semantic types
- Added thumbnails to series chooser in ImageJ plugin
- Fixed plugins that upload and download from an OME server

4.1.46 2007 Feb 7

- Added plugin for downloading images from OME server
- Improved HTTP import functionality
- Added metadata filtering – unreadable metadata is no longer shown
- Better metadata table for multi-series datasets
- Added support for calibration information in Gatan DM3
- Eliminated need to install JAI Image I/O Tools to read ND2 files
- Fixed ZVI bugs: metadata truncation, and other problems
- Fixed bugs in Leica LIF: incorrect calibration, first series labeling
- Fixed memory bug in Zeiss LSM
- Many bug fixes: PerkinElmer, Deltavision, Leica LEI, LSM, ND2, and others
- IFormatReader.close(boolean) method to close files temporarily
- Replaced Compression utility class with extensible Compressor interface
- Improved testing framework to use .bioformats configuration files

4.1.47 2007 Jan 5

- Added support for Prairie TIFF
- Fixed bugs in Zeiss LSM, OIB, OIF, and ND2
- Improved API for writing files
- Added feature to read files over HTTP
- Fixed bugs in automated testing framework
- Miscellaneous bug fixes

4.1.48 2006 Dec 22

- Expanded ImageJ plugin to optionally use Image5D or View5D
- Improved support for ND2 and JPEG-2000 files
- Added automated testing framework
- Fixed bugs in Zeiss ZVI reader
- Miscellaneous bug fixes
4.1.49 2006 Nov 30

• Added support for ND2/JPEG-2000
• Added support for MRC
• Added support for MNG
• Improved support for floating-point images
• Fixed problem with 2-channel Leica LIF data
• Minor tweaks and bugfixes in many readers
• Improved file stitching logic
• Allow ImageJ plugin to be called from a macro

4.1.50 2006 Nov 2

• Bugfixes and improvements for Leica LIF, Zeiss LSM, OIF and OIB
• Colorize channels when they are split into separate windows
• Fixed a bug with 4-channel datasets

4.1.51 2006 Oct 31

• Added support for Imaris 5 files
• Added support for RGB ICS images

4.1.52 2006 Oct 30

• Added support for tiled TIFFs
• Fixed bugs in ICS reader
• Fixed importer plugin deadlock on some systems

4.1.53 2006 Oct 27

• Multi-series support for Slidebook
• Added support for Alicona AL3D
• Fixed plane ordering issue with FV1000 OIB
• Enhanced dimension detection in FV1000 OIF
• Added preliminary support for reading NEF images
• Added option to ignore color tables
• Fixed ImageJ GUI problems
• Fixed spatial calibration problem in ImageJ
• Fixed some lingering bugs in Zeiss ZVI support
• Fixed bugs in OME-XML reader
• Tweaked ICS floating-point logic
• Fixed memory leaks in all readers
• Better file stitching logic
4.1.54 2006 Oct 6

- Support for 3i SlideBook format (single series only for now)
- Support for 16-bit RGB palette TIFF
- Fixed bug preventing import of certain Metamorph STK files
- Fixed some bugs in PerkinElmer UltraView support
- Fixed some bugs in Leica LEI support
- Fixed a bug in Zeiss ZVI support
- Fixed bugs in Zeiss LSM support
- Fixed a bug causing slow identification of Leica datasets
- Fixed bugs in the channel merging logic
- Fixed memory leak for OIB format
- Better scaling of 48-bit RGB data to 24-bit RGB
- Fixed duplicate channels bug in “open each channel in a separate window”
- Fixed a bug preventing PICT import into ImageJ
- Better integration with HandleExtraFileTypes
- Better virtual stack support in Data Browser plugin
- Fixed bug in native QuickTime random access
- Keep aspect ratio for computed thumbnails
- Much faster file stitching logic

4.1.55 2006 Sep 27

- PerkinElmer: support for PE UltraView
- Openlab LIFF: support for Openlab v5
- Leica LEI: bugfixes, and support for multiple series
- ZVI, OIB, IPW: more robust handling of these formats (eliminated custom OLE parsing logic in favor of Apache POI)
- OIB: better metadata parsing (but maybe still not perfect?)
- LSM: fixed a bug preventing import of certain LSMs
- Metamorph STK: fixed a bug resulting in duplicate image planes
- User interface: use of system look & feel for file chooser dialog when available
- Better notification when JAR libraries are missing

4.1.56 2006 Sep 6

- Leica LIF: multiple distinct image series within a single file
- Zeiss ZVI: fixes and improvements contributed by Michel Boudinot
- Zeiss LSM: fixed bugs preventing the import of certain LSM files
- TIFF: fixed a bug preventing import of TIFFs created with Bio-Rad software

4.1.57 2006 Mar 31

- First release
Part II

User Information
The following sections explain the features of Bio-Formats and how to use it within ImageJ and Fiji:

5.1 ImageJ

ImageJ is an image processing and analysis application written in Java, widely used in the life sciences fields, with an extensible plugin infrastructure. You can use Bio-Formats as a plugin for ImageJ to read and write images in the formats it supports.

5.1.1 Installation

Download loci_tools.jar and drop it into your ImageJ/plugins folder. Next time you run ImageJ, a new LOCI submenu with several plugins will appear in the Plugins menu, including the Bio-Formats Importer and Bio-Formats Exporter.

5.1.2 Usage

The Bio-Formats Importer plugin can display image stacks in several ways:

- In a standard ImageJ window (including as a hyperstack)
- Using the LOCI Data Browser plugin (included)
- With Joachim Walter’s Image5D plugin (if installed)
- With Rainer Heintzmann’s View5D plugin (if installed)

ImageJ v1.37 and later automatically (via HandleExtraFileTypes) calls the Bio-Formats logic, if installed, as needed when a file is opened within ImageJ—e.g., when using File/Open instead of explicitly choosing “Bio-Formats Importer” from the Plugins/LOCI menu.

For a more detailed description of each plugin, see the Bio-Formats page of the Fiji wiki.

5.1.3 Upgrading

To upgrade, just overwrite the old loci_tools.jar with the latest one. Step-by-step upgrade instructions for Windows are available here.

You may want to download the latest version of ImageJ first, to take advantage of new features and bug-fixes.

As of the 4.0.0 release, you can also upgrade the Bio-Formats plugin directly from ImageJ. Select “Plugins>LOCI>Update LOCI Plugins” from the ImageJ menu, then select which release you would like to use. You will then need to restart ImageJ to complete the upgrade process.

1http://rsb.info.nih.gov/ij/
2http://downloads.openmicroscopy.org/bio-formats/
3http://loci.wisc.edu/software/data-browser
4http://developer.imagej.net/plugins/image5d
5http://www.nanoimaging.de/View5D
6http://fiji.sc/Bio-Formats
7http://downloads.openmicroscopy.org/bio-formats/
5.1.4 Macros and plugins

Bio-Formats is fully scriptable in a macro, and callable from a plugin. To use in a macro, use the Macro Recorder to record a call to the Bio-Formats Importer with the desired options. You can also perform more targeted metadata queries using the Bio-Formats macro extensions.

Here are some example ImageJ macros and plugins that use Bio-Formats to get you started:

- basicMetadata.txt - A macro that uses the Bio-Formats macro extensions to print the chosen file’s basic dimensional parameters to the Log.
- planeTimings.txt - A macro that uses the Bio-Formats macro extensions to print the chosen file’s plane timings to the Log.
- recursiveTiffConvert.txt - A macro for recursively converting files to TIFF using Bio-Formats.
- bfOpenAsHyperstack.txt - This macro from Wayne Rasband opens a file as a hyperstack using only the Bio-Formats macro extensions (without calling the Bio-Formats Importer plugin).
- zvi2HyperStack.txt - This macro from Sebastien Huart reads in a ZVI file using Bio-Formats, synthesizes the LUT using emission wavelength metadata, and displays the result as a hyperstack.
- dvSplitTimePoints.txt - This macro from Sebastien Huart splits timepoints/channels on all DV files in a folder.
- batchTiffConvert.txt - This macro converts all files in a directory to TIFF using the Bio-Formats macro extensions.
- Read_Image - A simple plugin that demonstrates how to use Bio-Formats to read files into ImageJ.
- Mass_Importer - A simple plugin that demonstrates how to open all image files in a directory using Bio-Formats, grouping files with similar names to avoid opening the same dataset more than once.

5.2 Fiji

Fiji is an image processing package. It can be described as a distribution of ImageJ together with Java, Java 3D and a lot of plugins organized into a coherent menu structure. Fiji compares to ImageJ as Ubuntu compares to Linux.

Fiji works with Bio-Formats out of the box, because it comes bundled with the Bio-Formats ImageJ plugins.

5.2.1 Upgrading

Upgrading Bio-Formats within Fiji is as simple as invoking the “Update Fiji” command from the Help menu. By default, Fiji even automatically checks for updates every time it is launched, so you will always be notified when new versions of Bio-Formats (or any other bundled plugin) are available.

Note: Fiji currently ships with the latest 4.4.x Bio-Formats release. Alternately, you can enable the “Bio-Formats 5” update site to receive the latest Bio-Formats 5 bugfixes and updates.

For further details on Bio-Formats in Fiji, see the Bio-Formats Fiji wiki page.

8https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/macros/basicMetadata.txt
9https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/macros/planeTimings.txt
10https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/macros/recursiveTiffConvert.txt
11https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/macros/bfOpenAsHyperstack.txt
12https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/macros/zvi2HyperStack.txt
14https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/macros/batchTiffConvert.txt
15https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/Read_Image.java
16https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/Mass_Importer.java
17http://fiji.sc/
18http://fiji.sc/Plugins_Menu
19http://fiji.sc/Bio-Formats#Daily_builds
20http://fiji.sc/Bio-Formats
5.3 Bio-Formats features in ImageJ and Fiji

When you select Bio-Formats under the Plugin menu, you will see the following features:

- The Bio-Formats Importer is a plugin for loading images into ImageJ or Fiji. It can read over 100 proprietary life sciences formats and standardizes their acquisition metadata into the common OME data model. It will also extract and set basic metadata values such as spatial calibration\(^{21}\) if they are available in the file.

- The Bio-Formats Exporter is a plugin for exporting data to disk. It can save to the open OME-TIFF\(^{22}\) file format, as well as several movie formats (e.g. QuickTime, AVI) and graphics formats (e.g. PNG, JPEG).

- The Bio-Formats Remote Importer is a plugin for importing data from a remote URL. It is likely to be less robust than working with files on disk, so we recommend downloading your data to disk and using the regular Bio-Formats Importer whenever possible.

- The Bio-Formats Windowless Importer is a version of the Bio-Formats Importer plugin that runs with the last used settings to avoid any additional dialogs beyond the file chooser. If you always use the same import settings, you may wish to use the windowless importer to save time (Learn more here).

- The Bio-Formats Macro Extensions plugin prints out the set of commands that can be used to create macro extensions. The commands and the instructions for using them are printed to the ImageJ log window.

- The Stack Slicer plugin is a helper plugin used by the Bio-Formats Importer. It can also be used to split a stack across channels, focal planes or time points.

- The LOCI Plugins Configuration dialog is a useful way to configure the behavior of each file format. The Formats tab lists supported file formats and toggles each format on or off, which is useful if your file is detected as the wrong format. It also toggles whether each format bypasses the importer options dialog through the “Windowless” checkbox. You can also configure any specific option for each format. The Libraries tab provides a list of available helper libraries used by Bio-Formats.

- The LOCI Plugins Shortcut Window opens a small window with a quick-launch button for each LOCI plugin. Dragging and dropping files onto the shortcut window opens them quickly using the Bio-Formats Importer plugin.

- The Update LOCI Plugins command will check for LOCI Plugins updates. We recommend you update to the newest Trunk build as soon as you think you may have discovered a bug.

5.4 Installing Bio-Formats in ImageJ

(Since FIJI is essentially ImageJ with plugins like Bio-Formats already built in, people who install Fiji can skip this section.)

Once you download\(^{23}\) and install ImageJ, you can install the Bio-Formats plugin by going to the Bio-Formats download page\(^{24}\). For most end-users, we recommend downloading the loci_tools.jar complete bundle.

However, you must decide which version of it you want to install. There are three primary versions of Bio-Formats: the trunk build, the daily builds, and the Stable Release. Which version you should download depends on your needs:

- The trunk build is automatically updated every time any change is made to the source code on the main “trunk” branch in Git, LOCI’s software version control system. This build has the latest bug fixes, but it is not well tested and may have also introduced new bugs.

- The daily build is a compilation of that day’s changes that occurs daily around midnight. It is not any better tested than the trunk build; but if you download it multiple times in a day, you can be sure you’ll get the same version each time.

- The stable release is thoroughly tested and has documentation to match. The list of supported formats on the Bio-Formats site corresponds to the most recent stable release. We do not add new formats to the list until a release containing support for that format has been completed. The stable release is less likely to contain bugs.

The stable release is also more useful to programmers because they can link their software to a known, fixed version of Bio-Formats. Bio-Formats’ behavior won’t be changing “out from under them” as they continue developing their own programs.

\(^{21}\)http://fiji.sc/SpatialCalibration

\(^{22}\)http://www.openmicroscopy.org/site/support/ome-model/ome-tiff

\(^{23}\)http://rsbweb.nih.gov/ij/download.html

\(^{24}\)http://downloads.openmicroscopy.org/bio-formats/
We often recommend that most people simply use the trunk build for two reasons. First, trunk may contain bug-fixes or new features you want anyway; secondly, you will have to reproduce any bug you encounter in Bio-Formats against the latest trunk build before submitting a bug report. Rather than using the stable release until you find a bug that requires you to upgrade and reproduce it, why not just use the trunk build to begin with?

Once you decide which version you need, go to the Bio-Formats download page and save the appropriate loci_tools.jar to the Plugins directory within ImageJ.

You may have to quit and restart ImageJ. Once you restart it, you will find Bio-Formats in the LOCI option under the Plugins menu:

25http://downloads.openmicroscopy.org/bio-formats/

You are now ready to start using Bio-Formats.

5.5 Using Bio-Formats to load images into ImageJ

This section will explain how to use Bio-Formats to import files into ImageJ and how to use the settings on the Bio-Formats Import Options screen.

5.5.1 Opening files

There are three ways you can open a file using Bio-Formats:

1. Select the Bio-Formats Importer under the LOCI plugins menu.
2. Drag and drop it onto the LOCI Plugins Shortcut window.
3. Use the Open command in the File menu.

Unless you used the LOCI Plugins Configuration dialog to open the file type windowlessly, you know you used Bio-Formats to open a file when you see a screen like this:
If you used the File > Open command and did not see the Bio-Formats Import Options screen, ImageJ/Fiji probably used another plugin instead of Bio-Formats to open the file. If this happens and you want to open a file using Bio-Formats, use one of the other two methods instead.

5.5.2 Opening files windowlessly

When you open a file with Bio-Formats, the Import Options Screen automatically recalls the settings you last used to open a file with that specific format (e.g. JPG, TIF, LSM, etc.). If you always choose the same options whenever you open files in a specific file format, you can save yourself time by bypassing the Bio-Formats Import Options screen. You can accomplish this two ways:

1. You can select the **Bio-Formats Windowless Importer**, located in the LOCI menu under ImageJ’s Plugin menu. When you select this option, Bio-Formats will import the file using the same settings you used the last time you imported a file with the same format.

2. If you invariably use the same settings when you open files in a specific format, you can always bypass the Import Options Screen by changing the settings in the **LOCI Plugins Configuration** option, which is also located in the LOCI menu under ImageJ’s Plugin menu.

Once you select this option, select the file format you are interested in from the list on the left side of the screen. Check both the **Enabled** and **Windowless** boxes. Once you do this, whenever you open a file using the **Bio-Formats Windowless Importer**, the **Bio-Formats Importer**, or the drag-and-drop method described in the previous section, the file will always open the same way using the last setting used.

Please note that if you want to change any of the import settings once you enable this windowless option, you will have to go back to the **LOCI Plugins Configuration** screen, unselect the windowless option, open a file using the regular **Bio-Formats Importer**, select your settings, and re-select the windowless option.

5.5.3 Group files with similar names

One of the most important features of Bio-Formats is to combine multiple files from a data set into one coherent, multi-dimensional image.

To demonstrate how to use the **Group files with similar names** feature, you can use the **dub** data set available under LOCI’s **Sample Data** page. You will notice that it is a large dataset: each of the 85 files shows the specimen at 33 optical sections along the z-plane at a specific time.

26 http://www.loci.wisc.edu/sample-data/dub
27 http://www.loci.wisc.edu/software/sample-data
If you open just one file in ImageJ/Fiji using the **Bio-Formats Importer**, you will get an image incorporating three dimensions (x, y, z). However, if you select **Group files with similar names** from the Bio-Formats Import Options screen, you will be able to create a 4-D image (x, y, z, and t) incorporating the 85 files.

After clicking OK, you will see a screen like this:

![Screen Screenshot](image)

This screen allows you to select which files within the 85-file cluster to use to create that 4-D image. Some information will be pre-populated in the fields. Unless you want to change the settings in that field, there is no need to change or delete it. If you click OK at this point, you will load all 85 files.

However, you can specify which files you want to open by adjusting the “axis information”, the file “name contains,” or the “pattern” sections. Even though there are three options, you only need to need to make changes to one of them. Since Bio-Format’s precedence for processing data is from top to bottom, only the uppermost section that you made changes to will be used. If you change multiple boxes, any information you enter into lower boxes will be ignored.

To return to the example involving the dub dataset, suppose you want to open the first image and only every fifth image afterwards (i.e. dub01, dub06, dub11 . . . dub81). This would give you 17 images. There are different ways to accomplish this:

You can use the **Axis Settings** only when your files are numbered in sequential order and you want to open only a subset of the files that have similar names. Since the dub data set is numbered sequentially, you can use this feature.

Axis 1 number of images refers to the total number of images you want to open. Since you want to view 17 images, enter 17. **Axis 1 axis first image** specifies which image in the set you want to be the first. Since you want to start with dub01, enter 1 in that box. You also want to view only every fifth image, so enter 5 in the **Axis 1 axis increment** box.

The **File name contains** box should be used if all of the files that you want to open have common text. This is especially useful when the files are not numbered. For example, if you have “Image_Red.tif”, “Image_Green.tif”, and “Image_Blue.tif” you could enter “Image_” in the box to group them all.

To continue the example involving the dub data set, you cannot use the **file name contains** box to open every fifth image. However, if you only wanted to open dub10 thorough dub19, you could enter “dub1” in the **file name contains** box.

The **pattern** box can be used to do either of the options listed above or much more. This box can accept a single file name like “dub01.pic.” It can also contain a pattern that use “<” and “>” to specify what numbers or text the file names contain.

There are three basic forms to the “< >” blocks:

- Text enumeration - “Image_<Red,Green,Blue>.tif” is the pattern for Image_Red.tif, Image_Green.tif, Image_Blue.tif. (Note that the order you in which you enter the file names is the order in which they will be loaded.)
- Number range - “dub<1-85>.pic” is the pattern for “dub1.pic”, “dub2.pic”, “dub3.pic” . . . “dub85.pic”.
- Number range with step - “dub<1-85:5>.pic” is the pattern for “dub1.pic”, “dub6.pic”, “dub11.pic”, “dub16.pic” . . . “dub85.pic”.

It can also accept a [Java regular expression](http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html).

5.5. Using Bio-Formats to load images into ImageJ 31
5.5.4 Autoscale

Autoscale helps increase the brightness and contrast of an image by adjusting the range of light intensity within an image to match the range of possible display values. Note that Autoscale does not change your data. It just changes how it is displayed.

Each pixel in an image has a numerical value ascribed to it to describe its intensity. The bit depth—the number of possible values—depends on the number of bits used in the image. Eight bits, for example, gives 256 values to express intensity where 0 is completely black, 255 is completely white, and 1 through 254 display increasingly lighter shades of grey.

ImageJ can collect the intensity information about each pixel from an image or stack and create a histogram. (You can see it by selecting Histogram under the Analyze menu.) Here is the histogram of a one particular image:

![Histogram of 15test.ome](image)

Notice that the histogram heavily skews right. Even though there are 256 possible values, only 0 through 125 are being used. Autoscale adjusts the image so the smallest and largest number in that image or stack’s histogram become the darkest and brightest settings. For this image, pixels with the intensity of 125 will be displayed in pure white. The other values will be adjusted too to help show contrast between values that were too insignificant to see before.

Here is one image Bio-Formats imported with and without using Autoscale:
Autoscale readjusts the image based on the highest value in the entire data set. This means if the highest value in your dataset is close to maximum display value, Autoscale’s adjusting may be undetectable to the eye.

ImageJ/Fiji also has its own tools for adjusting the image, which are available by selecting Brightness/Contrast, which is under the Adjust option in the Image menu.

5.6 Managing memory in ImageJ/Fiji using Bio-Formats

When dealing with a large stack of images, you may receive a warning like this:
This means the allotted memory is less than what Bio-Formats needs to load all the images. If you have a very large data set, you may have to:

- View your stack with Data Browser
- Crop the view area
- Open only a subset of images
- Use Virtual Stack
- Increase ImageJ/Fiji’s memory.

If your files contain JPEG or JPEG-2000 images, you may see this memory warning even if your file size is smaller than the amount of allocated memory. This is because compressed images like JPEG need to be decompressed into memory before being displayed and require more memory than their file size suggests. If you are having this issue, try utilizing one of the memory management tools below.

5.6.1 View your stack with Data Browser

Data Browser is another part of Bio-Formats that enables users to view large 3, 4, or 5-D datasets by caching a subset of all the images available. This enables users to view a stack that is bigger than the computer’s memory.

You can select Data Browser as an option for View stack with, the leftmost, uppermost option in the Bio-Formats Import Options screen.
Note that when you use Data Browser, other features like cropping and specifying range are not available. You can, however, adjust the size of the image cache in the Data Browser after you open the files. You can read more about it on LOCI’s Data Browser page²⁹.

5.6.2 Cropping the view area

Crop on Import is useful if your images are very large and you are only interested in one specific section of the stack you are importing. If you select this feature, you will see a screen where you can enter the height and width (in pixels) of the part of image you want to see. Note that these measurements are from the top left corner of the image.

5.6.3 Opening only a subset of images

The **Specify Range for Each Series** option is useful for viewing a portion of a data set where all the plane images are encapsulated into one file (e.g. the Zeiss LSM format). If your file has a large quantity of images, you can specify which channels, Z-planes, and times you want to load.

5.6.4 Use Virtual Stack

Virtual Stack conserves memory by not loading specific images until necessary. Note that unlike Data Browser, Virtual Stack does not contain a buffer and may produce choppy animations.

5.6.5 Increasing ImageJ/Fiji’s memory

Finally, you can also increase the amount of the computer memory devoted to ImageJ/Fiji by selecting **Memory & Threads** under the **Edit** menu.

²⁹http://www.loci.wisc.edu/software/data-browser
Generally, allocating more than 75% of the computer’s total memory will cause ImageJ/Fiji to become slow and unstable.

Please note that unlike the other three features, ImageJ/Fiji itself provides this feature and not Bio-Formats. You can find out more about this feature by looking at ImageJ’s documentation\(^\text{30}\).

5.7 Upgrading the Bio-Formats importer for ImageJ to the latest trunk build

1) Download the latest trunk build of `loci_tools.jar` from Bio-Formats downloads\(^\text{31}\).

\(^{30}\)http://rsbweb.nih.gov/ij/docs/menus/edit.html#options
\(^{31}\)http://downloads.openmicroscopy.org/bio-formats/
2) Internet Explorer will ask you where it should save `loci_tools.jar`. Select ‘Desktop’.

3. Start ImageJ.

4. Select “Plugins > Utilities > ImageJ Properties...”
5) Scroll through the **Properties** window until you find a line that starts with “Menus.getPlugInsPath” (highlighted).

6) Leaving ImageJ and the Properties window open, click the **Start** button, then **My Computer**.
7) Type the path from step 5 into the address bar in the **My Computer** window, then hit the **Enter** key. The path should look something like this:

C:\PROGRA~1\ImageJ\plugins\

8) Click “loci_tools.jar” on your Desktop and drag it to the “plugins” window.
9. If you are asked to replace an existing file, click “Yes”.

10. Close ImageJ.

11. Open ImageJ.

12) ImageJ now recognizes the latest trunk build of the Bio-Formats importer.

5.7. Upgrading the Bio-Formats importer for ImageJ to the latest trunk build
OMERO.importer uses Bio-Formats to read image pixels and propagate metadata into the OMERO.server system. Please refer to the OMERO documentation\(^1\) for further information.

\(^1\)http://www.openmicroscopy.org/site/support/omero5/
7.1 BISQUE

The BISQUE1 (Bio-Image Semantic Query User Environment) Database, developed at the Center for Bio-Image Informatics at UCSB, was developed for the exchange and exploration of biological images. The Bisque system supports several areas useful for imaging researchers from image capture to image analysis and querying. The bisque system is centered around a database of images and metadata. Search and comparison of datasets by image data and content is supported. Novel semantic analyses are integrated into the system allowing high level semantic queries and comparison of image content.

Bisque integrates with Bio-Formats by calling the \textit{showinf} command line tool.

7.2 OME Server

OME2 is a set of software that interacts with a database to manage images, image metadata, image analysis and analysis results. The OME system is capable of leveraging Bio-Formats to import files.

Please note - the OME server is no longer maintained and has now been superseded by the OMERO server3.

7.2.1 Installation

For OME Perl v2.6.14 and later, the command line installer automatically downloads the latest \texttt{loci_tools.jar} and places it in the proper location. This location is configurable, but is \texttt{/OME/java/loci_tools.jar} by default.

For a list of what was recognized for a particular import into the OME server, go to the Image details page in the web interface, and click the “Image import” link in the upper right hand box.

Bio-Formats is capable of parsing original metadata for supported formats, and standardizes what it can into the OME data model. For the rest, it expresses the metadata in OME terms as key/value pairs using an OriginalMetadata custom semantic type. However, this latter method of metadata representation is of limited utility, as it is not a full conversion into the OME data model.

Bio-Formats is enabled in OME v2.6.1 for all formats except:

- OME-TIFF
- Metamorph HTD
- Deltavision DV
- Metamorph STK
- Bio-Rad PIC
- Zeiss LSM
- TIFF
- BMP

1http://www.bioimage.ucsb.edu/bisque
2http://openmicroscopy.org/site/support/legacy/ome-server
3http://www.openmicroscopy.org/site/support/omero5/
4http://cvs.openmicroscopy.org.uk/
• DICOM
• OME-XML

The above formats have their own Perl importers that override Bio-Formats, meaning that Bio-Formats is not used to process them by default. However, you can override this behavior (except for Metamorph HTD, which Bio-Formats does not support) by editing an OME database configuration value:

% psql ome

to see the current file format reader list:

ome=# select value from configuration where name='import_formats';

value
--
['OME::ImportEngine::OMETIFFreader','OME::ImportEngine::MetamorphHTDFormat',
 'OME::ImportEngine::DVreader','OME::ImportEngine::STKreader',
 'OME::ImportEngine::BioradReader','OME::ImportEngine::LSMreader',
 'OME::ImportEngine::TIFFreader','OME::ImportEngine::BMPreader',
 'OME::ImportEngine::DICOMreader','OME::ImportEngine::XMLreader',
 'OME::ImportEngine::BioFormats']
(1 row)

To remove extraneous readers from the list:

ome=# update configuration set value='["OME::ImportEngine::MetamorphHTDFormat",
"OME::ImportEngine::XMLreader","OME::ImportEngine::BioFormats"]' where
name='import_formats';
UPDATE 1
ome=# select value from configuration where name='import_formats';

value
--
['OME::ImportEngine::MetamorphHTDFormat','OME::ImportEngine::XMLreader',
 'OME::ImportEngine::BioFormats']
(1 row)

To reset things back to how they were:

ome=# update configuration set value='["OME::ImportEngine::OMETIFFreader",
"OME::ImportEngine::MetamorphHTDFormat","OME::ImportEngine::DVreader",
"OME::ImportEngine::STKreader","OME::ImportEngine::BioradReader",
"OME::ImportEngine::TIFFreader","OME::ImportEngine::BMPreader",
"OME::ImportEngine::DICOMreader","OME::ImportEngine::XMLreader","OME::ImportEngine::BioFormats"]' where
name='import_formats';

Lastly, please note that Li-Cor L2D files cannot be imported into an OME server (see this Trac ticket\(^5\) for details). Since the OME perl server has been discontinued, we have no plans to fix this limitation.

7.2.2 Upgrading

You can upgrade your OME server installation to take advantage of a new Bio-Formats release\(^6\) by overwriting the old loci_tools.jar with the new one.

7.2.3 Source Code

The source code for the Bio-Formats integration with OME server spans three languages, using piped system calls in both directions to communicate, with imported pixels written to OMEIS pixels files. The relevant source files are:

\(^5\)http://dev.loci.wisc.edu/trac/software/ticket/266
\(^6\)http://downloads.openmicroscopy.org/bio-formats/
• OmeisImporter.java\(^7\) – omef Java command line tool
• BioFormats.pm\(^8\) – Perl module for OME Bio-Formats importer
• omeis.c\(^9\) – OMEIS C functions for Bio-Formats (search for “bioformats” case insensitively to find relevant sections)

\(^7\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/ome/OmeisImporter.java
\(^8\)http://svn.openmicroscopy.org.uk/svn/ome/trunk/src/perl2/OME/ImportEngine/BioFormats.pm
\(^9\)http://svn.openmicroscopy.org.uk/svn/ome/trunk/src/C/omeis/omeis.c
8.1 Command line tools

There are several scripts for using Bio-Formats on the command line.

8.1.1 Installation

Download `bftools.zip`¹, unzip it into a new folder, then download `loci_tools.jar`² and place it in the same folder.

The zip file contains both Unix scripts and Windows batch files. Currently available tools include:

- `showinf` Prints information about a given image file to the console, and displays the image itself in the Bio-Formats image viewer.
- `ijview` Displays the given image file in ImageJ using the Bio-Formats Importer plugin (requires `ij.jar`).
- `bfconvert` Converts an image file from one format to another. Bio-Formats must support writing to the output file (determined by extension; see the Supported Formats).
- `formatlist` Displays a list of supported file formats in HTML, plaintext or XML.
- `xmlindent` A simple XML prettifier similar to `xmllint --format` but more robust in that it attempts to produce output regardless of syntax errors in the XML.
- `xmlvalid` A command-line XML validation tool, useful for checking an OME-XML document for compliance with the OME-XML schema.
- `omeul` A command-line client-side import tool for OME.
- `tiffcomment` Dumps the comment from the given TIFF file’s first IFD entry; useful for examining the OME-XML block in an OME-TIFF file.

All scripts require `loci_tools.jar` in the same directory as the command line tools.

8.1.2 Tutorial

There is a Bio-Formats command line tools tutorial³ on the FARSIGHT web site.

8.1.3 Using the tools directly from source

If you have checked out the source from the Git repository you already have the command line tools in the `tools` directory. You can configure the scripts to use your source tree instead of `loci_tools.jar` in the same directory by following these steps:

1. Point your CLASSPATH to the checked-out directory and the JAR files in the `jar` folder.
 - E.g. on Windows with Java 1.6 or later, if you have checked out the source at `C:\code\loci`, set your CLASSPATH environment variable to the value `C:\code\loci\jar*;C:\code\loci`. You can access the environment variable configuration area by right-clicking on My Computer, choosing Properties, Advanced tab, Environment Variables button.
2. Compile the source with ant compile.

3. Set the LOCI_DEVEL environment variable to any value (the variable just needs to be defined).

8.1.4 Version checker

If you run bftools outside of the OMERO environment, you may encounter an issue with the automatic version checker causing a tool to crash when trying to connect to upgrade.openmicroscopy.org.uk. The error message will look something like this:

```
Failed to compare version numbers
java.io.IOException: Server returned HTTP response code: 400 for URL: http://upgrade.openmicroscopy.org.uk?version=4.4.8;os.name=Linux;os.version=2.6.32-358.6.2.el6.x86_64;os.arch=amd64;java.runtime.version=1.6.0_24-b24;java.vm.vendor=Sun Microsystems Inc.;bioformats.caller=Bio-Formats+utilities
```

To avoid this issue, call the tool with the `-no-upgrade` parameter.

8.2 FARSIGHT

FARSIGHT\(^4\) is a collection of modules for image analysis created by LOCI’s collaborators at the University of Houston\(^5\). These open source modules are built on the ITK\(^6\) library and thus can take advantage of ITK’s support for Bio-Formats to process otherwise unsupported image formats.

The principal FARSIGHT module that benefits from Bio-Formats is the Nucleus Editor\(^6\), though in principle any FARSIGHT-based code that reads image formats via the standard ITK mechanism will be able to leverage Bio-Formats.

See also:

- FARSIGHT Downloads page\(^7\)
- FARSIGHT HowToBuild tutorial\(^8\)

8.3 i3dcore

i3dcore\(^9\), also known as the CBIA 3D image representation library, is a 3D image processing library developed at the Centre for Biomedical Image Analysis\(^10\). Together with i3dalgo\(^11\) and i4dcore\(^12\), i3dcore forms a continuously developed templated cross-platform C++ suite of libraries for multidimensional image processing and analysis.

i3dcore is capable of reading images with Bio-Formats using Java for C++\(^13\) (java4cpp).

See also:

- Download i3dcore\(^14\)
- CBIA Software Development\(^15\)

\(^4\)http://www.farsight-toolkit.org/
\(^5\)http://www.uh.edu/
\(^6\)http://www.farsight-toolkit.org/wiki/NucleusEditor
\(^7\)http://www.farsight-toolkit.org/wiki/Special:FarsightDownloads
\(^8\)http://www.farsight-toolkit.org/wiki/FARSIGHT_HowToBuild
\(^9\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html
\(^10\)http://cbia.fi.muni.cz/software-development.html
\(^11\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dalgo/index.html
\(^12\)http://cbia.fi.muni.cz/user_dirs/of_doc/libi4d.html
\(^13\)http://java4cpp.kapott.org/
\(^14\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html#download
\(^15\)http://cbia.fi.muni.cz/software-development.html
8.4 ImgLib

ImgLib16 is a multidimensional image processing library. It provides a general mechanism for writing image analysis algorithms, without writing case logic for bit depth17, or worrying about the source of the pixel data (arrays in memory, files on disk, etc.). The SCIFIO18 project provides an ImgOpener19 utility class for reading data into ImgLib2 data structures using Bio-Formats.

8.5 ITK

The Insight Toolkit20 (ITK) is an open-source, cross-platform system that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional data.

ITK provides an ImageIO plug-in structure that works via discovery through a dependency injection scheme. This allows a program built on ITK to load plug-ins for reading and writing different image types without actually linking to the ImageIO libraries required for those types. Such encapsulation automatically grants two major boons: firstly, programs can be easily extended just by virtue of using ITK (developers do not have to specifically accommodate or anticipate what plug-ins may be used). Secondly, the architecture provides a distribution method for open source software, like Bio-Formats, which have licenses that might otherwise exclude them from being used with other software suites.

The SCIFIO ImageIO21 plugin provides an for ITK imageIO base that uses Bio-Formats22 to read and write supported life sciences file formats. This plugin allows any program built on ITK to read any of the image types supported by Bio-Formats.

8.5.1 Prerequisites

You should have CMake23 installed, to allow the configuration of ITK builds. If you want the latest ITK development build, you will need Git24 as well.

8.5.2 Installation

Simply download ITK from the Kitware software page25. Using CMake, set the following configuration flag:

\texttt{Fetch_SCIFIO = \text{ON}}

\textbf{Note}: This flag is only visible in "advanced" mode within CMake

If you would like to use the utility classes included with the SCIFIO imageIO, also set the flag:

\texttt{BUILD_TESTING = \text{ON}}

Then build ITK as normal. It will automatically download and build the latest SCIFIO imageIO plugin.

8.5.3 Usage

Applications using the installed ITK should automatically defer to the SCIFIO ImageIO, and thus Bio-Formats, when reading or saving images not natively supported by ITK.

16http://imglib2.net/
17http://en.wikipedia.org/wiki/Color_depth
18http://scif.io/
19https://github.com/scifio/scifio/blob/master/scifio/src/main/java/io/scif/img/ImgOpener.java
20http://itk.org/
21https://github.com/scifio/scifio-imageio
22http://farsight-toolkit.org/wiki/Bio-Formats
23http://www.cmake.org/
24http://git-scm.com/
25http://www.itk.org/ITK/resources/software.html
To use the SCIFIO test utility, run:

```
ITKIOSCIFIOTestDriver
```

from your `$(ITK_BUILD)/bin` directory. This program has four separate applications that can be directly invoked using the syntax:

```
ITKIOSCIFIOTestDriver [Program to run] [Program arguments]
```

The programs are as follows:

- **itkSCIFIOImageInfoTest** Displays basic information to verify the SCIFIO image IO works, using .fake images.
- **itkSCIFIOImageIOTest** Reads an input image, and writes it out as a specified type
- **itkRGBSCIFIOImageIOTest** Same as itkSCIFIOImageIOTest but for RGB\(^{26}\) types
- **itkVectorImageSCIFIOImageIOTest** Same as itkSCIFIOImageIOTest but for VectorImage\(^{27}\) type

For example, to convert a .czi image to a .tif, you would use:

```
ITKIOSCIFIOTestDriver itkSCIFIOImageIOTest in.czi out.tif
```

8.5.4 Troubleshooting

Please send any issues, suggestions or requests to the [insight users mailing list]\(^ {28}\).

8.6 Qu for MATLAB

Qu for MATLAB\(^{29}\) is a MATLAB toolbox for the visualization and analysis of N-dimensional datasets targeted to the field of biomedical imaging, developed by Aaron Ponti.

- Uses Bio-Formats to read files
- Open source software available under the Mozilla Public License

See also:

Qu for MATLAB [download page]\(^ {30}\)

8.7 Subimager

Subimager\(^ {31}\), the SUBprocess IMAGE servER, is an HTTP server that uses Bio-Formats as a back-end to serve .TIF images. Subimager is designed to be run as a subprocess of CellProfiler to provide CellProfiler with the capability to read and write a variety of image formats. It can be used as a stand-alone image server. It was developed by the [Broad Institute]\(^ {32}\) to facilitate integration with their [CellProfiler]\(^ {33}\) image analysis application.

\(^{26}\) http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html

\(^{27}\) http://www.itk.org/Doxygen/html/classitk_1_1VectorImage.html

\(^{28}\) http://www.itk.org/ITK/help/mailing.html

\(^{29}\) http://www.scs2.net/home/index.php?option=com_content&view=article&id=46%3Aqu-for-matlab&catid=34%3Aqu&Itemid=55

\(^{30}\) http://www.scs2.net/home/index.php?option=com_content&view=article&id=46%3Aqu-for-matlab&catid=34%3Aqu&Itemid=55&limitstart=3

\(^{31}\) https://github.com/CellProfiler/subimager

\(^{32}\) http://www.broadinstitute.org/

\(^{33}\) http://www.cellprofiler.org/
9.1 IDL

IDL\(^1\) (Interactive Data Language) is a popular data visualization and analysis platform used for interactive processing of large amounts of data including images.

IDL possesses the ability to interact with Java applications via its IDL-Java bridge. Karsten Rodenacker has written a script that uses Bio-Formats to read in image files to IDL.

9.1.1 Installation

Download the \texttt{ij_read_bio_formats.pro}\(^2\) script from Karsten Rodenacker’s IDL goodies \((?)\)\(^3\) web site. See the comments at the top of the script for installation instructions and caveats.

9.1.2 Upgrading

To use a newer version of Bio-Formats, overwrite the requisite JAR files with the newer version\(^4\) and restart IDL.

9.2 KNIME

KNIME\(^5\) (Konstanz Information Miner) is a user-friendly and comprehensive open-source data integration, processing, analysis, and exploration platform. KNIME supports image import using Bio-Formats using the KNIME Image Processing\(^6\) (a.k.a. KNIP) plugin.

9.3 MATLAB

MATLAB\(^7\) is a high-level language and interactive environment that facilitates rapid development of algorithms for performing computationally intensive tasks.

Calling Bio-Formats from MATLAB is fairly straightforward, since MATLAB has built-in interoperability with Java. We have created a set of scripts\(^8\) for reading image files. Note the minimum supported MATLAB version is R2007b (7.5).

\begin{footnotesize}
\begin{enumerate}
\item \url{http://www.exelisvis.com/ProductsServices/IDL.aspx}
\item \url{http://www.helmholtz-muenchen.de/ibb/homepage/karsten.rodenacker/IDL/_pro/ij_read_bio_formats.pro}
\item \url{http://www.helmholtz-muenchen.de/ibb/homepage/karsten.rodenacker/IDL/index.php}
\item \url{http://downloads.openmicroscopy.org/bio-formats/}
\item \url{http://knime.org/}
\item \url{http://tech.knime.org/community/image-processing}
\item \url{http://www.mathworks.com/products/matlab/}
\item \url{https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab}
\end{enumerate}
\end{footnotesize}
9.3.1 Installation

Download bfm matlab.zip and loci_tools.jar from the Bio-Formats downloads page9. Unzip bfm matlab.zip into a new folder, move loci_tools.jar into the same folder and add this folder to your MATLAB path.

9.3.2 Usage

Please see Using Bio-Formats in MATLAB for usage instructions. If you intend to extend the existing .m files, please also see the developer page for more information on how to use Bio-Formats in general.

9.3.3 Performance

In our tests (MATLAB R14 vs. java 1.6.0_20), the script executes at approximately half the speed of our showinf command line tool, due to overhead from copying arrays.

9.3.4 Upgrading

To use a newer version of Bio-Formats, overwrite loci_tools.jar with the newer version10 and restart MATLAB.

9.3.5 Alternative scripts

Several other groups have developed their own MATLAB scripts that use Bio-Formats, including the following:

- https://github.com/prakatmac/bf-tools/
- imread for multiple life science image file formats11

9.4 VisAD

The VisAD12 visualization toolkit is a Java component library for interactive and collaborative visualization and analysis of numerical data. VisAD uses Bio-Formats to read many image formats, notably TIFF.

9.4.1 Installation

The visad.jar file has Bio-Formats bundled inside, so no further installation is necessary.

9.4.2 Upgrading

It should be possible to use a newer version of Bio-Formats by putting the latest loci_tools.jar13 or bio-formats.jar14 before visad.jar in the class path. Alternately, you can create a “VisAD Lite” using the make lite command from VisAD source, and use the resultant visad-lite.jar, which is a stripped down version of VisAD without sample applications or Bio-Formats bundled in.

9http://downloads.openmicroscopy.org/bio-formats/
10http://downloads.openmicroscopy.org/bio-formats/
11http://www.mathworks.com/matlabcentral/fileexchange/32920-imread-for-multiple-life-science-image-file-formats
12http://www.ssec.wisc.edu/%7Ebillh/visad.html
13http://downloads.openmicroscopy.org/bio-formats/
14http://downloads.openmicroscopy.org/bio-formats/
10.1 Bitplane Imaris

Imaris is Bitplane’s core scientific software module that delivers all the necessary functionality for data visualization, analysis, segmentation and interpretation of 3D and 4D microscopy datasets. Combining speed, precision and ease-of-use, Imaris provides a complete set of features for working with three- and four-dimensional multi-channel images of any size, from a few megabytes to multiple gigabytes in size.

As of version 7.2, Imaris integrates with Fiji, which includes Bio-Formats. See this page for a detailed list of Imaris’ features.

10.2 CellProfiler

CellProfiler—developed by the Broad Institute’s Imaging Platform—is free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automatically. CellProfiler uses Bio-Formats to read images from disk, as well as write movies.

10.2.1 Installation

The CellProfiler distribution comes with Bio-Formats included, so no further installation is necessary.

10.2.2 Upgrading

It should be possible to use a newer version of Bio-Formats by replacing the bundled loci_tools.jar with a newer version.

- For example, on Mac OS X, Ctrl+click the CellProfiler icon, choose Show Package Contents, and replace the following files:
 - Contents/Resources/bioformats/loci_tools.jar
 - Contents/Resources/lib/python2.5/bioformats/loci_tools.jar

See also:
CellProfiler web site

10.3 Comstat2

Comstat2 is a Java-based computer program for the analysis and treatment of biofilm images in 3D. It is the Master’s project of Martin Vorregaard.

Comstat2 uses the Bio-Formats Importer plugin for ImageJ to read files in TIFF and Leica LIF formats.

See also:
Comstat2 - a modern 3D image analysis environment for biofilms

10.4 Endrov

Endrov10 (or http://www.endrov.net) (EV) is a multi-purpose image analysis program developed by the Thomas Burglin group11 at Karolinska Institute12, Department of Biosciences and Nutrition.

10.4.1 Installation

The EV distribution comes bundled with the core Bio-Formats library (\texttt{bio-formats.jar}), so no further installation is necessary.

10.4.2 Upgrading

It should be possible to use a newer version of Bio-Formats by downloading the latest \texttt{bio-formats.jar}13 and putting it into the \texttt{libs} folder of the EV distribution, overwriting the old file.

You could also include some optional libraries, to add support for additional formats, if desired.

10.5 FocalPoint

FocalPoint14 is an image browser, similar to Windows Explorer15 or other file manager16 application, specifically designed to work with more complex image types. FocalPoint uses Bio-Formats to generate thumbnails for some formats.

10.5.1 Installation

FocalPoint is bundled with Bio-Formats, so no further installation is necessary.

10.5.2 Upgrading

It should be possible to use a newer version of Bio-Formats17 by overwriting the old \texttt{loci_tools.jar} within the FocalPoint distribution. For Mac OS X, you will have to control click the FocalPoint program icon, choose “Show Package Contents” and navigate into Contents/Resources/Java to find the \texttt{loci_tools.jar} file.

10.6 Graphic Converter

Graphic Converter18 is a Mac OS application for opening, editing, and organizing photos. Versions 6.4.1 and later use Bio-Formats to open all file formats supported by Bio-Formats.

9http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=5628
10https://github.com/mahogany/Endrov
11http://www.biosci.ki.se/groups/tbu
12http://www.ki.se/
13http://downloads.openmicroscopy.org/bio-formats/
14http://www.bioinformatics.bbsrc.ac.uk/projects/focalpoint/
15http://en.wikipedia.org/wiki/Windows_Explorer
16http://en.wikipedia.org/wiki/File_manager
17http://downloads.openmicroscopy.org/bio-formats/
18http://www.lemkesoft.com
10.7 Icy

Icy\(^{19}\) is an open-source image analysis and visualization software package that combines a user-friendly graphical interface with the ability to write scripts and plugins that can be uploaded to a centralized website. It uses Bio-Formats internally to read images and acquisition metadata, so no further installation is necessary.

10.8 imago

Mayachitra imago\(^{20}\) is an advanced desktop image management package that enables scientists to easily store, manage, search, and analyze 5D biological images and their analysis results. imago integrates flexible annotation and metadata management with advanced image analysis tools.

imago uses Bio-Formats to read files in some formats, including Bio-Rad PIC, Image-Pro Workspace, Metamorph TIFF, Leica LCS LEI, Olympus Fluoview FV1000, Nikon NIS-Elements ND2, and Zeiss LSM.

A free 30-day trial version of imago is available here\(^{21}\).

10.9 iqm

Iqm\(^{22}\) is an image processing application written in Java. It is mainly constructed around the Java JAI library and furthermore it incorporates the functionality of the popular ImageJ image processing software.

Because iqm integrates with ImageJ, it can take advantage of the Bio-Formats ImageJ plugin to read image data.

10.10 Macnification

Macnification\(^{23}\) is a Mac OS X application for organizing, editing, analyzing and annotating microscopic images, designed for ease of use. It is being developed by Orbicule\(^{24}\).

Macnification uses Bio-Formats to read files in some formats, including Gatan DM3, ICS, ImagePro SEQ, ImagePro IPW, Metamorph STK, OME-TIFF and Zeiss LSM.

See also:
Free trial download\(^{25}\)

10.11 MIPAV

The MIPAV\(^{26}\) (Medical Image Processing, Analysis, and Visualization) application—developed at the Center for Information Technology\(^{27}\) at the National Institutes of Health\(^{28}\)—enables quantitative analysis and visualization of medical images of numerous modalities such as PET, MRI, CT, or microscopy. You can use Bio-Formats as a plugin for MIPAV to read images in the formats it supports.

\(^{19}\)http://icy.bioimageanalysis.org/
\(^{20}\)http://mayachitra.com/imago/index.html
\(^{21}\)http://mayachitra.com/imago/download-trial.php
\(^{22}\)http://code.google.com/p/iqm/
\(^{23}\)http://www.orbicule.com/macnification/
\(^{24}\)http://www.orbicule.com
\(^{25}\)http://www.orbicule.com/macnification/download
\(^{26}\)http://mipav.cit.nih.gov/
\(^{27}\)http://cit.nih.gov/
\(^{28}\)http://nih.gov/
10.11.1 Installation

Follow these steps to install the Bio-Formats plugin for MIPAV:

1. Download `loci_tools.jar` and drop it into your MIPAV folder.
2. Download the plugin source code into your user `mipav/plugins` folder.
3. From the command line, compile the plugin with:

   ```
   cd mipav/plugins
   javac -cp $MIPAV:$MIPAV/loci\_tools.jar PlugInBioFormatsImporter.java
   ```

4. Where $MIPAV is the location of your MIPAV installation.
5. Add `loci_tools.jar` to MIPAV’s class path:
 - How to do so depends on your platform.
 - E.g., in Mac OS X, edit the `mipav.app/Contents/Info.plist` file.

See the `readme.txt` for more information.

To upgrade, just overwrite the old `loci_tools.jar` with the latest one. You may want to download the latest version of MIPAV first, to take advantage of new features and bug-fixes.

10.12 Vaa3D

Vaa3D, developed by the Peng Lab at the HHMI Janelia Farm Research Campus, is a handy, fast, and versatile 3D/4D/5D Image Visualization & Analysis System for Bioimages & Surface Objects. Vaa3D can use Bio-Formats via the Bio-Formats C++ bindings to read images.

10.13 VisBio

VisBio is a biological visualization tool designed for easy visualization and analysis of multidimensional image data. VisBio uses Bio-Formats to import files as the Bio-Formats library originally grew out of our efforts to continually expand the file format support within VisBio.

10.13.1 Installation

VisBio is bundled with Bio-Formats, so no further installation is necessary.

10.13.2 Upgrading

It should be possible to use a newer version of Bio-Formats by overwriting the old `bio-formats.jar` and optional libraries within the VisBio distribution. For Mac OS X, you’ll have to control click the VisBio program icon, choose “Show Package Contents” and navigate into Contents/Resources/Java to find the JAR files.

29 http://downloads.openmicroscopy.org/bio-formats/
30 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/utils/mipav/PlugInBioFormatsImporter.java
31 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/utils/mipav/readme.txt
32 http://downloads.openmicroscopy.org/bio-formats/
33 http://vaa3d.org
34 http://penglab.janelia.org/
35 http://www.hhmi.org/janelia/
37 http://www.loci.wisc.edu/visbio/
38 http://downloads.openmicroscopy.org/bio-formats/
10.14 XuvTools

XuvTools\(^{39}\) is automated 3D stitching software for biomedical image data. As of release 1.8.0, XuvTools uses Bio-Formats to read image data.

\(^{39}\text{http://www.xuvtools.org}\)
Part III

Developer Documentation
11.1 An in-depth guide to using Bio-Formats

11.1.1 Overview

This document describes various things that are useful to know when working with Bio-Formats. It is recommended that you obtain the Bio-Formats source by following the directions on the source code page, rather than using an official release. It is also recommended that you have a copy of the Javadocs nearby - the notes that follow will make more sense when you see the API.

For a complete list of supported formats, see the Bio-Formats supported formats table.

For a few working examples of how to use Bio-Formats, see these Github pages.

11.1.2 Basic file reading

Bio-Formats provides several methods for retrieving data from files in an arbitrary (supported) format. These methods fall into three categories: raw pixels, core metadata, and format-specific metadata. All methods described here are present and documented in loci.formats.IFormatReader - it is advised that you take a look at the source and/or the Javadocs. In general, it is recommended that you read files using an instance of ImageReader. While it is possible to work with readers for a specific format, ImageReader contains additional logic to automatically detect the format of a file and delegate subsequent calls to the appropriate reader.

Prior to retrieving pixels or metadata, it is necessary to call setId(String) on the reader instance, passing in the name of the file to read. Some formats allow multiple series (5D image stacks) per file; in this case you may wish to call setSeries(int) to change which series is being read.

Raw pixels are always retrieved one plane at a time. Planes are returned as raw byte arrays, using one of the openBytes methods.

Core metadata is the general term for anything that might be needed to work with the planes in a file. A list of core metadata fields is given below, with the appropriate accessor method in parentheses:

- image width (getSizeX())
- image height (getSizeY())
- number of series per file (getSeriesCount())
- total number of images per series (getImageCount())
- number of slices in the current series (getSizeZ())
- number of timepoints in the current series (getSizeT())

1 http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/
2 http://github.com/openmicroscopy/bioformats/tree/develop/components/bio-formats/utils
3 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatReader.java
6 http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#setSeries(int)
7 http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#getSizeX()
8 http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#getSizeY()
9 http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#getSeriesCount()
10 http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#getImageCount()
11 http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#getSizeZ()
12 http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#getSizeT()}
• number of actual channels in the current series \(\text{getSizeC}() \)
• number of channels per image \(\text{getRGBChannelCount}() \)
• the ordering of the images within the current series \(\text{getDimensionOrder}() \)
• whether each image is RGB \(\text{isRGB}() \)
• whether the pixel bytes are in little-endian order \(\text{isLittleEndian}() \)
• whether the channels in an image are interleaved \(\text{isInterleaved}() \)
• the type of pixel data in this file \(\text{getPixelType}() \)

All file formats are guaranteed to accurately report core metadata.

Format-specific metadata refers to any other data specified in the file - this includes acquisition and hardware parameters, among other things. This data is stored internally in a \texttt{java.util.Hashtable}, and can be accessed in one of two ways: individual values can be retrieved by calling \texttt{getMetadataValue(String)}\(^\text{20}\), which gets the value of the specified key. Alternatively, \texttt{getMetadata()}\(^\text{21}\) will return the entire Hashtable. Note that the keys in this Hashtable are different for each format, hence the name “format-specific metadata”.

See \textit{Bio-Formats metadata processing} for more information on the metadata capabilities that Bio-Formats provides.

11.1.3 File reading extras

The previous section described how to read pixels as they are stored in the file. However, the native format is not necessarily convenient, so Bio-Formats provides a few extras to make file reading more flexible.

• There are a few “wrapper” readers (that implement \texttt{IFormatReader}) that take a reader in the constructor, and manipulate the results somehow, for convenience. Using them is similar to the \texttt{java.io.InputStream/OutputStream} model: just layer whichever functionality you need by nesting the wrappers.

 – \texttt{BufferedImageReader}\(^\text{22}\) extends \texttt{IFormatReader}, and allows pixel data to be returned as \texttt{BufferedImages} instead of raw byte arrays.

 – \texttt{FileStitcher}\(^\text{23}\) extends \texttt{IFormatReader}, and uses advanced pattern matching heuristics to group files that belong to the same dataset.

 – \texttt{ChannelSeparator}\(^\text{24}\) extends \texttt{IFormatReader}, and makes sure that all planes are grayscale - RGB images are split into 3 separate grayscale images.

 – \texttt{ChannelMerger}\(^\text{25}\) extends \texttt{IFormatReader}, and merges grayscale images to RGB if the number of channels is greater than 1.

 – \texttt{ChannelFiller}\(^\text{26}\) extends \texttt{IFormatReader}, and converts indexed color images to RGB images.

 – \texttt{MinMaxCalculator}\(^\text{27}\) extends \texttt{IFormatReader}, and provides an API for retrieving the minimum and maximum pixel values for each channel.

 – \texttt{DimensionSwapper}\(^\text{28}\) extends \texttt{IFormatReader}, and provides an API for changing the dimension order of a file.

\(^{13}\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#getSizeC()

\(^{14}\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#getRGBChannelCount()

\(^{15}\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#getDimensionOrder()

\(^{16}\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#isRGB()

\(^{17}\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#isLittleEndian()

\(^{18}\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#isInterleaved()

\(^{19}\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#getPixelType()

\(^{21}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatReader.html#BufferedImageReader

\(^{22}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatReader.html#FileStitcher

\(^{23}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatReader.html#ChannelSeparator

\(^{24}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatReader.html#ChannelMerger

\(^{25}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatReader.html#ChannelFiller

\(^{26}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatReader.html#MinMaxCalculator

\(^{27}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatReader.html#DimensionSwapper

\(^{28}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatReader.html#DimensionSwapper
• **ImageTools**\(^{29}\) and **loci.formats.gui.AWTImageTools**\(^{30}\) provide a number of methods for manipulating BufferedImage and primitive type arrays. In particular, there are methods to split and merge channels in a BufferedImage/array, as well as converting to a specific data type (e.g. convert short data to byte data).

11.1.4 Writing files

The following file formats can be written using Bio-Formats:

- TIFF (uncompressed, LZW, JPEG, or JPEG-2000)
- OME-TIFF (uncompressed, LZW, JPEG, or JPEG-2000)
- JPEG
- PNG
- AVI (uncompressed)
- QuickTime (uncompressed is supported natively; additional codecs use QTJava)
- Encapsulated PostScript (EPS)
- OME-XML (not recommended)

The writer API (see **loci.formats.IFormatWriter**\(^{31}\)) is very similar to the reader API, in that files are written one plane at a time (rather than all at once).

All writers allow the output file to be changed before the last plane has been written. This allows you to write to any number of output files using the same writer and output settings (compression, frames per second, etc.), and is especially useful for formats that do not support multiple images per file.

Please see **loci.formats.tools.ImageConverter**\(^{32}\) and [this guide to exporting to OME-TIFF files](#) for examples of how to write files.

11.1.5 Arcane notes and implementation details

Known oddities:

- Importing multi-file formats (Leica LEI, PerkinElmer, FV1000 OIF, ICS, and Prairie TIFF, to name a few) can fail if any of the files are renamed. There are “best guess” heuristics in these readers, but they are not guaranteed to work in general. So please do not rename files in these formats.
- If you are working on a Macintosh, make sure that the data and resource forks of your image files are stored together. Bio-Formats does not handle separated forks (the native QuickTime reader tries, but usually fails).

11.2 Generating test images

Sometimes it is nice to have a file of a specific size or pixel type for testing. To generate a file (that contains gradient images):

```
touch "my-special-test-file&pixelType=uint8&sizeX=8192&sizeY=8192.fake"
```

Whatever is before the & is the image name; remaining key value pairs should be pretty self-explanatory. Just replace the values with whatever you need for testing.

There are a few other keys that can be added as well:

\(^{29}\) https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/ImageTools.java
\(^{30}\) https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/gui/AWTImageTools.java
\(^{31}\) https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatWriter.java
<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sizeZ</td>
<td>number of Z sections</td>
</tr>
<tr>
<td>sizeC</td>
<td>number of channels</td>
</tr>
<tr>
<td>sizeT</td>
<td>number of timepoints</td>
</tr>
<tr>
<td>bitsPerPixel</td>
<td>number of valid bits (<= number of bits implied by pixel type)</td>
</tr>
<tr>
<td>rgb</td>
<td>number of channels that are merged together</td>
</tr>
<tr>
<td>dimOrder</td>
<td>dimension order (e.g. XYZCT)</td>
</tr>
<tr>
<td>little</td>
<td>whether or not the pixel data should be little-endian</td>
</tr>
<tr>
<td>interleaved</td>
<td>whether or not merged channels are interleaved</td>
</tr>
<tr>
<td>indexed</td>
<td>whether or not a color lookup table is present</td>
</tr>
<tr>
<td>falseColor</td>
<td>whether or not the color lookup table is just for making the image look pretty</td>
</tr>
<tr>
<td>series</td>
<td>number of series (Images)</td>
</tr>
<tr>
<td>lutLength</td>
<td>number of entries in the color lookup table</td>
</tr>
</tbody>
</table>

You can often work with the .fake file directly, but in some cases support for those files is disabled and so you will need to convert the file to something else. Make sure that you have Bio-Formats built and the JARs in your CLASSPATH (individual JARs or just loci_tools.jar):

```bash
bfconvert test&pixelType=uint8&sizeX=8192&sizeY=8192.fake test.tiff
```

If you do not have the command line tools installed, substitute `loci.formats.tools.ImageConverter`\(^{33}\) for `bfconvert`.

12.1 API documentation

12.1.1 Using Bio-Formats as a Java library

If you wish to make use of Bio-Formats within your own software, you can download bio-formats.jar to use it as a library. Just add bio-formats.jar to your CLASSPATH or build path. You will also need loci-common.jar for common I/O functions, ome-xml.jar for metadata standardization, and SLF4J for logging.

There are also certain packages that if present will be utilized to provide additional functionality. To include one, just place it in the same folder.

<table>
<thead>
<tr>
<th>Package</th>
<th>Filename</th>
<th>License</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache Jakarta POI library, LOCI fork</td>
<td>poi-loci.jar</td>
<td>Apache</td>
<td>For OLE-based formats (zvi, oib, ipw, cxd)</td>
</tr>
<tr>
<td>MDB Tools project Java port, LOCI fork</td>
<td>mdbtools-java.jar</td>
<td>LGPL</td>
<td>For Olympus CellR and Zeiss LSM metadata (mdb)</td>
</tr>
<tr>
<td>JAI Image I/O Tools pure Java implementation, LOCI fork</td>
<td>jai_imageio.jar</td>
<td>BSD</td>
<td>For JPEG2000-based formats (nd2, jp2)</td>
</tr>
<tr>
<td>NetCDF Java library</td>
<td>netcdf-lis-4.3.19.jar</td>
<td>LGPL</td>
<td>For HDF5-based formats (Imaris 5.5, MINC MRI)</td>
</tr>
<tr>
<td>QuickTime for Java</td>
<td>QTJava.zip</td>
<td>Commercial</td>
<td>For additional QuickTime codecs</td>
</tr>
</tbody>
</table>

See the list in the Bio-Formats toplevel build file for a complete and up-to-date list of all optional libraries, which can all be found in our Git repository.

Examples of usage

ImageConverter - A simple command line tool for converting between formats.

ImageInfo - A more involved command line utility for thoroughly reading an input file, printing some information about it, and displaying the pixels onscreen using the Bio-Formats viewer.

MinimumWriter - A command line utility demonstrating the minimum amount of metadata needed to write a file.

PrintTimestamps17 - A command line example demonstrating how to extract timestamps from a file.

Simple_Read18 - A simple ImageJ plugin demonstrating how to use Bio-Formats to read files into ImageJ (see ImageJ).

Read_Image19 - An ImageJ plugin that uses Bio-Formats to build up an image stack, reading image planes one by one (see ImageJ).

Mass_Importer20 - A simple plugin for ImageJ that demonstrates how to open all image files in a directory using Bio-Formats, grouping files with similar names to avoiding opening the same dataset more than once (see ImageJ).

A Note on Java Web Start (loci_tools.jar vs. bio-formats.jar)

To use Bio-Formats with your Java Web Start application, we recommend using bio-formats.jar rather than loci_tools.jar—the latter is merely a bundle of bio-formats.jar plus all its optional dependencies.

The loci_tools.jar bundle is intended as a convenience (e.g. to simplify installation as an ImageJ plugin), but is by no means the only solution for developers. We recommend using bio-formats.jar as a separate entity depending on your needs as a developer.

The bundle is quite large because we have added support for several formats that need large helper libraries (e.g. Imaris’ HDF-based format). However, these additional libraries are optional; Bio-Formats has been coded using reflection so that it can both compile and run without them.

When deploying a JNLP-based application, using loci_tools.jar directly is not the best approach, since every time Bio-Formats is updated, the server would need to feed another 8+ MB JAR file to the client. Rather, Web Start is a case where you should keep the JARs separate, since JNLP was designed to make management of JAR dependencies trivial for the end user. By keeping bio-formats.jar and the optional dependencies separate, only a <1 MB JAR needs to be updated when bio-formats.jar changes.

As a developer, you have the option of packaging bio-formats.jar with as many or as few optional libraries as you wish, to cut down on file size as needed. You are free to make whatever kind of “stripped down” version you require. You could even build a custom bio-formats.jar that excludes certain classes, if you like.

For an explicit enumeration of all the optional libraries included in loci_tools.jar, see the loci-tools.libraries variable of the ant/toplevel.properties21 file of the distribution. You can also read our notes about each in the source distribution’s Ant build.xml22 script.

Also see Bio-Formats Javadocs23

12.2 Examples

12.2.1 Exporting files using Bio-Formats

This guide pertains to version 4.2 and later.

Basic conversion

The first thing we need to do is set up a reader:

```java
// create a reader that will automatically handle any supported format
IFormatReader reader = new ImageReader();
// tell the reader where to store the metadata from the dataset
MetadataStore metadata;

try {
    ServiceFactory factory = new ServiceFactory();
    OMEXMLService service = factory.getInstance(OMEXMLService.class);
    metadata = service.createOMEXMLMetadata();
```

17 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/utils/PrintTimestamps.java
18 https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/Simple_Read.java
19 https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/Read_Image.java
20 https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/Mass_Importer.java
21 https://github.com/openmicroscopy/bioformats/blob/develop/ant/toplevel.properties
22 https://github.com/openmicroscopy/bioformats/blob/develop/build.xml#L240
23 http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/
catch (DependencyException exc) {
 throw new FormatException("Could not create OME-XML store.", exc);
}

catch (ServiceException exc) {
 throw new FormatException("Could not create OME-XML store.", exc);
}

reader.setMetadataStore(metadata);
// initialize the dataset
reader.setId("/path/to/file");

Now, we set up our writer:

// create a writer that will automatically handle any supported output format
IFormatWriter writer = new ImageWriter();
// give the writer a MetadataRetrieve object, which encapsulates all of the
// dimension information for the dataset (among many other things)
writer.setMetadataRetrieve(MetadataTools.asRetrieve(reader.getMetadataStore()));
// initialize the writer
writer.setId("/path/to/output/file");

Note that the extension of the file name passed to ‘writer.setId(…)’ determines the file format of the exported file.

Now that everything is set up, we can start writing planes:

for (int series=0; series<reader.getSeriesCount(); series++) {
 reader.setSeries(series);
 writer.setSeries(series);

 for (int image=0; image<reader.getImageCount(); image++) {
 writer.saveBytes(image, reader.openBytes(image));
 }
}

Finally, make sure to close both the reader and the writer. Failure to do so can cause:

- file handle leaks
- memory leaks
- truncated output files

Fortunately, closing the files is very easy:

reader.close();
writer.close();

Converting large images

The flaw in the previous example is that it requires an image plane to be fully read into memory before it can be saved. In many cases this is fine, but if you are working with very large images (especially > 4 GB) this is problematic. The solution is to break each image plane into a set of reasonably-sized tiles and save each tile separately - thus substantially reducing the amount of memory required for conversion.

For now, we’ll assume that your tile size is 1024 x 1024, though in practice you will likely want to adjust this. Assuming you have an IFormatReader and IFormatWriter set up as in the previous example, let’s start writing planes:
int tileWidth = 1024;
int tileHeight = 1024;

for (int series=0; series<reader.getSeriesCount(); series++) {
 reader.setSeries(series);
 writer.setSeries(series);

 // determine how many tiles are in each image plane
 // for simplicity, we’ll assume that the image width and height are
 // multiples of 1024

 int tileRows = reader.getSizeY() / tileHeight;
 int tileColumns = reader.getSizeX() / tileWidth;

 for (int image=0; image<reader.getImageCount(); image++) {
 for (int row=0; row<tileRows; row++) {
 for (int col=0; col<tileColumns; col++) {
 // open a tile - in addition to the image index, we need to specify
 // the (x, y) coordinate of the upper left corner of the tile,
 // along with the width and height of the tile

 int xCoordinate = col * tileWidth;
 int yCoordinate = row * tileHeight;
 byte[] tile =
 reader.openBytes(image, xCoordinate, yCoordinate, tileWidth, tileHeight);
 writer.saveBytes(
 image, tile, xCoordinate, yCoordinate, tileWidth, tileHeight);
 }
 }
 }
}

As noted, the example assumes that the width and height of the image are multiples of the tile dimensions. Be careful, as this is
not always the case: the last column and/or row may be smaller than preceding columns/rows. An exception will be thrown if you
attempt to read or write a tile that is not completely contained by the original image plane. Most writers perform best if the tile
width is equal to the image width, although specifying any valid width should work.

As before, you need to close the reader and writer.

Converting to multiple files

The recommended method of converting to multiple files is to use a single IFormatWriter, like so:

// you should have set up a reader as in the first example
ImageWriter writer = new ImageWriter();
writer.setMetadataRetrieve(MetadataTools.asRetrieve(reader.getMetadataStore()));
// replace this with your own filename definitions
// in this example, we’re going to write half of the planes to one file
// and half of the planes to another file
String[] outputFiles =
 new String[] {"/path/to/file/1.tiff", "/path/to/file/2.tiff"};
writer.setId(outputFiles[0]);

int planesPerFile = reader.getImageCount() / outputFiles.length;
for (int file=0; file<outputFiles.length; file++) {
 writer.changeOutputFile(outputFiles[file]);
 for (int image=0; image<planesPerFile; image++) {
 int index = file * planesPerFile + image;
 writer.saveBytes(image, reader.openBytes(index));
 }
}
reader.close();
writer.close();

The advantage here is that the relationship between the files is preserved when converting to formats that support multi-file datasets internally (namely OME-TIFF). If you are only converting to graphics formats (e.g. JPEG, AVI, MOV), then you could also use a separate IFormatWriter for each file, like this:

```java
// again, you should have set up a reader already
String[] outputFiles = new String[] {"/path/to/file/1.avi", "/path/to/file/2.avi"};
it int planesPerFile = reader.getImageCount() / outputFiles.length;
for (int file=0; file<outputFiles.length; file++) {
    ImageWriter writer = new ImageWriter();
    writer.setMetadataRetrieve(MetadataTools.asRetrieve(reader.getMetadataStore()));
    writer.setId(outputFiles[file]);
    for (int image=0; image<planesPerFile; image++) {
        int index = file * planesPerFile + image;
        writer.saveBytes(image, reader.openBytes(index));
    }
    writer.close();
}
```

Known issues

List of Trac tickets²⁴

12.2.2 Further details on exporting raw pixel data to OME-TIFF files

This document explains how to export pixel data to OME-TIFF using Bio-Formats version 4.2 and later.

The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows:

```java
ServiceFactory factory = new ServiceFactory();
OMEXMLService service = factory.getInstance(OMEXMLService.class);
IMetadata omexml = service.createOMEXMLMetadata();
```

The ‘omexml’ object can now be used in our code to store OME-XML metadata, and by the file format writer to retrieve OME-XML metadata.

Now that we have somewhere to put metadata, we need to populate as much metadata as we can. The minimum amount of metadata required is:

- endianness of the pixel data
- the order in which dimensions are stored
- the bit depth of the pixel data
- the number of channels
- the number of timepoints
- the number of Z sections
- the width (in pixels) of an image
- the height (in pixels) of an image
- the number of samples per channel (3 for RGB images, 1 otherwise)

We populate that metadata as follows:

12.2. Examples 65
omexml.setImageID("Image:0", 0);
omexml.setPixelsID("Pixels:0", 0);

// specify that the pixel data is stored in big-endian order
// replace 'TRUE' with 'FALSE' to specify little-endian order
omexml.setPixelsBinDataBigEndian(Boolean.TRUE, 0, 0);

omexml.setPixelsDimensionOrder(DimensionOrder.XYCZT, 0);
omexml.setPixelsType(PixelType.UINT16, 0);
omexml.setPixelsSizeX(new PositiveInteger(width), 0);
omexml.setPixelsSizeY(new PositiveInteger(height), 0);
omexml.setPixelsSizeZ(new PositiveInteger(zSectionCount), 0);
omexml.setPixelsSizeC(new PositiveInteger(channelCount * samplesPerChannel), 0);
omexml.setPixelsSizeT(new PositiveInteger(timepointCount), 0);

for (int channel=0; channel<channelCount; channel++) {
 omexml.setChannelID("Channel:0:" + channel, 0, channel);
 omexml.setChannelSamplesPerPixel(new PositiveInteger(samplesPerChannel), 0, channel);
}

There is much more metadata that can be stored; please see the Javadoc for loci.formats.meta.MetadataStore for a complete list.

Now that we have defined all of the metadata, we need to create a file writer:

ImageWriter writer = new ImageWriter();

Now we must associate the ‘omexml’ object with the file writer:

writer.setMetadataRetrieve(omexml);

The writer now knows to retrieve any metadata that it needs from ‘omexml’.

We now tell the writer which file it should write to:

writer.setId("output-file.ome.tiff");

It is critical that the file name given to the writer ends with ".ome.tiff" or ".ome.tif", as it is the file name extension that determines which format will be written.

Now that everything is set up, we can save the image data. This is done plane by plane, and we assume that the pixel data is stored in a 2D byte array ‘pixelData’:

int sizeC = omexml.getPixelsSizeC(0).getValue();
int sizeZ = omexml.getPixelsSizeZ(0).getValue();
int sizeT = omexml.getPixelsSizeT(0).getValue();
int samplesPerChannel = omexml.getChannelSamplesPerPixel(0).getValue();
sizeC /= samplesPerChannel;
int imageCount = sizeC * sizeZ * sizeT;

for (int image=0; image<imageCount; image++) {
 writer.saveBytes(image, pixelData[image]);
}

Finally, we must tell the writer that we are finished, so that the output file can be properly closed:
There should now be a complete OME-TIFF file at whichever path was specified above.

12.2.3 Converting files from FV1000 OIB/OIF to OME-TIFF

This document explains how to convert a file from FV1000 OIB/OIF to OME-TIFF using Bio-Formats version 4.2 and later. The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows:

```java
ServiceFactory factory = new ServiceFactory();
OMEXMLService service = factory.getInstance(OMEXMLService.class);
IMetadata omexml = service.createOMEXMLMetadata();
```

The ‘omexml’ object can now be used by both a file format reader and a file format writer for storing and retrieving OME-XML metadata.

Now that we have somewhere to put metadata, we need to create a file reader and writer:

```java
ImageReader reader = new ImageReader();
ImageWriter writer = new ImageWriter();
```

Now we must associate the ‘omexml’ object with the file reader and writer:

```java
reader.setMetadataStore(omexml);
writer.setMetadataRetrieve(omexml);
```

The reader now knows to store all of the metadata that it parses into ‘omexml’, and the writer knows to retrieve any metadata that it needs from ‘omexml’.

We now tell the reader and writer which files will be read from and written to, respectively:

```java
reader.setId("input-file.oib");
writer.setId("output-file.ome.tiff");
```

It is critical that the file name given to the writer ends with ”.ome.tiff” or ”.ome.tif”, as it is the file name extension that determines which format will be written.

Now that everything is set up, we can convert the image data. This is done plane by plane:

```java
for (int series=0; series<reader.getSeriesCount(); series++) {
    reader.setSeries(series);
    writer.setSeries(series);
    byte[] plane = new byte[FormatTools.getPlaneSize(reader)];
    for (int image=0; image<reader.getImageCount(); image++) {
        reader.openBytes(image, plane);
        writer.saveBytes(image, plane);
    }
}
```

The body of the outer ‘for’ loop may also be replaced with the following:

```java
reader.setSeries(series);
writer.setSeries(series);
```
for (int image=0; image<reader.getImageCount(); image++) {
 byte[] plane = reader.openBytes(image);
 writer.saveBytes(image, plane);
}

But note that this will be a little slower.

Finally, we must tell the reader and writer that we are finished, so that the input and output files can be properly closed:

reader.close();
writer.close();

There should now be a complete OME-TIFF file at whichever path was specified above.

12.2.4 Using Bio-Formats in MATLAB

This section assumes that you have installed the M-files and loci_tools.jar, as instructed in the MATLAB user information page. Note the minimum supported MATLAB version is R2007b (7.5).

Increasing JVM memory settings

The default JVM settings in MATLAB can result in java.lang.OutOfMemoryError: Java heap space exceptions when opening large image files using Bio-Formats. Information about the Java heap space usage in MATLAB can be retrieved using:

```matlab
java.lang.Runtime.getRuntime.maxMemory
```

Default JVM settings can be increased by creating a `java.opts` file in the startup directory and overriding the default memory settings. We recommend using `-Xmx512m` in your `java.opts` file.

See also:

http://www.mathworks.com/matlabcentral/answers/92813 How do I increase the heap space for the Java VM in MATLAB 6.0 (R12) and later versions?

Opening an image file

The first thing to do is initialize a file with the `bfopen` function:

```matlab
data = bfopen('/path/to/data/file');
```

This function returns an `n`-by-4 cell array, where `n` is the number of series in the dataset. If `s` is the series index between 1 and `n`:

- The `data{s, 1}` element is an `m`-by-2 cell array, where `m` is the number of planes in the `s`-th series. If `t` is the plane index between 1 and `m`:
 - The `data{s, 1}{t, 1}` element contains the pixel data for the `t`-th plane in the `s`-th series.
 - The `data{s, 1}{t, 2}` element contains the label for the `t`-th plane in the `s`-th series.
- The `data{s, 2}` element contains original metadata key/value pairs that apply to the `s`-th series.
- The `data{s, 3}` element contains color lookup tables for each plane in the `s`-th series.
- The `data{s, 4}` element contains a standardized OME metadata structure, which is the same regardless of the input file format, and contains common metadata values such as physical pixel sizes - see OME metadata below for examples.

25https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab/bfopen.m
Accessing planes

Here is an example of how to unwrap specific image planes for easy access:

```matlab
data = bfopen('/path/to/data/file');
seriesCount = size(data, 1);
series1 = data{1, 1};
series2 = data{2, 1};
series3 = data{3, 1};
metadataList = data{1, 2};
% ...etc.
series1_planeCount = size(series1, 1);
series1_plane1 = series1{1, 1};
series1_label1 = series1{1, 2};
series1_plane2 = series1{2, 1};
series1_label2 = series1{2, 2};
series1_plane3 = series1{3, 1};
series1_label3 = series1{3, 2};
% ...etc.
```

Displaying images

If you want to display one of the images, you can do so as follows:

```matlab
data = bfopen('/path/to/data/file');
% plot the 1st series's 1st image plane in a new figure
series1 = data{1, 1};
series1_plane1 = series1{1, 1};
series1_label1 = series1{1, 2};
series1_colorMaps = data{1, 3};
figure('Name', series1_label1);
if isempty(series1_colorMaps{1})
    colormap(gray);
else
    colormap(series1_colorMaps{1});
end
imagesc(series1_plane1);
```

This will display the first image of the first series with its associated color map (if present). If you would prefer not to apply the color maps associated with each image, simply comment out the calls to `colormap`.

If you have the image processing toolbox, you could instead use:

```matlab
imshow(series1_plane1, []);
```

You can also create an animated movie (assumes 8-bit unsigned data):

```matlab
v = linspace(0, 1, 256)';
cmap = [v v v];
for p = 1 : size(series1, 1)
    M(p) = im2frame(uint8(series1{p, 1}), cmap);
end
movie(M);
```

Retrieving metadata

There are two kinds of metadata:
• **Original metadata** is a set of key/value pairs specific to the input format of the data. It is stored in the \texttt{data{s, 2}} element of the data structure returned by \texttt{bfopen}.

• **OME metadata** is a standardized metadata structure, which is the same regardless of input file format. It is stored in the \texttt{data{s, 4}} element of the data structure returned by \texttt{bfopen}, and contains common metadata values such as physical pixel sizes, instrument settings, and much more. See the OME Model and Formats26 documentation for full details.

Original metadata To retrieve the metadata value for specific keys:

```matlab
data = bfopen('/path/to/data/file');
% Query some metadata fields (keys are format-dependent)
metadata = data{1, 2};
subject = metadata.get('Subject');
title = metadata.get('Title');
```

To print out all of the metadata key/value pairs for the first series:

```matlab
data = bfopen('/path/to/data/file');
metadata = data{1, 2};
metadataKeys = metadata.keySet().iterator();
for i=1:metadata.size()
    key = metadataKeys.nextElement();
    value = metadata.get(key);
    fprintf('%s = %s
', key, value)
end
```

OME metadata Conversion of metadata to the OME standard is one of Bio-Formats' primary features. The OME metadata is always stored the same way, regardless of input file format.

To access physical voxel and stack sizes of the data:

```matlab
data = bfopen('/path/to/data/file');
omeMeta = data{1, 4};
stackSizeX = omeMeta.getPixelsSizeX(0).getValue(); % image width, pixels
stackSizeY = omeMeta.getPixelsSizeY(0).getValue(); % image height, pixels
stackSizeZ = omeMeta.getPixelsSizeZ(0).getValue(); % number of Z slices
voxelSizeX = omeMeta.getPixelsPhysicalSizeX(0).getValue(); % in µm
voxelSizeY = omeMeta.getPixelsPhysicalSizeY(0).getValue(); % in µm
voxelSizeZ = omeMeta.getPixelsPhysicalSizeZ(0).getValue(); % in µm
```

For more information about the methods to retrieve the metadata, see the MetadataRetrieve27 Javadoc page.

To convert the OME metadata into a string, use the \texttt{dumpXML()} method:

```matlab
omeXML = char(omeMeta.dumpXML());
```

Reading from an image file

The main inconvenience of the \texttt{bfopen.m}28 function is that it loads all the content of an image regardless of its size.

To access the file reader without loading all the data, use the low-level \texttt{bfGetReader.m}29 function:

26http://www.openmicroscopy.org/site/support/ome-model/
27http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/meta/MetadataRetrieve.html
28https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab/bfopen.m
29https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab/bfGetReader.m
reader = bfGetReader('path/to/data/file');

You can then access the OME metadata using the `getMetadataStore()` method:

```java
omeMeta = reader.getMetadataStore();
```

Individual planes can be queried using the `bfGetPlane.m` function:

```java
series1_plane1 = bfGetPlane(reader, 1);
```

Saving files

The basic code for saving a 5D array into an OME-TIFF file is located in the `bfsave.m` function.

For instance, the following code will save a single image of 64 pixels by 64 pixels with 8 unsigned bits per pixels:

```java
plane = zeros(64, 64, 'uint8');
bfsave(plane, 'my-file.ome.tiff');
```

And the following code snippet will produce an image of 64 pixels by 64 pixels with 2 channels and 2 timepoints:

```java
plane = zeros(64, 64, 1, 2, 2, 'uint8');
bfsave(plane, 'my-file.ome.tiff');
```

For more information about the methods to store the metadata, see the `MetadataStore` Javadoc page.

12.2.5 Source code

If you are interested in the latest Bio-Formats source code from our Git repository, you can access it using the repository path:

```
git@github.com:openmicroscopy/bioformats.git
```

You can also browse the Bio-Formats source on GitHub.

To build the code, you can use our Ant build script—try “ant -p” for a list of targets. In general, “ant jars” or “ant tools” is the correct command.

Lastly, you can browse the Bio-Formats Javadocs online, or generate them yourself using the “docs” Ant target.

31. https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab/bfsave.m
34. https://github.com/openmicroscopy/bioformats
13.1 Interfacing with Bio-Formats from non-Java code

Bio-Formats is written in Java, and is easiest to use with other Java code. However, it is possible to call Bio-Formats from a program written in another language. But how to do so depends on your program’s needs.

Technologically, there are two broad categories of solutions: in-process approaches, and inter-process communication.

For details, see LOCI’s article Interfacing from non-Java code1.

Recommended in-process solution: Bio-Formats C++ bindings

Recommended inter-process solution: Subimager

13.2 Bio-Formats C++ bindings

To make Bio-Formats accessible to software written in C++, we have created a Bio-Formats C++ interface (BF-CPP for short). It uses LOCI’s jar2lib2 program to generate a C++ proxy class for each equivalent Bio-Formats Java class. The resulting proxies are then compiled into a library, which represents the actual interface from C++ to Bio-Formats. Using this library in your projects gives you access to the image support of Bio-Formats.

BF-CPP comes with some standalone examples which you can use as a starting point in your own project:

- showinf3
- minimum_writer4

Other projects using BF-CPP include:

- WiscScan5 which uses BF-CPP to write OME-TIFF6 files.
- XuvTools which uses an adapted version of BF-CPP called BlitzBioFormats7.

See the build instructions (Windows, Mac OS X, Linux) for details on compiling BF-CPP from source. Once this is done, simply include it in your project as you would any other external library.

13.3 Build instructions for C++ bindings

This package provides language bindings for calling into the Bio-Formats Java library from C++ in a cross-platform manner. As of this writing the bindings are functional with GCC on Linux and Mac OS X systems, as well as with Visual C++ 2005 and Visual C++ 2008 on Windows.

1http://loci.wisc.edu/software/interfacing-non-java-code
2http://loci.wisc.edu/software/jar2lib
3https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/cppwrap/showinf.cpp
4https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/cppwrap/minimum_writer.cpp
5http://loci.wisc.edu/software/wiscscan
6http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
7http://www.xuvtools.org/devel/libblitzbioformats
13.3.1 Compile-time dependencies

To build the Bio-Formats C++ bindings from source, the following modules are required:

- **Apache Maven**\(^8\) Maven is a software project management and comprehension tool. Along with Ant, it is one of the supported build systems for the Bio-Formats Java library, and is used to generate the Bio-Formats C++ bindings.

- **CMake**\(^9\) CMake is a cross-platform, open source build system generator, commonly used to build C++ projects in a platform-independent manner. CMake supports GNU make as well as Microsoft Visual Studio, allowing the Bio-Formats C++ bindings to be compiled on Windows, Mac OS X, Linux and potentially other platforms.

- **Boost Thread**\(^10\) Boost is a project providing open source portable C++ source libraries. It has become a suite of de facto standard libraries for C++. The Bio-Formats C++ bindings require the Boost Thread module in order to handle C++ threads in a platform independent way.

- **Java Development Kit**\(^11\) At runtime, only the Java Runtime Environment (JRE) is necessary to execute the Bio-Formats code. However, the full J2SE development kit is required at compile time on some platforms (Windows in particular), since it comes bundled with the JVM shared library (jvm.lib) necessary to link with Java.

For information on installing these dependencies, refer to the page for your specific platform: *Windows*, *Mac OS X*, *Linux*.

13.3.2 How to build

The process of building the Bio-Formats C++ bindings is divided into two steps:

1. Generate a C++ project consisting of “proxies” which wrap the Java code. This step utilizes the Maven project management tool, specifically a Maven plugin called cppwrap.
2. Compile this generated C++ project. This step utilizes the cross-platform CMake build system.

For details on executing these build steps, refer to the page for your specific platform: *Windows*, *Mac OS X*, *Linux*.

13.3.3 Build results

If all goes well, the build system will:

1. Generate the Bio-Formats C++ proxy classes;
2. Build the Jace C++ library;
3. Build the Java Tools C++ library;
4. Build the Bio-Formats C++ shared library;
5. Build the showinf and minimum_writer command line tools, for testing the functionality.

Please be patient, as the build may require several minutes to complete.

Afterwards, the dist/scifio subdirectory will contain the following files:

1. *libjace.so / libjace.jnilib / jace.dll*: Jace shared library
2. *libscifio.so / libscifio.dylib / scifio.dll*: SCIFIO C++ shared library
3. *jace-runtime.jar*: Jace Java classes needed at runtime
4. *loci_tools.jar*: Bio-Formats Java library needed at runtime
5. *libjtools.so / libjtools.jnilib / jtools.dll*: Java Tools shared library
6. *showinf / showinf.exe*: Example command line application
7. *minimum_writer / minimum_writer.exe*: Example command line application

Items 1-4 are necessary and required to deploy Bio-Formats with your C++ application. Item 5 (jtools) is a useful helper library for managing the Java virtual machine from C++, but is not strictly necessary to use Bio-Formats. All other files, including the example programs and various build files generated by CMake, are not needed.

If you prefer, instead of using the loci_tools.jar bundle, you can provide individual JAR files as appropriate for your application. For details, see *using Bio-Formats as a Java library*.

13.3. Build instructions for C++ bindings 73
Please direct any questions to the OME team on the forums12 or mailing lists13.

13.4 Building C++ bindings in Windows

13.4.1 Compile-time dependencies – Windows

Windows users will need to visit the appropriate web sites and download and install the relevant binaries for all the dependencies. To configure the tools, you will need to edit or create several environment variables on your system. Access them by clicking the “Environment Variables” button from Control Panel, System, Advanced tab. Use semicolons to separate multiple directories in the PATH variable.

13.4.2 Compile-time dependencies – Windows – Maven

Download Maven14.

Unpack the Maven archive into your Program Files, then add the folder’s bin subdirectory to your PATH environment variable; e.g.:

\texttt{C:\Program Files\apache-maven-3.0.4\bin}

Once set, new Command Prompts will recognize “mvn” as a valid command.

13.4.3 Compile-time dependencies – Windows – CMake

Download and run the CMake installer15.

During installation, select the “Add CMake to the system PATH for all users” option to ensure that Bio-Formats build system can find your CMake executable.

Once installed, new Command Prompts will recognize “cmake” and “cmake-gui” as valid commands.

13.4.4 Compile-time dependencies – Windows – Boost

The easiest way to install the Boost Thread library on Windows is to use the free installer from BoostPro16.

When running the installer:

- Under “Compilers,” check the version of Visual C++ matching your system.
- Under “Variants,” check all eight boxes.
- When choosing components, check “Boost DateTime” and “Boost Thread.”

13.4.5 Compile-time dependencies – Windows – Java Development Kit

Download and install the JDK17.

After the installation is complete, create a new environment variable called JAVA_HOME pointing to your Java installation; e.g.:

\texttt{C:\Program Files\Java\jdk1.6.0_25}

Setting JAVA_HOME is the easiest way to ensure that Maven can locate Java.

You will also need to append your JDK’s client or server VM folder to the PATH; e.g.:

\texttt{%JAVA_HOME%\jre\bin\client}

12http://www.openmicroscopy.org/community/
13http://lists.openmicroscopy.org.uk/mailman/listinfo/
14http://maven.apache.org/
15http://cmake.org/
16http://www.boostpro.com/download/
17http://www.oracle.com/technetwork/java/javase/downloads/
This step ensures that a directory containing jvm.dll is present in the PATH. If you do not perform this step, you will receive a runtime error when attempting to initialize a JVM from native code.

Optionally, you can add the bin subdirectory to the PATH; e.g.:

```
%JAVA_HOME%\bin
```

Once set, new Command Prompts will recognize (e.g.) “javac” as a valid command.

13.4.6 Compile-time dependencies – Windows – Visual C++

In addition to the other prerequisites, you will also need a working copy of Visual C++. We have tested compilation with Visual C++ 2005 Professional and Visual C++ 2008 Express; other versions may or may not work.

You can download Visual C++ Express for free\(^\text{18}\). You must launch the environment at least once before you will be able to compile the Bio- Formats C++ bindings.

13.4.7 How to build - Windows

Run Command Prompt and change to your Bio- Formats working copy. Then run:

```bash
# generate the Bio-Formats C++ bindings
cd components\scifio
mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap

# build the Bio-Formats C++ bindings
cd target\cppwrap
mkdir build
cd build
cmake-gui ..
```

The CMake GUI will open. Click the Configure button, and a dialog will appear. Select your installed version of Visual Studio, and click Finish.

When configuring, you can use the J2L_WIN_BUILD_DEBUG flag to indicate if this will be a Debug or Release build. If the flag is checked it will build as Debug, unchecked will build as Release.

Once configuration is complete, click Configure again, repeating as necessary until the Generate button becomes available. Then click Generate. Once generation is complete, close the CMake window.

Back at the Command Prompt, type:

```
start jace.sln
```

The solution will then open in Visual Studio. Select Release or Debug as appropriate from the drop-down menu. Press F7 to compile (or select Build Solution from the Build menu).

13.5 Building C++ bindings in Mac OS X

13.5.1 Compile-time dependencies – Mac OS X

To install dependencies on Mac OS X, we advise using Homebrew\(^\text{19}\):

```
brew install maven cmake boost
```

Unless otherwise configured, this will install binaries into /usr/local/.

\(^{18}\) http://www.microsoft.com/express/

\(^{19}\) https://github.com/mxcl/homebrew/
13.5.2 How to build – Mac OS X

The following commands will generate and build the Bio-Formats C++ bindings:

```
# generate the C++ bindings
cd components/scifio
mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap

# compile the C++ bindings
cd target/cppwrap
mkdir build
cd build
cmake ..
make
```

13.6 Building C++ bindings in Linux

13.6.1 Compile-time dependencies – Linux

The following directions are specific to Ubuntu Linux. Other Linux distributions may have similar packages available; check your package manager.

To install dependencies on Ubuntu Linux, execute:

```
# install code generation prerequisites
sudo aptitude install maven2

# install build prerequisites
sudo aptitude install build-essential cmake libboost-thread-dev

# install Java Development Kit
sudo aptitude install sun-java6-jdk
sudo update-alternatives --config java
```

Then select Sun’s Java implementation as the system default.

It may be possible to use a different Java compiler (i.e., omit the sun-java6-jdk package and update-alternatives step), but we have only tested the compilation process with Sun’s Java compiler.

13.6.2 How to build – Linux

The following commands will generate and build the Bio-Formats C++ bindings:

```
# generate the Bio-Formats C++ bindings
cd components/scifio
mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap

# build the Bio-Formats C++ bindings
cd target/cppwrap
mkdir build
cd build
cmake..
make
```
SCIFIO provides the core architecture of the Bio-Formats library and also includes reader and writer implementations for open file formats. The more permissive BSD license enables non-GPL third party software to read and write OME-TIFF using SCIFIO alone.

14.1 SCientific Imaging Formats Input and Output

SCIFIO is a refactoring of Bio-Formats. Classic Bio-Formats uses OME-XML\(^1\) to model the metadata for a given image, standardizing all supported formats to this schema. This tight integration, along with the naming itself of Bio-Formats, discourages potential users from outside the life sciences (if their imaging requirements include metadata outside the OME-XML specification). Furthermore, the steps of processing image formats are obfuscated by their consolidation into a single Reader class; this increases the entry barrier for 3rd party developers to add support for additional formats. Finally, the GPL licensing of Bio-Formats precludes its inclusion in non-GPL software packages such as ImageJ, ITK, VCell and VisAD.

SCIFIO aims to resolve these issues by reversing the OME-XML dependency and teasing apart the stages of image format conversion and processing. SCIFIO will define the core components of flexible image format support. OME-XML will become one type of metadata, which Bio-Formats will still use to standardize the metadata of a wide variety of image formats. Thus Bio-Formats will become an extension to SCIFIO, but the underlying structure will allow any number of such extensions to coexist. Dynamic discovery mechanisms will allow these modules to be used as needed, as long as the underlying program incorporates the SCIFIO core. Further, the SCIFIO core will include support only for the open source formats currently supported by Bio-Formats, allowing distribution under the BSD license (though individual modules can fall under any licensing framework, and Bio-Formats will continue to have a dual GPL + commercial license).

For further information, see the SCIFIO home page\(^2\).

\(^1\)http://www.openmicroscopy.org/site/support/ome-model/ome-xml
\(^2\)http://scif.io/
CHAPTER FIFTEEN

WRITING NEW BIO-FORMATS FILE FORMAT READERS

15.1 Bio-Formats file format reader guide

This document is a brief guide to writing new Bio-Formats file format readers. All format readers should extend either loci.formats.FormatReader\(^1\) or a reader in loci.formats.in\(^2\).

15.1.1 Methods to override

- boolean isSingleFile(String id)\(^3\) Whether or not the named file is expected to be the only file in the dataset. This only needs to be overridden for formats whose datasets can contain more than one file.

- boolean isThisType(RandomAccessInputStream)\(^4\) Check the first few bytes of a file to determine if the file can be read by this reader. You can assume that index 0 in the stream corresponds to the index 0 in the file. Return true if the file can be read; false if not (or if there is no way of checking).

- int fileGroupOption(String id)\(^5\) Returns an indication of whether or not the files in a multi-file dataset can be handled individually. The return value should be one of the following:
 - FormatTools.MUST_GROUP: the files cannot be handled separately
 - FormatTools.CAN_GROUP: the files may be handled separately or as a single unit
 - FormatTools.CANNOT_GROUP: the files must be handled separately

 This method only needs to be overridden for formats whose datasets can contain more than one file.

- String[] getSeriesUsedFiles(boolean noPixels)\(^6\) You only need to override this if your format uses multiple files in a single dataset. This method should return a list of all files associated with the given file name and the current series (i.e. every file needed to display the current series). If the noPixels flag is set, then none of the files returned should contain pixel data. For an example of how this works, see loci.formats.in.PerkinElmerReader\(^7\). It is recommended that the first line of this method be FormatTools.assertId(currentId, true, 1) - this ensures that the file name is non-null.

- byte[] openBytes(int, byte[], int, int, int, int)\(^8\) Returns a byte array containing the pixel data for a subimage specified image from the given file. The dimensions of the subimage (upper left X coordinate, upper left Y coordinate, width, and height) are specified in the final four int parameters. This should throw a FormatException if the image number is invalid (less than 0 or >= the number of images). The ordering of the array returned by openBytes should correspond to the values returned by isLittleEndian() and isInterleaved(). Also, the length of the byte array should be [image width * image height * bytes per pixel]. Extra bytes will generally be truncated. It is recommended that the first line of this method be FormatTools.checkPlaneParameters(this, no, buf.length, x, y, w, h) - this ensures that all of the parameters are valid.

\(^1\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/FormatReader.java
\(^2\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/
\(^3\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#isSingleFile(java.lang.String)
\(^4\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#isThisType(loci.common.RandomAccessInputStream)
\(^6\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#getSeriesUsedFiles(boolean)
\(^7\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PerkinElmerReader.java
\(^8\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#openBytes(int, byte[], int, int, int, int)
• **protected void initFile(String)**\(^9\) The majority of the file parsing logic should be placed in this method. The idea is to call this method once (and only once!) when the file is first opened. Generally, you will want to start by calling `super.initFile(String)`. You will also need to set up the stream for reading the file, as well as initializing any dimension information and metadata. Most of this logic is up to you; however, you should populate the ‘core’ variable (see [loci.formats.CoreMetadata]\(^{10}\)).

Note that each variable is initialized to 0 or null when `super.initFile(String)` is called. Also, `super.initFile(String)` constructs a Hashtable called “metadata” where you should store any relevant metadata.

• **public void close(boolean fileOnly)**\(^11\) Cleans up any resources used by the reader. Global variables should be reset to their initial state, and any open files or delegate readers should be closed.

Note that if the new format is a variant of a format currently supported by Bio-Formats, it is more efficient to make the new reader a subclass of the existing reader (rather than subclassing `FormatReader`\(^12\)). In this case, it is usually sufficient to override `initFile(String)` and `isThisType(byte[])`.

Every reader also has an instance of `loci.formats.CoreMetadata`. All readers should populate the fields in CoreMetadata, which are essential to reading image planes.

If you read from a file using something other than `RandomAccessInputStream`\(^13\) or `Location`\(^14\), you must use the file name returned by `Location.getMappedId(String)`, not the file name passed to the reader. Thus, a stub for `initFile(String)` might look like this:

```java
protected void initFile(String id) throws FormatException, IOException {
    super.initFile(id);

    RandomAccessInputStream in = new RandomAccessInputStream(id);
    // alternatively,
    // FileInputStream in = new FileInputStream(Location.getMappedId(id));

    // read basic file structure and metadata from stream
}
```

For more details, see the [Bio-Formats Javadocs] for `Location.mapId(String, String)` and `Location.getMappedId(String)`.

15.1.2 Variables to populate

There are a number of global variables defined in `loci.formats.FormatReader`\(^15\) that should be populated in the constructor of any implemented reader.

These variables are:

• **boolean suffixNecessary** Indicates whether or not a file name suffix is required; true by default

• **boolean suffixSufficient** Indicates whether or not a specific file name suffix guarantees that this reader can open a particular file; true by default

• **boolean hasCompanionFiles** Indicates whether or not there is at least one file in a dataset of this format that contains only metadata (no images); false by default

• **String datasetDescription** A brief description of the layout of files in datasets of this format; only necessary for multi-file datasets

• **String[] domains** An array of imaging domains for which this format is used. Domains are defined in `loci.formats.FormatTools`\(^16\).

\(^10\) [https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/CoreMetadata.java]

\(^11\) [http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/IFormatReader.html#close(boolean)]

\(^12\) [https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatReader.html#initFile(java.lang.String)]

\(^13\) [https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/ome/scifio/io/RandomAccessInputStream.java]

\(^14\) [https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/ome/scifio/io/Location.java]

\(^15\) [https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/ome/scifio/io/RandomAccessInputStream.java]

\(^16\) [https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/loci/formats/FormatTools.java]

15.1. Bio-Formats file format reader guide 79
15.1.3 Other useful things

- `ome.scifio.io.RandomAccessInputStream`\(^{19}\) is a hybrid `RandomAccessFile/InputStream` class that is generally more efficient than either `RandomAccessFile` or `InputStream`, and implements the `DataInput` interface. It is recommended that you use this for reading files.

- `ome.scifio.io.Location`\(^{20}\) provides an API similar to `java.io.File`, and supports File-like operations on URLs. It is highly recommended that you use this instead of `File`. See the Javadocs\(^{21}\) for additional information.

- `ome.scifio.common.DataTools`\(^{22}\) provides a number of methods for converting bytes to shorts, ints, longs, etc. It also supports reading most primitive types directly from a `RandomAccessInputStream` (or other `DataInput` implementation).

- `loci.formats.ImageTools`\(^{23}\) provides several methods for manipulating primitive type arrays that represent images. Consult the source or Javadocs for more information.

- If your reader relies on third-party code which may not be available to all users, it is strongly suggested that you make a corresponding service class that interfaces with the third-party code. Please see Bio-Formats service and dependency infrastructure for a description of the service infrastructure, as well as the `loci.formats.services` package\(^{24}\).

- Several common image compression types are supported through subclasses of `loci.formats.codec.BaseCodec`\(^{25}\). These include JPEG, LZW, LZO, Base64, ZIP and RLE (PackBits).

- If you wish to convert a file’s metadata to OME-XML (strongly encouraged), please see Bio-Formats metadata processing for further information.

- Utility methods for reading and writing individual bits from a byte array can be found in `loci.formats.codec.BitBuffer`\(^{26}\) and `loci.formats.codec.BitWriter`\(^{27}\).

- Once you have written your file format reader, add a line to the `readers.txt`\(^{28}\) file with the fully qualified name of the reader, followed by a “#” and the file extensions associated with the file format. Note that `ImageReader`\(^{29}\), the master file format reader, tries to identify which format reader to use according to the order given in `readers.txt`\(^{30}\), so be sure to place your reader in an appropriate position within the list.

- The easiest way to test your new reader is by calling “java loci.formats.tools.ImageInfo <file name>”. If all goes well, you should see all of the metadata and dimension information, along with a window showing the images in the file. `ImageReader`\(^{31}\) can take additional parameters; a brief listing is provided below for reference, but it is recommended that you take a look at the contents of `loci.formats.tools.ImageInfo`\(^{32}\) to see exactly what each one does.

\(^{20}\)`https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/ome/scifio/io/Location.java

\(^{21}\)`http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/

\(^{22}\)`https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/ome/scifio/common/DataTools.java

\(^{24}\)`https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/loci/formats/services/

\(^{25}\)`https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/loci/formats codec/BaseCodec.java

\(^{26}\)`https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/loci/formats codec/BitBuffer.java

\(^{27}\)`https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/loci/formats codec/BitWriter.java

\(^{28}\)`https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/loci/formats/services/ readers.txt

\(^{29}\)`https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/loci/formats ImageReader.java

\(^{30}\)`https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/loci/formats/services/ readers.txt

\(^{31}\)`https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-devel/src/loci/formats ImageReader.java

\(^{32}\)`https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-tools/src/loci/formats/tools/ImageInfo.java
<table>
<thead>
<tr>
<th>Argument</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>-version</td>
<td>print the library version and exit</td>
</tr>
<tr>
<td>file</td>
<td>the image file to read</td>
</tr>
<tr>
<td>-nopix</td>
<td>read metadata only, not pixels</td>
</tr>
<tr>
<td>-nocore</td>
<td>do not output core metadata</td>
</tr>
<tr>
<td>-nometa</td>
<td>do not parse format-specific metadata table</td>
</tr>
<tr>
<td>-nofilter</td>
<td>do not filter metadata fields</td>
</tr>
<tr>
<td>-thumbs</td>
<td>read thumbnails instead of normal pixels</td>
</tr>
<tr>
<td>-minmax</td>
<td>compute min/max statistics</td>
</tr>
<tr>
<td>-merge</td>
<td>combine separate channels into RGB image</td>
</tr>
<tr>
<td>-nogroup</td>
<td>force multi-file datasets to be read as individual files</td>
</tr>
<tr>
<td>-stitch</td>
<td>stitch files with similar names</td>
</tr>
<tr>
<td>-separate</td>
<td>split RGB image into separate channels</td>
</tr>
<tr>
<td>-expand</td>
<td>expand indexed color to RGB</td>
</tr>
<tr>
<td>-omexml</td>
<td>populate OME-XML metadata</td>
</tr>
<tr>
<td>-normalize</td>
<td>normalize floating point images*</td>
</tr>
<tr>
<td>-fast</td>
<td>paint RGB images as quickly as possible*</td>
</tr>
<tr>
<td>-debug</td>
<td>turn on debugging output</td>
</tr>
<tr>
<td>-range</td>
<td>specify range of planes to read (inclusive)</td>
</tr>
<tr>
<td>-series</td>
<td>specify which image series to read</td>
</tr>
<tr>
<td>-swap</td>
<td>override the default input dimension order</td>
</tr>
<tr>
<td>-shuffle</td>
<td>override the default output dimension order</td>
</tr>
<tr>
<td>-map</td>
<td>specify file on disk to which name should be mapped</td>
</tr>
<tr>
<td>-preload</td>
<td>pre-read entire file into a buffer; significantly reduces the time required to read the images, but requires more memory</td>
</tr>
<tr>
<td>-crop</td>
<td>crop images before displaying; argument is ‘x,y,w,h’</td>
</tr>
<tr>
<td>-autoscale</td>
<td>used in combination with ‘-fast’ to automatically adjust brightness and contrast</td>
</tr>
<tr>
<td>-novalid</td>
<td>do not perform validation of OME-XML</td>
</tr>
<tr>
<td>-omexml-</td>
<td>only output the generated OME-XML</td>
</tr>
<tr>
<td>only</td>
<td></td>
</tr>
<tr>
<td>-format</td>
<td>read file with a particular reader (e.g., ZeissZVI)</td>
</tr>
</tbody>
</table>

* = may result in loss of precision

- If you wish to test using TestNG, loci.tests.testng.FormatReaderTest33 provides several basic tests that work with all Bio-Formats readers. See the FormatReaderTest source code for additional information.

- For more details, please look at the source code and Javadocs34. Studying existing readers is probably the best way to get a feel for the API; we would recommend first looking at loci.formats.in.ImarisReader35 (this is the most straightforward one). loci.formats.in.LIFReader36 and InCellReader37 are also good references that show off some of the nicer features of Bio-Formats.

If you have questions about Bio-Formats, please contact the OME team38.

33https://github.com/openmicroscopy/bioformats/blob/develop/components/test-suite/src/loci/tests/testng/FormatReaderTest.java
34http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/
36https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LIFReader.java
38http://www.openmicroscopy.org/site/community
16.1 Developing Bio-Formats

If you are interested in working on the Bio-Formats source code itself, you can load it into your favorite IDE, or develop with your favorite text editor.

The Bio-Formats code is divided into several projects. Core components are located in subfolders of the components\(^1\) folder, with some components further classified into components/forks\(^2\), components/native\(^3\) or components/stubs\(^4\), depending on the nature of the project.

Each project has a corresponding Maven POM file, which can be used to work with the project in your favorite IDE, or from the command line, once you have cloned the source. Instructions for several popular options follow.

16.1.1 NetBeans

NetBeans comes with Maven support built in. To import the Bio-Formats source, perform the following steps:

1. Choose File > Open Project from the menu
2. Select the top-level folder of your Bio-Formats working copy
3. Expand the Modules folder and double-click desired project(s) to work with them

Alternately, you can clone the source directly from NetBeans into a project by selecting “Team > Git > Clone Other...” from the menu.

16.1.2 Eclipse

Eclipse uses the M2E plugin to work with Maven projects. It is more flexible than Eclipse’s built-in project management because M2E transparently converts between project dependencies and JAR dependencies (stored in the Maven repository in ~/.m2/repository) on the build path, depending which projects are currently open.

To import the Bio-Formats source into Eclipse 3.7 (Indigo), you must first install the M2E plugin:

1. From the Eclipse menu, choose Help > Install New Software...
2. In the “Work with:” dropdown, choose “−All Available Sites−”
3. In the filter box, type “m2e”
4. Check the box next to “m2e - Maven Integration for Eclipse” under “Collaboration”
5. Click Next, then Finish

You can then import the Bio-Formats source by choosing “File > Import > Existing Maven Projects” from the menu and browsing to the top-level folder of your Bio-Formats working copy.

\(^1\)https://github.com/openmicroscopy/bioformats/blob/develop/components/
\(^2\)https://github.com/openmicroscopy/bioformats/blob/develop/components/forks/
\(^3\)https://github.com/openmicroscopy/bioformats/blob/develop/components/native/
\(^4\)https://github.com/openmicroscopy/bioformats/blob/develop/components/stubs/
16.1.3 Command line

If you prefer developing code with a text editor such as vim or emacs, you can use the Ant or Maven command line tools to compile Bio-Formats. The Bio-Formats source tree provides parallel build systems for both Ant and Maven, so you can use either one to build the code.

For a list of Ant targets, run:

ant -p

When using Maven, Bio-Formats is configured to run the “install” target by default, so all JARs will be copied into your local Maven repository in ~/.m2/repository. Simply run:

mvn

With either Ant or Maven, you can use similar commands in any subproject folder to build just that component.

16.2 Testing individual commits (internal developers)

At the bottom of many commit messages in https://github.com/openmicroscopy/bioformats, you will find a few lines similar to this:

To test, please run:

ant -Dtestng.directory=$DATA/metamorph test-automated

This shows the command(s) necessary to run automated tests against the files likely to be affected by that commit. If you want to run these tests, you will need to do the following:

Clone bioformats.git and checkout the appropriate branch (by following the directions on the Git usage page). Run this command to build all of the JAR files:

$ ant clean jars

Switch to the test-suite component:

$ cd components/test-suite

Run the tests, where $DATA is the path to the full data repository:

$ ant -Dtestng.directory=$DATA/metamorph test-automated

By default, 512 MB of memory are allocated to the JVM. You can increase this by adding the `-Dtestng.memory=XXXm` option. You should now see output similar to this:

Buildfile: build.xml

init-title:
 [echo] ----------=========== loci-testing-framework ===========----------

init-timestamp:

release-version:

init-manifest-cp:

5http://www.openmicroscopy.org/site/support/contributing/using-git.html
init:

copy-source:

compile:

test-automated:
 [testng] [Parser] Running:
 [testng] LOCI software test suite
 [testng]
 [testng] Scanning for files...
 [testng] Building list of tests...
 [testng] Ready to test 490 files
 [testng] ..

and then eventually:

 [testng] ==
 [testng] LOCI software test suite
 [testng] Total tests run: 19110, Failures: 0, Skips: 0
 [testng] ==
 [testng]

BUILD SUCCESSFUL
Total time: 16 minutes 42 seconds

Each of the dots represents a single passed test; a ‘-’ is a skipped test, and an ‘F’ is a failed test. This is mostly just for your amusement if you happen to be staring at the console while the tests run, as a more detailed report is logged to loci-software-test-$\text{DATE}.log$ (where “DATE” is the date on which the tests started in “yyyy-MM-dd_hh-mm-ss” format).

If Ant reports that the build was successful, then there is nothing that you need to do. Otherwise, it is helpful if you can provide the command, branch name, number of failures at the bottom of the Ant output, and the loci-software-test-*.log file.

16.3 Public test data

Most of the data-driven tests would benefit from having a comprehensive set of public sample data (see also #4086[^1]).

Formats for which we already have public sample data:

- ICS (*)
- Leica LEI
- IPLab
- BMP (*)
- Image-Pro SEQ
- QuickTime (*)
- Bio-Rad PIC
- Image-Pro Workspace
- Fluoview/ABD TIFF (*)
- Perkin Elmer Ultraview
- Gatan DM3
- Zeiss LSM

[^1]: http://trac.openmicroscopy.org.uk/ome/ticket/4086
• Openlab LIFF (*)
• Leica LIF (*)
• TIFF (*)
• Khoros (http://netghost.narod.ru/gff/sample/images/viff/index.htm)
• MNG (Download\(^7\)) (*)

Formats for which we can definitely generate public sample data:

• PNG/APNG
• JPEG
• PGM
• FITS
• PCX
• GIF
• Openlab Raw
• OME-XML
• OME-TIFF
• AVI
• PICT
• LIM
• PSD
• Targa
• Bio-Rad Gel
• Fake
• ECAT-7 (minctoecat)
• NRRD
• JPEG-2000
• Micromanager
• Text
• DICOM
• MINC (rawominc)
• NIfTI (dicomnifi)
• Analyze 7.5 (medcon)
• SDT
• FV1000 .oib/.oif
• Zeiss ZVI
• Leica TCS
• Aperio SVS
• Imaris (raw)

Formats for which I need to check whether or not we can generate public sample data:

• IPLab Mac (Ivision)
• Deltavision

• MRC
• Gatan DM2
• Imaris (HDF)
• EPS
• Alicona AL3D
• Visitech
• InCell
• L2D
• FEI
• NAF
• MRW
• ARF
• LI-FLIM
• Oxford Instruments
• VG-SAM
• Hamamatsu HIS
• WA-TOP
• Seiko
• TopoMetrix
• UBM
• Quesant
• RHK
• Molecular Imaging
• JEOL
• Amira
• Unisoku
• Perkin Elmer Densitometer
• Nikon ND2
• SimplePCI .cxd
• Imaris (TIFF)
• Molecular Devices Gel
• Imacon .fff
• LEO
• JPK
• Nikon NEF
• Nikon TIFF
• Prairie
• Metamorph TIFF/STK/ND
• Improvision TIFF
• Photoshop TIFF
• FEI TIFF
- SimplePCI TIFF
- Burleigh
- SM-Camera
- SBIG

Formats for which we definitely cannot generate public sample data:
- TillVision
- Olympus CellR/APL
- Slidebook
- Cellomics
- CellWorX
- Olympus ScanR
- BD Pathway
- Opera Flex
- MIAS

16.4 Bio-Formats service and dependency infrastructure

16.4.1 Description

The Bio-Formats service infrastructure is an interface driven pattern for dealing with external and internal dependencies. The design goal was mainly to avoid the cumbersome usage of `ReflectedUniverse` where possible and to clearly define both service dependency and interface between components. This is generally referred to as dependency injection\(^8\), dependency inversion\(^9\) or component based design\(^10\).

It was decided, at this point, to forgo the usage of potentially more powerful but also more complicated solutions such as:
- Spring (http://spring.io)
- Guice (http://code.google.com/p/google-guice/)
- ...

The Wikipedia page for dependency injection\(^11\) contains many other implementations in many languages.

An added benefit is the potential code reuse possibilities as a result of decoupling of dependency and usage in Bio-Formats readers. Implementations of the initial Bio-Formats services were completed as part of BioFormatsCleanup and tickets #463\(^12\) and #464\(^13\).

16.4.2 Writing a service

- **Interface** – The basic form of a service is an interface which inherits from `loci.common.services.Service`\(^14\). Here is a very basic example using the (now removed) OMENotesService

```java
public interface OMENotesService extends Service {

    /**
     * Creates a new OME Notes instance.
     * @param filename Path to the file to create a Notes instance for.
     */
```

\(^8\)http://en.wikipedia.org/wiki/Dependency_injection
\(^10\)http://en.wikipedia.org/wiki/Component-based_software_engineering
\(^12\)http://trac.openmicroscopy.org.uk/ome/ticket/463
\(^13\)http://trac.openmicroscopy.org.uk/ome/ticket/464
\(^14\)https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-legacy/src/loci/common/services/Service.java
• **Implementation** – This service then has an implementation, which is usually located in the Bio-Formats component or package which imports classes from an external, dynamic or other dependency. Again looking at the OMENotesService:

```java
public class OMENotesServiceImpl extends AbstractService
    implements OMENotesService {

    /**
     * Default constructor.
     */
    public OMENotesServiceImpl() {
        checkClassDependency(Notes.class);
    }

    /* (non-Javadoc)
     * @see loci.formats.dependency.OMENotesService#newNotes()
     */
    public void newNotes(String filename) {
        new Notes(null, filename);
    }
}
```

• **Style**

 – Extension of AbstractService to enable uniform runtime dependency checking is recommended. Java does not check class dependencies until classes are first instantiated so if you do not do this, you may end up with ClassNotFound or the like exceptions being emitted from your service methods. This is to be strongly discouraged. If a service has unresolvable classes on its CLASSPATH instantiation should fail, not service method invocation.

 – Service methods should not burden the implementer with numerous checked exceptions. Also external dependency exception instances should not be allowed to directly leak from a service interface. Please wrap these using a ServiceException.

 – By convention both the interface and implementation are expected to be in a package named loci.*.services. This is not a hard requirement but should be followed where possible.

• **Registration** – A service’s interface and implementation must finally be registered with the loci.common.services.ServiceFactory via the services.properties file. Following the OMENotesService again, here is an example registration:

```plaintext
# OME notes service (implementation in legacy ome-notes component)
loci.common.services.OMENotesService=loci.ome.notes.services.OMENotesServiceImpl
```

16.4.3 Using a service

```java
OMENotesService service = null;
try {
    ServiceFactory factory = new ServiceFactory();
    service = factory.getInstance(OMENotesService.class);
}
```

catch (DependencyException de) {
 LOGGER.info("", de);
}
...

16.5 Code generation with xsd-fu

XSD Fu is a Python application designed to digest OME XML schema and produce an object oriented Java infrastructure to ease work with an XML DOM tree.

Requirements:

- Python17 2.4+
- Genshi18 0.5
- Complete checkout of the Bio-Formats repository19

\textit{Note:} Genshi 0.520 was released on June 9th 2008. You can either install from source or download a compatible .egg for your system on the Genshi download page21.

16.5.1 Checking out the source

This will get the entire source tree. xsd-fu is in components/xsd-fu

git clone https://github.com/openmicroscopy/bioformats

16.5.2 Running the code generator

If you \textit{do} have Genshi already installed, you can run xsd-fu script with no arguments to examine the syntax:

$./xsd-fu -o
Missing subcommand!
Usage: ./xsd-fu <subcommand> ...
Executes an OME-XML Schema definition parsing and code generation subcommand.

Available subcommands:
 java_classes
 omexml_metadata
 omero_metadata
 omero_model
 metadata_store
 metadata_retrieve
 metadata_aggregate
 dummy_metadata
 filter_metadata
 enum_types
 enum_handlers
 doc_gen
 tab_gen
 debug

Report bugs to OME Devel <ome-devel@lists.openmicroscopy.org.uk>

17http://python.org
18http://genshi.edgewall.org
19http://github.com/openmicroscopy/bioformats
20http://genshi.edgewall.org/milestone/0.5
21http://genshi.edgewall.org/wiki/Download
If you do not have Genshi installed you can use a downloaded Python .egg for your platform as follows:

$ export PYTHONPATH=Genshi-0.5-py2.4-linux-i686.egg
$./xsd-fu -o ../../../
Missing subcommand!
Usage: ./xsd-fu <subcommand> ...
Executes an OME-XML Schema definition parsing and code generation subcommand.

Available subcommands:
 java_classes
 omexml_metadata
 omero_metadata
 omero_model
 metadata_store
 metadata_retrieve
 metadata_aggregate
 dummy_metadata
 filter_metadata
 enum_types
 enum_handlers
 doc_gen
 tab_gen
 debug

Report bugs to OME Devel <ome-devel@lists.openmicroscopy.org.uk>

Note: XsdFu is now used for many different types of code generation tasks (mostly targeted at the OMERO and Bio-Formats 4.2.0 releases) as outlined by the subcommand structure above.

16.5.3 Generating the OME-XML Java toolchain

The following sections outline how to generate parts of the OME-XML Java toolchain which are composed of:

- OME model objects
- Enumerations for OME model properties
- Enumeration handlers for regular expression matching of enumeration strings
- Metadata store and Metadata retrieve interfaces for all OME model properties
- Various implementations of Metadata store and/or Metadata retrieve interfaces

All of the above can be generated by two Ant commands:

$ cd components/ome-xml
$ ant generate-source
$ cd ../scifio
$ ant generate-source

These commands internally call xsd-fu as follows:

Java classes for OME model objects

$./xsd-fu java_classes -p 'ome.xml.model' -o ../../../ome-xml/target/generated-sources/
 ../../../ome-xml/specification/released-schema/2013-06/ome.xsd
 ../../../ome-xml/specification/released-schema/2013-06/ROI.xsd
 ../../../ome-xml/specification/released-schema/2013-06/BinaryFile.xsd

Enumeration classes for OME model properties

```
$ ./xsd-fu enum_types -p 'ome.xml.model.enums' -o \
   ../ome-xml/target/generated-sources/ \
   ../specification/released-schema/2013-06/ome.xsd \
   ../specification/released-schema/2013-06/ROI.xsd \
   ../specification/released-schema/2013-06/SA.xsd \
   ../specification/released-schema/2013-06/SPW.xsd
```

Enumeration handlers for OME model properties

```
$ ./xsd-fu enum_handlers -p 'ome.xml.model.enums.handlers' -o \
   ../ome-xml/target/generated-sources/ \
   ../specification/released-schema/2013-06/ome.xsd \
   ../specification/released-schema/2013-06/ROI.xsd \
   ../specification/released-schema/2013-06/SA.xsd \
   ../specification/released-schema/2013-06/SPW.xsd
```

Metadata store and Metadata retrieve interfaces

```
$ ./xsd-fu metadata -o ../scifio/target/generated-sources/ \
   ../specification/released-schema/2013-06/ome.xsd \
   ../specification/released-schema/2013-06/ROI.xsd \
   ../specification/released-schema/2013-06/SA.xsd \
   ../specification/released-schema/2013-06/SPW.xsd
```

OMEXMLMetadataImpl Metadata store and Metadata retrieve implementation

```
$ ./xsd-fu omexml_metadata -o ../scifio/target/generated-sources/ \
   ../specification/released-schema/2013-06/ome.xsd \
   ../specification/released-schema/2013-06/ROI.xsd \
   ../specification/released-schema/2013-06/SA.xsd \
   ../specification/released-schema/2013-06/SPW.xsd
```

16.5.4 Working with Enumerations and Enumeration Handlers

XsdFu code generates enumeration regular expressions using a flexible configuration file\(^2\).

Each enumeration has a key-value listing of regular expression to exact enumeration value matches. For example:

\(^2\)https://github.com/openmicroscopy/bioformats/blob/develop/components/xsd-fu/cfg/enum_handler.cfg
[Correction]
".*Pl.*Apo.*" = "PlanApo"
".*Pl.*Flu.*" = "PlanFluor"
".*\s*Vio.*Corr.*" = "VioletCorrected"
".*S.*Flu.*" = "SuperFluor"
".*Neo.*flu.*" = "Neofluar"
".*Flu.*tar.*" = "Flutar"
".*Fluo.*" = "Fluor"
".*Flua.*" = "Fluar"
".*\s*Apo.*" = "Apo"

16.5.5 Generate OMERO model specification files

This work was completed as part of the Update XsdFu (#808623) story.

$ cd components/xsd-fu
$./xsd-fu omero_model -o where/to/place/output/ \
 ../specification/inprogress/ome.xsd ../specification/inprogress/SPW.xsd \
 ../specification/inprogress/SA.xsd ../specification/inprogress/ROI.xsd

16.5.6 Special Thanks

A special thanks goes out to Dave Kuhlman24 for his fabulous work on generateDS25 which XSD Fu makes heavy use of internally. See open Trac tickets for Bio-Formats26 for information on work currently planned or in progress.

For more general guidance about how to contribute to OME projects, see the Contributing developers documentation27.

23http://trac.openmicroscopy.org.uk/ome/ticket/8086
24http://www.rexx.com/ dkuhlman/
25http://www.rexx.com/ dkuhlman/generateDS.html
26https://trac.openmicroscopy.org.uk/ome/report/44
27http://www.openmicroscopy.org/site/support/contributing/index.html
Part IV

Formats
Bio-Formats supports over 120 different file formats. The Dataset Structure Table explains the file extension you should choose to open/import a dataset in any of these formats, while the Supported Formats table lists all of the formats and gives an indication of how well they are supported and whether Bio-Formats can write, as well as read, each format. The Summary of supported metadata fields table shows an overview of the OME data model fields populated for each format.

We are always looking for examples of files to help us provide better support for different formats. If you would like to help, you can upload files using our QA system uploader[^28]. If you have any questions, or would prefer not to use QA, please email the ome-users mailing list[^29]. If your format is already supported, please refer to the ‘we would like to have’ section on the individual page for that format, to see if your dataset would be useful to us.

[^28]: http://qa.openmicroscopy.org.uk/qa/upload/
[^29]: http://www.openmicroscopy.org/site/community/mailing-lists
Dataset Structure Table

This table shows the extension of the file that you should choose if you want to open/import a dataset in a particular format.

<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM</td>
<td>.aim</td>
<td>Single file</td>
</tr>
<tr>
<td>ARF</td>
<td>.arf</td>
<td>Single file</td>
</tr>
<tr>
<td>Adobe Photoshop</td>
<td>.psd</td>
<td>Single file</td>
</tr>
<tr>
<td>Adobe Photoshop TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Alcina AL3D</td>
<td>.al3d</td>
<td>Single file</td>
</tr>
<tr>
<td>Amersham Biosciences GEL</td>
<td>.gel</td>
<td>Single file</td>
</tr>
<tr>
<td>Amira</td>
<td>.am, .amiramesh, .grey, .lx, .labels</td>
<td>Single file</td>
</tr>
<tr>
<td>Analyze 7.5</td>
<td>.img, .hdr</td>
<td>One .img file and one similarly-named .hdr file</td>
</tr>
<tr>
<td>Andor SIF</td>
<td>.sif</td>
<td>Single file</td>
</tr>
<tr>
<td>Animated PNG</td>
<td>.png</td>
<td>Single file</td>
</tr>
<tr>
<td>Aperio SVS</td>
<td>.svs</td>
<td>Single file</td>
</tr>
<tr>
<td>Audio Video Interleave</td>
<td>.avi</td>
<td>Single file</td>
</tr>
<tr>
<td>BD Pathway</td>
<td>.exp, .tif</td>
<td>Multiple files (.exp, .dye, .ltp, …) plus one or more directories containing .tif and .bmp files</td>
</tr>
<tr>
<td>Bio-Rad GEL</td>
<td>.1sc</td>
<td>Single file</td>
</tr>
<tr>
<td>Bio-Rad PIC</td>
<td>.pic, .xml, .raw</td>
<td>One or more .pic files and an optional lse.xml file</td>
</tr>
<tr>
<td>Bitplane Imaris</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bitplane Imaris 3 (TIFF)</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bitplane Imaris 5.5 (HDF)</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bruker</td>
<td>(no extension)</td>
<td>One ‘fid’ and one ‘acqp’ plus several other metadata files and a ‘pdata’ directory</td>
</tr>
<tr>
<td>Burleigh</td>
<td>.img</td>
<td>Single file</td>
</tr>
<tr>
<td>Canon RAW</td>
<td>.cr2, .crw, .jpg, .thm, .wav</td>
<td>Single file</td>
</tr>
<tr>
<td>CellSens VSI</td>
<td>.vsi, .ets</td>
<td>One .vsi file and an optional directory with a similar name that contains at least one subdirectory with .ets files</td>
</tr>
<tr>
<td>CellWorx</td>
<td>.pnl, .htd, .log</td>
<td>One .htd file plus one or more .pnl or .tif files and optionally one or more .log files</td>
</tr>
<tr>
<td>Cellomics C01</td>
<td>.c01, .dib</td>
<td>One or more .c01 files</td>
</tr>
<tr>
<td>Compix Simple-PCI</td>
<td>.cxd</td>
<td>Single file</td>
</tr>
<tr>
<td>DICOM</td>
<td>.dic, .dcm, .dicom, .jp2, .j2ki, .j2kr, .raw, .ima</td>
<td>One or more .dcm or .dicom files</td>
</tr>
<tr>
<td>DNG</td>
<td>.cr2, .crw, .jpg, .thm, .wav, .tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Deltavision</td>
<td>.dv, .r3d, .r3d_d3d, .dv.log, .r3d.log</td>
<td>One .dv, .r3d, or .d3d file and up to two optional .log files</td>
</tr>
<tr>
<td>ECAT7</td>
<td>.v</td>
<td>Single file</td>
</tr>
<tr>
<td>Encapsulated PostScript</td>
<td>.eps, .epsi, .ps</td>
<td>Single file</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evotec Flex</td>
<td>.flex, .mea, .res</td>
<td>One directory containing one or more .flex files, and an optional directory containing an .mea and .res file. The .mea and .res files may also be in the same directory as the .flex file(s).</td>
</tr>
<tr>
<td>FEI TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>FEI/Philips</td>
<td>.img</td>
<td>Single file</td>
</tr>
<tr>
<td>Flexible Image Transport System</td>
<td>.fits, .fts</td>
<td>Single file</td>
</tr>
<tr>
<td>Fuji LAS 3000</td>
<td>.img, .inf</td>
<td>Single file</td>
</tr>
<tr>
<td>Gatan DM2</td>
<td>.dm2</td>
<td>Single file</td>
</tr>
<tr>
<td>Gatan Digital Micrograph</td>
<td>.dm3</td>
<td>Single file</td>
</tr>
<tr>
<td>Graphics Interchange Format</td>
<td>.gif</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu Aquacosmos</td>
<td>.naf</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu HIS</td>
<td>.his</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu NDPI</td>
<td>.ndpi</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu NDPIS</td>
<td>.ndpis</td>
<td>One .ndpis file and at least one .ndpi file</td>
</tr>
<tr>
<td>Hamamatsu VMS</td>
<td>.vms</td>
<td>One .vms file plus several .jpg files</td>
</tr>
<tr>
<td>Hitachi</td>
<td>.txt</td>
<td>One .txt file plus one similarly-named .tif, .bmp, or .jpg file</td>
</tr>
<tr>
<td>IMAGIC</td>
<td>.hed, .img</td>
<td>One .hed file plus one similarly-named .img file</td>
</tr>
<tr>
<td>IMOD</td>
<td>.mod</td>
<td>Single file</td>
</tr>
<tr>
<td>INR</td>
<td>.irn</td>
<td>Single file</td>
</tr>
<tr>
<td>IPLab</td>
<td>.ipl</td>
<td>Single file</td>
</tr>
<tr>
<td>IVision</td>
<td>.ipm</td>
<td>Single file</td>
</tr>
<tr>
<td>ImageCytometry Standard</td>
<td>.ics, .ids</td>
<td>One .ics and possibly one .ids with a similar name</td>
</tr>
<tr>
<td>Image-Pro Sequence</td>
<td>.seq</td>
<td>Single file</td>
</tr>
<tr>
<td>Image-Pro Workspace</td>
<td>.ipw</td>
<td>Single file</td>
</tr>
<tr>
<td>Improvision TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>InCell 1000/2000</td>
<td>.xdce, .xml, .tiff, .tif, .xlog</td>
<td>One .xdce file with at least one .tif/.tiff or .im file</td>
</tr>
<tr>
<td>InCell 3000</td>
<td>.frm</td>
<td>Single file</td>
</tr>
<tr>
<td>JEOL</td>
<td>.dat, .img, .par</td>
<td>A single .dat file or an .img file with a similarly-named .par file</td>
</tr>
<tr>
<td>JPEG</td>
<td>.jpg, .jpeg, .jpe</td>
<td>Single file</td>
</tr>
<tr>
<td>JPEG-2000</td>
<td>.jp2, .j2k, .jpf</td>
<td>Single file</td>
</tr>
<tr>
<td>JPK Instruments</td>
<td>.jpk</td>
<td>Single file</td>
</tr>
<tr>
<td>JPX</td>
<td>.jpx</td>
<td>Single file</td>
</tr>
<tr>
<td>Khoros XV</td>
<td>.xv</td>
<td>Single file</td>
</tr>
<tr>
<td>Kodak Molecular Imaging</td>
<td>.bip</td>
<td>Single file</td>
</tr>
<tr>
<td>LEO</td>
<td>.sxm, .tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>LI-FLIM</td>
<td>.fli</td>
<td>Single file</td>
</tr>
<tr>
<td>Laboratory Imaging</td>
<td>.lim</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica</td>
<td>.lei, .tif, .tiff, .raw</td>
<td>One .lei file with at least one .tif/.tiff file and an optional .txt file</td>
</tr>
<tr>
<td>Leica Image File Format</td>
<td>.lif</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica SCN</td>
<td>.scn</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica TCS TIFF</td>
<td>.tif, .tiff, .xml</td>
<td>Single file</td>
</tr>
<tr>
<td>Li-Cor L2D</td>
<td>.l2d, .scn, .tif</td>
<td>One .l2d file with one or more directories containing .tif/.tif files</td>
</tr>
<tr>
<td>MIAS</td>
<td>.tif, .tiff, .txt</td>
<td>One directory per plate containing one directory per well, each with one or more .tif/.tif files</td>
</tr>
<tr>
<td>MINC MRI</td>
<td>.mnc</td>
<td>Single file</td>
</tr>
<tr>
<td>Medical Research Council</td>
<td>.mrc, .st, .ali, .map, .rec</td>
<td>Single file</td>
</tr>
<tr>
<td>Metamorph STK</td>
<td>.stk, .nd, .tif, .tiff</td>
<td>One or more .stk or .tif/.tiff files plus an optional .nd file</td>
</tr>
<tr>
<td>Metamorph TIFF</td>
<td>.tif, .tiff</td>
<td>One or more .tif/.tiff files</td>
</tr>
</tbody>
</table>

Continued on next page
Table 17.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-Manager</td>
<td>.tif, .tiff, .txt, .xml</td>
<td>A ‘metadata.txt’ file plus or more .tif files</td>
</tr>
<tr>
<td>Minolta MRW</td>
<td>.mrw</td>
<td>Single file</td>
</tr>
<tr>
<td>Molecular Imaging</td>
<td>.sp</td>
<td>Single file</td>
</tr>
<tr>
<td>Multiple Network Graphics</td>
<td>.mng</td>
<td>Single file</td>
</tr>
<tr>
<td>NIFTI</td>
<td>.nii, .img, .hdr</td>
<td>A single .nii file or one .img file and a similarly-named .hdr file</td>
</tr>
<tr>
<td>NOAA-HRD Gridded Data Format</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>NRRD</td>
<td>.nrrd, .nhdr</td>
<td>A single .nrrd file or one .nhdr file and one other file containing the pixels</td>
</tr>
<tr>
<td>Nikon Elements TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon ND2</td>
<td>.nd2</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon NEF</td>
<td>.nef, .tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>OME-TIFF</td>
<td>.ome.tiff, .ome.tiff</td>
<td>One or more .ome.tiff files</td>
</tr>
<tr>
<td>OME-XML</td>
<td>.ome</td>
<td>Single file</td>
</tr>
<tr>
<td>Olympus APL</td>
<td>.apl, .tnb, .mtb, .tif</td>
<td>One .apl file, one .mtb file, one .tnb file, and a directory containing one or more .tif files</td>
</tr>
<tr>
<td>Olympus FV1000</td>
<td>.oib, .oif, .pty, .lut</td>
<td>Single .oib file or one .oif file and a similarly-named directory containing .tif/.tif files</td>
</tr>
<tr>
<td>Olympus Fluoview/ABD TIFF</td>
<td>.tif, .tiff</td>
<td>One or more .tif/.tif files, and an optional .txt file</td>
</tr>
<tr>
<td>Olympus SIS TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Olympus ScanR</td>
<td>.dat, .xml, .tif</td>
<td>One .xml file, one ‘data’ directory containing .tif/.tif files, and optionally two .dat files</td>
</tr>
<tr>
<td>Olympus Slidebook</td>
<td>.sld, .spl</td>
<td>Single file</td>
</tr>
<tr>
<td>Openlab LIFF</td>
<td>.liff</td>
<td>Single file</td>
</tr>
<tr>
<td>Openlab RAW</td>
<td>.raw</td>
<td>Single file</td>
</tr>
<tr>
<td>Oxford Instruments</td>
<td>.top</td>
<td>Single file</td>
</tr>
<tr>
<td>PCX</td>
<td>.pcx</td>
<td>Single file</td>
</tr>
<tr>
<td>PICT</td>
<td>.pict, .pct</td>
<td>Single file</td>
</tr>
<tr>
<td>POV-Ray</td>
<td>.df3</td>
<td>Single file</td>
</tr>
<tr>
<td>PerkinElmer Densitometer</td>
<td>.hdr, .img</td>
<td>One .hdr file and a similarly-named .img file</td>
</tr>
<tr>
<td>PerkinElmer</td>
<td>.ano, .cfg, .csv, .htm, .rec, .tim, .zpo, .tif</td>
<td>One .htm file, several other metadata files (.tim, .ano, .csv, ...) and either .tif files or .2, .3, .4, etc. files</td>
</tr>
<tr>
<td>PerkinElmer Operetta</td>
<td>.tif, .tiff, .xml</td>
<td>Directory with XML file and one .tif/.tif file per plane</td>
</tr>
<tr>
<td>Portable Gray Map</td>
<td>.pgm</td>
<td>Single file</td>
</tr>
<tr>
<td>Prairie TIFF</td>
<td>.tif, .tiff, .cfg, .xml</td>
<td>One .xml file, one .cfg file, and one more .tif/.tif files</td>
</tr>
<tr>
<td>Pyramid TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Quesant AFM</td>
<td>.afm</td>
<td>Single file</td>
</tr>
<tr>
<td>QuickTime</td>
<td>.mov</td>
<td>Single file</td>
</tr>
<tr>
<td>RHK Technologies</td>
<td>.sm2, .sm3</td>
<td>Single file</td>
</tr>
<tr>
<td>SBIG</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>SM Camera</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>SPCImage Data</td>
<td>.sdt</td>
<td>Single file</td>
</tr>
<tr>
<td>SPIDER</td>
<td>.spi</td>
<td>Single file</td>
</tr>
<tr>
<td>Seiko</td>
<td>.xqd, .xqf</td>
<td>Single file</td>
</tr>
<tr>
<td>SimplePCI TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Simulated data</td>
<td>.fake</td>
<td>Single file</td>
</tr>
<tr>
<td>Tagged Image File Format</td>
<td>.tif, .tiff, .tf2, .tf8, .btf</td>
<td>Single file</td>
</tr>
<tr>
<td>Text</td>
<td>.txt, .csv</td>
<td>Single file</td>
</tr>
<tr>
<td>TillVision</td>
<td>.vws, .pst, .inf</td>
<td>One .vws file and possibly one similarly-named directory</td>
</tr>
<tr>
<td>TopoMetrix</td>
<td>.tf, .frr, .zfr, .zfp, .zfl</td>
<td>Single file</td>
</tr>
<tr>
<td>Trestle</td>
<td>.tif</td>
<td>One .tif file plus several other similarly-named files (e.g. .FocalPlane, .sld, .slx, .ROI)</td>
</tr>
<tr>
<td>Truevision Targa</td>
<td>.tga</td>
<td>Single file</td>
</tr>
<tr>
<td>UBM</td>
<td>.pr3</td>
<td>Single file</td>
</tr>
<tr>
<td>Unisoku STM</td>
<td>.hdr, .dat</td>
<td>One .HDR file plus one similarly-named .DAT file</td>
</tr>
</tbody>
</table>

Continued on next page
Table 17.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>VG SAM</td>
<td>.dti</td>
<td>Single file</td>
</tr>
<tr>
<td>Varian FDF</td>
<td>.fdf</td>
<td>Single file</td>
</tr>
<tr>
<td>Visitech XYS</td>
<td>.xys, .html</td>
<td>One .html file plus one or more .xys files</td>
</tr>
<tr>
<td>Volocity Library</td>
<td>.mvd2, .aifs, .aix, .dat, .atsf</td>
<td>One .mvd2 file plus a ‘Data’ directory</td>
</tr>
<tr>
<td>Volocity Library Clipping</td>
<td>.acff</td>
<td>Single file</td>
</tr>
<tr>
<td>WA Technology TOP</td>
<td>.wat</td>
<td>Single file</td>
</tr>
<tr>
<td>Windows Bitmap</td>
<td>.bmp</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss AxiomVision TIFF</td>
<td>.tif, .xml</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss CZI</td>
<td>.czi</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss Laser-Scanning Microscopy</td>
<td>.lsm, .mdb</td>
<td>One or more .lsm files; if multiple .lsm files are present, an .mdb file should also be present</td>
</tr>
<tr>
<td>Zeiss Vision Image (ZVI)</td>
<td>.zvi</td>
<td>Single file</td>
</tr>
<tr>
<td>Zip</td>
<td>.zip</td>
<td>Single file</td>
</tr>
</tbody>
</table>

17.1 Flex Support

OMERO.importer supports importing analyzed Flex files from an Opera system.

Basic configuration is done via the `importer.ini`. Once the user has run the Importer once, this file will be in the following location:

- C: \Documents and Settings\<username>\omero\importer.ini

The user will need to modify or add the `[FlexReaderServerMaps]` section of the INI file as follows:

```
[FlexReaderServerMaps]
CIA-1 = \hostname1\mount;\\archivehost1\mount
CIA-2 = \hostname2\mount;\\archivehost2\mount
```

where the `key` of the INI file line is the value of the “Host” tag in the `.mea` measurement XML file (here: `<Host name="CIA-1">`) and the value is a semicolon-separated list of `escaped` UNC path names to the Opera workstations where the Flex files reside.

Once this resolution has been encoded in the configuration file and you have restarted the importer, you will be able to select the `.mea` measurement XML file from the Importer user interface as the import target.
Chapter EIGHTEEN

SUPPORTED FORMATS

Ratings legend and definitions

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>SCIFIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>3i SlideBook</td>
<td>.sld</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andor Bio-Imaging Division (ABD) TIFF</td>
<td>.tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM</td>
<td>.aim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alicona 3D</td>
<td>.al3d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amersham Biosciences Gel</td>
<td>.gel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amira Mesh</td>
<td>.am, .ami-mesh, .grey, .hx, .labels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyze 7.5</td>
<td>.img, .hdr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animated PNG</td>
<td>.png</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aperio AFI</td>
<td>.afi, .svs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aperio SVS TIFF</td>
<td>.svs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Precision CellWorX</td>
<td>.htd, .pnl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVI (Audio Video Interleave)</td>
<td>.avi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axon Raw Format</td>
<td>.arf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD Pathway</td>
<td>.exp, .tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Becker & Hickl SPImage</td>
<td>.sdt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-Rad Gel</td>
<td>.lsc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-Rad PIC</td>
<td>.pic, .raw, .xml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-Rad SCN</td>
<td>.scn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitplane Imaris</td>
<td>.ims</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruker MRI</td>
<td>.ims</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burleigh</td>
<td>.img</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canon DNG</td>
<td>.cr2, .crw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellomics</td>
<td>.c01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Table 18.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>SCIFIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellSens VSI</td>
<td>.vsi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CellVoyager</td>
<td>.xml, .tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeltaVision</td>
<td>.dv, .r3d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DICOM</td>
<td>.dcm, .dicom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECAT7</td>
<td>.v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS (Encapsulated PostScript)</td>
<td>.eps, .eps_i, .ps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evotec/PerkinElmer Opera Flex</td>
<td>.flex, .mea, .res</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEI</td>
<td>.img</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEI TIFF</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FITS (Flexible Image Transport System)</td>
<td>.fits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gatan Digital Micrograph</td>
<td>.dm3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gatan Digital Micrograph 2</td>
<td>.dm2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIF (Graphics Interchange Format)</td>
<td>.gif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamamatsu Aquacosmos NAF</td>
<td>.naf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamamatsu HIS</td>
<td>.his</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamamatsu ndpi</td>
<td>.ndpi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamamatsu VMS</td>
<td>.vms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hitachi S-4800</td>
<td>.txt, .tif, .bmp, .jpg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICS (Image Cytometry Standard)</td>
<td>.ics, .ids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imacon</td>
<td>.xff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ImagePro Sequence</td>
<td>.seq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ImagePro Workspace</td>
<td>.ipw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMAGIC</td>
<td>.hed, .img</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMOD</td>
<td>.mod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improvision Openlab LIFF</td>
<td>.liif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improvision Openlab Raw</td>
<td>.raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improvision TIFF</td>
<td>.tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspector OBF</td>
<td>.obf, .msr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InCell 1000</td>
<td>.xdec, .tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InCell 3000</td>
<td>.frm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INR</td>
<td>.inr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Table 18.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>SCIPIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inveon</td>
<td>.hdr</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>IPLab</td>
<td>.ipl</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>IPLab-Mac</td>
<td>.ipm</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>JEOL</td>
<td>.dat, .img, .par</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPEG</td>
<td>.jpg</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>JPEG 2000</td>
<td>.jp2</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>JPK</td>
<td>.jpk</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>JPX</td>
<td>.jpx</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Khoros VIFF (Visualization Image File Format) Bitmap</td>
<td>.xv</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Kodak BIP</td>
<td>.bip</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Lambert Instruments FLIM</td>
<td>.fli</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>LaVision Inspector</td>
<td>.msr</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Leica LCS LEI</td>
<td>.lei, .tif</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Leica LAS AF LIF (Leica Image File Format)</td>
<td>.lif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leica SCN</td>
<td>.scn</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>LEO</td>
<td>.sxm</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Li-Cor L2D</td>
<td>.l2d, .tif, .scn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIM (Laboratory Imaging/Nikon)</td>
<td>.lim</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>MetaMorph 7.5 TIFF</td>
<td>.tiff</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>MetaMorph Stack (STK)</td>
<td>.stk, .nd</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>MIAS (Maia Scientific)</td>
<td>.tif</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Micro-Manager</td>
<td>.tif, .txt, .xml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINC MRI</td>
<td>.mnc</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Minolta MRW</td>
<td>.mrw</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>MNG (Multiple Image Network Graphics)</td>
<td>.mng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Imaging</td>
<td>.stp</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>MRC (Medical Research Council)</td>
<td>.mrc</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>NEF (Nikon Electronic Format)</td>
<td>.nef, .tif</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>NIfTI</td>
<td>.img, .hdr</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Nikon Elements TIFF</td>
<td>.tif</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Nikon EZ-C1 TIFF</td>
<td>.tif</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
</tbody>
</table>
Table 18.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>SCIFIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nikon NIS-Elements ND2</td>
<td>.nd2</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>NRRD (Nearly Raw Raster Data)</td>
<td>.rrd, .nhdr, .raw, .txt</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>Olympus CellR/APL</td>
<td>.apl, .mtb, .tnb, .tif, .obsep</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>Olympus FluoView FV1000</td>
<td>.oib, .oif</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>Olympus FluoView TIFF</td>
<td>.tif</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>Olympus ScanR</td>
<td>.xml, .dat, .tif</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>Olympus SIS TIFF</td>
<td>.tif</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>OME-TIFF</td>
<td>.ome.tif</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>OME-XML</td>
<td>.ome</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>Oxford Instruments</td>
<td>.top</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PCORAW</td>
<td>.pcoraw, .rec</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>PCX (PC Paintbrush)</td>
<td>.pcx</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Perkin Elmer Densitometer</td>
<td>.pds</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>PerkinElmer Operetta</td>
<td>.tiff, .xml</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>PerkinElmer UltraView</td>
<td>.tif, .2, .3, .4</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>PGM (Portable Gray Map)</td>
<td>.pgm</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>Adobe Photoshop PSD</td>
<td>.psd</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>Photoshop TIFF</td>
<td>.tif, .tiff</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>PICT (Macintosh Picture)</td>
<td>.pict</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>PNG (Portable Network Graphics)</td>
<td>.png</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>Prairie Technologies TIFF</td>
<td>.tif, .xml, .cfg</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>Quesant</td>
<td>.afm</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>QuickTime Movie</td>
<td>.mov</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
<tr>
<td>RHK</td>
<td>.sm2, .sm3</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>SBIG</td>
<td>.sm2, .sm3</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Seiko</td>
<td>.xqd, .xqf</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>SimplePCI & HCImage</td>
<td>.cxd</td>
<td>✅</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>❌</td>
<td>❌</td>
<td>✗</td>
</tr>
</tbody>
</table>

Continued on next page
Table 18.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>SCIFIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimplePCI & HCIImage TIFF</td>
<td>.tiff</td>
<td>🟢</td>
<td>🟢</td>
<td>⚫️</td>
<td>🟢</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
</tr>
<tr>
<td>SM Camera</td>
<td>.tiff</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>SPIDER</td>
<td>.spi, .stk</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Targa</td>
<td>.tga</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Text</td>
<td>.txt</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>TIFF (Tagged Image File Format)</td>
<td>.tif</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>TillPhotonics TillVision</td>
<td>.vws</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
</tr>
<tr>
<td>Topometrix</td>
<td>.tfr, .frr, .zfr, .zfp, .2fl</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Trestle</td>
<td>.tif, .sld, .jpg</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>UBM</td>
<td>.pr3</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Unisoku</td>
<td>.dat, .hdr</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Varian FDF</td>
<td>.fdf</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
</tr>
<tr>
<td>VG SAM</td>
<td>.dti</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
</tr>
<tr>
<td>VisiTech XYS</td>
<td>.xys, .html</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Volocity</td>
<td>.mvd2</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Volocity Library Clipping</td>
<td>.acff</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>WA-TOP</td>
<td>.wat</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Windows Bitmap</td>
<td>.bmp</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Woolz</td>
<td>.wlz</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Zeiss AxioVision TIFF</td>
<td>.xml, .tiff</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Zeiss AxioVision ZVI (Zeiss Vision Image)</td>
<td>.zvi</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Zeiss CZI</td>
<td>.czi</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Zeiss LSM (Laser Scanning Microscope) 510/710</td>
<td>.lsm, .mdb</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>⚫️</td>
<td>🟢</td>
<td>🟢</td>
</tr>
</tbody>
</table>

Bio-Formats currently supports **135** formats

Ratings legend and definitions

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢</td>
<td>Outstanding</td>
</tr>
<tr>
<td>🟢</td>
<td>Very good</td>
</tr>
<tr>
<td>⚫️</td>
<td>Good</td>
</tr>
<tr>
<td>⚫️</td>
<td>Fair</td>
</tr>
<tr>
<td>⚫️</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Pixels Our estimation of Bio-Formats’ ability to reliably extract complete and accurate pixel values from files in that format. The better this score, the more confident we are that Bio-Formats will successfully read your file without displaying an error message or displaying an erroneous image.
Metadata Our certainty in the thoroughness and correctness of Bio-Formats’ metadata extraction and conversion from files of that format into standard OME-XML. The better this score, the more confident we are that all meaningful metadata will be parsed and populated as OME-XML.

Openness This is not a direct expression of Bio-Formats’ performance, but rather indicates the level of cooperation the format’s controlling interest has demonstrated toward the scientific community with respect to the format. The better this score, the more tools (specification documents, source code, sample files, etc.) have been made available.

Presence This is also not directly related to Bio-Formats, but instead represents our understanding of the format’s popularity, and is also as a measure of compatibility between applications. The better this score, the more common the format and the more software packages include support for it.

Utility Our opinion of the format’s suitability for storing metadata-rich microscopy image data. The better this score, the wider the variety of information that can be effectively stored in the format.

Export This indicates whether Bio-Formats is capable of writing the format (Bio-Formats can read every format on this list).

SCIFIO This indicates whether format is supported by the SCIFIO core library (see the SCIFIO section of the licensing page\(^1\)).

18.1 3i SlideBook

Extensions: .sld

Developer: Intelligent Imaging Innovations\(^2\)

Owner: Intelligent Imaging Innovations\(^3\)

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions: 4.1, 4.2

Supported Metadata Fields: 3i SlideBook

We currently have:

- Numerous SlideBook datasets

We would like to have:

- A SlideBook specification document
- More SlideBook datasets (preferably acquired with the most recent SlideBook software)

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▲

Utility: ▼

Additional Information

Source Code: SlidebookReader.java\(^4\)

Notes:

\(^{1}\)http://www.openmicroscopy.org/site/about/licensing-attribution

\(^{2}\)http://www.intelligent-imaging.com/

\(^{3}\)http://www.intelligent-imaging.com/

We strongly encourage users to export their .sld files to OME-TIFF using the SlideBook software. Bio-Formats is not likely to support the full range of metadata that is included in .sld files, and so exporting to OME-TIFF from SlideBook is the best way to ensure that all metadata is preserved.

See also:
Slidebook software overview\(^5\)

18.2 Andor Bio-Imaging Division (ABD) TIFF

Extensions: .tif

Developer: Andor Bioimaging Department

Owner: Andor Technology\(^6\)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: Andor Bio-Imaging Division (ABD) TIFF

We currently have:

- an ABD-TIFF specification document (from 2005 November, in PDF)
- a few ABD-TIFF datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: FluoviewReader.java\(^7\)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties. With a few minor exceptions, the ABD-TIFF format is identical to the Fluoview TIFF format.

18.3 AIM

Extensions: .aim

Developer: SCANCO Medical AG\(^8\)

Support

SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: *AIM*
We currently have:
• one .aim file
We would like to have:
• an .aim specification document
• more .aim files

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: [AIMReader.java][9]

Notes:

18.4 Alicona 3D

Extensions: .al3d

Owner: [Alicona Imaging][10]

Support

SCIFIO:
Export:

Officially Supported Versions: 1.0

Supported Metadata Fields: *Alicona 3D*

We currently have:
• an AL3D specification document[v1.0, from 2003, in PDF]
• a few AL3D datasets

We would like to have:
• more AL3D datasets (Z series, T series, 16-bit)

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼

[10]: http://www.alicona.com/
Utility:

Additional Information

Source Code: AliconaReader.java\(^{12}\)

Notes:

Known deficiencies:

- Support for 16-bit AL3D images is present, but has never been tested.
- Texture data is currently ignored.

18.5 Amersham Biosciences Gel

Extensions: .gel

Developer: Molecular Dynamics

Owner: GE Healthcare Life Sciences\(^{13}\)

Support

SCIFIO: ×

Export: ×

Officially Supported Versions:

Supported Metadata Fields: Amersham Biosciences Gel

We currently have:

- a GEL specification document (Revision 2, from 2001 Mar 15, in PDF)
- a few GEL datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▲

Openness: ▼

Presence: ▼

Utility: ▼

Additional Information

Source Code: GelReader.java\(^{14}\)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:

GEL Technical Overview\(^{15}\)

\(^{12}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/AliconaReader.java

\(^{13}\)http://www.gelifesciences.com/

\(^{14}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/GelReader.java

\(^{15}\)http://www.awaresystems.be/imaging/tiff/tifftags/docs/gel.html
18.6 Amira Mesh

Extensions: .am, .amiramesh, .grey, .hx, .labels

Developer: Visage Imaging16

Support

SCIFIO: \xmark

Export: \xmark

Officially Supported Versions:

Supported Metadata Fields: Amira Mesh

We currently have:

• a few Amira Mesh datasets

We would like to have:

• more Amira Mesh datasets

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: AmiraReader.java17

Notes:

18.7 Analyze 7.5

Extensions: .img, .hdr

Developer: Mayo Foundation Biomedical Imaging Resource18

Support

SCIFIO: \xmark

Export: \xmark

Officially Supported Versions:

Supported Metadata Fields: Analyze 7.5

We currently have:

• an Analyze 7.5 specification document19

• several Analyze 7.5 datasets

16http://www.amiravis.com/

17https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/AmiraReader.java

18http://www.mayo.edu/bir

19http://analyzedirect.com/support/10.0/Documents/Analyze_Resource_01.pdf
We would like to have:

Ratings

Pixels: 🔺
Metadata: 🔻
Openness: 🔺
Presence: 🔻
Utility: 🔻

Additional Information

Source Code: `AnalyzeReader.java`

Notes:

18.8 Animated PNG

Extensions: .png

Developer: The Animated PNG Project

Support

- SCIFIO: ✅
- Export: ✅

Officially Supported Versions:

Supported Metadata Fields: Animated PNG

Freely Available Software:

- Firefox 3+
- Opera 9.5+
- KSquirrel

We currently have:

- a specification document
- several APNG files

We would like to have:

Ratings

Pixels: 🔺
Metadata: 🔺
Openness: 🔺
Presence: 🔻
Utility: 🔻

Additional Information

21) http://www.animatedpng.com/
22) http://www.mozilla.com/firefox
23) http://www.opera.com/download
24) http://ksquirrel.sourceforge.net/download.php
18.9 Aperio AFI

Extensions: .afi, .svs

Owner: Aperio

Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: Aperio AFI

We currently have:

• several AFI datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: AFIReader.java

Notes:

See also:

Aperio ImageScope

18.10 Aperio SVS TIFF

Extensions: .svs

Owner: Aperio

Support

SCIFIO:
Export:

Officially Supported Versions: 8.0, 8.2, 9.0

Supported Metadata Fields: Aperio SVS TIFF

We currently have:

26https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/APNGReader.java
27http://www.aperio.com/
29http://www.aperio.com/#imagescope-request
30http://www.aperio.com/
• many SVS datasets
• an SVS specification document
• the ability to generate additional SVS datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

Source Code: SVSReader.java\(^{31}\)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:

Aperio ImageScope\(^{32}\)

18.11 Applied Precision CellWorX

Extensions: .htd, .pnl

Developer: Applied Precision\(^{33}\)

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: Applied Precision CellWorX

We currently have:

• a few CellWorX datasets

We would like to have:

• a CellWorX specification document
• more CellWorX datasets

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

\(^{31}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SVSReader.java

\(^{32}\)http://www.aperio.com/#imagescope-request

\(^{33}\)http://www.api.com
Additional Information
Source Code: CellWorxReader.java

Notes:

18.12 AVI (Audio Video Interleave)

Extensions: .avi
Developer: Microsoft

Support
SCIFIO: ✔
Export: ✔

Officially Supported Versions:

Supported Metadata Fields: AVI (Audio Video Interleave)

Freely Available Software:
- AVI Reader plugin for ImageJ
- AVI Writer plugin for ImageJ

We currently have:
- several AVI datasets

We would like to have:
- more AVI datasets, including:
 - files with audio tracks and/or multiple video tracks
 - files compressed with a common unsupported codec
 - 2+ GB files

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▲
Utility: ▼

Additional Information
Source Code: AVIReader.java

Notes:
- Bio-Formats can save image stacks as AVI (uncompressed).
- The following codecs are supported for reading:
 - Microsoft Run-Length Encoding (MSRLE)
 - Microsoft Video (MSV1)
 - Raw (uncompressed)

34https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/CellWorxReader.java
35http://www.microsoft.com/
38https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/AVIReader.java
– JPEG

See also:
AVI RIFF File Reference39 AVI on Wikipedia40

18.13 Axon Raw Format

Extensions: .arf
Owner: INDECBioSystems41

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: Axon Raw Format

We currently have:

- one ARF dataset
- a specification document42

We would like to have:

- more ARF datasets

Ratings

Pixels: ▶
Metadata: ◄
Openness: ▶
Presence: ◄
Utility: ◄

Additional Information

Source Code: ARFReader.java43

Notes:

18.14 BD Pathway

Extensions: .exp, .tif
Owner: BD Biosciences44

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

39http://msdn2.microsoft.com/en-us/library/ms779636.aspx
40http://en.wikipedia.org/wiki/Audio_Video_Interleave
41http://www.indecbiosystems.com/
42http://www.indecbiosystems.com/imagingworkbench/ApplicationNotes/IWAppNote11-ARF_File_Format.pdf
43https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ARFReader.java
44http://www.bdbiosciences.com
Supported Metadata Fields: *BD Pathway*

We currently have:

- a few BD Pathway datasets

We would like to have:

- more BD Pathway datasets

Ratings

Pixels: 🔺
Metadata: 🔺
Openness: 🔺
Presence: 🔺
Utility: 🔺

Additional Information

Source Code: [BDReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/BDReader.java)

Notes:

18.15 Becker & Hickl SPCImage

Extensions: .sdt

Owner: Becker-Hickl

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *Becker & Hickl SPCImage*

We currently have:

- an SDT specification document (from 2008 April, in PDF)
- an SDT specification document (from 2006 June, in PDF)
- Becker & Hickl’s SPCImage software
- a large number of SDT datasets
- the ability to produce new datasets

We would like to have:

Ratings

Pixels: 🔺
Metadata: 🔺
Openness: 🔺
Presence: 🔺
Utility: 🔺

45 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/BDReader.java
46 http://www.becker-hickl.de/
47 http://www.becker-hickl.de/software/tcspc/softwaretcpcspecial.htm
Additional Information
Source Code: SDTReader.java

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

18.16 Bio-Rad Gel

Extensions: .1sc
Owner: Bio-Rad

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: Bio-Rad Gel

We currently have:
• software that can read Bio-Rad Gel files
• several Bio-Rad Gel files

We would like to have:
• a Bio-Rad Gel specification
• more Bio-Rad Gel files

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: BioRadGelReader.java

Notes:

18.17 Bio-Rad PIC

Extensions: .pic, .raw, .xml
Developer: Bio-Rad
Owner: Carl Zeiss, Inc.

Support
SCIFIO: ✗

48 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SDTReader.java
49 http://www.bio-rad.com
50 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/BioRadGelReader.java
51 http://www.zeiss.com/
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *Bio-Rad PIC*

Freely Available Software:

- Bio-Rad PIC reader plugin for ImageJ

We currently have:

- a PIC specification document (v4.5, in PDF)
- an older PIC specification document (v4.2, from 1996 December 16, in DOC)
- a large number of PIC datasets
- the ability to produce new datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▲
Utility: ▲

Additional Information

Source Code: BioRadReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

- Commercial applications that support this format include:
 - Bitplane Imaris
 - SVI Huygens

18.18 Bio-Rad SCN

Extensions: .scn

Developer: Bio-Rad

Owner: Bio-Rad

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *Bio-Rad SCN*

We currently have:

- a few Bio-Rad .scn files

55. http://svi.nl/
We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

Additional Information

Source Code: [BioRadSCNReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/BioRadSCNReader.java)

Notes:

18.19 Bitplane Imaris

Extensions: .ims

Owner: Bitplane

Support

- SCIFIO: ❌
- Export: ❌

Officially Supported Versions: 2.7, 3.0, 5.5

Supported Metadata Fields: *Bitplane Imaris*

We currently have:

- an *Imaris* (RAW) specification document (from no later than 1997 November 11, in HTML)
- an *Imaris* 5.5 (HDF) specification document
- Bitplane’s bfFileReaderImaris3N code (from no later than 2005, in C++)
- several older Imaris (RAW) datasets
- one Imaris 3 (TIFF) dataset
- several Imaris 5.5 (HDF) datasets

We would like to have:

- an *Imaris* 3 (TIFF) specification document
- more *Imaris* 3 (TIFF) datasets

Ratings

- Pixels: ▲
- Metadata: ▲
- Openness: ◯
- Presence: ▼
- Utility: ▼

Additional Information

57 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/BioRadSCNReader.java

58 http://www.bitplane.com/

59 http://flash.bitplane.com/support/faqs/faqsviw.cfm?inCat=6&inQuestionID=104
Source Code: `ImarisHDFReader.java`\(^{60}\), `ImarisTiffReader.java`\(^{61}\), `ImarisReader.java`\(^{62}\)

Notes:

- **There are three distinct Imaris formats:**
 1. the old binary format (introduced in Imaris version 2.7)
 2. Imaris 3, a TIFF variant (introduced in Imaris version 3.0)
 3. Imaris 5.5, an HDF variant (introduced in Imaris version 5.5)

18.20 Bruker MRI

Developer: [Bruker] \(^{63}\)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *Bruker MRI*

Freely Available Software:

- Bruker plugin for ImageJ \(^{64}\)

We currently have:

- a few Bruker MRI datasets

We would like to have:

- an official specification document

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: `BrukerReader.java`\(^{65}\)

Notes:

18.21 Burleigh

Extensions: `.img`

Owner: Burleigh Instruments

Support

\(^{60}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImarisHDFReader.java

\(^{61}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImarisTiffReader.java

\(^{62}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImarisReader.java

\(^{63}\)http://www.bruker.com/

\(^{64}\)http://rsbweb.nih.gov/ij/plugins/bruker.html

\(^{65}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/BrukerReader.java
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: Burleigh

We currently have:
• Pascal code that can read Burleigh files (from ImageSXM)
• a few Burleigh files

We would like to have:
• a Burleigh file format specification
• more Burleigh files

Ratings
Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: BurleighReader.java

Notes:

18.22 Canon DNG

Extensions: .cr2, .crw
Developer: Canon

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: Canon DNG

Freely Available Software:
• IrfanView

We currently have:
• a few example datasets

We would like to have:
• an official specification document

67 http://canon.com
68 http://www.irfanview.com/
Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: DNGReader.java69
Notes:

18.23 Cellomics

Extensions: .c01
Developer: Thermo Fisher Scientific70

Support

SCIFIO: ×
Export: ×

Officially Supported Versions:

Supported Metadata Fields: Cellomics

We currently have:

• a few Cellomics .c01 datasets

We would like to have:

• a Cellomics .c01 specification document
• more Cellomics .c01 datasets

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: CellomicsReader.java71
Notes:

69https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/DNGReader.java
70http://www.thermofisher.com/
71https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/CellomicsReader.java
18.24 **cellSens VSI**

Extensions: `.vsi`

Developer: **Olympus**

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *cellSens VSI*

We currently have:

- a few example datasets

We would like to have:

- an official specification document

Ratings

Pixels: ▼

Metadata: △

Openness: ▼

Presence: ▼

Utility: ▼

Additional Information

Source Code: `CellSensReader.java`

Notes:

18.25 **CellVoyager**

Extensions: `.xml`, `.tif`

Owner: **Yokogawa**

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *CellVoyager*

We currently have:

- a few example datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: △

Openness:
Presence:
Utility:

Additional Information
Source Code: CellVoyagerReader.java
Notes:

18.26 DeltaVision

Extensions: .dv, .r3d
Owner: Applied Precision

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: DeltaVision
Freely Available Software:
 • DeltaVision Opener plugin for ImageJ
Sample Datasets:
 • Applied Precision Datasets
We currently have:
 • a DV specification document (v2.10 or newer, in HTML)
 • numerous DV datasets
We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: DeltavisionReader.java
Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

• The Deltavision format is based on the Medical Research Council (MRC) file format.
• Commercial applications that support DeltaVision include:

75https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/CellVoyagerReader.java
76http://www.api.com/
77http://rsb.info.nih.gov/ij/plugins/track/delta.html
78http://www.api.com/downloads/software/softworxexplorer2.0/SampleImages.zip
See also:
DeltaVision system description

18.27 DICOM

Extensions: .dcm, .dicom

Developer: National Electrical Manufacturers Association

Support

SCIFIO: ✔️

Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *DICOM*

Freely Available Software:

- OsiriX Medical Imaging Software
- ezDICOM
- Wikipedia’s list of freeware health software

Sample Datasets:

- MRI Chest from FreeVol-3D web site
- Medical Image Samples from Sebastien Barre’s Medical Imaging page
- DICOM sample image sets from OsiriX web site

We currently have:

- DICOM specification documents (PS 3 - 2007, from 2006 December 28, in DOC and PDF)
- numerous DICOM datasets

We would like to have:

Ratings

Pixels: ★★★

Metadata: ★★★

Openness: ★★★

Presence:

Utility: ★★☆☆☆

80 http://www.bitplane.com/
81 http://svi.nl/
82 http://www.mediacy.com/
83 http://api.com/deltavision.asp
84 http://www.nema.org/
85 http://www.osirix-viewer.com/
86 http://www.sph.sc.edu/comd/rorden/ezdicom.html
87 http://en.wikipedia.org/wiki/List_of_freeware_health_software#Imaging.2FVisualization
88 http://members.tripod.com/%7Eclunis_immensus/free3d/hk-40.zip
89 http://www.barre.nom.fr/medical/samples/
90 http://osirix-viewer.com/datasets/
91 http://medical.nema.org/dicom/2007/
Additional Information

Source Code: [DicomReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/DicomReader.java)

Notes:

- DICOM stands for “Digital Imaging and Communication in Medicine”.
- Bio-Formats supports both compressed and uncompressed DICOM files.

See also:

[DICOM homepage](http://medical.nema.org/)

18.28 ECAT7

Extensions: `.v`

Developer: [Siemens](http://www.siemens.com)

Support

- SCIFIO: [x]
- Export: [x]

Officially Supported Versions:

Supported Metadata Fields: *ECAT7*

We currently have:

- a few ECAT7 files

We would like to have:

- an ECAT7 specification document
- more ECAT7 files

Ratings

- Pixels: []
- Metadata: []
- Openness: []
- Presence: []
- Utility: []

Additional Information

Source Code: [Ecat7Reader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/Ecat7Reader.java)

Notes:

18.29 EPS (Encapsulated PostScript)

Extensions: `.eps`, `.epsi`, `.ps`

Developer: [Adobe](http://www.adobe.com/)

Support

http://www.siemens.com

SCIFIO: ✔
Export: ✔

Officially Supported Versions:

Supported Metadata Fields: *EPS (Encapsulated PostScript)*

Freely Available Software:

- EPS Writer plugin for ImageJ\(^97\)

We currently have:

- a few EPS datasets
- the ability to produce new datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: [EPSReader.java]\(^98\) Source Code: [EPSWriter.java]\(^99\)

Notes:

- Bio-Formats can save individual planes as EPS.
- Certain types of compressed EPS files are not supported.

18.30 Evotec/PerkinElmer Opera Flex

Extensions: .flex, .mea, .res

Developer: Evotec Technologies, now PerkinElmer\(^100\)

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *Evotec/PerkinElmer Opera Flex*

We currently have:

- many Flex datasets

We would like to have:

- a freely redistributable LuraWave LWF decoder

\(^98\) https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/EPSReader.java

\(^99\) https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/EPSWriter.java

\(^100\) http://www.perkinelmer.com/
Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: FlexReader.java[^1]

Notes:

The LuraWave LWF decoder library (i.e. lwf_jsdk2.6.jar) with license code is required to decode wavelet-compressed Flex files.

See also:

LuraTech (developers of the proprietary LuraWave LWF compression used for Flex image planes)[^2]

18.31 FEI

Extensions: .img
Developer: FEI[^3]

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: **FEI**

We currently have:

- a few FEI files

We would like to have:

- a specification document
 - more FEI files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: FEIReader.java[^4]

Notes:

[^1]: https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/FlexReader.java
[^2]: http://www.luratech.com/
[^3]: http://www.fei.com/
18.32 FEI TIFF

Extensions: .tiff
Developer: FEI

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: FEI TIFF
We currently have:
• a few FEI TIFF datasets

We would like to have:

Ratings
Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: FEITiffReader.java

Notes:

18.33 FITS (Flexible Image Transport System)

Extensions: .fits
Developer: National Radio Astronomy Observatory

Support
SCIFIO: ✔
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: FITS (Flexible Image Transport System)
We currently have:
• a FITS specification document (NOST 100-2.0, from 1999 March 29, in HTML)
• several FITS datasets

We would like to have:

Ratings
Pixels: ▲
18.34 Gatan Digital Micrograph

Extensions: .dm3
Owner: Gatan

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions: 3
Supported Metadata Fields: Gatan Digital Micrograph

Freely Available Software:
 • DM3 Reader plugin for ImageJ
 • EMAN

We currently have:
 • Gatan’s ImageReader2003 code (from 2003, in C++)
 • numerous DM3 datasets

We would like to have:
 • a DM3 specification document

Ratings
Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: GatanReader.java

109 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/FitsReader.java
110 http://archive.stsci.edu/fits/
111 http://fits.gsfc.nasa.gov/
112 http://www.gatan.com/
113 http://rsb.info.nih.gov/ij/plugins/DM3_Reader.html
114 http://blake.bcm.edu/EMAN/
Notes:

Commercial applications that support .dm3 files include Dat sque ez e
developer.

18.35 Gatan Digital Micrograph 2

Extensions: .dm2

Developer: Gatan

Support

- **SCIFIO:** ✗
- **Export:** ✗

Officially Supported Versions: 2

Supported Metadata Fields: *Gatan Digital Micrograph 2*

We currently have:

- Pascal code that can read DM2 files (from ImageSXM)
- a few DM2 files

We would like to have:

- an official DM2 specification document
- more DM2 files

Ratings

- **Pixels:**
- **Metadata:**
- **Openness:**
- **Presence:**
- **Utility:**

Additional Information

Source Code: *GatanDM2Reader.java*

Notes:

18.36 GIF (Graphics Interchange Format)

Extensions: .gif

Developer: CompuServe

Owner: Unisys

Support

- **SCIFIO:** ✔
- **Export:** ✗

Officially Supported Versions:

116 http://www.datasqueezesoftware.com/
117 http://www.gatan.com
119 http://www.compuserve.com/
120 http://www.unisys.com/
Supported Metadata Fields: *GIF (Graphics Interchange Format)*

Freely Available Software:
- Animated GIF Reader plugin for ImageJ\(^{121}\)
- GIF Stack Writer plugin for ImageJ\(^{122}\)

We currently have:
- a GIF specification document\(^{123}\) (Version 89a, from 1990, in HTML)
- numerous GIF datasets
- the ability to produce new datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▲
Utility: ▼

Additional Information

Source Code: GIFReader.java\(^{124}\)

Notes:

18.37 Hamamatsu Aquacosmos NAF

Extensions: .naf

Developer: Hamamatsu\(^{125}\)

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *Hamamatsu Aquacosmos NAF*

We currently have:
- a few NAF files

We would like to have:
- a specification document
- more NAF files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼

\(^{123}\) http://tronche.com/computer-graphics/gif/

\(^{124}\) https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/GIFReader.java

\(^{125}\) http://www.hamamatsu.com/
18.38 Hamamatsu HIS

Extensions: .his
Owner: Hamamatsu

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Hamamatsu HIS

We currently have:
• Pascal code that can read HIS files (from ImageSXM)
• several HIS files

We would like to have:
• an HIS specification
• more HIS files

Ratings
Pixels:
Metadata:
Openness:

Presence:
Utility:

Additional Information
Source Code: HISReader.java
Notes:

18.39 Hamamatsu ndpi

Extensions: .ndpi
Developer: Hamamatsu

Support
SCIFIO:

Notes:

126 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NAFReader.java
127 http://www.hamamatsu.com
129 http://www.hamamatsu.com
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *Hamamatsu ndpi*

Freely Available Software:

- **NDP.view**\(^{130}\)

Sample Datasets:

- **OpenSlide**\(^{131}\)

We currently have:

- many example datasets

We would like to have:

- an official specification document

Ratings

Pixels: ▼

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

Additional Information

Source Code: [NDPIReader.java](http://www.olympusamerica.com/seg_section/seg_vm_downloads.asp)

Notes:

18.40 Hamamatsu VMS

Extensions: .vms

Developer: Hamamatsu\(^{133}\)

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *Hamamatsu VMS*

Sample Datasets:

- **OpenSlide**\(^{134}\)

We currently have:

- a few example datasets

We would like to have:

- developer documentation from the OpenSlide project\(^{135}\)

\(^{130}\)[http://www.olympusamerica.com/seg_section/seg_vm_downloads.asp]

\(^{131}\)[http://openslide.cs.cmu.edu/download/openslide-testdata/Hamamatsu/]

\(^{132}\)[https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NDPIReader.java]

\(^{133}\)[http://www.hamamatsu.com]

\(^{134}\)[http://openslide.cs.cmu.edu/download/openslide-testdata/Hamamatsu-vms/]

\(^{135}\)[http://openslide.org/Hamamatsu%20format/]
• an official specification document
• more example datasets

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: HamamatsuVMSReader.java136

Notes:

18.41 Hitachi S-4800

Extensions: .txt, .tif, .bmp, .jpg
Developer: Hitachi137

Support
SCIFIO: x
Export: x

Officially Supported Versions:
Supported Metadata Fields: Hitachi S-4800
We currently have:
• several Hitachi S-4800 datasets
We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information
Source Code: HitachiReader.java138

Notes:
\begin{footnotesize}
\begin{itemize}
\item 136https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/HamamatsuVMSReader.java
\item 137http://www.hitachi-hta.com/sites/default/files/technotes/Hitachi_4800_STEM.pdf
\item 138https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/HitachiReader.java
\end{itemize}
\end{footnotesize}
18.42 ICS (Image Cytometry Standard)

Extensions: .ics, .ids
Developer: P. Dean et al.

Support

SCIFIO: 🟢
Export: 🟢

Officially Supported Versions: 1.0, 2.0

Supported Metadata Fields: ICS (Image Cytometry Standard)

Freely Available Software:
- Libics (ICS reference library)\(^{139}\)
- ICS Opener plugin for ImageJ\(^{140}\)
- IrfanView\(^{141}\)

We currently have:
- numerous ICS datasets

We would like to have:

Ratings

Pixels: 🟢
Metadata: 🟢
Openness: 🟢
Presence: 🟢
Utility: 🟢

Additional Information

Source Code: ICSReader.java\(^{142}\) Source Code: ICSWriter.java\(^{143}\)

Notes:
- ICS version 1.0 datasets have two files - an .ics file that contains all of the metadata in plain-text format, and an .ids file that contains all of the pixel data.
- ICS version 2.0 datasets are a single .ics file that contains both pixels and metadata.

Commercial applications that can support ICS include:
- Bitplane Imaris\(^{144}\)
- SVI Huygens\(^{145}\)

18.43 Imacon

Extensions: .fff

Owner: Hasselblad\(^{146}\)

\(^{139}\)http://libics.sourceforge.net/
\(^{140}\)http://valelab.ucsf.edu/~nstuurman/IJplugins/Ics_Opener.html
\(^{141}\)http://www.irfanview.com/
\(^{142}\)https://github.com/openmicroscopy/bioformats/blob desarroll/src/loci/formats/in/ICSReader.java
\(^{143}\)https://github.com/openmicroscopy/bioformats/blob desarroll/src/loci/formats/out/ICSWriter.java
\(^{144}\)http://www.bitplane.com/
\(^{145}\)http://svi.nl/
\(^{146}\)http://www.hasselbladusa.com/
Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: *Imacon*

We currently have:

 • one Imacon file

We would like to have:

 • more Imacon files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: *ImaconReader.java*\(^\text{147}\)

Notes:

\section{18.44 ImagePro Sequence}

Extensions: .seq

Owner: Media Cybernetics\(^\text{148}\)

Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: *ImagePro Sequence*

We currently have:

 • the Image-Pro Plus\(^\text{149}\) software

 • a few SEQ datasets

 • the ability to produce more datasets

We would like to have:

 • an official SEQ specification document

Ratings

Pixels:
Metadata:

\(^\text{147}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImaconReader.java

\(^\text{148}\)http://www.mediacy.com/

18.45 ImagePro Workspace

Extensions: .ipw
Owner: Media Cybernetics

Support
SCIFIO:
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: ImagePro Workspace

We currently have:

- the Image-Pro Plus software
- a few IPW datasets
- the ability to produce more datasets

We would like to have:

- an official IPW specification document
- more IPW datasets:
 - multiple datasets in one file
 - 2+ GB files

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: IPWReader.java

Notes:

Bio-Formats uses a modified version of the Apache Jakarta POI library to read IPW files.

150 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SEQReader.java
151 http://www.mediacy.com/
154 http://jakarta.apache.org/poi/
18.46 IMAGIC

Extensions: .hed, .img

Developer: Image Science155

Support

SCIFIO: ☇

Export: ☇

Officially Supported Versions:

Supported Metadata Fields: \textit{IMAGIC}

Freely Available Software:

• em2em156

We currently have:

• one example dataset
 • official file format documentation

We would like to have:

• more example datasets

Ratings

Pixels: ▲

Metadata: ▲

Openness: ▲

Presence: □

Utility: □

Additional Information

Source Code: ImagicReader.java157

Notes:

See also:

IMAGIC specification158

18.47 IMOD

Extensions: .mod

Developer: Boulder Laboratory for 3-Dimensional Electron Microscopy of Cells159

Owner: Boulder Laboratory for 3-Dimensional Electron Microscopy of Cells160

Support

SCIFIO: ☇

Export: ☇

155http://www.imagescience.de
156http://www.imagescience.de/em2em.html
157https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImagicReader.java
158http://www.imagescience.de/em2em.html
159http://bio3d.colorado.edu
160http://bio3d.colorado.edu
Officially Supported Versions:

Supported Metadata Fields: *IMOD*

Freely Available Software:

- IMOD\(^{163}\)

We currently have:

- a few sample datasets
- official documentation\(^{162}\)

We would like to have:

Ratings

Pixels: []

Metadata: []

Openness: []

Presence: []

Utility: []

Additional Information

Source Code: IMODReader.java\(^{163}\)

Notes:

18.48 Improvision Openlab LIFF

Extensions: .liff

Developer: Improvision\(^{164}\)

Owner: PerkinElmer\(^{165}\)

Support

SCIFIO: []

Export: []

Officially Supported Versions: 2.0, 5.0

Supported Metadata Fields: *Improvision Openlab LIFF*

We currently have:

- an Openlab specification document (from 2000 February 8, in DOC)
- Improvision’s XLIFFFileImporter code for reading Openlab LIFF v5 files (from 2006, in C++)
- several Openlab datasets

We would like to have:

- more Openlab datasets (preferably with 32-bit integer data)

Ratings

Pixels: []

Metadata: []

\(^{161}\)http://bio3d.colorado.edu/imod/

\(^{162}\)http://bio3d.colorado.edu/imod/doc/binspec.html

\(^{163}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/IMODReader.java

\(^{164}\)http://www.improvision.com/

\(^{165}\)http://www.perkinelmer.com/
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information
Source Code: OpenlabReader.java166

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:
Openlab software review167

18.49 Improvision Openlab Raw

Extensions: .raw
Developer: Improvision168
Owner: PerkinElmer169

Support
SCIFIO: △
Export: △

Officially Supported Versions:
Supported Metadata Fields: Improvision Openlab Raw

We currently have:
• an Openlab Raw specification document170 (from 2004 November 09, in HTML)
• a few Openlab Raw datasets

We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information
Source Code: OpenlabRawReader.java171

Notes:

See also:
Openlab software review172

166 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/OpenlabReader.java
167 http://www.improvision.com/products/openlab/
168 http://www.improvision.com/
169 http://www.perkinelmer.com/
170 http://cellularimaging.perkinelmer.com/support/technical_notes/detail.php?id=344
171 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/OpenlabRawReader.java
172 http://www.improvision.com/products/openlab/
18.50 Improvision TIFF

Extensions: .tif
Developer: Improvision
Owner: PerkinElmer

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Improvision TIFF

We currently have:
- an Improvision TIFF specification document
- a few Improvision TIFF datasets

We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility:

Additional Information
Source Code: ImprovisionTiffReader.java

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:
Openlab software overview

18.51 Imspector OBF

Extensions: .obf, .msr
Developer: Department of NanoBiophotonics, MPI-BPC
Owner: MPI-BPC

Support
SCIFIO: ✔
Export: ✗

Officially Supported Versions:

References:
173 http://www.improvision.com/
174 http://www.perkinelmer.com/
175 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImprovisionTiffReader.java
176 http://www.improvision.com/products/openlab/
177 https://imspector.mpibpc.mpg.de/index.html
178 http://www.mpibpc.mpg.de/
Supported Metadata Fields: *Inspector OBF*

We currently have:

- a few .msr datasets
- a specification document\(^{179}\)

We would like to have:

Ratings

Pixels: 🔺

Metadata: ❌

Openness: 🔻

Presence: 🔻

Utility: 🔻

Additional Information

Source Code: **OBFReader.java**\(^{180}\)

Notes:

18.52 InCell 1000

Extensions: .xdce, .tif

Developer: **GE**\(^{181}\)

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *InCell 1000*

We currently have:

- a few InCell 1000 datasets

We would like to have:

- an InCell 1000 specification document
- more InCell 1000 datasets

Ratings

Pixels: 🔺

Metadata: 🔺

Openness: ❌

Presence: 🔻

Utility: ⬇

Additional Information

Source Code: **InCellReader.java**\(^{182}\)

\(^{179}\)https://imspector.mpibpc.mpg.de/documentation/fileformat.html

\(^{180}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/OBFReader.java

\(^{181}\)http://gelifesciences.com/

\(^{182}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/InCellReader.java
Notes:

18.53 InCell 3000

Extensions: .frm
Developer: GE

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: InCell 3000
Sample Datasets:
 • Broad Bioimage Benchmark Collection

We currently have:
 • a few example datasets
We would like to have:
 • an official specification document

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: InCell3000Reader.java

Notes:

18.54 INR

Extensions: .inr

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: INR
We currently have:
 • several sample .inr datasets

183 http://gelifesciences.com/
184 http://www.broadinstitute.org/bbbc/BBBC013/
185 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/InCell3000Reader.java
We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

Additional Information

Source Code: INRReader.java\(^\text{186}\)

Notes:

18.55 Inveon

Extensions: .hdr

Support

- SCIFIO: ✗
- Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Inveon

We currently have:

- a few Inveon datasets

We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▲
- Openness: ▼
- Presence: ▼
- Utility: ▼

Additional Information

Source Code: InveonReader.java\(^\text{187}\)

Notes:

18.56 IPLab

Extensions: .ipl

Developer: Scanalytics

Owner: was BD Biosystems\(^\text{188}\), now BioVision Technologies\(^\text{189}\)

\(^{186}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/INRReader.java

\(^{188}\)http://wwwbdbiosciences.com/

\(^{189}\)http://www.biovis.com/iplab.htm
Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *IPLab*

Freely Available Software:

- **IPLab Reader plugin for ImageJ**[^190]

We currently have:

- an IPLab specification document (v3.6.5, from 2004 December 1, in PDF)
- several IPLab datasets

We would like to have:

- more IPLab datasets (preferably with 32-bit integer or floating point data)

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

Source Code: *IPLabReader.java*[^191]

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Commercial applications that support IPLab include:

- Bitplane Imaris[^192]
- SVI Huygens[^193]

See also:

IPLab software review[^194]

18.57 IPLab-Mac

Extensions: .ipm

Owner: BioVision Technologies[^195]

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

[^191]: https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/IPLabReader.java
[^192]: http://www.bitplane.com/
[^193]: http://svi.nl/
[^194]: http://www.biovis.com/iplab.htm
[^195]: http://biovis.com/
Supported Metadata Fields: *IPLab-Mac*

We currently have:

- a few IPLab-Mac datasets
- a specification document

We would like to have:

- more IPLab-Mac datasets

Ratings

- **Pixels:** 🟡
- **Metadata:** 🟢
- **Openness:** 🟡
- **Presence:** 🟢
- **Utility:** 🟢

Additional Information

Source Code: *IvisionReader.java*[^106]

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

18.58 JEOL

Extensions: .dat, .img, .par

Owner: JEOL[^197]

Support

- **SCIFIO:** ✗
- **Export:** ✗

Officially Supported Versions:

Supported Metadata Fields: *JEOL*

We currently have:

- Pascal code that reads JEOL files (from ImageSXM)
- a few JEOL files

We would like to have:

- an official specification document
- more JEOL files

Ratings

- **Pixels:** 🟢
- **Metadata:** 🟢
- **Openness:** 🟢
- **Presence:** 🟢
- **Utility:** 🟢

[^197]: http://www.jeol.com
Additional Information
Source Code: JEOLReader.java

Notes:

18.59 JPEG

Extensions: .jpg
Developer: Independent JPEG Group

Support
SCIFIO: ☑
Export: ☑

Officially Supported Versions:
Supported Metadata Fields: JPEG

We currently have:
 • a JPEG specification document (v1.04, from 1992 September 1, in PDF)
 • numerous JPEG datasets
 • the ability to produce more datasets

We would like to have:

Ratings
Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▲
Utility: ▼

Additional Information
Source Code: JPEGReader.java Source Code: JPEGWriter.java

Notes:
Bio-Formats can save individual planes as JPEG. Bio-Formats uses the Java Image I/O API to read and write JPEG files. JPEG stands for “Joint Photographic Experts Group”.

See also:
JPEG homepage

18.60 JPEG 2000

Extensions: .jp2
Developer: Independent JPEG Group

References:
199 http://www.ijg.org/
200 http://www.w3.org/Graphics/JPEG/jfif3.pdf
201 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/JPEGReader.java
202 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/JPEGWriter.java
203 http://docs.oracle.com/javase/6/docs/technotes/guides/imageio/
204 http://www.jpeg.org/jpeg/index.html
205 http://www.ijg.org/
Support

SCIFIO: ✅
Export: ✅

Officially Supported Versions:
Supported Metadata Fields: JPEG 2000

Freely Available Software:
- JJ2000 (JPEG 2000 library for Java)²⁰⁶

We currently have:
- a JPEG 2000 specification document²⁰⁷ (final draft, from 2000, in PDF)
- a few .jp2 files

We would like to have:

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

Notes:
Bio-Formats uses the JAI Image I/O Tools²¹⁰ library to read JP2 files. JPEG stands for “Joint Photographic Experts Group”.

18.61 JPK

Extensions: .jpk
Developer: JPK Instruments²¹¹

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: JPK

We currently have:
- Pascal code that can read JPK files (from ImageSXM)
- a few JPK files

We would like to have:
- an official specification document

²⁰⁶ http://code.google.com/p/jj2000/
²⁰⁷ http://www.jpeg.org/jpeg2000/CDs15444.html
²¹⁰ https://java.net/projects/jai-imageio
²¹¹ http://www.jpk.com
• more JPK files

Ratings

Pixels: ▼

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

Additional Information

Source Code: JPKReader.java

Notes:

18.62 JPX

Extensions: .jpx

Developer: JPEG Committee

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *JPX*

We currently have:

• a few .jpx files

We would like to have:

Ratings

Pixels: ▲

Metadata: ▲

Openness: ▲

Presence: ▼

Utility: ▼

Additional Information

Source Code: JPXReader.java

Notes:

18.63 Khoros VIFF (Visualization Image File Format) Bitmap

Extensions: .xv

Developer: Khoral

Notes:

212 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/JPKReader.java

213 http://www.jpeg.org/jpeg2000/

215 http://www.khoral.com/company/
Owner: AccuSoft

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *Khoros VIFF (Visualization Image File Format) Bitmap*

Sample Datasets:

- VIFF Images

We currently have:

- several VIFF datasets

We would like to have:

Ratings

Pixels: ☐
Metadata: ☐
Openness: ☐
Presence: ☐
Utility: ☐

Additional Information

Source Code: [KhorosReader.java](http://www.accusoft.com/products/visiquest/)

Notes:

See also:

VisiQuest software overview (formerly known as KhorosPro)

18.64 Kodak BIP

Extensions: .bip

Developer: Kodak/Carestream

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *Kodak BIP*

We currently have:

- a few .bip datasets

We would like to have:

- an official specification document

220 http://carestream.com
Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: KodakReader.java221

Notes:

See also:

Information on Image Station systems222

\section*{18.65 Lambert Instruments FLIM}

Extensions: .fli

Developer: Lambert Instruments223

Support

SCIFIO: \xmark
Export: \xmark

Officially Supported Versions:

Supported Metadata Fields: Lambert Instruments FLIM

We currently have:

\begin{itemize}
\item an LI-FLIM specification document
\item several example LI-FLIM datasets
\end{itemize}

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

Source Code: LiFlimReader.java224

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

221https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/KodakReader.java
222http://carestream.com/PublicContent.aspx?langType=1033&id=448953
223http://www.lambert-instruments.com
224https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LiFlimReader.java
18.66 LaVision Imspector

Extensions: .msr
Developer: LaVision BioTec

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: LaVision Imspector

We currently have:
- a few .msr files

We would like to have:

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: InspectorReader.java

Notes:

18.67 Leica LCS LEI

Extensions: .lei, .tif
Developer: Leica Microsystems CMS GmbH
Owner: Leica

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: Leica LCS LEI

Freely Available Software:
- Leica LCS Lite

We currently have:
- an LEI specification document (beta 2.000, from no later than 2004 February 17, in PDF)
- many LEI datasets

225http://www.lavisionbiotec.com/
227http://www.leica-microsystems.com/
228http://www.leica.com/
229ftp://ftp.llt.de/softlib/LCSLite/LCSLite2611537.exe

18.66. LaVision Imspector
We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▲
Utility: ▲

Additional Information

Source Code: LeicaReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

LCS stands for “Leica Confocal Software”. LEI presumably stands for “Leica Experimental Information”.

Commercial applications that support LEI include:

- Bitplane Imaris
- SVI Huygens
- Image-Pro Plus

18.68 Leica LAS AF LIF (Leica Image File Format)

Extensions: .lif

Developer: Leica Microsystems CMS GmbH

Owner: Leica

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions: 1.0, 2.0

Supported Metadata Fields: Leica LAS AF LIF (Leica Image File Format)

Freely Available Software:

- Leica LAS AF Lite (links at bottom of page)

We currently have:

- a LIF specification document (version 2, from no later than 2007 July 26, in PDF)
- a LIF specification document (version 1, from no later than 206 April 3, in PDF)
- numerous LIF datasets

We would like to have:

Ratings

Pixels: ▲

https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LeicaReader.java

http://www.bitplane.com/

http://svi.nl/

http://www.mediacy.com/

http://www.leica-microsystems.com/

http://www.leica.com/

Metadata: ▲
Openness: ▲
Presence: △
Utility: ▲

Additional Information
Source Code: LIFReader.java

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.
LAS stands for "Leica Application Suite". AF stands for "Advanced Fluorescence".
Commercial applications that support LIF include:
- Bitplane Imaris
- SVI Huygens
- Amira

18.69 Leica SCN

Extensions: .scn
Developer: Leica Microsystems

Support
SCIFIO: ❌
Export: ❌
Officially Supported Versions: 2012-03-10
Supported Metadata Fields: Leica SCN
We currently have:
- a few sample datasets
We would like to have:
- an official specification document
- sample datasets that cannot be opened

Ratings
Pixels: △
Metadata: △
Openness: △
Presence: △
Utility: △

Additional Information
Source Code: LeicaSCNReader.java

238 http://www.bitplane.com/
239 http://svi.nl/
240 http://www.amira.com/
241 http://www.leica-microsystems.com/
242 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LeicaSCNReader.java
Notes:

18.70 LEO

Extensions: .sxm
Owner: Zeiss

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *LEO*

We currently have:
- Pascal code that can read LEO files (from ImageSXM)
- a few LEO files

We would like to have:
- an official specification document
- more LEO files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: LEOReader.java

Notes:

18.71 Li-Cor L2D

Extensions: .l2d, .tif, .scn
Owner: LiCor Biosciences

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *Li-Cor L2D*

We currently have:
- a few L2D datasets

243http://www.zeiss.de
244https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LEOReader.java
245http://www.licor.com/
We would like to have:

- an official specification document
- more L2D datasets

Ratings

Pixels: 🟢

Metadata: 🔴

Openness: ☐

Presence: ☐

Utility: ☐

Additional Information

Source Code: `L2DReader.java`[^246]

Notes:

L2D datasets cannot be imported into OME using server-side import. They can, however, be imported from ImageJ, or using the `omeul` utility.

18.72 LIM (Laboratory Imaging/Nikon)

Extensions: `.lim`

Owner: Laboratory Imaging[^247]

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: LIM (Laboratory Imaging/Nikon)

We currently have:

- several LIM files
- the ability to produce more LIM files

We would like to have:

- an official specification document

Ratings

Pixels: ☐

Metadata: 🔴

Openness: 🔴

Presence: 🔴

Utility: 🔴

Additional Information

Source Code: `LIMReader.java`[^248]

Notes:

[^246]: https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/L2DReader.java
[^247]: http://www.lim.cz/
Bio-Formats only supports uncompressed LIM files.
Commercial applications that support LIM include:

- **NIS Elements**

18.73 MetaMorph 7.5 TIFF

Extensions: .tiff
Owner: Molecular Devices
Support
- SCIFIO: ✗
- Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *MetaMorph 7.5 TIFF*

We currently have:

- a few Metamorph 7.5 TIFF datasets

We would like to have:

Ratings
- Pixels:
- Metadata:
- Openness:
- Presence:
- Utility:

Additional Information

Source Code: MetamorphTiffReader.java

Notes:

18.74 MetaMorph Stack (STK)

Extensions: .stk, .nd
Owner: Molecular Devices
Support
- SCIFIO: ✗
- Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *MetaMorph Stack (STK)*

We currently have:

- an STK specification document (from 2006 November 21, in DOC)
• an older STK specification document (from 2005 March 25, in DOC)
• an ND specification document (from 2002 January 24, in PDF)
• a large number of datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▲
Utility: ▼

Additional Information

Source Code: [MetamorphReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MetamorphReader.java)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Commercial applications that support STK include:

- Bitplane Imaris
- SVI Huygens
- DIMIN

See also:

- Metamorph imaging system overview

18.75 MIAS (Maia Scientific)

Extensions: .tif

Developer: Maia Scientific

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: **MIAS (Maia Scientific)**

We currently have:

- several MIAS datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▼

255 http://svi.nl/
256 http://dimin.net/
258 http://www.selectscience.net/supplier/maia-scientific/?compID=6088
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: MIASReader.java²⁵⁹
Notes:

18.76 Micro-Manager

Extensions: .tif, .txt, .xml
Developer: Vale Lab²⁶⁰

Support

SCIFIO: ✔
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: Micro-Manager

Freely Available Software:
• Micro-Manager²⁶¹

We currently have:
• many Micro-manager datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▄

Additional Information
Source Code: MicromanagerReader.java²⁶²
Notes:

18.77 MINC MRI

Extensions: .mnc
Developer: McGill University²⁶³

Support

SCIFIO: ❌

²⁵⁹https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MIASReader.java
²⁶⁰http://valelab.ucsf.edu/
²⁶¹http://micro-manager.org/
²⁶²https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/MicromanagerReader.java
²⁶³http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: MINC MRI

Freely Available Software:

- MINC

We currently have:

- a few MINC files

We would like to have:

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

Additional Information

Source Code: MINCReader.java

Notes:

18.78 Minolta MRW

Extensions: .mrw

Developer: Minolta

Support

SCIFIO: ❌

Export: ❌

Officially Supported Versions:

Supported Metadata Fields: Minolta MRW

Freely Available Software:

- dcraw

We currently have:

- several .mrw files

We would like to have:

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▼

264 http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
265 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MINCReader.java
266 http://www.konicaminolta.com/
267 http://www.cybercom.net/%7Edcoffin/dcraw/
Utility: ▼

Additional Information
Source Code: MRWReader.java

Notes:
See also:
Description of MRW format

18.79 MNG (Multiple-image Network Graphics)

Extensions: .mng
Developer: MNG Development Group

Support
SCIFIO: ✔
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: MNG (Multiple-image Network Graphics)

Freely Available Software:
- libmng (MNG reference library)

Sample Datasets:
- MNG sample files

We currently have:
- the libmng-testsuites package (from 2003 March 05, in C)
- a large number of MNG datasets

We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: MNGReader.java

Notes:
See also:
MNG homepage

268 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MRWReader.java
269 http://www.dalibor.cz/files/MRW%20File%20Format.txt
269a http://www.libpng.org/pub/mng/mngnews.html
270 http://sourceforge.net/projects/libmng/
271 http://sourceforge.net/projects/libmng/files/libmng-testsuites/MNGsuite-1.0/MNGsuite.zip/download
273 http://sourceforge.net/projects/libmng/files/libmng/MNGsuite-20030305.zip
274 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/MNGReader.java
274a http://www.libpng.org/pub/mng/
276 http://www.libpng.org/pub/mng/spec
18.80 Molecular Imaging

Extensions: .stp
Owner: Molecular Imaging Corp, San Diego CA (closed)

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: Molecular Imaging

We currently have:
• Pascal code that reads Molecular Imaging files (from ImageSXM)
• a few Molecular Imaging files

We would like to have:
• an official specification document
• more Molecular Imaging files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: MolecularImagingReader.java

Notes:

18.81 MRC (Medical Research Council)

Extensions: .mrc
Developer: MRC Laboratory of Molecular Biology

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: MRC (Medical Research Council)

Sample Datasets:
• golgi.mrc

We currently have:
• an MRC specification document (in HTML)

277 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MolecularImagingReader.java
278 http://www2.mrc-lmb.cam.ac.uk/
279 http://bio3d.colorado.edu/imod/files/imod_data.tar.gz
280 http://ami.scripps.edu/software/mrctools/mrc_specification.php
• another MRC specification document (in TXT)
• a few MRC datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: □
Utility: □

Additional Information

Source Code: MRCReader.java

Notes:

Commercial applications that support MRC include:
• Bitplane Imaris

See also:

MRC on Wikipedia

18.82 NEF (Nikon Electronic Format)

Extensions: .nef, .tif

Developer: Nikon

Support

SCIFIO: ❌

Export: ❌

Officially Supported Versions:

Supported Metadata Fields: NEF (Nikon Electronic Format)

Sample Datasets:
• neffile1.zip
• Sample NEF images

We currently have:
• a NEF specification document (v0.1, from 2003, in PDF)
• several NEF datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲

281 http://bio3d.colorado.edu/imod/doc/mrc_format.txt
282 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MRCReader.java
283 http://www.bitplane.com/
284 http://en.wikipedia.org/wiki/MRC_%28file_format%29
285 http://www.nikon.com/
286 http://www.outbackphoto.com/workshop/NEF_conversion/neffile1.zip
287 http://www.nikondigital.org/articles/library/nikon_d2x_first_impressions.htm
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: NikonReader.java

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:
NEF Conversion

18.83 NIfTI

Extensions: .img, .hdr
Developer: National Institutes of Health

Support
SCIFIO: X
Export: X

Officially Supported Versions:
Supported Metadata Fields: NIfTI

Sample Datasets:
• Official test data

We currently have:
• NIfTI specification documents
• several NIfTI datasets

We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information
Source Code: NiftiReader.java

Notes:
289 http://www.outbackphoto.com/workshop/NEF_conversion/nefconversion.html
290 http://www.nih.gov/
293 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NiftiReader.java

18.83. NIfTI
18.84 Nikon Elements TIFF

Extensions: .tiff
Developer: Nikon

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: Nikon Elements TIFF

We currently have:
• a few Nikon Elements TIFF files

We would like to have:
• more Nikon Elements TIFF files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: NikonElementsTiffReader.java

Notes:

18.85 Nikon EZ-C1 TIFF

Extensions: .tiff
Developer: Nikon

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: Nikon EZ-C1 TIFF

We currently have:
• a few Nikon EZ-C1 TIFF files

We would like to have:

Ratings

Pixels:
Metadata:

Notes:

294 http://www.nikon.com
296 http://www.nikon.com/
18.86 Nikon NIS-Elements ND2

Extensions: .nd2

Developer: Nikon USA

Support

SCIFIO: ❌

Export: ❌

Officially Supported Versions:

Supported Metadata Fields: Nikon NIS-Elements ND2

Freely Available Software:

- NIS-Elements Viewer from Nikon

We currently have:

- many ND2 datasets

We would like to have:

- an official specification document

Ratings

Pixels: ▲

Metadata: ▲

Openness: ▼

Presence: ▲

Utility: ▲

Additional Information

Source Code: NativeND2Reader.java

Notes:

There are two distinct versions of ND2: an old version, which uses JPEG-2000 compression, and a new version which is either uncompressed or Zip-compressed. We are not aware of the version number or release date for either format.

Bio-Formats uses the JAI Image I/O Tools library to read ND2 files compressed with JPEG-2000.

There is also an ND2 reader that uses Nikon’s native libraries. To use it, you must be using Windows and have Nikon’s ND2 reader plugin for ImageJ installed. Additionally, you will need to download LegacyND2Reader.dll and place it in your ImageJ plugin folder.
18.87 NRRD (Nearly Raw Raster Data)

Extensions: .nrrd, .nhdr, .raw, .txt
Developer: Teem developers

Support
SCIFIO: ✅
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: NRRD (Nearly Raw Raster Data)

Freely Available Software:
 • nrrd (NRRD reference library)

Sample Datasets:
 • Diffusion tensor MRI datasets

We currently have:
 • an nrrd specification document (v1.9, from 2005 December 24, in HTML)
 • a few nrrd datasets

We would like to have:

Ratings
Pixels: 🔺
Metadata: 🔺
Openness: 🔺
Presence: 🔻
Utility: 🔺

Additional Information
Source Code: NRRDReader.java

Notes:

18.88 Olympus CellR/APL

Extensions: .apl, .mtb, .tnb, .tif, .obsep
Owner: Olympus

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Olympus CellR/APL

Notes:

18.87. NRRD (Nearly Raw Raster Data)
We currently have:

- a few CellR datasets

We would like to have:

- more Cellr datasets
- an official specification document

Ratings

- Pixels: ☻
- Metadata: ☹
- Openness: ☹
- Presence: ☹
- Utility: ☹

Additional Information

Source Code: [APLReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/APLReader.java)

Notes:

18.89 Olympus FluoView FV1000

Extensions: .oib, .oif

Owner: Olympus

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions: 1.0, 2.0

Supported Metadata Fields: *Olympus FluoView FV1000*

Freely Available Software:

- FV-Viewer from Olympus

We currently have:

- an OIF specification document (v2.0.0.0, from 2008, in PDF)
- an FV1000 specification document (v1.0.0.0, from 2004 June 22, in PDF)
- older FV1000 specification documents (draft, in DOC and XLS)
- many FV1000 datasets

We would like to have:

- more OIB datasets (especially 2+ GB files)
- more FV1000 version 2 datasets

Ratings

- Pixels: ☻
- Metadata: ☻
- Openness: ☻

312 http://www.olympus.co.uk/microscopy/22_FluoView_FV1000__Confocal_Microscope.htm
Presence:
Utility:

Additional Information

Source Code: FV1000Reader.java\(^{313}\)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Bio-Formats uses a modified version of the Apache Jakarta POI\(^{314}\) library to read OIB files. OIF stands for “Original Imaging Format”. OIB stands for “Olympus Image Binary”. OIF is a multi-file format that includes an .oif file and a directory of .tif, .roi, .pty, .lut, and .bmp files. OIB is a single file format.

Commercial applications that support this format include:

- Bitplane Imaris\(^{315}\)
- SVI Huygens\(^{316}\)

See also:
Olympus FluoView Resource Center\(^{317}\)

18.90 Olympus FluoView TIFF

Extensions: .tif
Owner: Olympus\(^{318}\)

Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: *Olympus FluoView TIFF*

Freely Available Software: *Olympus FluoView TIFF*

- DIMIN\(^{319}\)

We currently have:

- a FluoView specification document (from 2002 November 14, in DOC)
- Olympus’ FluoView Image File Reference Suite (from 2002 March 1, in DOC)
- several FluoView datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:

Presence:

\(^{313}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/FV1000Reader.java
\(^{314}\)http://jakarta.apache.org/poi/
\(^{315}\)http://www.bitplane.com/
\(^{316}\)http://svi.nl/
\(^{317}\)http://www.olympusfluoview.com
\(^{318}\)http://www.olympus.com/
\(^{319}\)http://www.dimin.net/
Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Commercial applications that support this format include:

- Bitplane Imaris
- SVI Huygens

18.91 Olympus ScanR

Extensions: .xml, .dat, .tif

Developer: Olympus

Owner: Olympus

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *Olympus ScanR*

We currently have:

- several ScanR datasets

We would like to have:

Ratings

Pixels: 🔼

Metadata: 🅿️

Openness: 🅿️

Presence: 🅿️

Utility: 🅿️

Additional Information

Source Code: ScanrReader.java

Notes:

18.92 Olympus SIS TIFF

Extensions: .tiff

Developer: Olympus

320 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/FluoviewReader.java

321 http://www.bitplane.com/

322 http://svi.nl/

323 http://www.olympus.com/

324 http://www.olympus-sis.com/

326 http://www.olympus-sis.com/
Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *Olympus SIS TIFF*

We currently have:

- a few example SIS TIFF files

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: [SISReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SISReader.java)

Notes:

18.93 OME-TIFF

Extensions: .ome.tiff

Developer: Open Microscopy Environment

Support

SCIFIO: ✔
Export: ✔

Supported Metadata Fields: *OME-TIFF*

We currently have:

- many OME-TIFF datasets
- the ability to produce additional datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:

327 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SISReader.java

328 http://www.openmicroscopy.org/

329 http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/specification.html
Utility:

Additional Information

Source Code: OMETiffReader.java Source Code: OMETiffWriter.java

Notes:

Bio-Formats can save image stacks as OME-TIFF.

Commercial applications that support OME-TIFF include:

- Bitplane Imaris
- SVI Huygens

See also:

OME-TIFF technical overview

18.94 OME-XML

Extensions: .ome

Developer: Open Microscopy Environment

Support

SCIFIO: ✔
Export: ✔

Supported Metadata Fields: OME-XML

We currently have:

- OME-XML specification documents
- many OME-XML datasets
- the ability to produce more datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: OMEXMLReader.java Source Code: OMEXMLWriter.java

Notes:

331 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/OMETiffWriter.java
332 http://www.bitplane.com/
333 http://svi.nl/
334 http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/index.html
335 http://www.openmicroscopy.org/
336 http://www.openmicroscopy.org/Schemas/
337 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/OMEXMLReader.java
338 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/OMEXMLWriter.java
Bio-Formats uses the OME-XML Java library\(^339\) to read OME-XML files.

Commercial applications that support OME-XML include:

- Bitplane Imaris\(^340\)
- SVI Huygens\(^341\)

18.95 Oxford Instruments

Extensions: .top

Owner: Oxford Instruments\(^342\)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *Oxford Instruments*

We currently have:

- Pascal code that can read Oxford Instruments files (from ImageSXM)
- A few Oxford Instruments files

We would like to have:

- An official specification document
- More Oxford Instruments files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: OxfordInstrumentsReader.java\(^343\)

Notes:

18.96 PCORAW

Extensions: .pcoraw, .rec

Developer: PCO\(^344\)

Support

SCIFIO:

\(^339\)http://www.openmicroscopy.org/site/support/ome-model/ome-xml/java-library.html

\(^340\)http://www.bitplane.com/

\(^341\)http://svi.nl/

\(^342\)http://www.oxinst.com

\(^343\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/OxfordInstrumentsReader.java

\(^344\)http://www.pco.de/
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: **PCORAW**

We currently have:

- a few example datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▲

Presence: ▼

Utility: ▼

Additional Information

Source Code: [PCORAWReader.java]({{https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PCORAWReader.java}})

Notes:

18.97 PCX (PC Paintbrush)

Extensions: .pcx

Developer: ZSoft Corporation

Support

SCIFIO: ✔

Export: ❌

Officially Supported Versions:

Supported Metadata Fields: **PCX (PC Paintbrush)**

We currently have:

- several .pcx files
- the ability to generate additional .pcx file

We would like to have:

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

Additional Information

Source Code: [PCXReader.java]({{https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/PCXReader.java}})

Notes:

[^1]: https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PCORAWReader.java
Commercial applications that support PCX include Zeiss LSM Image Browser347.

\section*{18.98 Perkin Elmer Densitometer}

Extensions: .pds
Developer: Perkin Elmer348

\textbf{Support}

SCIFIO: \xmark
Export: \xmark

Officially Supported Versions:
Supported Metadata Fields: \textit{Perkin Elmer Densitometer}

We currently have:
\begin{itemize}
\item a few PDS datasets
\end{itemize}

We would like to have:
\begin{itemize}
\item an official specification document
\item more PDS datasets
\end{itemize}

\textbf{Ratings}

Pixels: \xmark
Metadata: \xmark
Openness: \xmark
Presence: \xmark
Utility: \xmark

\textbf{Additional Information}

Source Code: PDSReader.java349

Notes:

\section*{18.99 PerkinElmer Operetta}

Extensions: .tiff, .xml
Developer: PerkinElmer350

\textbf{Support}

SCIFIO: \xmark
Export: \xmark

Officially Supported Versions:
Supported Metadata Fields: \textit{PerkinElmer Operetta}

We currently have:
\begin{itemize}
\item a few sample datasets
\end{itemize}

347http://www.zeiss.de/C12567BE00472A5C/EmbedTitleIntern/LSMImageBrowser/SFile/INST_IB.EXE
348http://www.perkinelmer.com
349https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PDSReader.java
350http://www.perkinelmer.com/
We would like to have:

- an official specification document
- more sample datasets

Ratings

- Pixels:
- Metadata:
- Openness:
- Presence:
- Utility:

Additional Information

Source Code: OperettaReader.java

Notes:

18.100 PerkinElmer UltraView

Extensions: .tif, .2, .3, .4, etc.

Owner: PerkinElmer

Support

- SCIFIO:
- Export:

Officially Supported Versions:

Supported Metadata Fields: PerkinElmer UltraView

We currently have:

- several UltraView datasets

We would like to have:

Ratings

- Pixels:
- Metadata:
- Openness:
- Presence:
- Utility:

Additional Information

Source Code: PerkinElmerReader.java

Notes:

Other associated extensions include: .tim, .zpo, .csv, .htm, .cfg, .ano, .rec

Commercial applications that support this format include:

- Bitplane Imaris

352 http://www.perkinelmer.com/

353 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PerkinElmerReader.java

354 http://www.bitplane.com/
• Image-Pro Plus355

See also:
PerkinElmer UltraView system overview356

18.101 PGM (Portable Gray Map)

Extensions: .pgm
Developer: Netpbm developers

Support

SCIFIO: ✓
Export: ×

Officially Supported Versions:
Supported Metadata Fields: *PGM (Portable Gray Map)*

Freely Available Software:
• Netpbm graphics filter357

We currently have:
• a PGM specification document358 (from 2003 October 3, in HTML)
• a few PGM files

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▲
Utility: ▼

Additional Information

Source Code: PGMReader.java359

Notes:

18.102 Adobe Photoshop PSD

Extensions: .psd
Developer: Adobe360

Support

SCIFIO: ×
Export: ×

355http://www.mediacy.com/
356http://www.perkinelmer.com/pages/020/cellularimaging/products/ultraviewuxsystemsoverview.xhtml
357http://netpbm.sourceforge.net/
358http://netpbm.sourceforge.net/doc/pgm.html
359https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/PGMReader.java
360http://www.adobe.com/
Officially Supported Versions: 1.0

Supported Metadata Fields: *Adobe Photoshop PSD*

We currently have:

- a PSD specification document (v3.0.4, 16 July 1995)
- a few PSD files

We would like to have:

- more PSD files

Ratings

Pixels: []

Metadata: []

Openness: []

Presence: []

Utility: []

Additional Information

Source Code: [PSDReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/forms/window/PSDReader.java)

Notes:

18.103 Photoshop TIFF

Extensions: .tif, .tiff

Developer: *Adobe*[^362]

Support

SCIFIO: [x]

Export: [x]

Officially Supported Versions:

Supported Metadata Fields: *Photoshop TIFF*

We currently have:

- a Photoshop TIFF specification document
- a few Photoshop TIFF files

We would like to have:

Ratings

Pixels: []

Metadata: []

Openness: []

Presence: []

Utility: []

Additional Information

[^362]: http://www.adobe.com
Source Code: PhotoshopTiffReader.java363

Notes:

18.104 PICT (Macintosh Picture)

Extensions: .pict

Developer: Apple Computer364

Support

SCIFIO: ✔

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *PICT (Macintosh Picture)*

We currently have:

- many PICT datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▲

Utility: ✗

Additional Information

Source Code: PictReader.java365

Notes:

QuickTime for Java366 is required for reading vector files and some compressed files.

See also:

PICT technical overview367 Another PICT technical overview368

18.105 PNG (Portable Network Graphics)

Extensions: .png

Developer: PNG Development Group369

Support

SCIFIO: ✔

Export: ✔

Officially Supported Versions:

363https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PhotoshopTiffReader.java

364http://www.apple.com

365https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/PictReader.java

366http://www.apple.com/quicktime/download/standalone.html

367http://www.faqs.org/faqs/graphics/fileformats-faq/part3/section-107.html

368http://www.prepressure.com/formats/pict/fileformat.htm

369http://www.libpng.org/pub/png/pngnews.html
Supported Metadata Fields: **PNG (Portable Network Graphics)**

Freely Available Software:

- PNG Writer plugin for ImageJ\(^{370}\)

We currently have:

- a PNG specification document\(^{371}\) (W3C/ISO/IEC version, from 2003 November 10, in HTML)
- several PNG datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: [APNGReader.java]\(^{372}\)

Notes:

Bio-Formats uses the Java Image I/O\(^{373}\) API to read and write PNG files.

See also:

[PNG technical overview]\(^{374}\)

18.106 Prairie Technologies TIFF

Extensions: .tif, .xml, .cfg

Developer: Prairie Technologies\(^{375}\)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: **Prairie Technologies TIFF**

We currently have:

- many Prairie datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

\(^{370}\)[http://rsb.info.nih.gov/iij/plugins/png-writer.html]

\(^{371}\)[http://www.libpng.org/pub/png/spec/iso/]

\(^{372}\)[https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/APNGReader.java]

\(^{373}\)[http://docs.oracle.com/javase/6/docs/technotes/guides/imageio/]

\(^{374}\)[http://www.libpng.org/pub/png/]

\(^{375}\)[http://www.prairie-technologies.com/]
18.107 Quesant

Extensions: .afm
Developer: Quesant Instrument Corporation
Owner: KLA-Tencor Corporation

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: Quesant

We currently have:
• Pascal code that can read Quesant files (from ImageSXM)
• several Quesant files

We would like to have:
• an official specification document
• more Quesant files

Ratings
Pixels: 🔻
Metadata: 🔻
Openness: 🔻
Presence: 🔻
Utility: 🔻

Additional Information
Source Code: QuesantReader.java

Notes:

18.108 QuickTime Movie

Extensions: .mov
Owner: Apple Computer

Support

Notes:
SCIFIO: ✓
Export: ✓

Officially Supported Versions:

Supported Metadata Fields: *QuickTime Movie*

Freely Available Software:

- QuickTime Player[^30]

We currently have:

- a QuickTime specification document[^31] (from 2001 March 1, in HTML)
- several QuickTime datasets
- the ability to produce more datasets

We would like to have:

- more QuickTime datasets, including:
 - files compressed with a common, unsupported codec
 - files with audio tracks and/or multiple video tracks

Ratings

Pixels: □

Metadata: ▲

Openness: ▼

Presence: ▲

Utility: ▼

Additional Information

Source Code: [NativeQTReader.java][^32] Source Code: [QTWriter.java][^33]

Notes:

Bio-Formats has two modes of operation for QuickTime:

- QTJava mode requires QuickTime[^34] to be installed.
- Native mode works on systems with no QuickTime (e.g. Linux).

Bio-Formats can save image stacks as QuickTime movies. The following table shows supported codecs:

[^32]: https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/NativeQTReader.java
[^33]: https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/QTWriter.java
[^34]: http://www.apple.com/quicktime/download/
Codec Description

<table>
<thead>
<tr>
<th>Codec</th>
<th>Description</th>
<th>Native</th>
<th>QTJava</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw</td>
<td>Full Frames (Uncompressed)</td>
<td>read & write</td>
<td>read & write</td>
</tr>
<tr>
<td>iraw</td>
<td>Intel YUV Uncompressed Animation (run length encoded RGB)</td>
<td>read only</td>
<td>read & write</td>
</tr>
<tr>
<td>rle</td>
<td>Still Image JPEG DIB</td>
<td>read only</td>
<td>read only</td>
</tr>
<tr>
<td>jpeg</td>
<td>Apple Video 16 bit “road pizza”</td>
<td>read only (partial)</td>
<td>read only</td>
</tr>
<tr>
<td>rle</td>
<td>Animation (run length encoded RGB)</td>
<td>read only</td>
<td>read & write</td>
</tr>
<tr>
<td>jpeg</td>
<td>Still Image JPEG DIB</td>
<td>read only</td>
<td>read only</td>
</tr>
<tr>
<td>rpza</td>
<td>Apple Video 16 bit “road pizza”</td>
<td>read only (partial)</td>
<td>read only</td>
</tr>
<tr>
<td>mjpb</td>
<td>Motion JPEG codec Cinepak</td>
<td>read only</td>
<td>read only</td>
</tr>
<tr>
<td>cvid</td>
<td>Sorenson Video</td>
<td>read only</td>
<td>read & write</td>
</tr>
<tr>
<td>svq1</td>
<td>Sorenson Video</td>
<td>read only</td>
<td>read & write</td>
</tr>
<tr>
<td>svq3</td>
<td>Sorenson Video 3</td>
<td>read only</td>
<td>read & write</td>
</tr>
<tr>
<td>mp4v</td>
<td>MPEG-4</td>
<td>read only</td>
<td>read & write</td>
</tr>
<tr>
<td>h263</td>
<td>H.263</td>
<td>read only</td>
<td>read & write</td>
</tr>
</tbody>
</table>

See also: [QuickTime software overview](http://www.apple.com/quicktime/)

18.109 RHK

Extensions: .sm2, .sm3
Owner: RHK Technologies

Support

- **SCIFIO:** ✗
- **Export:** ✗

Officially Supported Versions:

Supported Metadata Fields: *RHK*

We currently have:

- Pascal code that can read RHK files (from ImageSXM)
- a few RHK files

We would like to have:

- an official specification document
- more RHK files

Ratings

- **Pixels:** []
- **Metadata:** ▼
- **Openness:** ▼
- **Presence:** ▼
- **Utility:** ▼
Additional Information

Source Code: RHKReader.java\(^{387}\)

Notes:

18.110 SBIG

Owner: Santa Barbara Instrument Group (SBIG)\(^{388}\)

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: SBIG

We currently have:

- an official SBIG specification document\(^{389}\)
- a few SBIG files

We would like to have:

- more SBIG files

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▲

Presence: ▼

Utility: ▼

Additional Information

Source Code: SBIGReader.java\(^{390}\)

Notes:

18.111 Seiko

Extensions: .xqd, .xqf

Owner: Seiko\(^{391}\)

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Seiko

We currently have:

\(^{387}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/RHKReader.java

\(^{388}\)http://www.sbig.com

\(^{389}\)http://sbig.impulse.net/pdf/files/file.format.pdf

\(^{390}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SBIGReader.java

• Pascal code that can read Seiko files (from ImageSXM)
• a few Seiko files

We would like to have:
• an official specification document
• more Seiko files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: SeikoReader.java[^392]

Notes:

18.112 SimplePCI & HCImage

Extensions: .cxd

Developer: Compix[^393]

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *SimplePCI & HCImage*

We currently have:

• several SimplePCI files

We would like to have:

Ratings

Pixels: ▲
Metadata: ■
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

Source Code: PCIReader.java[^394]

Notes:

Bio-Formats uses a modified version of the [Apache Jakarta POI library](http://jakarta.apache.org/poi/) to read CXD files.

[^393]: http://hcimage.com
[^394]: https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PCIReader.java
[^395]: http://jakarta.apache.org/poi/
See also:
SimplePCI software overview

18.113 SimplePCI & HCImage TIFF

Extensions: .tiff
Developer: Hamamatsu

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: SimplePCI & HCImage TIFF
We currently have:
• a few SimplePCI TIFF datasets
We would like to have:
• more SimplePCI TIFF datasets

Ratings
Pixels: ▲
Metadata: □
Openness: ▲
Presence: ▼
Utility: □

Additional Information
Source Code: SimplePCITiffReader.java

Notes:

18.114 SM Camera

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: SM Camera
We currently have:
• Pascal code that can read SM-Camera files (from ImageSXM)
• a few SM-Camera files
We would like to have:
• an official specification document

396http://hcimage.com/simple-pci-legacy/
397http://hcimage.com/simple-pci-legacy/
• more SM-Camera files

Ratings

- Pixels: ▼
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

Additional Information

Source Code: SMCameraReader.java

Notes:

18.115 SPIDER

Extensions: .spi, .stk

Developer: Wadsworth Center

Support

- SCIFIO: ❌
- Export: ❌

Officially Supported Versions:

Supported Metadata Fields: **SPIDER**

Freely Available Software:

- **SPIDER**

We currently have:

- a few example datasets
- official file format documentation

We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▲
- Openness: ▲
- Presence: ▼
- Utility: ▼

Additional Information

Source Code: SpiderReader.java

Notes:

399 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SMCameraReader.java

400 http://www.wadsworth.org/spider_doc/spider/docs/spider.html

401 http://www.wadsworth.org/spider_doc/spider/docs/spider.html

402 http://www.wadsworth.org/spider_doc/spider/docs/image_doc.html

18.116 Targa

Extensions: .tga
Developer: Truevision

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: Targa

We currently have:
• a Targa specification document
• a few Targa files

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲

Presence: ▼
Utility: ◦

Additional Information

Source Code: TargaReader.java

Notes:

18.117 Text

Extensions: .txt

Support

SCIFIO: ✔
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: Text

We currently have:

We would like to have:

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼

Presence: ▼
Utility:

Additional Information

Source Code: TextReader.java

Notes:

Reads tabular pixel data produced by a variety of software.

18.118 TIFF (Tagged Image File Format)

Extensions: .tif

Developer: Aldus and Microsoft

Owner: Adobe

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: TIFF (Tagged Image File Format)

Sample Datasets:

- LZW TIFF data gallery
- Big TIFF

We currently have:

- a TIFF specification document (v6.0, from 1992 June 3, in PDF)
- many TIFF datasets
- a few BigTIFF datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: TiffReader.java Source Code: TiffWriter.java

Notes:

Bio-Formats can also read BigTIFF files (TIFF files larger than 4 GB). Bio-Formats can save image stacks as TIFF or BigTIFF.

See also:

407 http://www.adobe.com
408 http://marlin.life.utsa.edu/Data_Gallery.html
409 http://tiffcentral.com/
411 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/TiffReader.java
412 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/TiffWriter.java
18.119 TillPhotonics TillVision

Extensions: .vws

Developer: TILL Photronics

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: TillPhotonics TillVision

We currently have:

- several TillVision datasets

We would like to have:

- an official specification document

Ratings

Pixels: ☑
Metadata: ☐
Openness: ☐
Presence: ☐
Utility: ☐

Additional Information

Source Code: TillVisionReader.java

Notes:

18.120 Topometrix

Extensions: .tfr, .ffr, .zfr, .zfp, .2fl

Owner: TopoMetrix (now Veeco)

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: Topometrix

We currently have:

- Pascal code that reads Topometrix files (from ImageSXM)
- a few Topometrix files

413 http://www.awaresystems.be/imaging/tiff/faq.html#q3
414 http://www.awaresystems.be/imaging/tiff/bigtiff.html
415 http://www.till-photonics.com/
417 http://www.veeco.com/
We would like to have:

- an official specification document
- more Topometrix files

Ratings

Pixels: ☐

Metadata: ☐

Openness: ☐

Presence: ☐

Utility: ☐

Additional Information

Source Code: TopometrixReader.java

Notes:

18.121 Trestle

Extensions: .tif, .sld, .jpg

Support

SCIFIO: ☒

Export: ☒

Officially Supported Versions:

Supported Metadata Fields: **Trestle**

Sample Datasets:

- OpenSlide

We currently have:

- a few example datasets
- developer documentation from the OpenSlide project

We would like to have:

Ratings

Pixels: ☐

Metadata: ☐

Openness: ☐

Presence: ☐

Utility: ☐

Additional Information

Source Code: TrestleReader.java

Notes:

420 http://openslide.org/Trestle%20format/

18.122 UBM

Extensions: .pr3

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: UBM

We currently have:

• Pascal code that can read UBM files (from ImageX)
• one UBM file

We would like to have:

• an official specification document
• more UBM files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: UBMReader.java

Notes:

18.123 Unisoku

Extensions: .dat, .hdr

Owner: Unisoku

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Unisoku

We currently have:

• Pascal code that can read Unisoku files (from ImageX)
• a few Unisoku files

We would like to have:

• an official specification document

422 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/UBMReader.java
423 http://www.unisoku.com
• more Unisoku files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: UnisokuReader.java

Notes:

18.124 Varian FDF

Extensions: .fdf
Developer: Varian, Inc.

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: Varian FDF

We currently have:
• a few Varian FDF datasets

We would like to have:
• an official specification document
• more Varian FDF datasets

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: VarianFDFReader.java

Notes:

425 http://www.varianinc.com
426 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/VarianFDFReader.java
18.125 VG SAM

Extensions: .dti

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: VG SAM

We currently have:

• a few VG-SAM files

We would like to have:

• an official specification document
• more VG-SAM files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: VGSAMReader.java

Notes:

18.126 VisiTech XYS

Extensions: .xys, .html

Developer: VisiTech International

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: VisiTech XYS

We currently have:

• several VisiTech datasets

We would like to have:

• an official specification document

427 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/VGSAMReader.java
428 http://www.visitech.co.uk/
Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: VisitechReader.java\(^{429}\)

Notes:

18.127 Volocity

Extensions: .mvd2
Developer: PerkinElmer\(^{430}\)

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: Volocity

Sample Datasets:

• Volocity Demo\(^{431}\)

We currently have:

• many example Volocity datasets

We would like to have:

• an official specification document
• any Volocity datasets that do not open correctly

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
 Presence: ▼
Utility: ▼

Additional Information

Source Code: VolocityReader.java\(^{432}\)

Notes:

.mvd2 files are Metakit database files\(^{433}\).

\(^{429}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/VisitechReader.java

\(^{430}\)http://www.perkinelmer.com/pages/020/cellularimaging/products/volocity.xhtml

\(^{431}\)http://www.perkinelmer.com/pages/020/cellularimaging/products/volociydemo.xhtml

\(^{432}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/VolocityReader.java

\(^{433}\)https://equi4.com/metakit/
18.128 Volocity Library Clipping

Extensions: .acff
Developer: PerkinElmer

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: *Volocity Library Clipping*

We currently have:

- several Volocity library clipping datasets

We would like to have:

- any datasets that do not open correctly
- an official specification document

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: VolocityClippingReader.java

Notes:
RGB .acff files are not yet supported. See #6413.

18.129 WA-TOP

Extensions: .wat
Developer: WA Technology
Owner: Oxford Instruments

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: *WA-TOP*

We currently have:

- Pascal code that can read WA-TOP files (from ImageXLM)

434 http://www.perkinelmer.com/pages/020/cellularimaging/products/volocity.xhtml
436 http://trac.openmicroscopy.org.uk/ome/ticket/6413
437 http://www.oxinst.com
• a few WA-TOP files

We would like to have:

• an official specification document
• more WA-TOP files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: WATOPReader.java438

Notes:

\section*{18.130 Windows Bitmap}

Extensions: .bmp

Developer: Microsoft and IBM

Support

SCIFIO: ✔
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Windows Bitmap

Freely Available Software:

• BMP Writer plugin for ImageJ439

We currently have:

• many BMP datasets

We would like to have:

Ratings

Pixels: ▶
Metadata: ▶
Openness: ▼
Presence: ▶
Utility: ▼

Additional Information

Source Code: BMPReader.java440

Notes:

438https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/WATOPReader.java
439http://rsb.info.nih.gov/ij/plugins/bmp-writer.html
440https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/BMPReader.java
Compressed BMP files are currently not supported.

See also:
Technical Overview441 General Resources442

18.131 Woolz

Extensions: .wlz
Developer: MRC Human Genetics Unit443

Support
SCIFIO: \xmark
Export: \checkmark

Officially Supported Versions:
Supported Metadata Fields: Woolz

Freely Available Software:
\begin{itemize}
\item Woolz444
\end{itemize}

We currently have:
\begin{itemize}
\item a few Woolz datasets
\end{itemize}

We would like to have:

Ratings

Pixels: \uparrow
Metadata: \downarrow
Openness: \uparrow
Presence: \downarrow
Utility: \downarrow

Additional Information
Source Code: WlzReader.java445 Source Code: WlzWriter.java446

Notes:

18.132 Zeiss AxioVision TIFF

Extensions: .xml, .tiff
Developer: Carl Zeiss MicroImaging GmbH447
Owner: Carl Zeiss MicroImaging GmbH448

Support

SCIFIO: \xmark

441http://www.faqs.org/faqs/graphics/fileformats-faq/part3/section-18.html
442http://people.sc.fsu.edu/~burkardt/data/bmp/bmp.html
443http://www.emouseatlas.org/emap/analysis_tools_resources/software/woolz.html
444http://www.emouseatlas.org/emap/analysis_tools_resources/software/woolz.html
445https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/WlzReader.java
446https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/out/WlzWriter.java
447http://www.zeiss.com/micro
448http://www.zeiss.com/micro
Export:

Officially Supported Versions:

Supported Metadata Fields: **Zeiss AxioVision TIFF**

Freely Available Software:
- **Zeiss ZEN Lite**

We currently have:
- many example datasets

We would like to have:
- an official specification document

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: [ZeissTIFFReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ZeissTIFFReader.java)

Notes:

18.133 Zeiss AxioVision ZVI (Zeiss Vision Image)

Extensions: .zvi

Developer: Carl Zeiss MicroImaging GmbH (AxioVision)

Owner: Carl Zeiss MicroImaging GmbH

Support

SCIFIO:
Export:

Officially Supported Versions: 1.0, 2.0

Supported Metadata Fields: **Zeiss AxioVision ZVI (Zeiss Vision Image)**

Freely Available Software:
- **Zeiss Axiovision LE**

We currently have:
- a ZVI specification document (v2.0.5, from 2010 August, in PDF)
- an older ZVI specification document (v2.0.2, from 2006 August 23, in PDF)
- an older ZVI specification document (v2.0.1, from 2005 April 21, in PDF)
- an older ZVI specification document (v1.0.26.01.01, from 2001 January 29, in DOC)
- Zeiss’ ZvImageReader code (v1.0, from 2001 January 25, in C++)

453 http://www.zeiss.de/c12567be0045ac1f1/Contents-Frame/cbe917247da02a1cc1256e0000491172
• many ZVI datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ◆
Openness: ◆
Presence: ▲
Utility: ◆

Additional Information

Source Code: ZeissZVIReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties. Bio- Formats uses a modified version of the Apache Jakarta POI library to read ZVI files.

Commercial applications that support ZVI include Bitplane Imaris.

See also:
Axiovision software overview.

18.134 Zeiss CZI

Extensions: .czi

Developer: Carl Zeiss MicroImaging GmbH

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: Zeiss CZI

Freely Available Software:

• Zeiss ZEN 2011

We currently have:

• many example datasets
• official specification documents

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ◆

454 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ZeissZVIReader.java
455 http://jakarta.apache.org/poi/
456 http://www.bitplane.com/
457 http://www.zeiss.com/C12567BE0045ACF1/ContentsWWWIntern/668C9FDCBB18C6E2412568C10045A72E
458 http://www.zeiss.com/micro
459 http://www.zeiss.de/C12567BE0045ACF1/Contents-Frame/A57B6AE510CE8FF1C12578FE002A725D

18.134. Zeiss CZI 199
Presence: ▼
Utility: ◁

Additional Information
Source Code: ZeissCZIReader.java

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

18.135 Zeiss LSM (Laser Scanning Microscope) 510/710

Extensions: .lsm, .mdb
Owner: Carl Zeiss MicroImaging GmbH

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: Zeiss LSM (Laser Scanning Microscope) 510/710

Freely Available Software:
- Zeiss LSM Image Browser
- LSM Toolbox plugin for ImageJ
- LSM Reader plugin for ImageJ
- DIMIN

We currently have:
- LSM specification v3.2, from 2003 March 12, in PDF
- LSM specification v5.5, from 2009 November 23, in PDF
- LSM specification v6.0, from 2010 September 28, in PDF
- many LSM datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ◁
Presence: ▲
Utility: ◁

Additional Information
Source Code: ZeissLSMReader.java

Notes:
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ZeissCZIReader.java
http://www.zeiss.com/micro
http://www.zeiss.de/C12567BE00472A5C/EmbedTitle Intern/LSMImageBrowser/SFile/INST_IB.EXE
http://imagejdocu.tudor.lu/Members/ppirrotte/lsmtoolbox
http://www.dimin.net/
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ZeissLSMReader.java
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Bio-Formats uses the MDB Tools Java port\(^{467}\)

Commercial applications that support this format include:

- SVI Huygens\(^{468}\)
- Bitplane Imaris\(^{469}\)
- Amira\(^{470}\)
- Image-Pro Plus\(^{471}\)

\(^{467}\)http://mdbtools.sourceforge.net/
\(^{468}\)http://www2.svi.nl/
\(^{469}\)http://www.bitplane.com/
\(^{470}\)http://www.amira.com/
\(^{471}\)http://www.mediacy.com/
Summary of Supported Metadata Fields

19.1 Format readers

<table>
<thead>
<tr>
<th>Format</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFIReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>AIMReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>APLReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>APNGReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ARFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>AVIReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>AliconaReader</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>AmiraReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>AnalyzeReader</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>BDReader</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>418</td>
</tr>
<tr>
<td>BIFormatReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>BMPReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>BaseTiffReader</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>447</td>
</tr>
<tr>
<td>BaseZeissReader</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>392</td>
</tr>
<tr>
<td>BioRadGelReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>BioRadReader</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>435</td>
</tr>
<tr>
<td>BioRadSCNReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>BrukerReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>BurleighReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>CanonRawReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>CellSensReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>CellVoyagerReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>441</td>
</tr>
<tr>
<td>CellWorxReader</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>430</td>
</tr>
<tr>
<td>CellomicsReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td>DNGReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>DeltavisionReader</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>423</td>
</tr>
<tr>
<td>DicomReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>EPSReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>Ecat7Reader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>FEIReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>FEITiffReader</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>436</td>
</tr>
<tr>
<td>FVI0000Reader</td>
<td>109</td>
<td>0</td>
<td>0</td>
<td>366</td>
</tr>
<tr>
<td>FakeReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>FitsReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>FlexReader</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>406</td>
</tr>
<tr>
<td>FluoviewReader</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>426</td>
</tr>
<tr>
<td>FujiReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>GIFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>GatanDM2Reader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>GatanReader</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>439</td>
</tr>
<tr>
<td>GelReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>HISReader</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>448</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRDGDFReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>HamamatsuVMSReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>HitachiReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td>ICSReader</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>403</td>
</tr>
<tr>
<td>IMODReader</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>431</td>
</tr>
<tr>
<td>INRReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>IPLabReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td>IPWReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>ImaconReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>ImageIOReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ImagicReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>ImarisHDFReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>ImarisReader</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>ImarisTiffReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>ImprovisionTiffReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>InspectorReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>InCell3000Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>InCellReader</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>408</td>
</tr>
<tr>
<td>InveonReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>IvisionReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>441</td>
</tr>
<tr>
<td>JEOLReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>JPEG2000Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>JPEGRReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>JPKReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>JPXReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>KhorosReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>KodakReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>L2DReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>LEOReader</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>448</td>
</tr>
<tr>
<td>LIFReader</td>
<td>85</td>
<td>0</td>
<td>0</td>
<td>390</td>
</tr>
<tr>
<td>LIMReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>LegacyND2Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>LegacyQTReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>LeicaReader</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>419</td>
</tr>
<tr>
<td>LeicaSCNReader</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>LiFLimReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>MIASReader</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>411</td>
</tr>
<tr>
<td>MINCReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>MNGReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>MRCReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>MRWReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>MetamorphReader</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>MetamorphTiffReader</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>437</td>
</tr>
<tr>
<td>MicromanagerReader</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>437</td>
</tr>
<tr>
<td>MinimalTiffReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>MolecularImagingReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>NAFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ND2Reader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>NDPIReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>NDPISReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>NRRDReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>NativeND2Reader</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>423</td>
</tr>
<tr>
<td>NativeQTReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>NifitReader</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>NikonElementsTiffReader</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>425</td>
</tr>
<tr>
<td>NikonReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>NikonTiffReader</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>428</td>
</tr>
<tr>
<td>OBFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMETiffReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>OMEXMLReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>OpenlabRawReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>OpenlabReader</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>OperettaReader</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>OxfordInstrumentsReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>PCIReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>PCORAWReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>PCXReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PDSReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>PGMReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PSDReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PerkinElmerReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>PhotoshopTiffReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PictReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PovrayReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PrairieReader</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>430</td>
</tr>
<tr>
<td>PyramidalTiffReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>QTRender</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>QuesantReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>RHKReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>SBIGReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>SDTRender</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>SEQReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>SIFReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>SISReader</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>SMCameraReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>SVSReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>ScanrReader</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>ScreenReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>441</td>
</tr>
<tr>
<td>SeikoReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>SimplePCITiffReader</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>SlidebookReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>441</td>
</tr>
<tr>
<td>SlidebookTiffReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>SpiderReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>TCSReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>TargaReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>TextReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>TiffDelegateReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>TiffAIReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>TiffReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>TileJPEGReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>TillVisionReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>TopmetryReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>TrelleReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>UBMReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>UnisokuReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>VGSAMReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>VarianFDFReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>VisitechReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>VolocityClippingReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>VolocityReader</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>438</td>
</tr>
<tr>
<td>WATOPReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>WlzReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>ZeissCZIReader</td>
<td>157</td>
<td>0</td>
<td>0</td>
<td>318</td>
</tr>
<tr>
<td>ZeissLSMReader</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>374</td>
</tr>
<tr>
<td>ZeissTIFFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ZeissZVIReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
</tbody>
</table>
Table 19.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZipReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
</tbody>
</table>

19.2 Metadata fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc - ID³</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Arc - LotNumber²</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Arc - Manufacturer³</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Arc - Model¹</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Arc - Power⁵</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Arc - SerialNumber⁶</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Arc - Type¹</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>BooleanAnnotation - AnnotationRef⁹</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>BooleanAnnotation - Description⁹</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>BooleanAnnotation - ID¹⁰</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>BooleanAnnotation - Namespace¹¹</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>BooleanAnnotation - Value¹²</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Channel - AcquisitionMode¹³</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>Channel - AnnotationRef¹⁴</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Channel - Color¹⁵</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Channel - ContrastMethod¹⁶</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Channel - EmissionWavelength¹⁷</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Channel - ExcitationWavelength¹⁸</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Channel - FilterSetRef¹⁹</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Channel - Fluor²⁰</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Channel - ID²¹</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel - IlluminationType</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsAttenuation</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsWavelength</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Channel - NDFilter</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Channel - Name</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>Channel - PinholeSize</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Channel - PockelCellSetting</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Channel - SamplesPerPixel</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CommentAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>CommentAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>CommentAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>CommentAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>CommentAnnotation - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Dataset - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Dataset - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Dataset - ExperimenterGroupRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Dataset - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Dataset - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Dataset - ImageRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Dataset - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
</tbody>
</table>

Continued on next page

22[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_IlluminationType]
23[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_Attenuation]
26[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_NDFilter]
27[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name]
30[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel]
31[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID]
32[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Description]
33[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace]
34[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#CommentAnnotation_Value]
35[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#CommentAnnotation_AnnotationRef_ID]
36[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#CommentAnnotation_Annotation_Description]
40[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Dataset_Name]
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector-AmplificationGain</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Detector-Gain</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Detector-ID</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>Detector-LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Detector-Manufacturer</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>Detector-Model</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Detector-Offset</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Detector-SerialNumber</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Detector-Type</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>132</td>
</tr>
<tr>
<td>Detector-Voltage</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Detector-Zoom</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>DetectorSettings-Binning</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>DetectorSettings-Gain</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>DetectorSettings-Id</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>127</td>
</tr>
<tr>
<td>DetectorSettings-Offset</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>DetectorSettings-ReadOutRate</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>DetectorSettings-Voltage</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>153</td>
</tr>
<tr>
<td>Dichroic-ID</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>153</td>
</tr>
<tr>
<td>Dichroic-LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Dichroic-Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Dichroic-Model</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>153</td>
</tr>
<tr>
<td>Dichroic-SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>DoubleAnnotation-AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
</tbody>
</table>

43 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_AmplificationGain
44 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Gain
45 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
46 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber
47 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer
48 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
49 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Offset
50 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber
51 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
52 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Voltage
53 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Zoom
54 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning
56 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
57 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Offset
58 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ReadOutRate
59 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Voltage
60 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber
61 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer
63 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber
64 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>DoubleAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>DoubleAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>DoubleAnnotation - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Ellipse - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Ellipse - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Ellipse - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Ellipse - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Ellipse - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Ellipse - ID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Ellipse - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Ellipse - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Ellipse - RadiusX</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Ellipse - RadiusY</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Ellipse - StrokeColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Ellipse - StrokeDashArray</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Ellipse - StrokeWidth</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Ellipse - Text</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Ellipse - TheC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Ellipse - TheT</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Ellipse - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Ellipse - Transform</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Ellipse - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Ellipse - X</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Ellipse - Y</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Experiment - Description</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
</tbody>
</table>

Continued on next page
Table 19.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Experiment - ID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Experiment - Type</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Experimenter - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Experimenter - Email</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Experimenter - FirstName</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Experimenter - ID</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Experimenter - Institution</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>Experimenter - LastName</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Experimenter - MiddlName</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Experimenter - UserName</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>ExperimenterGroup - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>ExperimenterGroup - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>ExperimenterGroup - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>ExperimenterGroup - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>ExperimenterGroup - Leader</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>ExperimenterGroup - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Filament - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Filament - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Filament - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Filament - Model</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Filament - Power</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
</tbody>
</table>

92 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID
93 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_ID
94 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_Type
95 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID
96 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_Email
97 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_FirstName
98 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID
99 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_Institution
100 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName
101 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Leader_ID
102 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterGroup_Name
103 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID
104 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterGroup_Description
105 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID
107 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Leader_ID
108 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_MiddleName
110 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber
111 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer
112 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
113 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_Power

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament - Serial-Number</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Filament - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>FileAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>FileAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>FileAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>FileAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Filter - Filter-Wheel</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Filter - ID</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Filter - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Filter - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Filter - Model</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Filter - SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Filter - Type</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>FilterSet - DichroicRef</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>FilterSet - EmissionFilterRef</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>FilterSet - ExcitationFilterRef</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>FilterSet - ID</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>FilterSet - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>FilterSet - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>FilterSet - Model</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>FilterSet - SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Image - AcquisitionDate</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Image - Description</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>116</td>
</tr>
<tr>
<td>Image - ExperimenterRef</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Image - ExperimenterGroupRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Image - ExperimenterRef</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>153</td>
</tr>
<tr>
<td>Image - ID</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - InstrumentRef</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>118</td>
</tr>
<tr>
<td>Image - MicrobeamManipulationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Image - Name</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - ROIRef</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>ImagingEnvironment - AirPressure</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>ImagingEnvironment - CO2Percent</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>ImagingEnvironment - Humidity</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>ImagingEnvironment - Temperature</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Instrument - ID</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>113</td>
</tr>
<tr>
<td>Label - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Label - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Label - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Label - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Label - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Label - ID</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Label - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Label - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Label - StrokeColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
</tbody>
</table>

Continued on next page

136 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID
137 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
138 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID
139 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterGroupRef_ID
140 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID
141 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
142 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID
143 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#MicrobeamManipulationRef_ID
144 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
145 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ROIRef_ID
146 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_AirPressure
149 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature
151 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillColor
152 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillRule
153 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontFamily
154 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize
155 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontStyle
156 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID
157 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_LineCap
158 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Locked
159 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor
Table 19.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label - StrokeDashArray[160]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Label - StrokeWidth[161]</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Label - Text[162]</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Label - TheC[163]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Label - TheT[164]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Label - TheZ[165]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Label - Transform[166]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Label - Visible[167]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Label - X[168]</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Label - Y[169]</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Laser - Frequency-Multiplication[170]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser - ID[171]</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Laser - Laser-Medium[172]</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Laser - LotNumber[173]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Laser - Manufacturer[174]</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Laser - Model[175]</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>Laser - PockelCell[176]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Laser - Power[177]</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Laser - Pulse[178]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Laser - Pump[179]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Laser - Repetition-Rate[180]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Laser - SerialNumber[181]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Laser - Tuneable[182]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Laser - Type[183]</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>152</td>
</tr>
<tr>
<td>Laser - Wavelength[184]</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>152</td>
</tr>
<tr>
<td>Light Emitting Diode - ID[185]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
</tbody>
</table>

\[160\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeDashArray

\[161\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth

\[162\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text

\[163\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheC

\[164\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT

\[165\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ

\[166\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform

\[167\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Visible

\[169\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Label_Y

\[170\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_FrequencyMultiplication

\[171\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID

\[172\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_LaserMedium

\[173\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber

\[174\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer

\[175\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_PockelCell

\[176\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_Power

\[177\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Pulse

\[178\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pump_ID

\[179\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_RepetitionRate

\[180\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber

\[182\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type

\[183\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Wavelength

\[184\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID

\[185\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID

19.2. Metadata fields
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>LightEmittingDiode - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>LightEmittingDiode - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>LightEmittingDiode - Model</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>LightEmittingDiode - Power</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>LightEmittingDiode - SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>LightPath - DichroicRef</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>LightPath - EmissionFilterRef</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>LightPath - ExcitationFilterRef</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Line - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Line - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Line - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Line - FontSize</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Line - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Line - ID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Line - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Line - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Line - MarkerEnd</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Line - MarkerStart</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Line - StrokeColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Line - StrokeDashArray</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Line - StrokeWidth</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Line - Text</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Line - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Line - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Line - TheZ</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Line - Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line-Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Line-X1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Line-X2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Line-Y1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Line-Y2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>ListAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>ListAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>ListAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>ListAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>LongAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>LongAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>LongAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>LongAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>LongAnnotation - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Mask - FillColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Mask - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Mask - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Mask - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Mask - ID</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Mask - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Mask - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Mask - StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Mask - StrokeDashArray</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>StrokeWidth</td>
<td>236</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mask - Text</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Mask - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Mask - TheT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Mask - TheZ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Mask - Transform</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Mask - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Mask - Width</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Mask - X</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Mask - Y</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>MicrobeamManipulation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>MicrobeamManipulation - ExperimenterRef</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicrobeamManipulation - ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicrobeamManipulation - ROIRef</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicrobeamManipulation - Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicrobeamManipulationLightSourceSettings</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>MicrobeamManipulationLightSourceSettings - Attenuation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>MicrobeamManipulationLightSourceSettings - ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicrobeamManipulationLightSourceSettings - Wavelength</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Microscope - Lot-Number</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Microscope - Manufacturer</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Microscope - Model</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Microscope - Serial-Number</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>Objective - CalibratedMagnification</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Objective - Correction</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>134</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective-ID</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>Objective-Immerson</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>133</td>
</tr>
<tr>
<td>Objective-Iris</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Objective-LensNA</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>Objective-LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Objective-Manufacturer</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Objective-Model</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>Objective-Nominal-Magnification</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>136</td>
</tr>
<tr>
<td>Objective-Serial-Number</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Objective-WorkingDistance</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>ObjectiveSettings-CorrectionCollar</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>ObjectiveSettings-ID</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>133</td>
</tr>
<tr>
<td>ObjectiveSettings-Medium</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>ObjectiveSettings-RefractiveIndex</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>152</td>
</tr>
<tr>
<td>Pixels-Annotation-Ref</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Pixels-BigEndian</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels-DimensionOrder</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels-ID</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels-Interleaved</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>Pixels-Physical-SizeX</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>Pixels-Physical-SizeY</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>117</td>
</tr>
</tbody>
</table>

Continued on next page

260 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
261 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion
262 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Iris
263 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA
264 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Manufacturer
265 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Model
266 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification
267 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_SerialNumber
268 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance
269 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_CorrectionCollar
270 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
271 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_Medium
272 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
273 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#AnnotationRef_ID
274 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
275 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
276 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
277 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
279 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY

19.2. Metadata fields
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels - Significant-Bits</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeC</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeT</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeX</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeY</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeZ</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - TimeIncrement</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Pixels - Type</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Plane - DeltaT</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>137</td>
</tr>
<tr>
<td>Plane - Exposure-Time</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>129</td>
</tr>
<tr>
<td>Plane - HashSHA1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Plane - PositionX</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>133</td>
</tr>
<tr>
<td>Plane - PositionY</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>133</td>
</tr>
<tr>
<td>Plane - PositionZ</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>139</td>
</tr>
<tr>
<td>Plane - TheC</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane - TheT</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane - TheZ</td>
<td>159</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Plate - ColumnNamingConvent</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Plate - Columns</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>Plate - Description</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Plate - ExternalIdentifier</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Plate - ID</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Plate - Name</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Plate - RowNamingConvention</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate - Rows [308]</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>Plate - Status [309]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Plate - WellOriginX [310]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Plate - WellOriginY [311]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>PlateAcquisition - AnnotationRef [312]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>PlateAcquisition - Description [313]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>PlateAcquisition - EndTime [314]</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>PlateAcquisition - ID [315]</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>PlateAcquisition - MaximumFieldCount [316]</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>PlateAcquisition - Name [317]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>PlateAcquisition - StartTime [318]</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>PlateAcquisition - WellSampleRef [319]</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>152</td>
</tr>
<tr>
<td>Point - FillColor [320]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Point - FillRule [321]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Point - FontFamily [322]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Point - FontSize [323]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Point - FontStyle [324]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Point - ID [325]</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Point - LineCap [326]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Point - Locked [327]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Point - StrokeColor [328]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Point - StrokeDashArray [329]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Point - StrokeWidth [330]</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Point - Text [331]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Point - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Point - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Point - Transform</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Point - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Point - X</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Point - Y</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Polygon - Fill-Color</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polygon - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polygon - FontFamily</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Polygon - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polygon - ID</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>152</td>
</tr>
<tr>
<td>Polygon - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polygon - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polygon - Points</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>152</td>
</tr>
<tr>
<td>Polygon - StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Polygon - StrokeDashArray</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Polygon - StrokeWidth</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Polygon - Text</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Polygon - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polygon - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Polygon - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Polygon - Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Polygon - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polyl ine - Fill-Color</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyline-FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polyline-FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polyline-Font-Size</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Polyline-FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polyline-ID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Polyline-LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polyline-Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polyline-MarkerEnd</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polyline-MarkerStart</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Polyline-Points</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Polyline-StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Polyline-StrokeDashArray</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>Polyline-StrokeWidth</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Polyline-TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Polyline-TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Polyline-TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
<tr>
<td>Polyline-Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>Polyline-Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Project-AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Project-DatasetRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Project-Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Project-ExperimenterGroupRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Project-ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project-ID</td>
<td>382</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Project-Name</td>
<td>383</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ROI - AnnotationRef</td>
<td>384</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ROI - Description</td>
<td>385</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ROI - ID</td>
<td>386</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ROI - Name</td>
<td>387</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ROI - Namespace</td>
<td>388</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reagent - AnnotationRef</td>
<td>389</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reagent - Description</td>
<td>390</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reagent-ID</td>
<td>391</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reagent - ReagentIdentifier</td>
<td>392</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - FillColor</td>
<td>393</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - FillRule</td>
<td>394</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - FontFamily</td>
<td>395</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - FontSize</td>
<td>396</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - FontStyle</td>
<td>397</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - Height</td>
<td>398</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - ID</td>
<td>399</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - LineCap</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - Locked</td>
<td>401</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - StrokeColor</td>
<td>402</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - StrokeDashArray</td>
<td>403</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - StrokeWidth</td>
<td>404</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - StrokeDashArray</td>
<td>405</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle - Text</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - TheZ</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - Width</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - X</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - Y</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - Annotation-Ref</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - Name</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - PlateRef</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - ProtocolDescription</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - ProtocolIdentifier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - ReagentSet-Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - ReagentSetIdentifier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>StageLabel - Name</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>StageLabel - X</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>StageLabel - Y</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>StageLabel - Z</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TagAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TagAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>TagAnnotation ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TagAnnotation Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TagAnnotation Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TermAnnotation AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TermAnnotation Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TermAnnotation ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TermAnnotation Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TermAnnotation Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TiffData - FirstC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TiffData - FirstT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TiffData - FirstZ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TiffData - IFD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>PlaneCount</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TimestampAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TimestampAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TimestampAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TimestampAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TimestampAnnotation - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>TransmittanceRange - CutIn</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>TransmittanceRange - CutOut</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
</tbody>
</table>

Continued on next page

431 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_ID
432 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace
433 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#TagAnnotation_Value
434 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID
435 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Description
436 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_ID
437 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace
438 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#TermAnnotation_Value
439 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TiffData_FirstC
440 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TiffData_FirstT
441 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TiffData_FirstZ
442 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TiffData_PlaneCount
443 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TiffData_PlaneCount
444 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#AnnotationRef_ID
445 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Annotation_Description
446 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Annotation_Namespace
447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TimestampAnnotation_ID
448 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TimestampAnnotation_Namespace
449 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TimestampAnnotation_Value
450 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutIn

19.2. Metadata fields
Table 19.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>TransmittanceRange - CutOutTolerance</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>TransmittanceRange - Transmittance</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>UUID - FileName</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>UUID - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Well - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Well - Color</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Well - Column</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Well - ExternalDescription</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Well - ExternalIdentifier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Well - ID</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Well - ReagentRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>Well - Row</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Well - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>WellSample - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>WellSample - ID</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>WellSample - ImageRef</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>WellSample - Index</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>WellSample - PositionX</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>WellSample - PositionY</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>WellSample - Timepoint</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>XMLAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>XMLAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
<tr>
<td>XMLAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
</tbody>
</table>

Continued on next page

452 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutOutTolerance
453 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_Transmittance
454 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TiffData_TiffData_UUID_FileName
455 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#UniversallyUniqueIdentifier
456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID
457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Color
458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column
459 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ExternalDescription
460 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ExternalIdentifier
461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID
462 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#ReagentRef_ID
463 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row
464 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Type
465 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID
466 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID
468 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index
470 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionY
471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Timepoint
472 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID
473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_ID
474 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace

19.2. Metadata fields
Table 19.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMLAnnotation Value</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>159</td>
</tr>
</tbody>
</table>

19.2.1 SlidebookReader

This page lists supported metadata fields for the Bio-Formats Olympus Slidebook format reader.

These fields are from the OME data model[^476]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 34 of them (7%).
- Of those, Bio-Formats fully or partially converts 34 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus Slidebook format reader:

- Channel: ID[^477]
- Channel: NDFilter[^478]
- Channel: Name[^479]
- Channel: SamplesPerPixel[^480]
- Image: AcquisitionDate[^481]
- Image: Description[^482]
- Image: ID[^483]
- Image: InstrumentRef[^484]
- Image: Name[^485]
- Instrument: ID[^486]
- Objective: Correction[^487]
- Objective: ID[^488]
- Objective: Immersion[^489]
- Objective: Model[^490]
- Objective: NominalMagnification[^491]
- ObjectiveSettings: ID[^492]

[^475]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#XMLAnnotation_Value
[^476]: http://www.openmicroscopy.org/site/support/ome-model/
[^477]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
[^478]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_NDFilter
[^479]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
[^480]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
[^481]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
[^482]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
[^486]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
[^487]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction
[^488]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
[^489]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion
[^490]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
[^491]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification
[^492]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
• Pixels: BigEndian493
• Pixels: DimensionOrder494
• Pixels: ID495
• Pixels: Interleaved496
• Pixels: PhysicalSizeX497
• Pixels: PhysicalSizeY498
• Pixels: PhysicalSizeZ499
• Pixels: SignificantBits500
• Pixels: SizeC501
• Pixels: SizeT502
• Pixels: SizeX503
• Pixels: SizeY504
• Pixels: SizeZ505
• Pixels: Type506
• Plane: ExposureTime507
• Plane: TheC508
• Plane: TheT509
• Plane: TheZ510

Total supported: 34

Total unknown or missing: 441

19.2.2 AIMReader

This page lists supported metadata fields for the Bio-Formats AIM format reader.

These fields are from the OME data model511. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

493http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
494http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
495http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
496http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
497http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX
498http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
499http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ
500http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
501http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
502http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
503http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
504http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
505http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
506http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
507http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
508http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
509http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
510http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
511http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats AIM format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 22

Total unknown or missing: 453

512 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
513 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
514 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
515 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
516 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
517 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
518 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
519 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
520 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
522 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
524 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
525 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
526 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
527 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
528 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
529 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
530 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
531 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
532 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
533 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
19.2.3 AliconaReader

This page lists supported metadata fields for the Bio-Formats Alicona AL3D format reader.

These fields are from the OME data model\(^534\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 33 of them (6%).
- Of those, Bio-Formats fully or partially converts 33 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Alicona AL3D format reader:

- Channel: ID\(^535\)
- Channel: SamplesPerPixel\(^536\)
- Detector: ID\(^537\)
- Detector: Type\(^538\)
- DetectorSettings: ID\(^539\)
- DetectorSettings: Voltage\(^540\)
- Image: AcquisitionDate\(^541\)
- Image: ID\(^542\)
- Image: InstrumentRef\(^543\)
- Image: Name\(^544\)
- Instrument: ID\(^545\)
- Objective: CalibratedMagnification\(^546\)
- Objective: Correction\(^547\)
- Objective: ID\(^548\)
- Objective: Immersion\(^549\)
- Objective: WorkingDistance\(^550\)
- ObjectiveSettings: ID\(^551\)
- Pixels: BigEndian\(^552\)

\(^534\)http://www.openmicroscopy.org/site/support/ome-model/
\(^535\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
\(^536\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
\(^537\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
\(^538\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
\(^539\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
\(^540\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Voltage
\(^541\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\(^542\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
\(^543\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID
\(^544\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
\(^545\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID
\(^546\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification
\(^547\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction
\(^548\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
\(^549\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion
\(^550\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance
\(^551\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
\(^552\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
19.2.4 GelReader

This page lists supported metadata fields for the Bio-Formats Amersham Biosciences GEL format reader.

These fields are from the OME data model\(^568\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Amersham Biosciences GEL format reader:

- Channel : ID\(^569\)
- Channel : SamplesPerPixel\(^570\)
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 21
Total unknown or missing: 454

19.2.5 AmiraReader

This page lists supported metadata fields for the Bio-Formats Amira format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
Supported fields

These fields are fully supported by the Bio-Formats Amira format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 22

Total unknown or missing: 453

591 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
592 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
593 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
595 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
596 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
597 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
598 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
599 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
600 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX
603 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
604 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
605 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
606 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
607 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
608 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
609 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
610 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
611 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
612 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
19.2.6 AnalyzeReader

This page lists supported metadata fields for the Bio-Formats Analyze 7.5 format reader. These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 24 of them (5%).
- Of those, Bio-Formats fully or partially converts 24 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Analyze 7.5 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY

19.2. Metadata fields

Bio-Formats Documentation, Release 5.0.0-rc1

19.2.7 AFIReader

This page lists supported metadata fields for the Bio-Formats Aperio AFI format reader.

These fields are from the OME data model638. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Aperio AFI format reader:

- Channel : EmissionWavelength639
- Channel : ExcitationWavelength640
- Channel : ID641
- Channel : Name642
- Channel : SamplesPerPixel643
- Image : AcquisitionDate644
- Image : ID645
- Image : Name646
- Pixels : BigEndian647
- Pixels : DimensionOrder648
- Pixels : ID649

632http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
634http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
635http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
636http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
637http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
638http://www.openmicroscopy.org/site/support/ome-model/
640http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength
641http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
642http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
643http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
644http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
646http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
647http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
648http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
Total supported: 23

Total unknown or missing: 452

19.2.8 SVSReader

This page lists supported metadata fields for the Bio-Formats Aperio SVS format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Aperio SVS format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate

650 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
651 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
652 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
653 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
654 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
655 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
656 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
657 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
659 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
660 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
661 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ

659 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength
660 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
661 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
662 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
• Image: Description668
• Image: ID669
• Image: Name670
• Pixels: BigEndian671
• Pixels: DimensionOrder672
• Pixels: ID673
• Pixels: Interleaved674
• Pixels: SignificantBits675
• Pixels: SizeC676
• Pixels: SizeT677
• Pixels: SizeX678
• Pixels: SizeY679
• Pixels: SizeZ680
• Pixels: Type681
• Plane: TheC682
• Plane: TheT683
• Plane: TheZ684

Total supported: 22
Total unknown or missing: 453

19.2.9 CellWorxReader

This page lists supported metadata fields for the Bio-Formats CellWorx format reader.

These fields are from the OME data model685. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 45 of them (9%).
• Of those, Bio-Formats fully or partially converts 45 (100%).

668http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
669http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
670http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
671http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
672http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
673http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
674http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
675http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
676http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
677http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
678http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
679http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
680http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
681http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
682http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
683http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
684http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
685http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats CellWorx format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- DetectorSettings: Gain
- DetectorSettings: ID
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Microscope: SerialNumber
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: ID
• Plate: Name
• PlateAcquisition: EndTime
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: StartTime
• PlateAcquisition: WellSampleRef
• Well: Column
• Well: ID
• Well: Row
• WellSample: ID
• WellSample: ImageRef
• WellSample: Index
• WellSample: PositionX
• WellSample: PositionY

Total supported: 45
Total unknown or missing: 430

19.2.10 AVIReader

This page lists supported metadata fields for the Bio-Formats Audio Video Interleave format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_EndTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_StartTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSampleRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionY
Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Audio Video Interleave format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19

Total unknown or missing: 456

733 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
734 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
735 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
736 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
737 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
738 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
739 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
740 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
741 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
742 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
743 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
744 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
745 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
746 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
747 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
748 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
749 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
750 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
19.2.11 ARFReader

This page lists supported metadata fields for the Bio-Formats ARF format reader.

These fields are from the OME data model\(^751\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats ARF format reader:

- Channel : ID\(^752\)
- Channel : SamplesPerPixel\(^753\)
- Image : AcquisitionDate\(^754\)
- Image : ID\(^755\)
- Image : Name\(^756\)
- Pixels : BigEndian\(^757\)
- Pixels : DimensionOrder\(^758\)
- Pixels : ID\(^759\)
- Pixels : Interleaved\(^760\)
- Pixels : SignificantBits\(^761\)
- Pixels : SizeC\(^762\)
- Pixels : SizeT\(^763\)
- Pixels : SizeX\(^764\)
- Pixels : SizeY\(^765\)
- Pixels : SizeZ\(^766\)
- Pixels : Type\(^767\)
- Plane : TheC\(^768\)
- Plane : TheT\(^769\)

\(^751\)http://www.openmicroscopy.org/site/support/ome-model/
\(^752\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
\(^753\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
\(^754\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\(^755\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
\(^756\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
\(^757\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
\(^758\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
\(^759\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
\(^760\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
\(^761\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
\(^762\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
\(^763\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
\(^764\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
\(^765\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
\(^766\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
\(^767\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
\(^768\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
\(^769\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.12 BDReader

This page lists supported metadata fields for the Bio-Formats BD Pathway format reader.

These fields are from the OME data model\(^{771}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 57 of them (12%).
- Of those, Bio-Formats fully or partially converts 57 (100%).

Supported fields

These fields are fully supported by the Bio-Formats BD Pathway format reader:

- Channel: EmissionWavelength\(^{772}\)
- Channel: ExcitationWavelength\(^{773}\)
- Channel: ID\(^{774}\)
- Channel: Name\(^{775}\)
- Channel: SamplesPerPixel\(^{776}\)
- Detector: ID\(^{777}\)
- DetectorSettings: Binning\(^{778}\)
- DetectorSettings: Gain\(^{779}\)
- DetectorSettings: ID\(^{780}\)
- DetectorSettings: Offset\(^{781}\)
- Image: AcquisitionDate\(^{782}\)
- Image: ID\(^{783}\)
- Image: InstrumentRef\(^{784}\)
- Image: Name\(^{785}\)
- Image: ROIRef\(^{786}\)
- Instrument: ID\(^{787}\)

\(^{770}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
\(^{771}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{772}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength
\(^{773}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength
\(^{774}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
\(^{775}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{776}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
\(^{777}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning
\(^{778}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain
\(^{779}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Offset
\(^{780}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\(^{781}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
\(^{782}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID
\(^{783}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
\(^{784}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID
\(^{785}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID

19.2. Metadata fields
- Objective: ID
- Objective: LensNA
- Objective: Manufacturer
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: DeltaT
- Plane: ExposureTime
- Plane: TheC
- Plane: TheZ
- Plate: ColumnNamingConvention
- Plate: Description
- Plate: ID
- Plate: Name
- Plate: RowNamingConvention

19.2. Metadata fields
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: WellSampleRef
• ROI: ID
• Rectangle: Height
• Rectangle: ID
• Rectangle: Width
• Rectangle: X
• Rectangle: Y
• Well: Column
• Well: ID
• Well: Row
• WellSample: ID
• WellSample: ImageRef
• WellSample: Index

Total supported: 57

Total unknown or missing: 418

19.2.13 SDTReader

This page lists supported metadata fields for the Bio-Formats SPCImage Data format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SPCImage Data format reader:

• Channel: ID
• Channel: SamplesPerPixel

814 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_ID
815 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount
816 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#WellSampleRef_ID
817 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID
818 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Height
819 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID
820 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Width
822 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Y
823 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column
824 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID
825 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row
826 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID
827 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index
828 http://www.openmicroscopy.org/site/support/ome-model/
830 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
831 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
• Image: AcquisitionDate832
• Image: ID833
• Image: Name834
• Pixels: BigEndian835
• Pixels: DimensionOrder836
• Pixels: ID837
• Pixels: Interleaved838
• Pixels: SignificantBits839
• Pixels: SizeC840
• Pixels: SizeT841
• Pixels: SizeX842
• Pixels: SizeY843
• Pixels: SizeZ844
• Pixels: Type845
• Plane: TheC846
• Plane: TheT847
• Plane: TheZ848

Total supported: 19
Total unknown or missing: 456

19.2.14 BioRadGelReader

This page lists supported metadata fields for the Bio-Formats Bio-Rad GEL format reader.

These fields are from the OME data model849. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).

832 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
834 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
835 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
836 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
837 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
838 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
839 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
840 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
841 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
842 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
843 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
844 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
845 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
847 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
848 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
849 http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Bio-Rad GEL format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 21

Total unknown or missing: 454
19.2.15 BioRadReader

This page lists supported metadata fields for the Bio-Formats Bio-Rad PIC format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
 - The file format itself supports 40 of them (8%).
 - Of those, Bio-Formats fully or partially converts 40 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bio-Rad PIC format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Detector : Gain
- Detector : ID
- Detector : Offset
- Detector : Type
- DetectorSettings : Gain
- DetectorSettings : ID
- DetectorSettings : Offset
- Experiment : ID
- Experiment : Type
- Image : AcquisitionDate
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Objective : Correction
- Objective : ID
- Objective : Immersion

871 http://www.openmicroscopy.org/site/support/ome-model/
872 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
873 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
875 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
876 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Offset
877 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
878 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain
879 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
880 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Offset
881 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_ID
882 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_Type
883 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
884 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
886 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
888 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction
889 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
890 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion
This page lists supported metadata fields for the Bio-Formats Bio-Rad SCN format reader.

These fields are from the OME data model\(^{912}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

\(^{891}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA
\(^{892}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
\(^{893}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification
\(^{894}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
\(^{895}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
\(^{896}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
\(^{897}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
\(^{898}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
\(^{899}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{900}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{901}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ
\(^{902}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
\(^{903}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
\(^{904}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
\(^{905}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
\(^{906}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
\(^{907}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
\(^{908}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
\(^{909}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
\(^{910}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
\(^{911}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
\(^{912}\)http://www.openmicroscopy.org/site/support/ome-model/
Of the 475 fields documented in the metadata summary table:

- The file format itself supports 29 of them (6%).
- Of those, Bio-Formats fully or partially converts 29 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bio-Rad SCN format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Detector: ID
- DetectorSettings: Binning
- DetectorSettings: Gain
- DetectorSettings: ID
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Instrument: ID
- Microscope: Model
- Microscope: SerialNumber
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 29
Total unknown or missing: 446

19.2.17 ImarisHDFReader

This page lists supported metadata fields for the Bio-Formats Bitplane Imaris 5.5 (HDF) format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 23 of them (4%).
• Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bitplane Imaris 5.5 (HDF) format reader:

• Channel: Color
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved

935 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
936 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
937 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
938 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
940 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
941 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
942 http://www.openmicroscopy.org/site/support/ome-model/
943 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Color
944 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
945 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
946 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
948 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
949 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
950 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
951 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
952 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
• Pixels: PhysicalSizeX[^53]
• Pixels: PhysicalSizeY[^54]
• Pixels: PhysicalSizeZ[^55]
• Pixels: SignificantBits[^56]
• Pixels: Size[^57]
• Pixels: SizeT[^58]
• Pixels: SizeX[^59]
• Pixels: SizeY[^60]
• Pixels: SizeZ[^61]
• Pixels: Type[^62]
• Plane: TheC[^63]
• Plane: TheT[^64]
• Plane: TheZ[^65]

Total supported: 23
Total unknown or missing: 452

19.2.18 BrukerReader

This page lists supported metadata fields for the Bio-Formats Bruker format reader. These fields are from the OME data model[^66]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bruker format reader:

- Channel: ID[^67]
- Channel: SamplesPerPixel[^68]
- Experimenter: ID[^69]
- Experimenter: Institution[^70]

[^54]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
[^56]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
[^57]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Size
[^58]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
[^59]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
[^60]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
[^61]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
[^62]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
[^64]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
[^65]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
[^66]: http://www.openmicroscopy.org/site/support/ome-model/
[^67]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
[^68]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
[^69]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID
[^70]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_Institution
• Experimenter: LastName
• Image: AcquisitionDate
• Image: ExperimenterRef
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 23
Total unknown or missing: 452

19.2.19 BurleighReader

This page lists supported metadata fields for the Bio-Formats Burleigh format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

971 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName
972 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
973 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID
975 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
976 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
977 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
978 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
979 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
980 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
981 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
982 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
983 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
984 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
985 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
986 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
988 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
989 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
990 http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Burleigh format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 22

Total unknown or missing: 453

[^991]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
[^992]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
[^993]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
[^995]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
[^996]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
[^997]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
[^998]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
[^999]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
[^1003]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
[^1004]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
[^1005]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
[^1006]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
[^1007]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
[^1008]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
[^1010]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
[^1011]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
19.2.20 DNGReader

This page lists supported metadata fields for the Bio-Formats DNG format reader.

These fields are from the OME data model\(^{1013}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats DNG format reader:

- Channel : ID\(^{1014}\)
- Channel : SamplesPerPixel\(^{1015}\)
- Image : AcquisitionDate\(^{1016}\)
- Image : ID\(^{1017}\)
- Image : Name\(^{1018}\)
- Pixels : BigEndian\(^{1019}\)
- Pixels : DimensionOrder\(^{1020}\)
- Pixels : ID\(^{1021}\)
- Pixels : Interleaved\(^{1022}\)
- Pixels : SignificantBits\(^{1023}\)
- Pixels : SizeC\(^{1024}\)
- Pixels : SizeT\(^{1025}\)
- Pixels : SizeX\(^{1026}\)
- Pixels : SizeY\(^{1027}\)
- Pixels : SizeZ\(^{1028}\)
- Pixels : Type\(^{1029}\)
- Plane : TheC\(^{1030}\)
- Plane : TheT\(^{1031}\)

\(^{1013}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{1014}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID

\(^{1015}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{1016}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate

\(^{1017}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID

\(^{1018}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name

\(^{1019}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian

\(^{1020}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder

\(^{1021}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID

\(^{1022}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved

\(^{1023}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits

\(^{1024}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC

\(^{1025}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT

\(^{1026}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX

\(^{1027}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY

\(^{1028}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ

\(^{1029}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type

\(^{1030}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC

\(^{1031}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.21 CellomicsReader

This page lists supported metadata fields for the Bio-Formats Cellomics C01 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 31 of them (6%).
- Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Cellomics C01 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
19.2.22 CellSensReader

This page lists supported metadata fields for the Bio-Formats CellSens VSI format reader.

These fields are from the OME data model\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#pixels_sizez}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the \textbf{475} fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

\textbf{Supported fields}

These fields are fully supported by the Bio-Formats CellSens VSI format reader:

- Channel : ID\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#channel_id}
- Channel : SamplesPerPixel\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#channel_samplesperpixel}
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.23 CellVoyagerReader

This page lists supported metadata fields for the Bio-Formats CellVoyager format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 34 of them (7%).
- Of those, Bio-Formats fully or partially converts 34 (100%).

Supported fields

These fields are fully supported by the Bio-Formats CellVoyager format reader:

- Channel: ID
- Channel: Name
- Channel: PinholeSize
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Plate: Columns
- Plate: Rows
- PlateAcquisition: EndTime

1086 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1087 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
1089 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1090http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1091 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
1092 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1093 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
1094 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1095 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
1096 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
1097 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1098 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1099 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1100 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1101 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1102 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1103 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1104 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1105 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1106 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1107 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Columns
1108 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Rows
1109 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_EndTime
19.2.24 DeltavisionReader

This page lists supported metadata fields for the Bio-Formats Deltavision format reader.

These fields are from the OME data model[120]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 52 of them (10%).
- Of those, Bio-Formats fully or partially converts 52 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Deltavision format reader:

- Channel: EmissionWavelength[121]
- Channel: ExcitationWavelength[122]
- Channel: ID[123]
- Channel: NDFilter[124]
- Channel: Name[125]
- Channel: SamplesPerPixel[126]
- Detector: ID[127]

110 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_ID
111 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount
112 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_StartTime
113 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column
114 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID
115 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row
116 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID
117 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index
119 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionY
120 http://www.openmicroscopy.org/site/support/ome-model/
121 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength
122 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength
123 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
124 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_NDFilter
125 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
126 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
127 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
• Detector : Model1128
• Detector : Type1129
• DetectorSettings : Binning1130
• DetectorSettings : Gain1131
• DetectorSettings : ID1132
• DetectorSettings : ReadOutRate1133
• Image : AcquisitionDate1134
• Image : Description1135
• Image : ID1136
• Image : InstrumentRef1137
• Image : Name1138
• ImagingEnvironment : Temperature1139
• Instrument : ID1140
• Objective : CalibratedMagnification1141
• Objective : Correction1142
• Objective : ID1143
• Objective : Immersion1144
• Objective : LensNA1145
• Objective : Manufacturer1146
• Objective : Model1147
• Objective : NominalMagnification1148
• Objective : WorkingDistance1149
• ObjectiveSettings : ID1150
• Pixels : BigEndian1151
• Pixels : DimensionOrder1152
• Pixels : ID1153

1128http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
1129http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
1130http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning
1131http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain
1132http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
1133http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ReadOutRate
1134http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1135http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
1136http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
1137http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID
1138http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1139http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature
1140http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification
1141http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction
1142http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
1143http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion
1144http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA
1145http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer
1146http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
1147http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification
1148http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance
1149http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
1150http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
1151http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1152http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID

19.2. Metadata fields
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 52
Total unknown or missing: 423

19.2.25 DicomReader

This page lists supported metadata fields for the Bio-Formats DICOM format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 23 of them (4%).
• Of those, Bio-Formats fully or partially converts 23 (100%).

1154 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
1156 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
1158 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1159 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1160 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1161 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1162 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1163 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1164 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1165 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT
1166 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
1171 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1172 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1173 http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats DICOM format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 23

Total unknown or missing: 452

1174 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1175 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1176 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcqquisitionDate
1177 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
1179 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1180 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
1181 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1182 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
1183 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
1185 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
1187 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1188 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1189 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1190 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1191 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1192 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1193 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1194 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1195 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1196 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
19.2.26 Ecat7Reader

This page lists supported metadata fields for the Bio-Formats ECAT7 format reader.

These fields are from the OME data model\[1197]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats ECAT7 format reader:

- Channel : ID\[1198\]
- Channel : SamplesPerPixel\[1199\]
- Image : AcquisitionDate\[1200\]
- Image : Description\[1201\]
- Image : ID\[1202\]
- Image : Name\[1203\]
- Pixels : BigEndian\[1204\]
- Pixels : DimensionOrder\[1205\]
- Pixels : ID\[1206\]
- Pixels : Interleaved\[1207\]
- Pixels : PhysicalSizeX\[1208\]
- Pixels : PhysicalSizeY\[1209\]
- Pixels : PhysicalSizeZ\[1210\]
- Pixels : SignificantBits\[1211\]
- Pixels : SizeC\[1212\]
- Pixels : SizeT\[1213\]
- Pixels : SizeX\[1214\]
- Pixels : SizeY\[1215\]

\[1197\] http://www.openmicroscopy.org/site/support/ome-model/
\[1198\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
\[1199\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
\[1200\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\[1201\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
\[1202\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
\[1203\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
\[1204\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
\[1205\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
\[1206\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
\[1207\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
\[1208\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX
\[1209\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
\[1210\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ
\[1211\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
\[1212\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
\[1213\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
\[1214\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
\[1215\] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 23
Total unknown or missing: 452

19.2.27 EPSReader

This page lists supported metadata fields for the Bio-Formats Encapsulated PostScript format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Encapsulated PostScript format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 456

19.2.28 FlexReader

This page lists supported metadata fields for the Bio-Formats Evotec Flex format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 69 of them (14%).
• Of those, Bio-Formats fully or partially converts 69 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Evotec Flex format reader:

• Channel : ID
• Channel : LightSourceSettingsID
• Channel : Name
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Type
• DetectorSettings : Binning
• DetectorSettings : ID
• Dichroic : ID
• Dichroic : Model
• Filter : FilterWheel\(^{1252}\)
• Filter : ID\(^{1253}\)
• Filter : Model\(^{1254}\)
• Image : AcquisitionDate\(^{1255}\)
• Image : ID\(^{1256}\)
• Image : InstrumentRef\(^{1257}\)
• Image : Name\(^{1258}\)
• Instrument : ID\(^{1259}\)
• Laser : ID\(^{1260}\)
• Laser : LaserMedium\(^{1261}\)
• Laser : Type\(^{1262}\)
• LightPath : Wavelength\(^{1263}\)
• LightPath : DichroicRef\(^{1264}\)
• LightPath : EmissionFilterRef\(^{1265}\)
• LightPath : ExcitationFilterRef\(^{1266}\)
• Objective : CalibratedMagnification\(^{1267}\)
• Objective : Correction\(^{1268}\)
• Objective : ID\(^{1269}\)
• Objective : Immersion\(^{1270}\)
• Objective : LensNA\(^{1271}\)
• ObjectiveSettings : ID\(^{1272}\)
• Pixels : BigEndian\(^{1273}\)
• Pixels : DimensionOrder\(^{1274}\)
• Pixels : ID\(^{1275}\)
• Pixels : Interleaved\(^{1276}\)
• Pixels : PhysicalSizeX\(^{1277}\)

\(^{1252}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_FilterWheel
\(^{1253}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID
\(^{1254}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
\(^{1255}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\(^{1256}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
\(^{1257}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID
\(^{1258}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
\(^{1259}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID
\(^{1260}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID
\(^{1261}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_LaserMedium
\(^{1262}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type
\(^{1263}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Wavelength
\(^{1264}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DichroicRef_ID
\(^{1265}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID
\(^{1266}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification
\(^{1267}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction
\(^{1268}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
\(^{1269}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion
\(^{1270}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA
\(^{1271}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
\(^{1272}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
\(^{1273}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
\(^{1274}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX
• Pixels: PhysicalSizeY1278
• Pixels: SignificantBits1279
• Pixels: SizeC1280
• Pixels: SizeT1281
• Pixels: SizeX1282
• Pixels: SizeY1283
• Pixels: SizeZ1284
• Pixels: Type1285
• Plane: DeltaT1286
• Plane: ExposureTime1287
• Plane: PositionX1288
• Plane: PositionY1289
• Plane: PositionZ1290
• Plane: TheC1291
• Plane: TheT1292
• Plane: TheZ1293
• Plate: ColumnNamingConvention1294
• Plate: ExternalIdentifier1295
• Plate: ID1296
• Plate: Name1297
• Plate: RowNamingConvention1298
• PlateAcquisition: ID1299
• PlateAcquisition: MaximumFieldCount1300
• PlateAcquisition: StartTime1301
• PlateAcquisition: WellSampleRef1302
• Well: Column1303

1278http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
1279http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1280http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1281http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1282http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1283http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1284http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1285http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1286http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT
1287http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
1288http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX
1289http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY
1290http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ
1291http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1292http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1293http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1294http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plate_ColumnNamingConvention
1295http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plate_ExternalIdentifier
1296http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plate_ID
1297http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plate_Name
1298http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plate_RowNamingConvention
1299http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#PlateAcquisition_ID
1300http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
1301http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#PlateAcquisition_StartTime
1302http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#WellSampleRef_ID
1303http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Well_Column

19.2. Metadata fields

265
19.2.29 FEIReader

This page lists supported metadata fields for the Bio-Formats FEI/Philips format reader.

These fields are from the [OME data model](http://www.openmicroscopy.org/site/support/ome-model/). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats FEI/Philips format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits

[1313]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.30 FEITiffReader

This page lists supported metadata fields for the Bio-Formats FEI TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 39 of them (8%).
• Of those, Bio-Formats fully or partially converts 39 (100%).

Supported fields

These fields are fully supported by the Bio-Formats FEI TIFF format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Model
• Detector: Type
• Experimenter: ID
• Experimenter: LastName
• Image: AcquisitionDate

1322 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1323 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1324 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1325 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1326 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1327 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1328 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1329 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1330 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1331 http://www.openmicroscopy.org/site/support/ome-model/
1332 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1333 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1334 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
1335 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
1336 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
1337 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID
1338 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName
1339 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
19.2. Metadata fields

- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Microscope: Model
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: NominalMagnification
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: TimeIncrement
- Pixels: Type
- Plane: TheC
- Plane: TheT
Bio-Formats Documentation, Release 5.0.0-rc1

• Plane: TheZ
• StageLabel: Name
• StageLabel: X
• StageLabel: Y
• StageLabel: Z

Total supported: 39
Total unknown or missing: 436

19.2.31 FitsReader

This page lists supported metadata fields for the Bio-Formats Flexible Image Transport System format reader. These fields are from the OME data model[1]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Flexible Image Transport System format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT

19.2. Metadata fields

269
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 456

19.2.32 GatanDM2Reader

This page lists supported metadata fields for the Bio-Formats Gatan DM2 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 30 of them (6%).
• Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Gatan DM2 format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Detector : ID
• DetectorSettings : Binning
• DetectorSettings : ID
• Experimenter : FirstName
• Experimenter : ID
• Experimenter : LastName
• Image : AcquisitionDate
• Image : ExperimenterRef

1384 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1385 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1386 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1387 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1388 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1389 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1390 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1391 http://www.openmicroscopy.org/site/support/ome-model/
1392 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1393 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1394 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
1395 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning
1396 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
1397 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_FirstName
1398 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID
1399 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName
1400 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1401 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID

19.2. Metadata fields
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 30
Total unknown or missing: 445

19.2.33 GatanReader

This page lists supported metadata fields for the Bio-Formats Gatan Digital Micrograph format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

19.2. Metadata fields
• The file format itself supports 36 of them (7%).
• Of those, Bio-Formats fully or partially converts 36 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Gatan Digital Micrograph format reader:

- Channel: AcquisitionMode
- Channel: ID
- Channel: SamplesPerPixel
- Detector: ID
- DetectorSettings: ID
- DetectorSettings: Voltage
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Instrument: ID
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 36
Total unknown or missing: 439

19.2.34 GIFReader

This page lists supported metadata fields for the Bio-Formats Graphics Interchange Format format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Graphics Interchange Format format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID

1446 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1448 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1449 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1450 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1451 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1452 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
1456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1459 http://www.openmicroscopy.org/site/support/ome-model/
1460 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1462 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1463 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
19.2.35 NAFReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu Aquacosmos format reader. These fields are from the OME data model1479. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu Aquacosmos format reader:

- Channel : ID1480
- Channel : SamplesPerPixel1481

1464 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1465 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
1466 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1467 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
1468 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
1469 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1470 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1472 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1474 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1475 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1476 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1477 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1478 http://www.openmicroscopy.org/site/support/ome-model/
1480 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1481 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
19.2.36 HISReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu HIS format reader.

These fields are from the OME data model\(^{1499}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the *metadata summary table*:

- The file format itself supports 27 of them (5%).
- Of those, Bio-Formats fully or partially converts 27 (100%).

\(^{1482}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\(^{1483}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
\(^{1484}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
\(^{1485}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
\(^{1486}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
\(^{1487}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
\(^{1488}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
\(^{1489}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
\(^{1490}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
\(^{1491}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
\(^{1492}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
\(^{1493}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
\(^{1494}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
\(^{1495}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
\(^{1496}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
\(^{1497}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
\(^{1498}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ

http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu HIS format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Offset
- Detector : Type
- DetectorSettings : Binning
- DetectorSettings : ID
- Image : AcquisitionDate
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : ExposureTime

1500: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1501: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1502: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
1504: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
1507: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1508: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
1510: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1512: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
1513: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1514: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
1515: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
1516: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1517: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1518: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1519: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1520: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1521: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1522: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 27
Total unknown or missing: 448

19.2.37 NDPIReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu NDPI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu NDPI format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT

1524 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1525 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1526 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1527 http://www.openmicroscopy.org/site/support/ome-model/
1528 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1529 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1530 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1531 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
1532 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1533 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
1534 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1535 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
1536 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
1538 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
1539 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1540 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1541 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 21
Total unknown or missing: 454

19.2.38 HamamatsuVMSReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu VMS format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 26 of them (5%).
• Of those, Bio-Formats fully or partially converts 26 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu VMS format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Objective: ID
• Objective: NominalMagnification
• ObjectiveSettings: ID

1542 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1543 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1544 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1545 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1546 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1547 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1548 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1549 http://www.openmicroscopy.org/site/support/ome-model/
1550 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1551 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1552 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1555 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1557 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
1558 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification
1559 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
This section lists supported metadata fields for the Bio-Formats Hitachi format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 31 of them (6%).
- Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hitachi format reader:

- Channel: ID

• Channel: SamplesPerPixel\(^{1578}\)
• Image: AcquisitionDate\(^{1579}\)
• Image: ID\(^{1580}\)
• Image: InstrumentRef\(^{1581}\)
• Image: Name\(^{1582}\)
• Instrument: ID\(^{1583}\)
• Microscope: Model\(^{1584}\)
• Microscope: SerialNumber\(^{1585}\)
• Objective: ID\(^{1586}\)
• Objective: WorkingDistance\(^{1587}\)
• ObjectiveSettings: ID\(^{1588}\)
• Pixels: BigEndian\(^{1589}\)
• Pixels: DimensionOrder\(^{1590}\)
• Pixels: ID\(^{1591}\)
• Pixels: Interleaved\(^{1592}\)
• Pixels: PhysicalSizeX\(^{1593}\)
• Pixels: PhysicalSizeY\(^{1594}\)
• Pixels: SignificantBits\(^{1595}\)
• Pixels: SizeC\(^{1596}\)
• Pixels: SizeT\(^{1597}\)
• Pixels: SizeX\(^{1598}\)
• Pixels: SizeY\(^{1599}\)
• Pixels: SizeZ\(^{1600}\)
• Pixels: Type\(^{1601}\)
• Plane: PositionX\(^{1602}\)
• Plane: PositionY\(^{1603}\)

1578 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1579 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1580 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
1582 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1584 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
1585 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber
1586 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
1587 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance
1588 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
1589 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
1590 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1591 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
1592 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
1594 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
1595 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1596 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1597 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1598 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1599 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1600 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1601 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type

19.2. Metadata fields
280
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 31
Total unknown or missing: 444

19.2.40 ICSReader

This page lists supported metadata fields for the Bio-Formats Image Cytometry Standard format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 72 of them (15%).
• Of those, Bio-Formats fully or partially converts 72 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Image Cytometry Standard format reader:
• Channel: EmissionWavelength
• Channel: ExcitationWavelength
• Channel: ID
• Channel: Name
• Channel: PinholeSize
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Manufacturer
• Detector: Model
• Detector: Type
• DetectorSettings: Gain
• DetectorSettings: ID
• Dichroic: ID
• Dichroic : Model
• Experiment : ID
• Experiment : Type
• Experimenter : ID
• Experimenter : LastName
• Filter : ID
• Filter : Model
• FilterSet : DichroicRef
• FilterSet : EmissionFilterRef
• FilterSet : ExcitationFilterRef
• FilterSet : ID
• FilterSet : Model
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Laser : ID
• Laser : LaserMedium
• Laser : Manufacturer
• Laser : Model
• Laser : Power
• Laser : RepetitionRate
• Laser : Type
• Laser : Wavelength

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterSet_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterSet_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_RepetitionRate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type
• Microscope: Manufacturer
• Microscope: Model
• Objective: CalibratedMagnification
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• Objective: WorkingDistance
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane : ExposureTime1674
• Plane : PositionX1675
• Plane : PositionY1676
• Plane : PositionZ1677
• Plane : TheC1678
• Plane : TheT1679
• Plane : TheZ1680

Total supported: 72
Total unknown or missing: 403

19.2.41 ImaconReader

This page lists supported metadata fields for the Bio-Formats Imacon format reader.

These fields are from the OME data model1681. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 23 of them (4%).
• Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Imacon format reader:

• Channel : ID1682
• Channel : SamplesPerPixel1683
• Experimenter : FirstName1684
• Experimenter : ID1685
• Experimenter : LastName1686
• Image : AcquisitionDate1687
• Image : ExperimenterRef1688
• Image : ID1689
• Image : Name1690
• Pixels : BigEndian1691

1674http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
1675http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX
1676http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY
1677http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ
1678http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1679http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1680http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1681http://www.openmicroscopy.org/site/support/ome-model/
1682http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1683http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1684http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_FirstName
1685http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID
1686http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName
1687http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1688http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID
1689http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
1690http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1691http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
Bio-Formats Documentation, Release 5.0.0-rc1

• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 23
Total unknown or missing: 452

19.2.42 SEQReader

This page lists supported metadata fields for the Bio-Formats Image-Pro Sequence format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Image-Pro Sequence format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID

1692 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1693 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
1694 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
1695 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1696 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1697 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1698 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1699 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1700 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1701 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1702 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1703 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1704 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1705 http://www.openmicroscopy.org/site/support/ome-model/
1706 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1707 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1708 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.43 IPWReader

This page lists supported metadata fields for the Bio-Formats Image-Pro Workspace format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Image-Pro Workspace format reader:

• Channel: ID
• Channel: SamplesPerPixel

References:

1710 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1711 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
1712 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1713 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
1714 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
1715 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1716 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1717 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1718 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1719 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1720 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1721 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1722 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1723 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1724 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1725 http://www.openmicroscopy.org/site/support/ome-model/
1726 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1727 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
This page lists supported metadata fields for the Bio-Formats IMAGIC format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

19.2.44 ImagicReader

The total supported fields are 20.

The total unknown or missing fields are 455.

Of the 287 Metadata fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).
Supported fields

These fields are fully supported by the Bio-Formats IMAGiC format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 22

Total unknown or missing: 453

1747 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1748 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1749 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1751 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1752 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
1753 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1754 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
1755 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
1757 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
1759 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1760 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1761 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1762 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1763 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1764 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1765 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1766 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1767 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1768 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ

19.2. Metadata fields
19.2.45 IMODReader

This page lists supported metadata fields for the Bio-Formats IMOD format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 44 of them (9%).
- Of those, Bio-Formats fully or partially converts 44 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IMOD format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Image: ROIRef
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY

1769 http://www.openmicroscopy.org/site/support/ome-model/
1770 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1771 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1772 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1774 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1775 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID
1776 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
1777 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1778 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
1779 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
1781 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
1783 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1784 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1785 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1786 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1787 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Point: ID
• Point: StrokeColor
• Point: StrokeDashArray
• Point: StrokeWidth
• Point: TheZ
• Point: X
• Point: Y
• Polygon: ID
• Polygon: Points
• Polygon: StrokeColor
• Polygon: StrokeDashArray
• Polygon: StrokeWidth
• Polygon: TheZ
• Polyline: ID
• Polyline: Points
• Polyline: StrokeColor
• Polyline: StrokeDashArray
• Polyline: StrokeWidth
• Polyline: TheZ
• ROI: ID
• ROI: Name

1788 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1789 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1790 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1791 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1792 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1793 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID
1794 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor
1795 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeDashArray
1796 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth
1797 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ
1798 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Point_X
1799 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Point_Y
1800 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_Points
1801 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_StrokeColor
1802 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_StrokeDashArray
1803 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_StrokeWidth
1804 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_TheZ
1805 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID
1806 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_Name

19.2. Metadata fields
Total supported: 44
Total unknown or missing: 431

19.2.46 OpenlabReader

This page lists supported metadata fields for the Bio-Formats Openlab LIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 32 of them (6%).
- Of those, Bio-Formats fully or partially converts 32 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Openlab LIFF format reader:

- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Type
- DetectorSettings: Gain
- DetectorSettings: ID
- DetectorSettings: Offset
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved

1814 http://www.openmicroscopy.org/site/support/ome-model/
1815 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1816 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
1817 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1818 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
1819 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
1821 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
1823 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1826 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1828 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
1829 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1830 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
1831 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
19.2.47 OpenlabRawReader

This page lists supported metadata fields for the Bio-Formats Openlab RAW format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Openlab RAW format reader:

- Channel : ID
- Channel : SamplesPerPixel

1833: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
1834: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1835: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1836: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1837: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1838: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1839: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1840: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1845: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1846: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1847: http://www.openmicroscopy.org/site/support/ome-model/
1848: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1849: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
• Image: AcquisitionDate1850
• Image: ID1851
• Image: Name1852
• Pixels: BigEndian1853
• Pixels: DimensionOrder1854
• Pixels: ID1855
• Pixels: Interleaved1856
• Pixels: SignificantBits1857
• Pixels: SizeC1858
• Pixels: SizeT1859
• Pixels: SizeX1860
• Pixels: SizeY1861
• Pixels: SizeZ1862
• Pixels: Type1863
• Plane: TheC1864
• Plane: TheT1865
• Plane: TheZ1866

Total supported: 19

Total unknown or missing: 456

19.2.48 ImprovisionTiffReader

This page lists supported metadata fields for the Bio-Formats Improvision TIFF format reader.

These fields are from the OME data model1867. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 25 of them (5%).
• Of those, Bio-Formats fully or partially converts 25 (100%).

1850http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1851http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
1852http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1853http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
1854http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1855http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
1856http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
1857http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1858http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1859http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1860http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1861http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1862http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1863http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1864http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1865http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1866http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1867http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Improvision TIFF format reader:

- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: TimeIncrement
- Pixels: Type
- Plane: TheC
- Plane: TheT

1868 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
1869 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
1870 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1871 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
1872 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
1873 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
1874 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
1875 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
1876 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
1877 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
1878 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
1880 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
1882 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
1883 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
1884 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
1885 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
1886 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
1887 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
1889 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
1890 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
1891 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT

19.2. Metadata fields
19.2.49 OBFReader

This page lists supported metadata fields for the Bio-Formats OBF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats OBF format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
19.2.50 InCellReader

This page lists supported metadata fields for the Bio-Formats InCell 1000/2000 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 67 of them (14%).
- Of those, Bio-Formats fully or partially converts 67 (100%).

Supported fields

These fields are fully supported by the Bio-Formats InCell 1000/2000 format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Model
- Detector: Type
- DetectorSettings: Binning
- DetectorSettings: Gain
- DetectorSettings: ID
- Experiment: ID
- Experiment: Type
- Image: AcquisitionDate

1911 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
1912 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
1913 http://www.openmicroscopy.org/site/support/ome-model/
1917 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
1918 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
1919 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
1920 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
1921 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
1922 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning
1924 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
1925 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_ID
1926 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
• Image: Description
• Image: ExperimentRef
• Image: ID
• Image: InstrumentRef
• Image: Name
• ImagingEnvironment: Temperature
• Instrument: ID
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Manufacturer
• Objective: NominalMagnification
• ObjectiveSettings: ID
• ObjectiveSettings: RefractiveIndex
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY

19.2. Metadata fields
19.2. Metadata fields

- Pixels : SizeZ\
- Pixels : Type\
- Plane : DeltaT\
- Plane : ExposureTime\
- Plane : PositionX\
- Plane : PositionY\
- Plane : PositionZ\
- Plane : TheC\
- Plane : TheT\
- Plane : TheZ\
- Plate : ColumnNamingConvention\
- Plate : ID\
- Plate : Name\
- Plate : RowNamingConvention\
- Plate : WellOriginX\
- Plate : WellOriginY\
- PlateAcquisition : ID\
- PlateAcquisition : MaximumFieldCount\
- PlateAcquisition : WellSampleRef\
- Well : Column\
- Well : ID\
- Well : Row\
- WellSample : ID\
- WellSample : ImageRef\
- WellSample : Index\
- WellSample : PositionX

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ColumnNamingConvention}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Name}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_RowNamingConvention}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_WellOriginX}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_WellOriginY}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_ID}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSampleRef}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImageRef}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionX}\]
Total supported: 67
Total unknown or missing: 408

19.2.51 InCell3000Reader

This page lists supported metadata fields for the Bio-Formats InCell 3000 format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats InCell 3000 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
• Plane: TheC\(^{1998}\)
• Plane: TheT\(^{1999}\)
• Plane: TheZ\(^{2000}\)

Total supported: 19
Total unknown or missing: 456

19.2.52 INRReader

This page lists supported metadata fields for the Bio-Formats INR format reader.

These fields are from the OME data model\(^{2001}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats INR format reader:

• Channel: ID\(^{2002}\)
• Channel: SamplesPerPixel\(^{2003}\)
• Image: AcquisitionDate\(^{2004}\)
• Image: ID\(^{2005}\)
• Image: Name\(^{2006}\)
• Pixels: BigEndian\(^{2007}\)
• Pixels: DimensionOrder\(^{2008}\)
• Pixels: ID\(^{2009}\)
• Pixels: Interleaved\(^{2010}\)
• Pixels: PhysicalSizeX\(^{2011}\)
• Pixels: PhysicalSizeY\(^{2012}\)
• Pixels: PhysicalSizeZ\(^{2013}\)
• Pixels: SignificantBits\(^{2014}\)
• Pixels: SizeC\(^{2015}\)

\(^{1999}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
\(^{2000}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
\(^{2001}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2002}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
\(^{2003}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2004}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\(^{2006}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
\(^{2007}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
\(^{2008}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
\(^{2009}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
\(^{2010}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
\(^{2014}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
\(^{2015}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
19.2.53 InveonReader

This page lists supported metadata fields for the Bio-Formats Inveon format reader. These fields are from the OME data model\(^{2024}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 30 of them (6%).
- Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Inveon format reader:

- Channel: ID\(^{2025}\)
- Channel: SamplesPerPixel\(^{2026}\)
- Experimenter: ID\(^{2027}\)
- Experimenter: Institution\(^{2028}\)
- Experimenter: UserName\(^{2029}\)
- Image: AcquisitionDate\(^{2030}\)
- Image: Description\(^{2031}\)
- Image: ExperimenterRef\(^{2032}\)
- Image: ID\(^{2033}\)

\(^{2016}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
\(^{2017}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
\(^{2018}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
\(^{2019}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
\(^{2020}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
\(^{2021}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
\(^{2022}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
\(^{2023}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
\(^{2024}\) http://www.openmicroscopy.org/site/support/ome-model/
\(^{2025}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
\(^{2026}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2027}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID
\(^{2028}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_Institution
\(^{2029}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_UserName
\(^{2030}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\(^{2031}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
\(^{2032}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID
\(^{2033}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Microscope: Model
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 30
Total unknown or missing: 445

19.2.54 IvisionReader

This page lists supported metadata fields for the Bio-Formats IVision format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.
Of the 475 fields documented in the metadata summary table:

- The file format itself supports 34 of them (7%).
- Of those, Bio-Formats fully or partially converts 34 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IVision format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Type
- DetectorSettings: Binning
- DetectorSettings: Gain
- DetectorSettings: ID
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: LensNA
- Objective: NominalMagnification
- ObjectiveSettings: ID
- ObjectiveSettings: RefractiveIndex
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 34
Total unknown or missing: 441

19.2.55 IPLabReader

This page lists supported metadata fields for the Bio-Formats IPLab format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 31 of them (6%).
• Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IPLab format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID

2078 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
2079 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
2080 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
2081 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
2082 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
2083 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
2084 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
2085 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement
2086 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
2087 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
2088 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
2089 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
2090 http://www.openmicroscopy.org/site/support/ome-model/
2091 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
2092 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
2093 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
2094 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
<table>
<thead>
<tr>
<th>Metadata Field</th>
<th>Schema URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image : Name</td>
<td>http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name</td>
</tr>
<tr>
<td>Image : ROIRef</td>
<td>http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID</td>
</tr>
<tr>
<td>Pixels : BigEndian</td>
<td>http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian</td>
</tr>
<tr>
<td>Pixels : Type</td>
<td>http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type</td>
</tr>
<tr>
<td>Rectangle : Height</td>
<td>http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Height</td>
</tr>
<tr>
<td>Rectangle : ID</td>
<td>http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID</td>
</tr>
</tbody>
</table>

19.2. Metadata fields
Total supported: 31
Total unknown or missing: 444

19.2.56 JEOLReader

This page lists supported metadata fields for the Bio-Formats JEOL format reader. These fields are from the OME data model\(^{2122}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JEOL format reader:

- Channel: ID\(^{2123}\)
- Channel: SamplesPerPixel\(^{2124}\)
- Image: AcquisitionDate\(^{2125}\)
- Image: ID\(^{2126}\)
- Image: Name\(^{2127}\)
- Pixels: BigEndian\(^{2128}\)
- Pixels: DimensionOrder\(^{2129}\)
- Pixels: ID\(^{2130}\)
- Pixels: Interleaved\(^{2131}\)
- Pixels: SignificantBits\(^{2132}\)
- Pixels: SizeC\(^{2133}\)
- Pixels: SizeT\(^{2134}\)
- Pixels: SizeX\(^{2135}\)
- Pixels: SizeY\(^{2136}\)
- Pixels: SizeZ\(^{2137}\)
- Pixels: Type\(^{2138}\)
- Plane: TheC\(^{2139}\)

\(^{2122}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2123}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
\(^{2124}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2125}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\(^{2126}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
\(^{2127}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
\(^{2128}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
\(^{2129}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
\(^{2130}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
\(^{2131}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
\(^{2132}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
\(^{2133}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
\(^{2134}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
\(^{2135}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
\(^{2136}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
\(^{2137}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
\(^{2138}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
\(^{2139}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
Total supported: 19
Total unknown or missing: 456

19.2.57 JPEG2000Reader

This page lists supported metadata fields for the Bio-Formats JPEG-2000 format reader. These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPEG-2000 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ

19.2. Metadata fields
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.58 JPEGReader

This page lists supported metadata fields for the Bio-Formats JPEG format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPEG format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY

2158: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
2160: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
2161: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
2162: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
2163: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
2164: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
2166: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
2167: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
2168: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
2169: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
2170: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_INTERLEAV
2171: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
2172: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
2173: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
2174: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
2175: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX

19.2. Metadata fields

308
19.2.59 JPKReader

This page lists supported metadata fields for the Bio-Formats JPK Instruments format reader.

These fields are from the OME data model\(^{2182}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPK Instruments format reader:

- Channel : ID\(^{2183}\)
- Channel : SamplesPerPixel\(^{2184}\)
- Image : AcquisitionDate\(^{2185}\)
- Image : ID\(^{2186}\)
- Image : Name\(^{2187}\)
- Pixels : BigEndian\(^{2188}\)
- Pixels : DimensionOrder\(^{2189}\)
- Pixels : ID\(^{2190}\)
- Pixels : Interleaved\(^{2191}\)
- Pixels : SignificantBits\(^{2192}\)
- Pixels : SizeC\(^{2193}\)
- Pixels : SizeY\(^{2176}\)
- Pixels : SizeZ\(^{2177}\)
- Pixels : Type\(^{2178}\)
- Plane : TheC\(^{2179}\)
- Plane : TheT\(^{2180}\)
- Plane : TheZ\(^{2181}\)

Total supported: 19
Total unknown or missing: 456
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 456

19.2.60 JPXReader

This page lists supported metadata fields for the Bio-Formats JPX format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPX format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved

19.2. Metadata fields
Bio-Formats Documentation, Release 5.0.0-rc1

- Pixels: SignificantBits\(^{2212}\)
- Pixels: SizeC\(^{2213}\)
- Pixels: SizeT\(^{2214}\)
- Pixels: SizeX\(^{2215}\)
- Pixels: SizeY\(^{2216}\)
- Pixels: SizeZ\(^{2217}\)
- Pixels: Type\(^{2218}\)
- Plane: TheC\(^{2219}\)
- Plane: TheT\(^{2220}\)
- Plane: TheZ\(^{2221}\)

Total supported: 19
Total unknown or missing: 456

19.2.6.1 **KhorosReader**

This page lists supported metadata fields for the Bio-Formats Khoros XV format reader.

These fields are from the [OME data model](). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Khoros XV format reader:

- Channel: ID\(^{2223}\)
- Channel: SamplesPerPixel\(^{2224}\)
- Image: AcquisitionDate\(^{2225}\)
- Image: ID\(^{2226}\)
- Image: Name\(^{2227}\)
- Pixels: BigEndian\(^{2228}\)
- Pixels: DimensionOrder\(^{2229}\)

\(^{2212}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
\(^{2213}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
\(^{2214}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
\(^{2215}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
\(^{2216}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
\(^{2217}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
\(^{2218}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
\(^{2219}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
\(^{2220}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
\(^{2221}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2222}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
\(^{2223}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2224}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\(^{2225}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
\(^{2226}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
\(^{2227}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
\(^{2228}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
- Pixels: ID2230
- Pixels: Interleaved2231
- Pixels: SignificantBits2232
- Pixels: SizeC2233
- Pixels: SizeT2234
- Pixels: SizeX2235
- Pixels: SizeY2236
- Pixels: SizeZ2237
- Pixels: Type2238
- Plane: TheC2239
- Plane: TheT2240
- Plane: TheZ2241

Total supported: 19

Total unknown or missing: 456

19.2.62 KodakReader

This page lists supported metadata fields for the Bio-Formats Kodak Molecular Imaging format reader.

These fields are from the OME data model2242. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 26 of them (5%).
- Of those, Bio-Formats fully or partially converts 26 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Kodak Molecular Imaging format reader:

- Channel: ID2243
- Channel: SamplesPerPixel2244
- Image: AcquisitionDate2245
- Image: ID2246
- Image: InstrumentRef2247

2230http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
2231http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
2232http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
2233http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
2234http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
2235http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
2236http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
2237http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
2238http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
2239http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
2240http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
2241http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
2242http://www.openmicroscopy.org/site/support/ome-model/
2243http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
2244http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
2245http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
2246http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
2247http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID
- Image: Name
- ImagingEnvironment: Temperature
- Instrument: ID
- Microscope: Model
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: ExposureTime
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 26
Total unknown or missing: 449

19.2.63 LiFlimReader

This page lists supported metadata fields for the Bio-Formats LI-FLIM format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Of the 475 fields documented in the *metadata summary table*:

- The file format itself supports 25 of them (5%).
- Of those, Bio-Formats fully or partially converts 25 (100%).

Supported fields

These fields are fully supported by the Bio-Formats LI-FLIM format reader:

- Channel : ID 2270
- Channel : SamplesPerPixel 2271
- Image : AcquisitionDate 2272
- Image : ID 2273
- Image : Name 2274
- Image : ROIRef 2275
- Pixels : BigEndian 2276
- Pixels : DimensionOrder 2277
- Pixels : ID 2278
- Pixels : Interleaved 2279
- Pixels : SignificantBits 2280
- Pixels : SizeC 2281
- Pixels : SizeT 2282
- Pixels : SizeX 2283
- Pixels : SizeY 2284
- Pixels : SizeZ 2285
- Pixels : Type 2286
- Plane : DeltaT 2287
- Plane : ExposureTime 2288
- Plane : TheC 2289
- Plane : TheT 2290
- Plane : TheZ 2291

2271http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
2272http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
2285http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
19.2.64 InspectorReader

This page lists supported metadata fields for the Bio-Formats Lavision Inspector format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Lavision Inspector format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY

References:

2292 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID
2293 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_Points
2294 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID
2295 http://www.openmicroscopy.org/site/support/ome-model/
2296 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
2297 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
2298 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
2299 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
2300 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
2301 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
2302 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
2303 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
2304 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
2305 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
2306 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
2307 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
2308 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
2309 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ
Total supported: 19
Total unknown or missing: 456

19.2.65 LeicaReader

This page lists supported metadata fields for the Bio-Formats Leica format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 56 of them (11%).
• Of those, Bio-Formats fully or partially converts 56 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Leica format reader:
• Channel : Color
• Channel : EmissionWavelength
• Channel : ExcitationWavelength
• Channel : ID
• Channel : Name
• Channel : PinholeSize
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Offset
• Detector : Type
• Detector : Voltage
• DetectorSettings : ID
• Filter : ID
• Filter : Model
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• LightPath : EmissionFilterRef
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Model
• Objective : NominalMagnification
• Objective : SerialNumber
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
This page lists supported metadata fields for the Bio-Formats Leica Image File Format format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 85 of them (17%).
- Of those, Bio-Formats fully or partially converts 85 (100%).

19.2.66 LIFReader

This page lists supported metadata fields for the Bio-Formats Leica Image File Format format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 85 of them (17%).
- Of those, Bio-Formats fully or partially converts 85 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Leica Image File Format format reader:

- Channel: Color
- Channel: ExcitationWavelength
- Channel: ID
- Channel: LightSourceSettingsAttenuation
- Channel: LightSourceSettingsID
- Channel: Name
- Channel: PinholeSize
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Model
- Detector: Offset
- Detector: Type
- Detector: Zoom
- DetectorSettings: Gain
- DetectorSettings: ID
- DetectorSettings: Offset
- Filter: ID
- Filter: Model
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Image: ROIRef

2373 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Color
2374 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength
2375 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
2376 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_Attenuation
2377 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_ID
2378 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
2379 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_PinholeSize
2380 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
2381 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
2382 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
2383 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Offset
2384 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
2385 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Zoom
2389 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID
2390 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
2391 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
2392 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
2395 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
2396 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID

19.2. Metadata fields
• Instrument: ID
• Label: FontSize
• Label: ID
• Label: StrokeWidth
• Label: Text
• Label: X
• Label: Y
• Laser: ID
• Laser: LaserMedium
• Laser: Type
• Laser: Wavelength
• LightPath: EmissionFilterRef
• Line: ID
• Line: X1
• Line: X2
• Line: Y1
• Line: Y2
• Microscope: Model
• Microscope: Type
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• Objective: NominalMagnification
• Objective: SerialNumber

19.2. Metadata fields

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Shape_Text
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#LightSource_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Laser_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#FilterRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Line_X1
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Line_X2
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Line_Y1
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Microscope_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#ManufacturerSpec_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OMETVE-036/ome_xsd.html#ManufacturerSpec_Model
• ObjectiveSettings: ID
• ObjectiveSettings: RefractiveIndex
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Polygon: ID

2423 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
2424 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
2425 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
2426 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
2427 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
2428 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
2430 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
2432 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement
2433 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
2434 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT
2435 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
2439 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_Type
2440 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT
2441 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
2445 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_Type
2446 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
2447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
2448 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
2449 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID
19.2.67 LeicaSCNReader

This page lists supported metadata fields for the Bio-Formats Leica SCN format reader. These fields are from the OME data model[2458]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 33 of them (6%).
- Of those, Bio-Formats fully or partially converts 33 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Leica SCN format reader:

- Channel: ID[2459]
- Channel: IlluminationType[2460]
- Channel: SamplesPerPixel[2461]
- Image: AcquisitionDate[2462]
- Image: Description[2463]
- Image: ID[2464]
- Image: InstrumentRef[2465]
- Image: Name[2466]

2449 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_Points
2450 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID
2451 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Height
2452 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID
2453 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Width
2455 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Y
2456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutIn
2457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutOut
2458 http://www.openmicroscopy.org/site/support/ome-model/
2459 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
2460 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_IlluminationType
2461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
2462 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
2463 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
2464 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
2466 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
Bio-Formats Documentation, Release 5.0.0-rc1

- Instrument: ID
- Objective: CalibratedMagnification
- Objective: ID
- Objective: LensNA
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: PositionX
- Plane: PositionY
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 33

Total unknown or missing: 442

19.2. Metadata fields
19.2.68 LEOReader

This page lists supported metadata fields for the Bio-Formats LEO format reader.

These fields are from the OME data model\(^{2492}\). Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 27 of them (5%).
- Of those, Bio-Formats fully or partially converts 27 (100%).

Supported fields

These fields are fully supported by the Bio-Formats LEO format reader:

- Channel: ID\(^{2493}\)
- Channel: SamplesPerPixel\(^{2494}\)
- Image: AcquisitionDate\(^{2495}\)
- Image: ID\(^{2496}\)
- Image: InstrumentRef\(^{2497}\)
- Image: Name\(^{2498}\)
- Instrument: ID\(^{2499}\)
- Objective: Correction\(^{2500}\)
- Objective: ID\(^{2501}\)
- Objective: Immersion\(^{2502}\)
- Objective: WorkingDistance\(^{2503}\)
- Pixels: BigEndian\(^{2504}\)
- Pixels: DimensionOrder\(^{2505}\)
- Pixels: ID\(^{2506}\)
- Pixels: Interleaved\(^{2507}\)
- Pixels: PhysicalSizeX\(^{2508}\)
- Pixels: PhysicalSizeY\(^{2509}\)
- Pixels: SignificantBits\(^{2510}\)

\(^{2492}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{2493}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID

\(^{2494}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{2495}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate

\(^{2496}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID

\(^{2497}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID

\(^{2498}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name

\(^{2499}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID

\(^{2500}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction

\(^{2501}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID

\(^{2502}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion

\(^{2503}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance

\(^{2504}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian

\(^{2505}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder

\(^{2506}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID

\(^{2507}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved

\(^{2508}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX

\(^{2509}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY

\(^{2510}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 27
Total unknown or missing: 448

19.2.69 L2DReader

This page lists supported metadata fields for the Bio-Formats Li-Cor L2D format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 29 of them (6%).
• Of those, Bio-Formats fully or partially converts 29 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Li-Cor L2D format reader:

• Channel: ID
• Channel: LightSourceSettingsID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name

2511 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
2512 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
2513 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
2514 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
2515 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
2516 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
2517 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
2518 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
2519 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
2520 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
2521 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_ID
2522 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
2523 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
2524 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
2525 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
2527 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
This page lists supported metadata fields for the Bio-Formats Laboratory Imaging format reader.

These fields are from the OME data model\(^\text{2550}\). Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

\(^{2529}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID

\(^{2530}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID

\(^{2531}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_LaserMedium

\(^{2532}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type

\(^{2533}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Wavelength

\(^{2534}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model

\(^{2535}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Microscope_Type

\(^{2536}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian

\(^{2537}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder

\(^{2538}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID

\(^{2539}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved

\(^{2540}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits

\(^{2541}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC

\(^{2542}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT

\(^{2543}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX

\(^{2544}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY

\(^{2545}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ

\(^{2546}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type

\(^{2547}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC

\(^{2548}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT

\(^{2549}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ

\(^{2550}\)http://www.openmicroscopy.org/site/support/ome-model/

19.2.70 LIMReader

This page lists supported metadata fields for the Bio-Formats Laboratory Imaging format reader.
Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Laboratory Imaging format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19

Total unknown or missing: 456

2551 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
2552 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
2553 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
2555 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
2556 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
2557 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
2558 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
2559 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
2560 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
2561 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
2562 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
2563 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
2564 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
2565 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
2566 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
2567 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
2568 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
2569 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
19.2.71 MetamorphTiffReader

This page lists supported metadata fields for the Bio-Formats Metamorph TIFF format reader. These fields are from the OME data model\(^{2570}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 38 of them (8%).
- Of those, Bio-Formats fully or partially converts 38 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Metamorph TIFF format reader:

- Channel: ID\(^{2571}\)
- Channel: Name\(^{2572}\)
- Channel: SamplesPerPixel\(^{2573}\)
- Image: AcquisitionDate\(^{2574}\)
- Image: Description\(^{2575}\)
- Image: ID\(^{2576}\)
- Image: Name\(^{2577}\)
- ImagingEnvironment: Temperature\(^{2578}\)
- Pixels: BigEndian\(^{2579}\)
- Pixels: DimensionOrder\(^{2580}\)
- Pixels: ID\(^{2581}\)
- Pixels: Interleaved\(^{2582}\)
- Pixels: PhysicalSizeX\(^{2583}\)
- Pixels: PhysicalSizeY\(^{2584}\)
- Pixels: PhysicalSizeZ\(^{2585}\)
- Pixels: SignificantBits\(^{2586}\)
- Pixels: SizeC\(^{2587}\)
- Pixels: SizeT\(^{2588}\)

\(^{2570}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2571}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
\(^{2572}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
\(^{2573}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2574}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\(^{2575}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
\(^{2576}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
\(^{2577}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
\(^{2578}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature
\(^{2579}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
\(^{2580}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
\(^{2581}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
\(^{2582}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
\(^{2583}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{2584}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{2585}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ
\(^{2586}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
\(^{2587}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
\(^{2588}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• Plate : ColumnNamingConvention
• Plate : ID
• Plate : RowNamingConvention
• Well : Column
• Well : ID
• Well : Row
• WellSample : ID
• WellSample : ImageRef
• WellSample : Index

Total supported: 38
Total unknown or missing: 437

19.2.72 MetamorphReader

This page lists supported metadata fields for the Bio-Formats Metamorph STK format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ColumnNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_RowNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index
http://www.openmicroscopy.org/site/support/ome-model/
• The file format itself supports 43 of them (9%).
• Of those, Bio-Formats fully or partially converts 43 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Metamorph STK format reader:

- Channel: ID
- Channel: LightSourceSettingsID
- Channel: LightSourceSettingsWavelength
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Type
- DetectorSettings: Binning
- DetectorSettings: Gain
- DetectorSettings: ID
- DetectorSettings: ReadOutRate
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- ImagingEnvironment: Temperature
- Instrument: ID
- Laser: ID
- Laser: LaserMedium
- Laser: Type
- Pixels: BigEndian
- Pixels: DimensionOrder

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_Wavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ReadOutRate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
19.2.73 MIASReader

This page lists supported metadata fields for the Bio-Formats MIAS format reader.

These fields are from the [OME data model](http://www.openmicroscopy.org/site/support/ome-model/). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>OME Schema URI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels: Type</td>
<td>http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type</td>
</tr>
</tbody>
</table>

Total supported: 43
Total unknown or missing: 432
• The file format itself supports 64 of them (13%).
• Of those, Bio-Formats fully or partially converts 64 (100%).

Supported fields

These fields are fully supported by the Bio-Formats MIAS format reader:

- Channel: Color
- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Ellipse: ID
- Ellipse: RadiusX
- Ellipse: RadiusY
- Ellipse: Text
- Ellipse: TheT
- Ellipse: TheZ
- Ellipse: X
- Ellipse: Y
- Experiment: Description
- Experiment: ID
- Experiment: Type
- Image: AcquisitionDate
- Image: ExperimentRef
- Image: ID
- Image: InstrumentRef
- Image: Name
- Image: ROIRef
- Instrument: ID
- Mask: FillColor
• Mask: Height
• Mask: ID
• Mask: StrokeColor
• Mask: Width
• Mask: X
• Mask: Y
• Objective: ID
• Objective: Model
• Objective: NominalMagnification
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Mask_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Mask_Width
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Mask_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ

19.2. Metadata fields
• Plate: ColumnNamingConvention
• Plate: ExternalIdentifier
• Plate: ID
• Plate: Name
• Plate: RowNamingConvention
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: WellSampleRef
• ROI: ID
• Well: Column
• Well: ID
• Well: Row
• WellSample: ID
• WellSample: ImageRef
• WellSample: Index

Total supported: 64
Total unknown or missing: 411

19.2.74 MicromanagerReader

This page lists supported metadata fields for the Bio-Formats Micro-Manager format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 38 of them (8%).
• Of those, Bio-Formats fully or partially converts 38 (100%).

Supported fields
These fields are fully supported by the Bio-Formats Micro-Manager format reader:
• Channel: ID
• Channel: Name

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ColumnNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ExternalIdentifier
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_RowNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSampleRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Manufacturer
• Detector : Model
• Detector : SerialNumber
• Detector : Type
• DetectorSettings : Binning
• DetectorSettings : Gain
• DetectorSettings : ID
• DetectorSettings : Voltage
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : InstrumentRef
• ImagingEnvironment : Temperature
• Instrument : ID
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 38
Total unknown or missing: 437

19.2.75 MINCReader

This page lists supported metadata fields for the Bio-Formats MINC MRI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 23 of them (4%).
• Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats MINC MRI format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
19.2.76 MRWReader

This page lists supported metadata fields for the Bio-Formats Minolta MRW format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Minolta MRW format reader:

- Channel: ID

2765 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
2766 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
2767 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
2769 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
2771 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
2772 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
2773 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
2774 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
2775 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
2776 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
2777 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
2778 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
2779 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
2780 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
2781 http://www.openmicroscopy.org/site/support/ome-model/
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.77 MNGReader

This page lists supported metadata fields for the Bio-Formats Multiple Network Graphics format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Multiple Network Graphics format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 19

Total unknown or missing: 456

19.2.78 MolecularImagingReader

This page lists supported metadata fields for the Bio-Formats Molecular Imaging format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Of the 475 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Molecular Imaging format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 21

Total unknown or missing: 454

2822 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
2823 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
2824 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
2825 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
2826 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
2827 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
2828 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
2829 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
2830 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
2832 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
2833 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
2834 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
2835 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
2836 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
2837 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
2838 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
2839 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
2840 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
2841 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
2842 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
19.2.79 MRCReader

This page lists supported metadata fields for the Bio-Formats Medical Research Council format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Medical Research Council format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type

http://www.openmicroscopy.org/site/support/ome-model/

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
19.2.80 NikonReader

This page lists supported metadata fields for the Bio-Formats Nikon NEF format reader. These fields are from the OME data model\(^2\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon NEF format reader:

- Channel: ID\(^2\)
- Channel: SamplesPerPixel\(^2\)
- Image: AcquisitionDate\(^2\)
- Image: ID\(^2\)
- Image: Name\(^2\)
- Pixels: BigEndian\(^2\)
- Pixels: DimensionOrder\(^2\)
- Pixels: ID\(^2\)
- Pixels: Interleaved\(^2\)
- Pixels: SignificantBits\(^2\)
- Pixels: SizeC\(^2\)
- Pixels: SizeT\(^2\)
- Pixels: SizeX\(^2\)
- Pixels: SizeY\(^2\)

\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
\(^2\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
Total supported: 19
Total unknown or missing: 456

19.2.81 NiftiReader

This page lists supported metadata fields for the Bio-Formats NIfTI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 24 of them (5%).
- Of those, Bio-Formats fully or partially converts 24 (100%).

Supported fields

These fields are fully supported by the Bio-Formats NIFTI format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY

2881 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
2882 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
2883 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
2884 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
2885 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
2886 http://www.openmicroscopy.org/site/support/ome-model/
2887 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
2888 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
2889 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
2890 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
2891 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
2892 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
2893 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html# Pixels_DimensionOrder
2894 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
2895 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
2897 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 24

Total unknown or missing: 451

19.2.82 NikonElementsTiffReader

This page lists supported metadata fields for the Bio-Formats Nikon Elements TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 50 of them (10%).
• Of those, Bio-Formats fully or partially converts 50 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon Elements TIFF format reader:

• Channel: AcquisitionMode
• Channel: EmissionWavelength
• Channel: ExcitationWavelength
• Channel: ID
• Channel: Name
• Channel: PinholeSize
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Model
• Detector: Type
• DetectorSettings: Binning
• DetectorSettings: Gain
• DetectorSettings: ID
• DetectorSettings: ReadOutRate
• DetectorSettings: Voltage
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• ImagingEnvironment: Temperature
• Instrument: ID
• Objective: CalibratedMagnification
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• ObjectiveSettings: ID
• ObjectiveSettings: RefractiveIndex
• Pixels: BigEndian
• Pixels: DimensionOrder

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_PinholeSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ReadOutRate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Voltage
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 50
Total unknown or missing: 425

19.2.83 NikonTIffReader

This page lists supported metadata fields for the Bio-Formats Nikon TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 47 of them (9%).
• Of those, Bio-Formats fully or partially converts 47 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
Supported fields

These fields are fully supported by the Bio-Formats Nikon TIFF format reader:

- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: PinholeSize
- Channel: SamplesPerPixel
- Detector: Gain
- Detector: ID
- Detector: Type
- Dichroic: ID
- Dichroic: Model
- Filter: ID
- Filter: Model
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Laser: ID
- Laser: LaserMedium
- Laser: Model
- Laser: Type
- Laser: Wavelength
- Objective: Correction

2963 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength
2964 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength
2965 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
2966 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_PinholeSize
2967 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
2969 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
2970 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
2971 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dichroic_ID
2972 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
2973 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID
2974 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
2975 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
2976 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
2979 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
2981 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID
2983 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
2984 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type
2985 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Wavelength
2986 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: NominalMagnification
• Objective: WorkingDistance
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 47

Total unknown or missing: 428
19.2.84 NativeND2Reader

This page lists supported metadata fields for the Bio-Formats Nikon ND2 format reader.

These fields are from the OME data model[^1]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 52 of them (10%).
- Of those, Bio-Formats fully or partially converts 52 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon ND2 format reader:

- Channel: AcquisitionMode[^11]
- Channel: Color[^12]
- Channel: EmissionWavelength[^13]
- Channel: ExcitationWavelength[^14]
- Channel: ID[^15]
- Channel: Name[^16]
- Channel: PinholeSize[^17]
- Channel: SamplesPerPixel[^18]
- Detector: ID[^19]
- Detector: Model[^20]
- Detector: Type[^21]
- DetectorSettings: Binning[^22]
- DetectorSettings: Gain[^23]
- DetectorSettings: ID[^24]
- DetectorSettings: ReadOutRate[^25]
- DetectorSettings: Voltage[^26]
- Image: AcquisitionDate[^27]
- Image: ID[^28]
- Image: InstrumentRef[^29]

[^1]: http://www.openmicroscopy.org/site/support/ome-model/
[^16]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
[^18]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
[^19]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
[^20]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
[^21]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
[^22]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning
[^25]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ReadOutRate
[^26]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Voltage
[^27]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
19.2. Metadata fields

- Image: Name
- ImagingEnvironment: Temperature
- Instrument: ID
- Objective: CalibratedMagnification
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: LensNA
- Objective: Model
- ObjectiveSettings: ID
- ObjectiveSettings: RefractiveIndex
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: DeltaT
Total supported: 52
Total unknown or missing: 423

19.2.85 NRRDReader

This page lists supported metadata fields for the Bio-Formats NRRD format reader.

These fields are from the OME data model3063. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats NRRD format reader:
- Channel: ID3064
- Channel: SamplesPerPixel3065
- Image: AcquisitionDate3066
- Image: ID3067
- Image: Name3068
- Pixels: BigEndian3069
- Pixels: DimensionOrder3070
- Pixels: ID3071
- Pixels: Interleaved3072
- Pixels: PhysicalSizeX3073

3056http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
3057http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX
3058http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY
3059http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ
3060http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
3061http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
3062http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
3063http://www.openmicroscopy.org/site/support/ome-model/
3064http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
3065http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
3066http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
3067http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
3068http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
3069http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
3070http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
3071http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
3072http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
3073http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 453

19.2.86 APLReader

This page lists supported metadata fields for the Bio-Formats Olympus APL format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus APL format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian3092
• Pixels: DimensionOrder3093
• Pixels: ID3094
• Pixels: Interleaved3095
• Pixels: PhysicalSizeX3096
• Pixels: PhysicalSizeY3097
• Pixels: SignificantBits3098
• Pixels: SizeC3099
• Pixels: SizeT3100
• Pixels: SizeX3101
• Pixels: SizeY3102
• Pixels: SizeZ3103
• Pixels: Type3104
• Plane: TheC3105
• Plane: TheT3106
• Plane: TheZ3107

Total supported: 21
Total unknown or missing: 454

19.2.87 FV1000Reader

This page lists supported metadata fields for the Bio-Formats Olympus FV1000 format reader.

These fields are from the OME data model3108. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 109 of them (22%).
• Of those, Bio-Formats fully or partially converts 109 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus FV1000 format reader:
• Channel: EmissionWavelength3109

3092http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
3093http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
3094http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
3095http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
3096http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX
3097http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
3098http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
3099http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
3100http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
3101http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
3102http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
3103http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
3104http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
3105http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
3106http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
3107http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
3108http://www.openmicroscopy.org/site/support/ome-model/
3109http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength
• Channel : ExcitationWavelength
• Channel : ID
• Channel : IlluminationType
• Channel : LightSourceSettingsID
• Channel : LightSourceSettingsWavelength
• Channel : Name
• Channel : SamplesPerPixel
• Detector : Gain
• Detector : ID
• Detector : Type
• Detector : Voltage
• DetectorSettings : ID
• Dichroic : ID
• Dichroic : Model
• Ellipse : FontSize
• Ellipse : ID
• Ellipse : RadiusX
• Ellipse : RadiusY
• Ellipse : StrokeWidth
• Ellipse : TheT
• Ellipse : TheZ
• Ellipse : Transform
• Ellipse : X
• Ellipse : Y
• Filter : ID
• Filter : Model

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_IlluminationType
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_Wavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Settings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Settings_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dichroic_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model

19.2. Metadata fields
19.2. Metadata fields

- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Image: ROIRef
- Instrument: ID
- Laser: ID
- Laser: LaserMedium
- Laser: Type
- Laser: Wavelength
- LightPath: DichroicRef
- LightPath: EmissionFilterRef
- Line: FontSize
- Line: ID
- Line: StrokeWidth
- Line: TheT
- Line: TheZ
- Line: Transform
- Line: X1
- Line: X2
- Line: Y1
- Line: Y2
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: LensNA
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: LensNA
• Objective: Model
• Objective: NominalMagnification
• Objective: WorkingDistance
• ObjectiveSettings: ID
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Point: FontSize
• Point: ID
• Point: StrokeWidth
• Point: TheT

3162 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
3163 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification
3164 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance
3165 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
3166 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
3167 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
3168 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
3169 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
3171 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
3173 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
3174 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
3175 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
3176 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
3177 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
3178 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
3179 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement
3180 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
3181 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
3182 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
3183 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
3184 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize
3185 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID
3186 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth
3187 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT

19.2. Metadata fields
• Point: TheZ
• Point: X
• Point: Y
• Polygon: FontSize
• Polygon: ID
• Polygon: Points
• Polygon: StrokeWidth
• Polygon: TheT
• Polygon: TheZ
• Polygon: Transform
• Polyline: FontSize
• Polyline: ID
• Polyline: Points
• Polyline: StrokeWidth
• Polyline: TheT
• Polyline: TheZ
• Polyline: Transform
• ROI: ID
• Rectangle: FontSize
• Rectangle: Height
• Rectangle: ID
• Rectangle: StrokeWidth
• Rectangle: TheT
• Rectangle: TheZ
• Rectangle: Transform
• ROI: ID
• Rectangle: FontSize
• Rectangle: Height
• Rectangle: ID
• Rectangle: StrokeWidth
• Rectangle: TheT
• Rectangle: TheZ
• Rectangle: Transform

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Point_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Point_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_Points
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Transform
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Width
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Transform

19.2. Metadata fields
• Rectangle : X
• Rectangle : Y
• TransmittanceRange : CutIn
• TransmittanceRange : CutOut

Total supported: 109
Total unknown or missing: 366

19.2.88 FluoviewReader

This page lists supported metadata fields for the Bio-Formats Olympus Fluoview/ABD TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 49 of them (10%).
• Of those, Bio-Formats fully or partially converts 49 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus Fluoview/ABD TIFF format reader:
• Channel : ID
• Channel : Name
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Manufacturer
• Detector : Model
• Detector : Type
• DetectorSettings : Gain
• DetectorSettings : ID
• DetectorSettings : Offset
• DetectorSettings : ReadOutRate
• DetectorSettings : Voltage
• Image : AcquisitionDate

3215 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Y
3216 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutIn
3218 http://www.openmicroscopy.org/site/support/ome-model/
3219 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
3220 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
3221 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
3222 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
3223 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer
3224 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
3225 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
3227 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
3228 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Offset
3229 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ReadOutRate
3230 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Voltage
3231 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
19.2. Metadata fields
• Pixels : TimeIncrement
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 49
Total unknown or missing: 426

19.2.89 ScanrReader

This page lists supported metadata fields for the Bio-Formats Olympus ScanR format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 43 of them (9%).
• Of those, Bio-Formats fully or partially converts 43 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus ScanR format reader:

• Channel : ID
• Channel : Name
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BigEndian

3258 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement
3259 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
3260 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT
3261 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
3265 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
3266 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
3267 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
3268 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
3269 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
3270 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
3271 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
3273 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: Size
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: ColumnNamingConvention
• Plate: Columns
• Plate: ID
• Plate: Name
• Plate: RowNamingConvention
• Plate: Rows
• PlateAcquisition: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Size
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plate ColumnNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plate_Columns
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plate_RowNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plate_Rows
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#PlateAcquisition_ID
• PlateAcquisition : MaximumFieldCount
• PlateAcquisition : WellSampleRef
• Well : Column
• Well : ID
• Well : Row
• WellSample : ID
• WellSample : ImageRef
• WellSample : Index
• WellSample : PositionX
• WellSample : PositionY

Total supported: 43
Total unknown or missing: 432

19.2.90 SISReader

This page lists supported metadata fields for the Bio-Formats Olympus SIS TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 33 of them (6%).
• Of those, Bio-Formats fully or partially converts 33 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus SIS TIFF format reader:

• Channel : ID
• Channel : Name
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Model
• Detector : Type
• DetectorSettings : ID
19.2. Metadata fields

- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

3320 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
3323 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
3325 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction
3326 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
3327 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion
3328 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification
3329 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
3330 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
3331 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
3332 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
3333 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
3335 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
3336 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
3337 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
3338 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
3339 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
3340 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
3341 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
3342 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
3343 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
3344 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
3345 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
Total supported: 33
Total unknown or missing: 442

19.2.91 OMETiffReader

This page lists supported metadata fields for the Bio-Formats OME-TIFF format reader. These fields are from the OME data model\footnote{http://www.openmicroscopy.org/site/support/ome-model/}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats OME-TIFF format reader:

- Channel: ID\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID}
- Channel: SamplesPerPixel\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel}
- Image: AcquisitionDate\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate}
- Image: ID\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID}
- Image: Name\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name}
- Pixels: BigEndian\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian}
- Pixels: DimensionOrder\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder}
- Pixels: ID\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID}
- Pixels: Interleaved\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved}
- Pixels: SignificantBits\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits}
- Pixels: SizeC\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC}
- Pixels: SizeT\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT}
- Pixels: SizeX\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX}
- Pixels: SizeY\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY}
- Pixels: SizeZ\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ}
- Pixels: Type\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type}
- Plane: TheC\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC}
19.2.92 OMEXMLReader

This page lists supported metadata fields for the Bio-Formats OME-XML format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats OME-XML format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
19.2.93 OxfordInstrumentsReader

This page lists supported metadata fields for the Bio-Formats Oxford Instruments format reader.

These fields are from the OME data model[^omc]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Oxford Instruments format reader:

- Channel : ID[^id]
- Channel : SamplesPerPixel[^samplesPerPixel]
- Image : AcquisitionDate[^acquisitionDate]
- Image : Description[^description]
- Image : ID[^id]
- Image : Name[^name]
- Pixels : BigEndian[^bigEndian]
- Pixels : DimensionOrder[^dimensionOrder]
- Pixels : ID[^id]
- Pixels : Interleaved[^interleaved]
- Pixels : PhysicalSizeX[^physicalSizeX]
- Pixels : PhysicalSizeY[^physicalSizeY]
- Pixels : SignificantBits[^significantBits]

[^id]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
[^samplesPerPixel]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
[^acquisitionDate]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
[^description]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
[^id]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
[^name]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
[^bigEndian]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
[^dimensionOrder]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
[^id]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
[^interleaved]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
[^physicalSizeX]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX
[^physicalSizeY]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
[^significantBits]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits

[^omc]: http://www.openmicroscopy.org/site/support/ome-model/
Bio-Formats Documentation, Release 5.0.0-rc1

• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 453

19.2.94 PCORAWReader

This page lists supported metadata fields for the Bio-Formats PCO-RAW format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 26 of them (5%).
• Of those, Bio-Formats fully or partially converts 26 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PCO-RAW format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Detector: ID
• Detector: SerialNumber
• DetectorSettings: Binning
• DetectorSettings: ID
• Image: AcquisitionDate
• Image: Description

3400 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
3401 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
3402 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
3403 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
3404 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
3405 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
3406 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
3407 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
3408 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
3409 http://www.openmicroscopy.org/site/support/ome-model/
3410 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
3411 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
3412 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
3413 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber
3414 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning
3415 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
3416 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
3417 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description

19.2. Metadata fields 367
- Image: ID
- Image: Name
- Instrument: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: ExposureTime
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 26

Total unknown or missing: 449

19.2.95 PCXReader

This page lists supported metadata fields for the Bio-Formats PCX format reader.

These fields are from the [OME data model](http://www.openmicroscopy.org/site/support/ome-model/). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

3418[^1]
3419[^2]
3420[^3]
3421[^4]
3422[^5]
3423[^6]
3424[^7]
3425[^8]
3426[^9]
3427[^10]
3428[^11]
3429[^12]
3430[^13]
3431[^14]
3432[^15]
3433[^16]
3434[^17]
3435[^18]
Supported fields

These fields are fully supported by the Bio-Formats PCX format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.96 PDSReader

This page lists supported metadata fields for the Bio-Formats Perkin Elmer Densitometer format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Of the 475 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Perkin Elmer Densitometer format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: PositionX
- Plane: PositionY
- Plane: TheC
- Plane: TheT

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT}\]
• Plane : TheZ

Total supported: 23
Total unknown or missing: 452

19.2.97 OperettaReader

This page lists supported metadata fields for the Bio-Formats PerkinElmer Operetta format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
 • The file format itself supports 43 of them (9%).
 • Of those, Bio-Formats fully or partially converts 43 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PerkinElmer Operetta format reader:

- Channel : ID
- Channel : Name
- Channel : SamplesPerPixel
- Experimenter : ID
- Experimenter : LastName
- Image : AcquisitionDate
- Image : ExperimenterRef
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : SignificantBits

3479 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
3480 http://www.openmicroscopy.org/site/support/ome-model/
3481 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
3482 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
3483 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
3484 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID
3485 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName
3486 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
3487 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID
3488 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
3489 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
3490 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
3491 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
3492 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
3493 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
3495 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
3496 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
19.2. Metadata fields

- **Pixels**: SizeC
- **Pixels**: SizeT
- **Pixels**: SizeX
- **Pixels**: SizeY
- **Pixels**: SizeZ
- **Pixels**: Type
- **Plane**: PositionX
- **Plane**: PositionY
- **Plane**: PositionZ
- **Plane**: TheC
- **Plane**: TheT
- **Plane**: TheZ
- **Plate**: Columns
- **Plate**: Description
- **Plate**: ExternalIdentifier
- **Plate**: ID
- **Plate**: Name
- **Plate**: Rows
- **PlateAcquisition**: ID
- **PlateAcquisition**: MaximumFieldCount
- **PlateAcquisition**: WellSampleRef
- **Well**: Column
- **Well**: ID
- **Well**: Row
- **WellSample**: ID
- **WellSample**: ImageRef

• WellSample : Index

Total supported: 43
Total unknown or missing: 432

19.2.98 PerkinElmerReader

This page lists supported metadata fields for the Bio-Formats PerkinElmer format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 30 of them (6%).
• Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PerkinElmer format reader:

• Channel : EmissionWavelength
• Channel : ExcitationWavelength
• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SignificantBits

3523 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index
3524 http://www.openmicroscopy.org/site/support/ome-model/
3525 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength
3526 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength
3527 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
3528 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
3529 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
3530 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
3532 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
3534 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
3535 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
3536 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
3537 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
3539 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
3540 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
19.2.99 PGMReader

This page lists supported metadata fields for the Bio-Formats Portable Gray Map format reader. These fields are from the OME data model3555. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Portable Gray Map format reader:

- Channel: ID3556
- Channel: SamplesPerPixel3557
- Image: AcquisitionDate3558

3541http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
3542http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
3543http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
3544http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
3545http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
3546http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
3547http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT
3548http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
3549http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX
3550http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY
3551http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ
3552http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
3553http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
3554http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
3555http://www.openmicroscopy.org/site/support/ome-model/
3556http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
3557http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
3558http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.100 PSDReader

This page lists supported metadata fields for the Bio-Formats Adobe Photoshop format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Adobe Photoshop format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.101 PhotoshopTiffReader

This page lists supported metadata fields for the Bio-Formats Adobe Photoshop TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Adobe Photoshop TIFF format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 19
Total unknown or missing: 456

19.2.102 PictReader

This page lists supported metadata fields for the Bio-Formats PICT format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

19.2. Metadata fields
Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PICT format reader:

- Channel : ID 3616
- Channel : SamplesPerPixel 3617
- Image : AcquisitionDate 3618
- Image : ID 3619
- Image : Name 3620
- Pixels : BigEndian 3621
- Pixels : DimensionOrder 3622
- Pixels : ID 3623
- Pixels : Interleaved 3624
- Pixels : SignificantBits 3625
- Pixels : SizeC 3626
- Pixels : SizeT 3627
- Pixels : SizeX 3628
- Pixels : SizeY 3629
- Pixels : SizeZ 3630
- Pixels : Type 3631
- Plane : TheC 3632
- Plane : TheT 3633
- Plane : TheZ 3634

Total supported: 19

Total unknown or missing: 456

3616 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
3617 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
3618 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
3619 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
3620 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
3621 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
3622 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
3623 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
3624 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
3625 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
3626 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
3627 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
3628 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
3629 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
3630 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
3631 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
3632 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
3633 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
3634 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
19.2.103 APNGReader

This page lists supported metadata fields for the Bio-Formats Animated PNG format reader. These fields are from the OME data model\(^{3635}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Animated PNG format reader:

- Channel: ID\(^{3636}\)
- Channel: SamplesPerPixel\(^{3637}\)
- Image: AcquisitionDate\(^{3638}\)
- Image: ID\(^{3639}\)
- Image: Name\(^{3640}\)
- Pixels: BigEndian\(^{3641}\)
- Pixels: DimensionOrder\(^{3642}\)
- Pixels: ID\(^{3643}\)
- Pixels: Interleaved\(^{3644}\)
- Pixels: SignificantBits\(^{3645}\)
- Pixels: SizeC\(^{3646}\)
- Pixels: SizeT\(^{3647}\)
- Pixels: SizeX\(^{3648}\)
- Pixels: SizeY\(^{3649}\)
- Pixels: SizeZ\(^{3650}\)
- Pixels: Type\(^{3651}\)
- Plane: TheC\(^{3652}\)
- Plane: TheT\(^{3653}\)

\(^{3635}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{3636}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
\(^{3637}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{3638}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\(^{3639}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
\(^{3640}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
\(^{3641}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
\(^{3642}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
\(^{3643}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
\(^{3644}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
\(^{3645}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
\(^{3646}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
\(^{3647}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
\(^{3648}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
\(^{3649}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
\(^{3650}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
\(^{3651}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
\(^{3652}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
\(^{3653}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
19.2.104 PrairieReader

This page lists supported metadata fields for the Bio-Formats Prairie TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 45 of them (9%).
- Of those, Bio-Formats fully or partially converts 45 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Prairie TIFF format reader:

- Channel : ID
- Channel : Name
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Type
- Detector : Zoom
- DetectorSettings : Gain
- DetectorSettings : ID
- DetectorSettings : Offset
- Image : AcquisitionDate
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Laser : ID
- Laser : Power

3654 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
3655 http://www.openmicroscopy.org/site/support/ome-model/
3656 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
3657 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
3658 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
3659 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
3660 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
3661 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Zoom
3663 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
3664 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Offset
3665 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
3668 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
3670 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID
• Microscope : Model
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Manufacturer
• Objective : NominalMagnification
• ObjectiveSettings : ID
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type
• Plane : DeltaT
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
19.2.105 QuesantReader

This page lists supported metadata fields for the Bio-Formats Quesant AFM format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Quesant AFM format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : SignificantBits
- Pixels : SizeC

Total supported: 45
Total unknown or missing: 430
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 453

19.2.106 NativeQTReader

This page lists supported metadata fields for the Bio-Formats QuickTime format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats QuickTime format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.107 RHKReader

This page lists supported metadata fields for the Bio-Formats RHK Technologies format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
 • The file format itself supports 22 of them (4%).
 • Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats RHK Technologies format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BigEndian

3741 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
3742 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
3743 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
3744 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
3745 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
3746 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
3747 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
3749 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
19.2.108 SBIGReader

This page lists supported metadata fields for the Bio-Formats SBIG format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SBIG format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Plane : TheC
- Plane : TheT
- Plane : TheZ

19.2. Metadata fields
- **Image**: AcquisitionDate
- **Image**: Description
- **Image**: ID
- **Image**: Name
- **Pixels**: BigEndian
- **Pixels**: DimensionOrder
- **Pixels**: ID
- **Pixels**: Interleaved
- **Pixels**: PhysicalSizeX
- **Pixels**: PhysicalSizeY
- **Pixels**: SignificantBits
- **Pixels**: SizeC
- **Pixels**: SizeT
- **Pixels**: SizeX
- **Pixels**: SizeY
- **Pixels**: SizeZ
- **Pixels**: Type
- **Plane**: TheC
- **Plane**: TheT
- **Plane**: TheZ

Total supported: 22

Total unknown or missing: 453

19.2.109 SeikoReader

This page lists supported metadata fields for the Bio-Formats Seiko format reader.

These fields are from the [OME data model](http://www.openmicroscopy.org/site/support/ome-model/). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

19.2. Metadata fields
• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Seiko format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

3791 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
3792 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
3793 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
3794 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
3796 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
3797 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
3798 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
3799 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
3800 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
3802 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
3803 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
3804 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
3805 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
3806 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
3807 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
3808 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
3809 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
3810 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
3811 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
3812 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ

19.2. Metadata fields
Total supported: 22
Total unknown or missing: 453

19.2.110 PCIReader

This page lists supported metadata fields for the Bio-Formats Compix Simple-PCI format reader.

These fields are from the OME data model\(^3813\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 29 of them (6%).
- Of those, Bio-Formats fully or partially converts 29 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Compix Simple-PCI format reader:

- Channel: ID\(^3814\)
- Channel: SamplesPerPixel\(^3815\)
- Detector: ID\(^3816\)
- Detector: Type\(^3817\)
- DetectorSettings: Binning\(^3818\)
- DetectorSettings: ID\(^3819\)
- Image: AcquisitionDate\(^3820\)
- Image: ID\(^3821\)
- Image: InstrumentRef\(^3822\)
- Image: Name\(^3823\)
- Instrument: ID\(^3824\)
- Pixels: BigEndian\(^3825\)
- Pixels: DimensionOrder\(^3826\)
- Pixels: ID\(^3827\)
- Pixels: Interleaved\(^3828\)
- Pixels: PhysicalSizeX\(^3829\)
- Pixels: PhysicalSizeY\(^3830\)

\(^3813\)http://www.openmicroscopy.org/site/support/ome-model/
\(^3814\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
\(^3815\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
\(^3816\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
\(^3817\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
\(^3818\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning
\(^3819\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
\(^3820\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
\(^3821\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID
\(^3822\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID
\(^3823\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
\(^3824\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID
\(^3825\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
\(^3826\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
\(^3827\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
\(^3828\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
\(^3829\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^3830\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type
• Plane : DeltaT
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 29
Total unknown or missing: 446

19.2.111 SimplePCITiffReader

This page lists supported metadata fields for the Bio-Formats SimplePCI TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 33 of them (6%).
• Of those, Bio-Formats fully or partially converts 33 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SimplePCI TIFF format reader:
• Channel : ID
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Model
• Detector : Type

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
• DetectorSettings : Binning
• DetectorSettings : ID
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Objective : ID
• Objective : Immersion
• Objective : NominalMagnification
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SignificantBits
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : ExposureTime
• Plane : TheC

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC

19.2. Metadata fields
Bio-Formats Documentation, Release 5.0.0-rc1

• Plane: TheT
• Plane: TheZ

Total supported: 33
Total unknown or missing: 442

19.2.112 SMCameraReader

This page lists supported metadata fields for the Bio-Formats SM Camera format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SM Camera format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ

19.2. Metadata fields
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.113 SpiderReader

This page lists supported metadata fields for the Bio-Formats SPIDER format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SPIDER format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/

19.2. Metadata fields
Total supported: 21
Total unknown or missing: 454

19.2.114 TargaReader

This page lists supported metadata fields for the Bio-Formats Truevision Targa format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Truevision Targa format reader:
- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 20
Total unknown or missing: 455

19.2.115 TextReader

This page lists supported metadata fields for the Bio-Formats Text format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Text format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
Bio-Formats Documentation, Release 5.0.0-rc1

- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.116 TiffReader

This page lists supported metadata fields for the Bio-Formats Tagged Image File Format format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Tagged Image File Format format reader:
- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeZ
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 453

19.2.117 TillVisionReader

This page lists supported metadata fields for the Bio-Formats TillVision format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).
Supported fields

These fields are fully supported by the Bio-Formats TillVision format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Experiment: ID
- Experiment: Type
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: ExposureTime
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 22

Total unknown or missing: 453
19.2.118 TopometrixReader

This page lists supported metadata fields for the Bio-Formats TopoMetrix format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats TopoMetrix format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 453

19.2.119 TrestleReader

This page lists supported metadata fields for the Bio-Formats Trestle format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 26 of them (5%).
• Of those, Bio-Formats fully or partially converts 26 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Trestle format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Image: ROIRef
• Mask: Height
• Mask: ID
• Mask: Width
• Mask: X
• Mask: Y
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• ROI: ID

Total supported: 26

Total unknown or missing: 449

19.2.120 UBMReader

This page lists supported metadata fields for the Bio-Formats UBM format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats UBM format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name

19.2. Metadata fields
• Pixels : BigEndian4062
• Pixels : DimensionOrder4063
• Pixels : ID4064
• Pixels : Interleaved4065
• Pixels : SignificantBits4066
• Pixels : SizeC4067
• Pixels : SizeT4068
• Pixels : SizeX4069
• Pixels : SizeY4070
• Pixels : SizeZ4071
• Pixels : Type4072
• Plane : TheC4073
• Plane : TheT4074
• Plane : TheZ4075

Total supported: 19
Total unknown or missing: 456

19.2.121 UnisokuReader

This page lists supported metadata fields for the Bio-Formats Unisoku STM format reader.

These fields are from the [OME data model]4076. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Unisoku STM format reader:

• Channel : ID4077
• Channel : SamplesPerPixel4078
• Image : AcquisitionDate4079

4062 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
4063 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
4064 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
4065 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
4066 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
4067 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
4068 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
4069 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
4070 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
4071 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
4072 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
4073 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
4074 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
4075 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
4076 http://www.openmicroscopy.org/site/support/ome-model/
4077 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
4078 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
4079 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 453

19.2.122 VarianFDFReader

This page lists supported metadata fields for the Bio-Formats Varian FDF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 25 of them (5%).
• Of those, Bio-Formats fully or partially converts 25 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Varian FDF format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: PositionX
- Plane: PositionY
- Plane: PositionZ
- Plane: TheC
- Plane: TheT
Total supported: 25
Total unknown or missing: 450

19.2.123 VGSAMReader

This page lists supported metadata fields for the Bio-Formats VGSAM format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats VGSAM format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.124 VisitechReader

This page lists supported metadata fields for the Bio-Formats Visitech XYS format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Visitech XYS format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
19.2.125 VolocityClippingReader

This page lists supported metadata fields for the Bio-Formats Volocity Library Clipping format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Volocity Library Clipping format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
Total supported: 19

Total unknown or missing: 456

19.2.126 VolocityReader

This page lists supported metadata fields for the Bio-Formats Volocity Library format reader.

These fields are from the OME data model\(^1\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 37 of them (7%).
- Of those, Bio-Formats fully or partially converts 37 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Volocity Library format reader:

- Channel : ID\(^1\)
- Channel : Name\(^1\)
- Channel : SamplesPerPixel\(^1\)
- Detector : ID\(^1\)
- Detector : Model\(^1\)
- DetectorSettings : ID\(^1\)
- Image : AcquisitionDate\(^1\)
- Image : Description\(^1\)
- Image : ID\(^1\)
- Image : InstrumentRef\(^1\)

\(^{1}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
19.2. Metadata fields

- Image: Name
- Instrument: ID
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: PositionX
- Plane: PositionY
- Plane: PositionZ
- Plane: TheC
- Plane: TheT
• Plane: TheZ

Total supported: 37
Total unknown or missing: 438

19.2.127 WATOPReader

This page lists supported metadata fields for the Bio-Formats WA Technology TOP format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats WA Technology TOP format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: Interleaved
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX

19.2. Metadata fields
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 22
Total unknown or missing: 453

19.2.128 BMPReader

This page lists supported metadata fields for the Bio-Formats Windows Bitmap format reader. These fields are from the OME data model[^4246]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Windows Bitmap format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY

[^4240]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
[^4241]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
[^4242]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
[^4244]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
[^4245]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
[^4246]: http://www.openmicroscopy.org/site/support/ome-model/
[^4247]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
[^4248]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
[^4249]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
[^4251]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
[^4252]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
[^4253]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
[^4254]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
[^4255]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
Total supported: 21
Total unknown or missing: 454

19.2.129 WlzReader

This page lists supported metadata fields for the Bio-Formats Woolz format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 26 of them (5%).
- Of those, Bio-Formats fully or partially converts 26 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Woolz format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Plane: TheC
- Plane: TheT
- Plane: TheZ
19.2.130 ZeissTIFFReader

This page lists supported metadata fields for the Bio-Formats Zeiss AxioVision TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Total supported: 26
Total unknown or missing: 449
Supported fields

These fields are fully supported by the Bio-Formats Zeiss AxioVision TIFF format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19
Total unknown or missing: 456

19.2.131 ZeissZVIReader

This page lists supported metadata fields for the Bio-Formats Zeiss Vision Image (ZVI) format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

4296 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
4297 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
4298 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate
4300 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
4301 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
4302 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
4303 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
4304 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
4305 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
4306 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
4307 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
4308 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
4309 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
4310 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
4311 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
4312 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
4313 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
4314 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
4315 http://www.openmicroscopy.org/site/support/ome-model/
Of the 475 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss Vision Image (ZVI) format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: Interleaved
- Pixels: SignificantBits
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19

Total unknown or missing: 456
19.2.132 ZeissCZIReader

This page lists supported metadata fields for the Bio-Formats Zeiss CZI format reader.

These fields are from the OME data model\(^{4335}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:

- The file format itself supports 157 of them (33%).
- Of those, Bio-Formats fully or partially converts 157 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss CZI format reader:

- Arc : LotNumber\(^{4336}\)
- Arc : Manufacturer\(^{4337}\)
- Arc : Model\(^{4338}\)
- Arc : Power\(^{4339}\)
- Arc : SerialNumber\(^{4340}\)
- Channel : AcquisitionMode\(^{4341}\)
- Channel : Color\(^{4342}\)
- Channel : EmissionWavelength\(^{4343}\)
- Channel : ExcitationWavelength\(^{4344}\)
- Channel : Fluor\(^{4345}\)
- Channel : ID\(^{4346}\)
- Channel : IlluminationType\(^{4347}\)
- Channel : Name\(^{4348}\)
- Channel : PinholeSize\(^{4349}\)
- Channel : SamplesPerPixel\(^{4350}\)
- Detector : AmplificationGain\(^{4351}\)
- Detector : Gain\(^{4352}\)
- Detector : ID\(^{4353}\)

\(^{4335}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{4336}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber

\(^{4337}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer

\(^{4338}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model

\(^{4339}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_Power

\(^{4340}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber

\(^{4341}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_AcquisitionMode

\(^{4342}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Color

\(^{4343}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength

\(^{4344}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength

\(^{4345}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Fluor

\(^{4346}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID

\(^{4347}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_IlluminationType

\(^{4348}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name

\(^{4349}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_PinholeSize

\(^{4350}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{4351}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_AmplificationGain

\(^{4352}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Gain

\(^{4353}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID
• Detector : LotNumber
• Detector : Manufacturer
• Detector : Model
• Detector : Offset
• Detector : SerialNumber
• Detector : Type
• Detector : Zoom
• DetectorSettings : Binning
• DetectorSettings : Gain
• DetectorSettings : ID
• Dichroic : ID
• Dichroic : LotNumber
• Dichroic : Manufacturer
• Dichroic : Model
• Dichroic : SerialNumber
• Ellipse : ID
• Ellipse : RadiusX
• Ellipse : RadiusY
• Ellipse : Text
• Ellipse : X
• Ellipse : Y
• Experimenter : Email
• Experimenter : FirstName
• Experimenter : ID
• Experimenter : Institution
• Experimenter : LastName

19.2. Metadata fields

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Offset
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Zoom
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dichroic_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Offset
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Zoom
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dichroic_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dichroic_LotNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dichroic_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dichroic_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dichroic_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_RadiusY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Experimenter_Email
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Experimenter_FirstName
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Experimenter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Experimenter_Institution
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Experimenter_LastName
• Experimenter: MiddleName
• Experimenter: UserName
• Filament: LotNumber
• Filament: Manufacturer
• Filament: Model
• Filament: Power
• Filament: SerialNumber
• Filter: FilterWheel
• Filter: ID
• Filter: LotNumber
• Filter: Manufacturer
• Filter: Model
• Filter: SerialNumber
• Filter: Type
• FilterSet: DichroicRef
• FilterSet: EmissionFilterRef
• FilterSet: ExcitationFilterRef
• FilterSet: ID
• FilterSet: LotNumber
• FilterSet: Manufacturer
• FilterSet: Model
• FilterSet: SerialNumber
• Image: AcquisitionDate
• Image: Description
• Image: ExperimenterRef
• Image: ID

19.2. Metadata fields
19.2. Metadata fields

- Image: InstrumentRef
- Image: Name
- Image: ROIRef
- ImagingEnvironment: AirPressure
- ImagingEnvironment: CO2Percent
- ImagingEnvironment: Humidity
- ImagingEnvironment: Temperature
- Instrument: ID
- Laser: LotNumber
- Laser: Manufacturer
- Laser: Model
- Laser: Power
- Laser: SerialNumber
- LightEmittingDiode: LotNumber
- LightEmittingDiode: Manufacturer
- LightEmittingDiode: Model
- LightEmittingDiode: Power
- LightEmittingDiode: SerialNumber
- Line: ID
- Line: Text
- Line: X1
- Line: X2
- Line: Y1
- Line: Y2
- Microscope: LotNumber
- Microscope: Manufacturer
- Microscope: ManufacturerSpec

• Microscope : Model
• Microscope : SerialNumber
• Microscope : Type
• Objective : CalibratedMagnification
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : Iris
• Objective : LensNA
• Objective : LotNumber
• Objective : Manufacturer
• Objective : Model
• Objective : NominalMagnification
• Objective : SerialNumber
• Objective : WorkingDistance
• ObjectiveSettings : CorrectionCollar
• ObjectiveSettings : ID
• ObjectiveSettings : Medium
• ObjectiveSettings : RefractiveIndex
• Pixels : BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : Interleaved
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Microscope_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Iris
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_CorrectionCollar
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_Medium
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY

19.2. Metadata fields
• Pixels: SignificantBits
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Polygon: ID
• Polygon: Points
• Polygon: Text
• Polyline: ID
• Polyline: Points
• Polyline: Text
• ROI: Description
• ROI: ID
• ROI: Name
• Rectangle: Height
• Rectangle: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polyline_Points
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polyline_Text
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_ID
• Rectangle: Text
• Rectangle: Width
• Rectangle: X
• Rectangle: Y
• TransmittanceRange: CutIn
• TransmittanceRange: CutInTolerance
• TransmittanceRange: CutOut
• TransmittanceRange: CutOutTolerance
• TransmittanceRange: Transmittance

Total supported: 157
Total unknown or missing: 318

19.2.133 ZeissLSMReader

This page lists supported metadata fields for the Bio-Formats Zeiss Laser-Scanning Microscopy format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 475 fields documented in the metadata summary table:
• The file format itself supports 101 of them (21%).
• Of those, Bio-Formats fully or partially converts 101 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss Laser-Scanning Microscopy format reader:
• Channel: Color
• Channel: ID
• Channel: Name
• Channel: PinholeSize
• Channel: SamplesPerPixel
• Detector: AmplificationGain
• Detector: Gain
• Detector: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Width
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutIn
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutInTolerance
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_Transmittance
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Color
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_PinholeSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_AmplificationGain
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID

19.2. Metadata fields
• Detector: Type
• Detector: Zoom
• DetectorSettings: Binning
• DetectorSettings: ID
• Dichroic: ID
• Dichroic: Model
• Ellipse: FontSize
• Ellipse: ID
• Ellipse: RadiusX
• Ellipse: RadiusY
• Ellipse: StrokeWidth
• Ellipse: Transform
• Ellipse: X
• Ellipse: Y
• Experimenter: ID
• Experimenter: UserName
• Filter: ID
• Filter: Model
• Filter: Type
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• Image: ROIRef
• Instrument: ID

19.2. Metadata fields
• Label : FontSize
• Label : ID
• Label : StrokeWidth
• Label : Text
• Label : X
• Label : Y
• Laser : ID
• Laser : LaserMedium
• Laser : Model
• Laser : Type
• Laser : Wavelength
• LightPath : DichroicRef
• LightPath : EmissionFilterRef
• Line : FontSize
• Line : ID
• Line : StrokeWidth
• Line : X1
• Line : X2
• Line : Y1
• Line : Y2
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : Iris
• Objective : LensNA
• Objective : NominalMagnification

19.2. Metadata fields
- ObjectiveSettings : ID
- Pixels : BigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : Interleaved
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SignificantBits
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : TimeIncrement
- Pixels : Type
- Plane : DeltaT
- Plane : PositionX
- Plane : PositionY
- Plane : PositionZ
- Plane : TheC
- Plane : TheT
- Plane : TheZ
- Polygon : FontSize
- Polygon : ID
- Polygon : Points

19.2. Metadata fields

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_Points
• Polygon: StrokeWidth
• Polyline: FontSize
• Polyline: ID
• Polyline: Points
• Polyline: StrokeWidth
• ROI: ID
• Rectangle: FontSize
• Rectangle: Height
• Rectangle: ID
• Rectangle: StrokeWidth
• Rectangle: Width
• Rectangle: X
• Rectangle: Y
• TransmittanceRange: CutIn
• TransmittanceRange: CutOut

Total supported: 101

Total unknown or missing: 374

The version 5 releases use the June 2013 release of the OME-Model
<table>
<thead>
<tr>
<th>Symbols</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1sc, 115</td>
<td></td>
</tr>
<tr>
<td>.2, 175</td>
<td></td>
</tr>
<tr>
<td>.2fl, 189</td>
<td></td>
</tr>
<tr>
<td>.3, 175</td>
<td></td>
</tr>
<tr>
<td>.4, 175</td>
<td></td>
</tr>
<tr>
<td>.acff, 194</td>
<td></td>
</tr>
<tr>
<td>.afi, 110</td>
<td></td>
</tr>
<tr>
<td>.afm, 180</td>
<td></td>
</tr>
<tr>
<td>.aim, 105</td>
<td></td>
</tr>
<tr>
<td>.al3d, 106</td>
<td></td>
</tr>
<tr>
<td>.am, 107</td>
<td></td>
</tr>
<tr>
<td>.amiramesh, 107</td>
<td></td>
</tr>
<tr>
<td>.apl, 166</td>
<td></td>
</tr>
<tr>
<td>.arf, 113</td>
<td></td>
</tr>
<tr>
<td>.avi, 112</td>
<td></td>
</tr>
<tr>
<td>.bip, 149</td>
<td></td>
</tr>
<tr>
<td>.bmp, 133, 196</td>
<td></td>
</tr>
<tr>
<td>.c01, 120</td>
<td></td>
</tr>
<tr>
<td>.cfg, 179</td>
<td></td>
</tr>
<tr>
<td>.cr2, 119</td>
<td></td>
</tr>
<tr>
<td>.crw, 119</td>
<td></td>
</tr>
<tr>
<td>.exd, 184</td>
<td></td>
</tr>
<tr>
<td>.czi, 199</td>
<td></td>
</tr>
<tr>
<td>.dat, 145, 169, 191</td>
<td></td>
</tr>
<tr>
<td>.dcm, 123</td>
<td></td>
</tr>
<tr>
<td>.dcom, 123</td>
<td></td>
</tr>
<tr>
<td>.dm2, 129</td>
<td></td>
</tr>
<tr>
<td>.dm3, 128</td>
<td></td>
</tr>
<tr>
<td>.dti, 192</td>
<td></td>
</tr>
<tr>
<td>.dv, 122</td>
<td></td>
</tr>
<tr>
<td>.eps, 124</td>
<td></td>
</tr>
<tr>
<td>.eps1, 124</td>
<td></td>
</tr>
<tr>
<td>.exp, 113</td>
<td></td>
</tr>
<tr>
<td>.df, 192</td>
<td></td>
</tr>
<tr>
<td>.dff, 134</td>
<td></td>
</tr>
<tr>
<td>.fdr, 189</td>
<td></td>
</tr>
<tr>
<td>.fits, 127</td>
<td></td>
</tr>
<tr>
<td>.flex, 125</td>
<td></td>
</tr>
<tr>
<td>.fli, 150</td>
<td></td>
</tr>
<tr>
<td>.frm, 142</td>
<td></td>
</tr>
<tr>
<td>.gel, 107</td>
<td></td>
</tr>
<tr>
<td>.gif, 129</td>
<td></td>
</tr>
<tr>
<td>.grey, 107</td>
<td></td>
</tr>
<tr>
<td>.hdr, 108, 143, 163, 191</td>
<td></td>
</tr>
<tr>
<td>.hed, 136</td>
<td></td>
</tr>
<tr>
<td>.his, 131</td>
<td></td>
</tr>
<tr>
<td>.htd, 111</td>
<td></td>
</tr>
<tr>
<td>.html, 193</td>
<td></td>
</tr>
<tr>
<td>.hx, 107</td>
<td></td>
</tr>
<tr>
<td>.ics, 133</td>
<td></td>
</tr>
<tr>
<td>.ids, 133</td>
<td></td>
</tr>
<tr>
<td>.img, 108, 118, 126, 136, 145, 163</td>
<td></td>
</tr>
<tr>
<td>.ims, 117</td>
<td></td>
</tr>
<tr>
<td>.inr, 142</td>
<td></td>
</tr>
<tr>
<td>.ipl, 143</td>
<td></td>
</tr>
<tr>
<td>.ipm, 144</td>
<td></td>
</tr>
<tr>
<td>.ipw, 136</td>
<td></td>
</tr>
<tr>
<td>.jp2, 146</td>
<td></td>
</tr>
<tr>
<td>.jpg, 133, 146, 190</td>
<td></td>
</tr>
<tr>
<td>.jpk, 147</td>
<td></td>
</tr>
<tr>
<td>.jpx, 148</td>
<td></td>
</tr>
<tr>
<td>.l2d, 154</td>
<td></td>
</tr>
<tr>
<td>.labels, 107</td>
<td></td>
</tr>
<tr>
<td>.lei, 151</td>
<td></td>
</tr>
<tr>
<td>.lif, 152</td>
<td></td>
</tr>
<tr>
<td>.liff, 138</td>
<td></td>
</tr>
<tr>
<td>.lim, 155</td>
<td></td>
</tr>
<tr>
<td>.lsm, 200</td>
<td></td>
</tr>
<tr>
<td>.mdb, 200</td>
<td></td>
</tr>
<tr>
<td>.mea, 125</td>
<td></td>
</tr>
<tr>
<td>.mnc, 158</td>
<td></td>
</tr>
<tr>
<td>.mng, 160</td>
<td></td>
</tr>
<tr>
<td>.mod, 137</td>
<td></td>
</tr>
<tr>
<td>.mov, 180</td>
<td></td>
</tr>
<tr>
<td>.mr, 161</td>
<td></td>
</tr>
<tr>
<td>.mrc, 161</td>
<td></td>
</tr>
<tr>
<td>.mrw, 159</td>
<td></td>
</tr>
<tr>
<td>.msr, 140, 150</td>
<td></td>
</tr>
<tr>
<td>.mth, 166</td>
<td></td>
</tr>
<tr>
<td>.mvd2, 194</td>
<td></td>
</tr>
<tr>
<td>.naf, 130</td>
<td></td>
</tr>
<tr>
<td>.nd, 156</td>
<td></td>
</tr>
<tr>
<td>.nd2, 165</td>
<td></td>
</tr>
<tr>
<td>.ndp, 131</td>
<td></td>
</tr>
<tr>
<td>.nef, 162</td>
<td></td>
</tr>
<tr>
<td>.nhdr, 165</td>
<td></td>
</tr>
<tr>
<td>.nrrd, 165</td>
<td></td>
</tr>
<tr>
<td>.obf, 140</td>
<td></td>
</tr>
<tr>
<td>.obsep, 166</td>
<td></td>
</tr>
<tr>
<td>.oib, 167</td>
<td></td>
</tr>
<tr>
<td>.oif, 167</td>
<td></td>
</tr>
<tr>
<td>.ome, 171</td>
<td></td>
</tr>
<tr>
<td>.ome.tiff, 170</td>
<td></td>
</tr>
<tr>
<td>.par, 145</td>
<td></td>
</tr>
<tr>
<td>.pcoraw, 172</td>
<td></td>
</tr>
<tr>
<td>.pcx, 173</td>
<td></td>
</tr>
<tr>
<td>.pds, 174</td>
<td></td>
</tr>
<tr>
<td>.pgm, 176</td>
<td></td>
</tr>
</tbody>
</table>
Index 427

A
Adobe Photoshop PSD, 176
AIM, 105
Alicona 3D, 106
Amersham Biosciences Gel, 107
Amira Mesh, 107
Analyze 7.5, 108
Andor Bio-Imaging Division (ABD) TIFF, 105
Animated PNG, 109
Aperio AFI, 110
Aperio SVS TIFF, 110
Applied Precision CellWorX, 111
AVI (Audio Video Interleave), 112
Axon Raw Format, 113

B
BD Pathway, 113
Becker & Hickl SPCIImage, 114
bfconvert, 45
Bio-Rad Gel, 115
Bio-Rad PIC, 115
Bio-Rad SCN, 116
Bitplane Imaris, 117
Bruker MRI, 118
Burleigh, 118

C
Canon DNG, 119
Cellomics, 120
cellSens VSI, 120
CellVoyager, 121
CLASSPATH, 60

D
DeltaVision, 122
DICOM, 123

E
ECAT7, 124
environment variable
CLASSPATH, 60
EPS (Encapsulated PostScript), 124
Evotec/PerkinElmer Opera Flex, 125
Export, 104

F
FEI, 126
FEI TIFF, 126
FITS (Flexible Image Transport System), 127
formatlist, 45

G
Gatan Digital Micrograph, 128
Gatan Digital Micrograph 2, 129
GIF (Graphics Interchange Format), 129

H
Hamamatsu Aquacosmos NAF, 130
Hamamatsu HIS, 131
Hamamatsu ndpi, 131
Hamamatsu VMS, 132
Hitachi S-4800, 133

I
ICS (Image Cytometry Standard), 133
ijview, 45
Imacon, 134
ImagePro Sequence, 135
ImagePro Workspace, 136
IMAGIC, 136
IMOD, 137
Improvision Openlab LIFF, 138
Improvision Openlab Raw, 139
Improvision TIFF, 139
Inspector OBF, 140
Index
Woolz, 197

X
xmlindent, 45
xmlvalid, 45

Z
Zeiss AxioVision TIFF, 197
Zeiss AxioVision ZVI (Zeiss Vision Image), 198
Zeiss CZI, 199
Zeiss LSM (Laser Scanning Microscope) 510/710, 200