CONTENTS

I About Bio-Formats
1 Why Java? 4
2 Bio-Formats metadata processing 5
3 Help
 3.1 Reporting a bug 6
 3.2 Troubleshooting 7
4 Bio-Formats versions
 4.1 Version history 9

II User Information
5 Using Bio-Formats with ImageJ and Fiji
 5.1 ImageJ 24
 5.2 Fiji 25
 5.3 Bio-Formats features in ImageJ and Fiji 26
 5.4 Installing Bio-Formats in ImageJ 26
 5.5 Using Bio-Formats to load images into ImageJ 28
 5.6 Managing memory in ImageJ/Fiji using Bio-Formats 32
 5.7 Upgrading the Bio-Formats importer for ImageJ to the latest trunk build 34
6 OMERO 39
7 Image server applications
 7.1 BISQUE 40
 7.2 OME Server 40
8 Libraries and scripting applications
 8.1 Command line tools 43
 8.2 FARSIGHT 44
 8.3 i3dcore 44
 8.4 ImgLib 44
 8.5 ITK 45
 8.6 Qu for MATLAB 46
 8.7 Subimager 46
9 Numerical data processing applications
 9.1 IDL 47
 9.2 KNIME 47
 9.3 MATLAB 47
 9.4 VisAD 48
10 Visualization and analysis applications
 10.1 Bitplane Imaris 49
Supported Formats

10.2 CellProfiler ... 49
10.3 Comstat2 ... 50
10.4 Endrov .. 50
10.5 FocalPoint .. 50
10.6 Graphic Converter .. 51
10.7 Icy .. 51
10.8 imago ... 51
10.9 Iqm ... 51
10.10 Macnification ... 51
10.11 MIPAV ... 51
10.12 Vaa3D ... 52
10.13 VisBio .. 52
10.14 XuvTools ... 53

Developer Documentation

11 Using Bio-Formats ... 55
 11.1 An in-depth guide to using Bio-Formats 55
 11.2 Generating test images 57

12 Bio-Formats as a Java library 59
 12.1 API documentation 59
 12.2 Examples ... 60

13 Interfacing from non-Java code 70
 13.1 Interfacing with Bio-Formats from non-Java code 70
 13.2 Bio-Formats C++ bindings 70
 13.3 Build instructions for C++ bindings 70
 13.4 Building C++ bindings in Windows 72
 13.5 Building C++ bindings in Mac OS X 73
 13.6 Building C++ bindings in Linux 74

14 SCIFIO .. 75
 14.1 SCientific Imaging Formats Input and Output 75

15 Writing new Bio-Formats file format readers 76
 15.1 Bio-Formats file format reader guide 76

16 Contributing to Bio-Formats 80
 16.1 Developing Bio-Formats 80
 16.2 Testing individual commits (internal developers) .. 81
 16.3 Public test data ... 82
 16.4 Bio-Formats service and dependency infrastructure 85

Formats

17 Dataset Structure Table 90
 17.1 Flex Support ... 93

18 Supported Formats ... 94
 18.1 3i SlideBook ... 99
 18.2 Andor Bio-Imaging Division (ABD) TIFF 100
 18.3 AIM ... 100
 18.4 Alicona 3D ... 101
 18.5 Amersham Biosciences Gel 102
 18.6 Amira Mesh ... 102
 18.7 Analyze 7.5 .. 103
 18.8 Animated PNG .. 104
 18.9 Aperio SVS TIFF .. 104
 18.10 Applied Precision CellWorX 105
18.11 AVI (Audio Video Interleave) ... 106
18.12 Axon Raw Format .. 107
18.13 BD Pathway ... 108
18.14 Becker & Hickl SPCImage .. 108
18.15 Bio-Rad Gel ... 109
18.16 Bio-Rad PIC ... 110
18.17 Bitplane Imaris .. 110
18.18 Bruker MRI ... 111
18.19 Burleigh ... 112
18.20 Canon DNG ... 113
18.21 Cellomics ... 113
18.22 CellSens VSI .. 114
18.23 DeltaVision ... 115
18.24 DICOM ... 116
18.25 ECAT7 ... 117
18.26 EPS (Encapsulated PostScript) ... 117
18.27 Evotec/PerkinElmer Opera Flex 118
18.28 FEI ... 119
18.29 FEI TIFF ... 119
18.30 FITS (Flexible Image Transport System) 120
18.31 Gatan Digital Micrograph ... 121
18.32 Gatan Digital Micrograph 2 ... 121
18.33 GIF (Graphics Interchange Format) 122
18.34 Hamamatsu Aquacosmos NAF 123
18.35 Hamamatsu HIS ... 124
18.36 Hamamatsu ndpi ... 124
18.37 Hamamatsu VMS ... 125
18.38 Hitachi S-4800 ... 126
18.39 ICS (Image Cytometry Standard) 126
18.40 Imacon ... 127
18.41 ImagePro Sequence ... 128
18.42 ImagePro Workspace ... 129
18.43 IMAGIC ... 129
18.44 IMOD ... 130
18.45 Improvision Openlab LIFF ... 131
18.46 Improvision Openlab Raw ... 132
18.47 Improvision TIFF .. 132
18.48 InCell 1000 ... 133
18.49 InCell 3000 ... 134
18.50 INR ... 135
18.51 IPLab ... 135
18.52 IPLab-Mac ... 136
18.53 JEOL ... 137
18.54 JPEG ... 137
18.55 JPEG 2000 .. 138
18.56 JP2 ... 139
18.57 JPX ... 140
18.58 Khoros VIFF (Visualization Image File Format) Bitmap 140
18.59 Kodak BIP ... 141
18.60 Lambert Instruments FLIM .. 142
18.61 Leica LCS LEI .. 142
18.62 Leica LAS AF LIF (Leica Image File Format) 143
18.63 Leica SCN ... 144
18.64 LEO ... 145
18.65 Li-Cor L2D ... 145
18.66 LIM (Laboratory Imaging/Nikon) 146
18.67 MetaMorph 7.5 TIFF ... 147
18.68 MetaMorph Stack (STK) .. 147
18.69 MIAS (Maia Scientific) .. 148
18.70 Micro-Manager .. 149
18.71 MINC MRI .. 150
19.72 Minolta MRW .. 150
18.73 MNG (Multiple-image Network Graphics) 151
18.74 Molecular Imaging .. 152
18.75 MRC (Medical Research Council) ... 152
18.76 NEF (Nikon Electronic Format) .. 153
18.77 NIfTI ... 154
18.78 Nikon Elements TIFF ... 155
18.79 Nikon EZ-C1 TIFF ... 155
18.80 Nikon NIS-Elements ND2 .. 156
18.81 NRRD (Nearly Raw Raster Data) ... 157
18.82 Olympus CellR/APL ... 158
18.83 Olympus FluoView FV1000 .. 158
18.84 Olympus FluoView TIFF .. 159
18.85 Olympus ScanR ... 160
18.86 Olympus SIS TIFF .. 161
18.87 OME-TIFF .. 161
18.88 OME-XML ... 162
18.89 Oxford Instruments .. 163
18.90 PCX (PC Paintbrush) ... 164
18.91 Perkin Elmer Densitometer .. 164
18.92 PerkinElmer Operetta .. 165
18.93 PerkinElmer UltraView ... 166
18.94 PGM (Portable Gray Map) ... 166
18.95 Adobe Photoshop PSD .. 167
18.96 Photoshop TIFF ... 168
18.97 PICT (Macintosh Picture) .. 168
18.98 PNG (Portable Network Graphics) ... 169
18.99 Prairie Technologies TIFF .. 170
18.100Questant .. 170
18.101QuickTime Movie .. 171
18.102RHK .. 172
18.103SBIG .. 173
18.104Seiko .. 174
18.105SimplePCI & HCImage ... 174
18.106SimplePCI & HCImage TIFF ... 175
18.107SM Camera .. 176
18.108SPIDER .. 176
18.109Targa .. 177
18.110Tiff .. 178
18.111TIFF (Tagged Image File Format) ... 178
18.112TillPhotonics TillVision ... 179
18.113Topometrix ... 180
18.114Trestle .. 180
18.115UBM .. 181
18.116Unisoku .. 182
18.117Varian FDF ... 182
18.118VG SAM .. 183
18.119VisiTech XYS ... 184
18.120Volocity ... 184
18.121Volocity Library Clipping .. 185
18.122WA-TOP ... 186
18.123Windows Bitmap ... 186
18.124Zeiss AxioVision TIFF ... 187
18.125Zeiss AxioVision ZVI (Zeiss Vision Image) 188
18.126Zeiss CZI ... 189
18.127Zeiss LSM (Laser Scanning Microscope) 510/710 189

19 Summary of supported metadata fields ... 191
19.1 Format readers ... 191
19.2 Metadata fields ... 194
The following documentation is split into four parts. *About Bio-Formats* explains the goal of the software, discusses how it processes metadata, and provides other useful information such as version history and how to report bugs. *User Information* focuses on how to use Bio-Formats as a plugin for ImageJ and Fiji, and also gives details of other software packages which can use Bio-Formats to read and write microscopy formats. *Developer Documentation* covers more in-depth information on using Bio-Formats as a Java library and how to interface from non-Java codes. Finally, *Formats* is a guide to all the file formats currently supported by Bio-Formats.
Part I

About Bio-Formats
Bio-Formats is a standalone Java library for reading and writing life sciences image file formats. It is capable of parsing both pixels and metadata for a large number of formats, as well as writing to several formats.

The primary goal of Bio-Formats is to facilitate the exchange of microscopy data between different software packages and organizations. It achieves this by converting proprietary microscopy data into an open standard called the OME data model\(^1\), particularly into the OME-TIFF\(^2\) file format.

We believe the standardization of microscopy metadata to a common structure is of vital importance to the community. A brief article on the benefits of standardization\(^3\) from thinkstandards.net\(^4\) provides an excellent summary. See also LOCI’s article on open source software in science\(^5\).

\(^1\)http://genomebiology.com/2005/6/5/R47
\(^2\)http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
\(^3\)http://www.thinkstandards.net/benefits.html
\(^4\)http://www.thinkstandards.net/
\(^5\)http://loci.wisc.edu/software/oss
From a practical perspective, Bio-Formats is written in Java because it is cross-platform and widely used, with a vast array of libraries for handling common programming tasks. Java is one of the easiest languages from which to deploy cross-platform software. In contrast to C++, which has a large number of complex platform issues to consider, and Python, which leans heavily on C and C++ for many of its components (e.g., NumPy and SciPy), Java code is compiled one time into platform-independent byte code, which can be deployed as is to all supported platforms. And despite this enormous flexibility, Java manages to provide time performance nearly equal to C++, often better in the case of I/O operations (see further discussion on the [comparative speed of Java on the LOCI site](http://loci.wisc.edu/faq/isnt-java-too-slow)).

There are also historical reasons associated with the fact that the project grew out of work on the [VisAD Java component library](http://visad.ssec.wisc.edu). You can read more about the origins of Bio-Formats on the [LOCI Bio-Formats homepage](http://loci.wisc.edu/software/bio-formats).
Pixels in microscopy are almost always very straightforward, stored on evenly spaced rectangular grids. It is the metadata (details about the acquisition, experiment, user, and other information) that can be complex. Using the OME data model enables applications to support a single metadata format, rather than the multitude of proprietary formats available today.

Every file format has a distinct set of metadata, stored differently. Bio-Formats processes and converts each format’s metadata structures into a standard form called the OME data model, according to the OME-XML specification. We have defined an open exchange format called OME-TIFF that stores its metadata as OME-XML. Any software package that supports OME-TIFF is also compatible with the dozens of formats listed on the Bio-Formats page, because Bio-Formats can convert your files to OME-TIFF format.

To facilitate support of OME-XML, we have created a library in Java for reading and writing OME-XML metadata.

There are three types of metadata in Bio-Formats, which we call core metadata, original metadata, and OME metadata.

1. **Core metadata** only includes things necessary to understand the basic structure of the pixels: image resolution; number of focal planes, time points, channels, and other dimensional axes; byte order; dimension order; color arrangement (RGB, indexed color or separate channels); and thumbnail resolution.

2. **Original metadata** is information specific to a particular file format. These fields are key/value pairs in the original format, with no guarantee of cross-format naming consistency or compatibility. Nomenclature often differs between formats, as each vendor is free to use their own terminology.

3. **OME metadata** is information from #1 and #2 converted by Bio-Formats into the OME data model. **Performing this conversion is the primary purpose of Bio-Formats.** Bio-Formats uses its ability to convert proprietary metadata into OME-XML as part of its integration with the OME and OMERO servers—essentially, they are able to populate their databases in a structured way because Bio-Formats sorts the metadata into the proper places. This conversion is nowhere near complete or bug free, but we are constantly working to improve it. We would greatly appreciate any and all input from users concerning missing or improperly converted metadata fields.

2. http://www.openmicroscopy.org/site/support/ome-model/ome-xml
5. http://www.openmicroscopy.org/site/support/ome-model/ome-xml
For help, see the Bio-Formats1, File Formats2 and OME-XML and OME-TIFF3 sections of the OME FAQ4 for answers to some common questions. Please contact us5 if you have any questions or problems with Bio-Formats. There is a guide for reporting bugs here.

For advanced users and developers, further information is available on the troubleshooting page.

\section{3.1 Reporting a bug}

\subsection{3.1.1 Before filing a bug report}

If you think you have found a bug in Bio-Formats, the first thing to do is update your version of Bio-Formats to the latest trunk version. It is possible that the problem has already been addressed. For both Fiji and ImageJ users, select Update LOCI Plugins under the LOCI menu. Select Trunk Build.

You can also download the latest 4.4 version of Bio-Formats6. If you are not sure which version you need, select the Trunk Build under LOCI Tools complete bundle.

\subsection{3.1.2 Sending a bug report}

If you can still reproduce the bug after updating to the newest version of Bio-Formats, please send us a bug report. To ensure that any inquiries you make are resolved promptly, please include the following information:

- **Exact error message.** Copy and paste any error messages into the text of your email. Alternatively, attach a screenshot of the relevant windows.

- **Version information.** Indicate which release of Bio-Formats, which operating system, and which version of Java you are using.

- **Non-working data.** If possible, please send a non-working file. This helps us ensure that the problem is fixed for next release and will not reappear in later releases. We can provide you with an FTP server for uploading your file(s) if needed. Note that any data provided is used for internal testing only; we do not make images publicly available unless given explicit permission to do so.

- **Metadata and screenshots.** If possible, include any additional information about your data. We are especially interested in the expected dimensions (width, height, number of channels, Z slices, and timepoints). Screenshots of the image being successfully opened in other software are also useful.

- **Format details.** If you are requesting support for a new format, we ask that you send as much data as you have regarding this format (sample files, specifications, vendor/manufacturer information, etc.). This helps us to better support the format and ensures future versions of the format are also supported.

1http://www.openmicroscopy.org/site/support/faq/bio-formats
2http://www.openmicroscopy.org/site/support/faq/file-formats
3http://www.openmicroscopy.org/site/support/faq/ome-xml-and-ome-tiff
4http://www.openmicroscopy.org/site/support/faq
5http://www.openmicroscopy.org/site/community/mailing-lists
6http://downloads.openmicroscopy.org/bio-formats/
Once you have gathered all the relevant information, send it as an e-mail to the OME Users mailing list. Please be patient - it may be a few days until you receive a response, but we reply to every email inquiry we receive.

3.2 Troubleshooting

This page is aimed at anyone who is responsible for supporting Bio-Formats, but may also be useful for advanced users looking to troubleshoot their own problems. Eventually, it might be best to move some of this to the FAQ or other documentation.

3.2.1 General tips

- Make sure to read the FAQ, particularly the “File Formats”, “Bio-Formats”, and “OME-XML & OME-TIFF” sections.
- If this page doesn’t help, it is worth quickly checking the following places where questions are commonly asked and/or bugs are reported:
 - OME Trac
 - Fiji Bugzilla (for ImageJ/Fiji issues)
 - ome-devel mailing list (searchable using google with ‘site:lists.openmicroscopy.org.uk’)
 - ome-users mailing list (searchable using google with ‘site:lists.openmicroscopy.org.uk’)
 - ImageJ mailing list (for ImageJ/Fiji issues)
- Make sure to ask for a specific error message or description of the unexpected behavior, if one is not provided (“it does not work” is obviously not adequate).
- “My (12, 14, 16)-bit images look all black when I open them” is a common issue. In ImageJ/Fiji, this is almost always fixable by checking the “Autoscale” option; with the command line tools, the “-autoscale -fast” options should work. The problem is typically that the pixel values are very, very small relative to the maximum possible pixel value (4095, 16383, and 65535, respectively), so when displayed the pixels are effectively black.
- If the file is very, very small (4096 bytes) and any exception is generated when reading the file, then make sure it is not a Mac OS X resource fork. The ‘file’ command should tell you:

```
$ file /path/to/suspicious-file
suspicious-file: AppleDouble encoded Macintosh file
```

3.2.2 Tips for ImageJ/Fiji

- The Bio-Formats version being used can be found by selecting “Help > About Plugins > LOCI Plugins”.
- “How do I make the options window go away?” is a common question. There are a few ways to do this:
 - To disable the options window only for files in a specific format, select “Plugins > LOCI > LOCI Plugins Configuration”, then pick the format from the list and make sure the “Windowless” option is checked.
 - To avoid the options window entirely, use the “Plugins > LOCI > Bio-Formats Windowless Importer” menu item to import files.
 - Open files by calling the Bio-Formats importer plugin from a macro.

7http://lists.openmicroscopy.org.uk/mailman/listinfo/ome-users/
8http://www.openmicroscopy.org/site/support/faq
9http://trac.openmicroscopy.org.uk/ome
10http://fiji.sc/cgi-bin/bugzilla/index.cgi
11http://lists.openmicroscopy.org.uk/pipermail/ome-devel
12http://lists.openmicroscopy.org.uk/pipermail/ome-users
13http://imagej.1557.n6.nabble.com/
A not uncommon cause of problems is that the user has multiple copies of loci_tools.jar in their ImageJ plugins folder, or has a copy of loci_tools.jar and a copy of bio-formats.jar. It is often difficult to determine for sure that this is the problem - the only error message that pretty much guarantees it is a “NoSuchMethodException”. If the user maintains that they downloaded the latest version and whatever error message/odd behavior they are seeing looks like it was fixed already, then it is worth suggesting that they remove all copies of loci_tools.jar and download a fresh version.

3.2.3 Tips for command line tools

- When run with no arguments, all of the command line tools will print information on usage.

- When run with the ‘-version’ argument, ‘showinfo’ and ‘bfconvert’ will display the version of Bio-Formats that is being used (version number, build date, and Git commit reference).

3.2.4 Tips by format

3I/Olympus Slidebook (.sld)

- Slidebook support is generally not great, despite a lot of effort. This is the one format for which it is recommended to just export to OME-TIFF from the acquisition software and work with the exported files. Happily, there is free software from 3I which can do the export post-acquisition: https://www.slidebook.com/reader.php

DICOM

- Health care or institutional regulations often prevent users from sending problematic files, so often we have to solve the problem blind. In these cases, it is important to get the exact error message, and inform the user that fixing the problem may be an iterative process (i.e. they might have to try a couple of trunk builds before we can finally fix the problem).

ZVI

- If the ZVI reader plugin is installed in ImageJ/Fiji, then it will be used instead of Bio-Formats to read ZVI files. To check if this is the cause of the problem, make sure that the file opens correctly using “Plugins > LOCI > Bio-Formats Importer”; if that works, then just remove ZVI_Reader.class from the plugins folder.
Bio-Formats is updated whenever a new version of OMERO is released. The version number is three numbers separated by dots; e.g., 4.0.0. See the version history for a list of major changes in each release.

The latest stable version of Bio-Formats is 4.4.9. For future development directions, see the 4.5 and 5.0 roadmaps.

4.1 Version history

4.1.1 4.4.9 (2013 Oct 16)

- Many bug fixes including improvements to support for ND2 format
- Java 1.6 is now the minimum supported version; Java 1.5 is no longer supported

4.1.2 4.4.8 (2013 May 2)

- No changes - release to keep version numbers in sync with OMERO

4.1.3 4.4.7 (2013 April 25)

- Many bug fixes to improve support for more than 20 formats
- Improved export to multi-file datasets
- Now uses slf4j for logging rather than using log4j directly, enabling other logging implementations to be used, for example when Bio-Formats is used as a component in other software using a different logging system.

4.1.4 4.4.6 (2013 February 11)

- Many bug fixes
- Further documentation improvements

4.1.5 4.4.5 (2012 November 13)

- Restructured and improved documentation
- Many bug fixes, including:
 - File grouping in many multi-file formats
 - Maven build fixes
 - ITK plugin fixes

4.1.6 4.4.4 (2012 September 24)

- Many bug fixes

4.1.7 4.4.2 (2012 August 22)

- Security fix for OMERO plugins for ImageJ

4.1.8 4.4.1 (2012 July 20)

- Fix a bug that prevented BigTIFF files from being read
- Fix a bug that prevented PerkinElmer `flex` files from importing into OMERO

4.1.9 4.4.0 (2012 July 13)

- Many, many bug fixes
- **Added support for:**
 - `.nd2` files from Nikon Elements version 4
 - PerkinElmer Operetta data
 - MJPEG-compressed AVIs
 - MicroManager datasets with multiple positions
 - Zeiss CZI data
 - IMOD data

4.1.10 4.3.3 (2011 October 18)

- Many bug fixes, including:
 - Speed improvements to HCImage/SimplePCI and Zeiss ZVI files
 - Reduce memory required by Leica LIF reader
 - More accurately populate metadata for Prairie TIFF datasets
 - Various fixes to improve the security of the OMERO plugin for ImageJ
 - Better dimension detection for Bruker MRI datasets
 - Better thumbnail generation for histology (SVS, NDPI) datasets
 - Fix stage position parsing for Metamorph TIFF datasets
 - Correctly populate the channel name for PerkinElmer Flex files

4.1.11 4.3.2 (2011 September 15)

- Many bug fixes, including:
 - Better support for Volocity datasets that contain compressed data
 - More accurate parsing of ICS metadata
 - More accurate parsing of cellSens `.vsi` files
- **Added support for a few new formats**
 - `.inr`
 - Canon DNG
• Hitachi S-4800
• Kodak .bip
• JPX
• Volocity Library Clipping (.acff)
• Bruker MRI

• Updated Zeiss LSM reader to parse application tags
• Various performance improvements, particularly for reading/writing TIFFs
• Updated OMERO ImageJ plugin to work with OMERO 4.3.x

4.1.12 4.3.1 (2011 July 8)

• Several bug fixes, including:
 – Fixes for multi-position Deltavision files
 – Fixes for MicroManager 1.4 data
 – Fixes for 12 and 14-bit JPEG-2000 data
 – Various fixes for reading Volocity .mvd2 datasets
• Added various options to the ‘showinf’ and ‘bfconvert’ command line tools
• Added better tests for OME-XML backwards compatibility
• Added the ability to roughly stitch tiles in a multi-position dataset

4.1.13 4.3.0 (2011 June 14)

• Many bug fixes, including:
 – Many fixes for reading and writing sub-images
 – Fixes for stage position parsing in the Zeiss formats
 – File type detection fixes
• Updated JPEG-2000 reading and writing support to be more flexible
• Added support for 9 new formats:
 – InCell 3000
 – Trestle
 – Hamamatsu .ndpi
 – Hamamatsu VMS
 – SPIDER
 – Volocity .mvd2
 – Olympus SIS TIFF
 – IMAGIC
 – cellSens VSI
• Updated to 2011-06 OME-XML schema
• Minor speed improvements in many formats
• Switched version control system from SVN to Git
• Moved all Trac tickets into the OME Trac: http://trac.openmicroscopy.org.uk
• Improvements to testing frameworks
Bio-Formats Documentation, Release 4.4.9

- Added Maven build system as an alternative to the existing Ant build system
- Added pre-compiled C++ bindings to the download page

4.1.14 4.2.2 (2010 December 6)

- Several bug fixes, notably:
 - Metadata parsing fixes for Zeiss LSM, Metamorph STK, and FV1000
 - Prevented leaked file handles when exporting to TIFF/OME-TIFF
 - Fixed how BufferedImages are converted to byte arrays
- Proper support for OME-XML XML annotations
- Added support for SCANCO Medical .aim files
- Minor improvements to ImageJ plugins
- Added support for reading JPEG-compressed AVI files

4.1.15 4.2.1 (2010 November 12)

- Many, many bug fixes
- Added support for 7 new formats:
 - CellWorX .pnl
 - ECAT7
 - Varian FDF
 - Perkin Elmer Densitometer
 - FEI TIFF
 - Compix/SimplePCI TIFF
 - Nikon Elements TIFF
- Updated Zeiss LSM metadata parsing, with generous assistance from Zeiss, FMI, and MPI-CBG
- Lots of work to ensure that converted OME-XML validates
- Improved file stitching functionality; non-numerical file patterns and limited regular expression-style patterns are now supported

4.1.16 4.2.0 (2010 July 9)

- Fixed many, many bugs in all aspects of Bio-Formats
- Reworked ImageJ plugins to be more user- and developer-friendly
- Added many new unit tests
- Added support for approximately 25 new file formats, primarily in the SPM domain
- Rewrote underlying I/O infrastructure to be thread-safe and based on Java NIO
- Rewrote OME-XML parsing/generation layer; OME-XML 2010-06 is now supported
- Improved support for exporting large images
- Improved support for exporting to multiple files
- Updated logging infrastructure to use slf4j and log4j

4.1. Version history
4.1.17 4.1.1 (2009 December 3)

- Fixed many bugs in popular file format readers

4.1 (2009 October 21):

- Fixed many bugs in most file format readers
- Significantly improved confocal and HCS metadata parsing
- Improved C++ bindings
- Eliminated references to Java AWT classes in core Bio-Formats packages
- Added support for reading Flex datasets from multiple servers
- Improved OME-XML generation; generated OME-XML is now valid
- Added support for Olympus ScanR data
- Added OSGi information to JARs
- Added support for Amira Mesh files
- Added support for LI-FLIM files
- Added more informative exceptions
- Added support for various types of ICS lifetime data
- Added support for Nikon EZ-C1 TIFFs
- Added support for Maia Scientific MIAS data

4.1.18 4.0.1 (2009 June 1)

- Lots of bug fixes in most format readers and writers
- Added support for Analyze 7.1 files
- Added support for Nifti files
- Added support for Cellomics .c01 files
- Refactored ImageJ plugins
- Bio-Formats, the common package, and the ImageJ plugins now require Java 1.5
- Eliminated native library dependency for reading lossless JPEGs
- Changed license from GPLv3 or later to GPLv2 or later
- Updated Olympus FV1000, Zeiss LSM, Zeiss ZVI and Nikon ND2 readers to parse ROI data
- Added option to ImageJ plugin for displaying ROIs parsed from the chosen dataset
- Fixed BufferedImage construction for signed data and unsigned int data

4.1.19 4.0.0 (2009 March 3)

- Improved OME data model population for Olympus FV1000, Nikon ND2, Metamorph STK, Leica LEI, Leica LIF, InCell 1000 and MicroManager
- Added TestNG tests for format writers
- Added option to ImageJ plugin to specify custom colors when customizing channels
- Added ability to upgrade the ImageJ plugin from within ImageJ
- Fixed bugs in Nikon ND2, Leica LIF, BioRad PIC, TIFF, PSD, and OME-TIFF
- Fixed bugs in Data Browser and Exporter plugins
- Added support for Axon Raw Format (ARF), courtesy of Johannes Schindelin

4.1. Version history
• Added preliminary support for IPLab-Mac file format

4.1.20 2008 December 29
• Improved metadata support for Deltavision, Zeiss LSM, MicroManager, and Leica LEI
• Restructured code base/build system to be component-driven
• Added support for JPEG and JPEG-2000 codecs within TIFF, OME-TIFF and OME-XML
• Added support for 16-bit compressed Flex files
• Added support for writing JPEG-2000 files
• Added support for Minolta MRW format
• Added support for the 2008-09 release of OME-XML
• Removed dependency on JMagick
• Re-added caching support to data browser plugin
• Updated loci.formats.Codec API to be more user-friendly
• Expanded loci.formats.MetadataStore API to better represent the OME-XML model
• Improved support for Nikon NEF
• Improved support for TillVision files
• Improved ImageJ import options dialog
• Fixed bugs with Zeiss LSM files larger than 4 GB
• Fixed minor bugs in most readers
• Fixed bugs with exporting from an ImageJ5D window
• Fixed several problems with virtual stacks in ImageJ

4.1.21 2008 August 30
• Fixed bugs in many file format readers
• Fixed several bugs with swapping dimensions
• Added support for Olympus CellIR/APL files
• Added support for MINC MRI files
• Added support for Aperio SVS files compressed with JPEG 2000
• Added support for writing OME-XML files
• Added support for writing APNG files
• Added faster LZW codec
• Added drag and drop support to ImageJ shortcut window
• Re-integrated caching into the data browser plugin

4.1.22 2008 July 1
• Fixed bugs in most file format readers
• Fixed bugs in OME and OMERO download functionality
• Fixed bugs in OME server-side import
• Improved metadata storage/retrieval when uploading to and downloading from the OME Perl server
• Improved Bio-Formats ImageJ macro extensions
• Major updates to MetadataStore API
• Updated OME-XML generation to use 2008-02 schema by default
• Addressed time and memory performance issues in many readers
• Changed license from LGPL to GPL
• Added support for the FEI file format
• Added support for uncompressed Hamamatsu Aquacosmos NAF files
• Added support for Animated PNG files
• Added several new options to Bio-Formats ImageJ plugin
• Added support for writing ICS files

4.1.23 2008 April 17

• Fixed bugs in Slidebook, ND2, FV1000 OIB/OIF, Perkin Elmer, TIFF, Prairie, Openlab, Zeiss LSM, MNG, Molecular Dynamics GEL, and OME-TIFF
• Fixed bugs in OME and OMERO download functionality
• Fixed bugs in OME server-side import
• Fixed bugs in Data Browser
• Added support for downloading from OMERO 2.3 servers
• Added configuration plugin
• Updates to MetadataStore API
• Updates to OME-XML generation - 2007-06 schema used by default
• Added support for Li-Cor L2D format
• Major updates to TestNG testing framework
• Added support for writing multi-series OME-TIFF files
• Added support for writing BigTIFF files

4.1.24 2008 Feb 12

• Fixed bugs in QuickTime, SimplePCI and DICOM
• Fixed a bug in channel splitting logic

4.1.25 2008 Feb 8

• Many critical bugfixes in format readers and ImageJ plugins
• Newly reborn Data Browser for 5D image visualization
 – some combinations of import options do not work yet

4.1.26 2008 Feb 1

• Fixed bugs in Zeiss LSM, Metamorph STK, FV1000 OIB/OIF, Leica LEI, TIFF, Zeiss ZVI, ICS, Prairie, Openlab LIFF, Gatan, DICOM, QuickTime
• Fixed bug in OME-TIFF writer
• Major changes to MetadataStore API
• Added support for JPEG-compressed TIFF files
• Added basic support for Aperio SVS files
 – JPEG2000 compression is still not supported
• Improved “crop on import” functionality
• Improvements to bfconvert and bfview
• Improved OME-XML population for several formats
• Added support for JPEG2000-compressed DICOM files
• EXIF data is now parsed from TIFF files

4.1.27 2007 Dec 28

• Fixed bugs in Leica LEI, Leica TCS, SDT, Leica LIF, Visitech, DICOM, Imaris 5.5 (HDF), and Slidebook readers
• Better parsing of comments in TIFF files exported from ImageJ
• Fixed problem with exporting 48-bit RGB data
• Added logic to read multi-series datasets spread across multiple files
• Improved channel merging in ImageJ - requires ImageJ 1.39l
• Support for hyperstacks and virtual stacks in ImageJ - requires ImageJ 1.39l
• Added API for reading directly from a byte array or InputStream
• Metadata key/value pairs are now stored in ImageJ’s “Info” property
• Improved OMERO download plugin - it is now much faster
• Added “open all series” option to ImageJ importer
• ND2 reader based on Nikon’s SDK now uses our own native bindings
• Fixed metadata saving bug in ImageJ
• Added sub-channel labels to ImageJ windows
• Major updates to 4D Data Browser
• Minor updates to automated testing suite

4.1.28 2007 Dec 1

• Updated OME plugin for ImageJ to support downloading from OMERO
• Fixed bug with floating point TIFFs
• Fixed bugs in Visitech, Zeiss LSM, Imaris 5.5 (HDF)
• Added alternate ND2 reader that uses Nikon’s native libraries
• Fixed calibration and series name settings in importer
• Added basic support for InCell 1000 datasets

4.1.29 2007 Nov 21

• Fixed bugs in ND2, Leica LIF, DICOM, Zeiss ZVI, Zeiss LSM, FV1000 OIB, FV1000 OIF, BMP, Evotec Flex, BioRad PIC, Slidebook, TIFF
• Added new ImageJ plugins to slice stacks and do “smart” RGB merging
• Added “windowless” importer plugin
 – uses import parameters from IJ_Prefs.txt, without prompting the user
• Improved stack slicing and colorizing logic in importer plugin
• Added support for DICOM files compressed with lossless JPEG
 – requires native libraries
• Fixed bugs with signed pixel data
• Added support for Imaris 5.5 (HDF) files
• Added 4 channel merging to importer plugin
• Added API methods for reading subimages
• Major updates to the 4D Data Browser

4.1.30 2007 Oct 17
• Critical OME-TIFF bug fixes
• Fixed bugs in Leica LIF, Zeiss ZVI, TIFF, DICOM, and AVI readers
• Added support for JPEG-compressed ZVI images
• Added support for BigTIFF
• Added importer plugin option to open each plane in a new window
• Added MS Video 1 codec for AVI

4.1.31 2007 Oct 1
• Added support for compressed DICOM images
• Added support for uncompressed LIM files
• Added support for Adobe Photoshop PSD files
• Fixed bugs in DICOM, OME-TIFF, Leica LIF, Zeiss ZVI, Visitech, PerkinElmer and Metamorph
• Improved indexed color support
• Addressed several efficiency issues
• Fixed how multiple series are handled in 4D data browser
• Added option to reorder stacks in importer plugin
• Added option to turn off autoscaling in importer plugin
• Additional metadata convenience methods

4.1.32 2007 Sept 11
• Major improvements to ND2 support; lossless compression now supported
• Support for indexed color images
• Added support for Simple-PCI .cxd files
• Command-line OME-XML validation
• Bugfixes in most readers, especially Zeiss ZVI, Metamorph, PerkinElmer and Leica LEI
• Initial version of Bio-Formats macro extensions for ImageJ
4.1.33 2007 Aug 1
- Added support for latest version of Leica LIF
- Fixed several issues with Leica LIF, Zeiss ZVI
- Better metadata mapping for Zeiss ZVI
- Added OME-TIFF writer
- Added MetadataRetrieve API for retrieving data from a MetadataStore
- Miscellaneous bugfixes

4.1.34 2007 July 16
- Fixed several issues with ImageJ plugins
- Better support for Improvision and Leica TCS TIFF files
- Minor improvements to Leica LIF, ICS, QuickTime and Zeiss ZVI readers
- Added searchable metadata window to ImageJ importer

4.1.35 2007 July 2
- Fixed issues with ND2, Openlab LIFF and Slidebook
- Added support for Visitech XYS
- Added composite stack support to ImageJ importer

4.1.36 2007 June 18
- Fixed issues with ICS, ND2, MicroManager, Leica LEI, and FV1000 OIF
- Added support for large (> 2 GB) ND2 files
- Added support for new version of ND2
- Minor enhancements to ImageJ importer
- Implemented more flexible logging
- Updated automated testing framework to use TestNG
- Added package for caching images produced by Bio-Formats

4.1.37 2007 June 6
- Fixed OME upload/download bugs
- Fixed issues with ND2, EPS, Leica LIF, and OIF
- Added support for Khoros XV
- Minor improvements to the importer

4.1.38 2007 May 24
- Better Slidebook support
- Added support for Quicktime RPZA
- Better Leica LIF metadata parsing
- Added support for BioRad PIC companion files
• Added support for bzip2-compressed files
• Improved ImageJ plugins
• Native support for FITS and PGM

4.1.39 2007 May 2
• Added support for NRRD
• Added support for Evotec Flex (requires LuraWave Java SDK with license code)
• Added support for gzip-compressed files
• Added support for compressed QuickTime headers
• Fixed QuickTime Motion JPEG-B support
• Fixed some memory issues (repeated small array allocations)
• Fixed issues reading large (> 2 GB) files
• Removed “ignore color table” logic, and replaced with Leica-specific solution
• Added status event reporting to readers
• Added API to toggle metadata collection
• Support for multiple dimensions rasterized into channels
• Deprecated reader and writer methods that accept the ‘id’ parameter
• Deprecated IFormatWriter.save in favor of saveImage and saveBytes
• Moved dimension swapping and min/max calculation logic to delegates
• Separate GUI logic into isolated loci.formats.gui package
• Miscellaneous bugfixes and tweaks in most readers and writers
• Many other bugfixes and improvements

4.1.40 2007 Mar 16
• Fixed calibration bugs in importer plugin
• Enhanced metadata support for additional formats
• Fixed LSM bug

4.1.41 2007 Mar 7
• Added support for Micro-Manager file format
• Fixed several bugs – Leica LIF, Leica LEI, ICS, ND2, and others
• Enhanced metadata support for several formats
• Load series preview thumbnails in the background
• Better implementation of openBytes(String, int, byte[]) for most readers
• Expanded unit testing framework

4.1.42 2007 Feb 28
• Better series preview thumbnails
• Fixed bugs with multi-channel Leica LEI
• Fixed bugs with “ignore color tables” option in ImageJ plugin

4.1. Version history
4.1.43 2007 Feb 26

- Many bugfixes: Leica LEI, ICS, FV1000 OIB, OME-XML and others
- Better metadata parsing for BioRad PIC files
- Enhanced API for calculating channel minimum and maximum values
- Expanded MetadataStore API to include more semantic types
- Added thumbnails to series chooser in ImageJ plugin
- Fixed plugins that upload and download from an OME server

4.1.44 2007 Feb 7

- Added plugin for downloading images from OME server
- Improved HTTP import functionality
- Added metadata filtering – unreadable metadata is no longer shown
- Better metadata table for multi-series datasets
- Added support for calibration information in Gatan DM3
- Eliminated need to install JAI Image I/O Tools to read ND2 files
- Fixed ZVI bugs: metadata truncation, and other problems
- Fixed bugs in Leica LIF: incorrect calibration, first series labeling
- Fixed memory bug in Zeiss LSM
- Many bugfixes: PerkinElmer, Deltavision, Leica LEI, LSM, ND2, and others
- IFormatReader.close(boolean) method to close files temporarily
- Replaced Compression utility class with extensible Compressor interface
- Improved testing framework to use .bioformats configuration files

4.1.45 2007 Jan 5

- Added support for Prairie TIFF
- Fixed bugs in Zeiss LSM, OIB, OIF, and ND2
- Improved API for writing files
- Added feature to read files over HTTP
- Fixed bugs in automated testing framework
- Miscellaneous bugfixes

4.1.46 2006 Dec 22

- Expanded ImageJ plugin to optionally use Image5D or View5D
- Improved support for ND2 and JPEG-2000 files
- Added automated testing framework
- Fixed bugs in Zeiss ZVI reader
- Miscellaneous bugfixes

4.1. Version history
4.1.47 2006 Nov 30

- Added support for ND2/JPEG-2000
- Added support for MRC
- Added support for MNG
- Improved support for floating-point images
- Fixed problem with 2-channel Leica LIF data
- Minor tweaks and bugfixes in many readers
- Improved file stitching logic
- Allow ImageJ plugin to be called from a macro

4.1.48 2006 Nov 2

- Bugfixes and improvements for Leica LIF, Zeiss LSM, OIF and OIB
- Colorize channels when they are split into separate windows
- Fixed a bug with 4-channel datasets

4.1.49 2006 Oct 31

- Added support for Imaris 5 files
- Added support for RGB ICS images

4.1.50 2006 Oct 30

- Added support for tiled TIFFs
- Fixed bugs in ICS reader
- Fixed importer plugin deadlock on some systems

4.1.51 2006 Oct 27

- Multi-series support for Slidebook
- Added support for Alicona AL3D
- Fixed plane ordering issue with FV1000 OIB
- Enhanced dimension detection in FV1000 OIF
- Added preliminary support for reading NEF images
- Added option to ignore color tables
- Fixed ImageJ GUI problems
- Fixed spatial calibration problem in ImageJ
- Fixed some lingering bugs in Zeiss ZVI support
- Fixed bugs in OME-XML reader
- Tweaked ICS floating-point logic
- Fixed memory leaks in all readers
- Better file stitching logic
4.1.52 2006 Oct 6

- Support for 3i SlideBook format (single series only for now)
- Support for 16-bit RGB palette TIFF
- Fixed bug preventing import of certain Metamorph STK files
- Fixed some bugs in PerkinElmer UltraView support
- Fixed some bugs in Leica LEI support
- Fixed a bug in Zeiss ZVI support
- Fixed bugs in Zeiss LSM support
- Fixed a bug causing slow identification of Leica datasets
- Fixed bugs in the channel merging logic
- Fixed memory leak for OIB format
- Better scaling of 48-bit RGB data to 24-bit RGB
- Fixed duplicate channels bug in “open each channel in a separate window”
- Fixed a bug preventing PICT import into ImageJ
- Better integration with HandleExtraFileTypes
- Better virtual stack support in Data Browser plugin
- Fixed bug in native QuickTime random access
- Keep aspect ratio for computed thumbnails
- Much faster file stitching logic

4.1.53 2006 Sep 27

- PerkinElmer: support for PE UltraView
- Openlab LIFF: support for Openlab v5
- Leica LEI: bug fixes, and support for multiple series
- ZVI, OIB, IPW: more robust handling of these formats (eliminated custom OLE parsing logic in favor of Apache POI)
- OIB: better metadata parsing (but maybe still not perfect?)
- LSM: fixed a bug preventing import of certain LSMs
- Metamorph STK: fixed a bug resulting in duplicate image planes
- User interface: use of system look & feel for file chooser dialog when available
- Better notification when JAR libraries are missing

4.1.54 2006 Sep 6

- Leica LIF: multiple distinct image series within a single file
- Zeiss ZVI: fixes and improvements contributed by Michel Boudinot
- Zeiss LSM: fixed bugs preventing the import of certain LSM files
- TIFF: fixed a bug preventing import of TIFFs created with Bio-Rad software

4.1.55 2006 Mar 31

- First release
Part II

User Information
The following sections explain the features of Bio-Formats and how to use it within *ImageJ* and *Fiji*:

5.1 ImageJ

ImageJ\(^1\) is an image processing and analysis application written in Java, widely used in the life sciences fields, with an extensible plugin infrastructure. You can use Bio-Formats as a plugin for ImageJ to read and write images in the formats it supports.

5.1.1 Installation

Download loci_tools.jar\(^2\) and drop it into your *ImageJ/plugins* folder. Next time you run ImageJ, a new LOCI submenu with several plugins will appear in the Plugins menu, including the Bio-Formats Importer and Bio-Formats Exporter.

5.1.2 Usage

The Bio-Formats Importer plugin can display image stacks in several ways:

- In a standard ImageJ window (including as a hyperstack)
- Using the LOCI Data Browser\(^3\) plugin (included)
- With Joachim Walter’s Image5D\(^4\) plugin (if installed)
- With Rainer Heintzmann’s View5D\(^5\) plugin (if installed)

ImageJ v1.37 and later automatically (via HandleExtraFileTypes) calls the Bio-Formats logic, if installed, as needed when a file is opened within ImageJ—e.g., when using File/Open instead of explicitly choosing “Bio-Formats Importer” from the Plugins/LOCI menu.

For a more detailed description of each plugin, see the Bio-Formats page\(^6\) of the Fiji wiki.

5.1.3 Upgrading

To upgrade, just overwrite the old loci_tools.jar with the latest 4.4 version\(^7\). Step-by-step upgrade instructions for Windows are available [here](http://downloads.openmicroscopy.org/bio-formats/).

You may want to download the latest version of ImageJ first, to take advantage of new features and bug-fixes.

3. http://loci.wisc.edu/software/data-browser
4. http://developer.imagej.net/plugins/image5d
5. http://www.nanoimaging.de/View5D
As of the 4.0.0 release, you can also upgrade the Bio-Formats plugin directly from ImageJ. Select “Plugins>LOCI>Update LOCI Plugins” from the ImageJ menu, then select which release you would like to use. You will then need to restart ImageJ to complete the upgrade process.

5.1.4 Macros and plugins

Bio-Formats is fully scriptable in a macro, and callable from a plugin. To use in a macro, use the Macro Recorder to record a call to the Bio-Formats Importer with the desired options. You can also perform more targeted metadata queries using the Bio-Formats macro extensions.

Here are some example ImageJ macros and plugins that use Bio-Formats to get you started:

- **basicMetadata.txt** - A macro that uses the Bio-Formats macro extensions to print the chosen file’s basic dimensional parameters to the Log.
- **planeTimings.txt** - A macro that uses the Bio-Formats macro extensions to print the chosen file’s plane timings to the Log.
- **recursiveTiffConvert.txt** - A macro for recursively converting files to TIFF using Bio-Formats.
- **bfOpenAsHyperstack.txt** - This macro from Wayne Rasband opens a file as a hyperstack using only the Bio-Formats macro extensions (without calling the Bio-Formats Importer plugin).
- **zvi2HyperStack.txt** - This macro from Sebastien Huart reads in a ZVI file using Bio-Formats, synthesizes the LUT using emission wavelength metadata, and displays the result as a hyperstack.
- **dvSplitTimePoints.txt** - This macro from Sebastien Huart splits timepoints/channels on all DV files in a folder.
- **batchTiffConvert.txt** - This macro converts all files in a directory to TIFF using the Bio-Formats macro extensions.
- **Read_Image** - A simple plugin that demonstrates how to use Bio-Formats to read files into ImageJ.
- **Mass_Importer** - A simple plugin that demonstrates how to open all image files in a directory using Bio-Formats, grouping files with similar names to avoiding opening the same dataset more than once.

5.2 Fiji

Fiji is an image processing package. It can be described as a distribution of ImageJ together with Java, Java 3D and a lot of plugins organized into a coherent menu structure. Fiji compares to ImageJ as Ubuntu compares to Linux.

Fiji works with Bio-Formats out of the box, because it comes bundled with the Bio-Formats ImageJ plugins.

5.2.1 Upgrading

Upgrading Bio-Formats within Fiji is as simple as invoking the “Update Fiji” command from the Help menu. By default, Fiji even automatically checks for updates every time it is launched, so you will always be notified when new versions of Bio-Formats (or any other bundled plugin) are available.

Fiji ships with the latest Bio-Formats stable release. Alternately, you can enable the “Bio-Formats daily builds” update site to receive the latest Bio-Formats bugfixes and updates.

For further details on Bio-Formats in Fiji, see the Bio-Formats Fiji wiki page.

References:

8. https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/macros/basicMetadata.txt
11. https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/macros/bfOpenAsHyperstack.txt
12. https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/macros/zvi2HyperStack.txt
15. https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/Mass_Importer.java
17. http://fiji.sc/Plugins_Menu
20. http://fiji.sc/Bio-Formats
5.3 Bio-Formats features in ImageJ and Fiji

When you select Bio-Formats under the Plugin menu, you will see the following features:

- **The Bio-Formats Importer** is a plugin for loading images into ImageJ or Fiji. It can read over 100 proprietary life sciences formats and standardizes their acquisition metadata into the common OME data model. It will also extract and set basic metadata values such as spatial calibration\(^2\) if they are available in the file.

- **The Bio-Formats Exporter** is a plugin for exporting data to disk. It can save to the open OME-TIFF\(^2\) file format, as well as several movie formats (e.g. QuickTime, AVI) and graphics formats (e.g. PNG, JPEG).

- **The Bio-Formats Remote Importer** is a plugin for importing data from a remote URL. It is likely to be less robust than working with files on disk, so we recommend downloading your data to disk and using the regular Bio-Formats Importer whenever possible.

- **The Bio-Formats Windowless Importer** is a version of the Bio-Formats Importer plugin that runs with the last used settings to avoid any additional dialogs beyond the file chooser. If you always use the same import settings, you may wish to use the windowless importer to save time (Learn more here).

- **The Bio-Formats Macro Extensions** plugin prints out the set of commands that can be used to create macro extensions. The commands and the instructions for using them are printed to the ImageJ log window.

- **The Stack Slicer** plugin is a helper plugin used by the Bio-Formats Importer. It can also be used to split a stack across channels, focal planes or time points.

- **The LOCI Plugins Configuration** dialog is a useful way to configure the behavior of each file format. The Formats tab lists supported file formats and toggles each format on or off, which is useful if your file is detected as the wrong format. It also toggles whether each format bypasses the importer options dialog through the “Windowless” checkbox. You can also configure any specific option for each format. The Libraries tab provides a list of available helper libraries used by Bio-Formats.

- **The LOCI Plugins Shortcut Window** opens a small window with a quick-launch button for each LOCI plugin. Dragging and dropping files onto the shortcut window opens them quickly using the Bio-Formats Importer plugin.

- **The Update LOCI Plugins** command will check for LOCI Plugins updates. We recommend you update to the newest Trunk build as soon as you think you may have discovered a bug.

5.4 Installing Bio-Formats in ImageJ

(Since FIJI is essentially ImageJ with plugins like Bio-Formats already built in, people who install Fiji can skip this section.)

Once you download\(^2\) and install ImageJ, you can install the Bio-Formats plugin by going to the Bio-Formats download page\(^2\). For most end-users, we recommend downloading the loci_tools.jar complete bundle.

However, you must decide which version of it you want to install. There are three primary versions of Bio-Formats: the trunk build, the daily builds, and the Stable Release. Which version you should download depends on your needs:

- **The trunk build** is automatically updated every time any change is made to the source code on the main “trunk” branch in Git, LOCI’s software version control system. This build has the latest bug fixes, but it is not well tested and may have also introduced new bugs.

- **The daily build** is a compilation of that day’s changes that occurs daily around midnight. It is not any better tested than the trunk build; but if you download it multiple times in a day, you can be sure you’ll get the same version each time.

- **The stable release** is thoroughly tested and has documentation to match. The list of supported formats on the Bio-Formats site corresponds to the most recent stable release. We do not add new formats to the list until a release containing support for that format has been completed. The stable release is less likely to contain bugs.

The stable release is also more useful to programmers because they can link their software to a known, fixed version of Bio-Formats. Bio-Formats’ behavior won’t be changing “out from under them” as they continue developing their own programs.

\(^{21}\)http://fiji.sc/SpatialCalibration
\(^{22}\)http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
\(^{23}\)http://rsbweb.nih.gov/ij/download.html
\(^{24}\)http://downloads.openmicroscopy.org/bio-formats/
We often recommend that most people simply use the trunk build for two reasons. First, trunk may contain bug-fixes or new features you want anyway; secondly, you will have to reproduce any bug you encounter in Bio-Formats against the latest trunk build before submitting a bug report. Rather than using the stable release until you find a bug that requires you to upgrade and reproduce it, why not just use the trunk build to begin with?

Once you decide which version you need, go to the Bio-Formats download page\(^{25}\) and save the appropriate `loci_tools.jar` to the Plugins directory within ImageJ.

\(^{25}\)http://downloads.openmicroscopy.org/bio-formats/
You are now ready to start using Bio-Formats.

5.5 Using Bio-Formats to load images into ImageJ

This section will explain how to use Bio-Formats to import files into ImageJ and how to use the settings on the Bio-Formats Import Options screen.

5.5.1 Opening files

There are three ways you can open a file using Bio-Formats:

1. Select the Bio-Formats Importer under the LOCI plugins menu.
2. Drag and drop it onto the LOCI Plugins Shortcut window.
3. Use the Open command in the File menu.

Unless you used the LOCI Plugins Configuration dialog to open the file type windowlessly, you know you used Bio-Formats to open a file when you see a screen like this:
If you used the File > Open command and did not see the Bio-Formats Import Options screen, ImageJ/Fiji probably used another plugin instead of Bio-Formats to open the file. If this happens and you want to open a file using Bio-Formats, use one of the other two methods instead.

5.5.2 Opening files windowlessly

When you open a file with Bio-Formats, the Import Options Screen automatically recalls the settings you last used to open a file with that specific format (e.g. JPG, TIF, LSM, etc.). If you always choose the same options whenever you open files in a specific file format, you can save yourself time by bypassing the Bio-Formats Import Options screen. You can accomplish this two ways:

1. You can select the **Bio-Formats Windowless Importer**, located in the LOCI menu under ImageJ’s Plugin menu. When you select this option, Bio-Formats will import the file using the same settings you used the last time you imported a file with the same format.

2. If you invariably use the same settings when you open files in a specific format, you can always bypass the Import Options Screen by changing the settings in the **LOCI Plugins Configuration** option, which is also located in the LOCI menu under ImageJ’s Plugin menu.

Once you select this option, select the file format you are interested in from the list on the left side of the screen. Check both the **Enabled** and **Windowless** boxes. Once you do this, whenever you open a file using the **Bio-Formats Windowless Importer**, the Bio-Formats Importer, or the drag-and-drop method described in the previous section, the file will always open the same way using the last setting used.

Please note that if you want to change any of the import settings once you enable this windowless option, you will have to go back to the **LOCI Plugins Configuration** screen, unselect the windowless option, open a file using the regular **Bio-Formats Importer**, select your settings, and re-select the windowless option.

5.5.3 Group files with similar names

One of the most important features of Bio-Formats is to combine multiple files from a data set into one coherent, multi-dimensional image.

To demonstrate how to use the **Group files with similar names** feature, you can use the **dub** data set available under LOCI’s **Sample Data** page. You will notice that it is a large dataset: each of the 85 files shows the specimen at 33 optical sections along the z-plane at a specific time.

26http://www.loci.wisc.edu/sample-data/dub

27http://www.loci.wisc.edu/software/sample-data
If you open just one file in ImageJ/Fiji using the **Bio-Formats Importer**, you will get an image incorporating three dimensions (x, y, z). However, if you select **Group files with similar names** from the Bio-Formats Import Options screen, you will be able to create a 4-D image (x, y, z, and t) incorporating the 85 files.

After clicking OK, you will see a screen like this:

This screen allows you to select which files within the 85-file cluster to use to create that 4-D image. Some information will be pre-populated in the fields. Unless you want to change the settings in that field, there is no need to change or delete it. If you click OK at this point, you will load all 85 files.

However, you can specify which files you want to open by adjusting the “axis information”, the file “name contains,” or the “pattern” sections. Even though there are three options, you only need to need to make changes to one of them. Since Bio-Format’s precedence for processing data is from top to bottom, only the uppermost section that you made changes to will be used. If you change multiple boxes, any information you enter into lower boxes will be ignored.

To return to the example involving the dub dataset, suppose you want to open the first image and only every fifth image afterwards (i.e. dub01, dub06, dub11 . . . dub81). This would give you 17 images. There are different ways to accomplish this:

You can use the **Axis Settings** only when your files are numbered in sequential order and you want to open only a subset of the files that have similar names. Since the dub data set is numbered sequentially, you can use this feature.

Axis 1 number of images refers to the total number of images you want to open. Since you want to view 17 images, enter 17. **Axis 1 axis first image** specifies which image in the set you want to be the first. Since you want to start with dub01, enter 1 in that box. You also want to view only every fifth image, so enter 5 in the **Axis 1 axis increment** box.

The **File name contains** box should be used if all of the files that you want to open have common text. This is especially useful when the files are not numbered. For example, if you have “Image_Red.tif”, “Image_Green.tif”, and “Image_Blue.tif” you could enter “Image_” in the box to group them all.

To continue the example involving the dub data set, you cannot use the **file name contains** box to open every fifth image. However, if you only wanted to open dub10 thorough dub19, you could enter “dub1” in the **file name contains** box.

The **pattern** box can be used to do either of the options listed above or much more. This box can accept a single file name like “dub01.pic.” It can also contain a pattern that use “<” and “>” to specify what numbers or text the file names contain.

There are three basic forms to the “< >” blocks:

- **Text enumeration** - “Image_<Red,Green,Blue>.tif” is the pattern for Image_Red.tif, Image_Green.tif, Image_Blue.tif. (Note that the order you in which you enter the file names is the order in which they will be loaded.)
- **Number range** - “dub<1-85>.pic” is the pattern for “dub1.pic”, “dub2.pic”, “dub3.pic” . . . “dub85.pic”.
- **Number range with step** - “dub<1-85:5>.pic” is the pattern for “dub1.pic”, “dub6.pic”, “dub11.pic”, “dub16.pic” . . . “dub85.pic”.

It can also accept a **Java regular expression**

5.5.4 Autoscale

Autoscale helps increase the brightness and contrast of an image by adjusting the range of light intensity within an image to match the range of possible display values. Note that Autoscale does not change your data. It just changes how it is displayed.

28http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattem.html
Each pixel in an image has a numerical value ascribed to it to describe its intensity. The bit depth—the number of possible values—depends on the number of bits used in the image. Eight bits, for example, gives 256 values to express intensity where 0 is completely black, 255 is completely white, and 1 through 254 display increasingly lighter shades of grey.

ImageJ can collect the intensity information about each pixel from an image or stack and create a histogram. (You can see it by selecting Histogram under the Analyze menu.) Here is the histogram of a one particular image:

Notice that the histogram heavily skews right. Even though there are 256 possible values, only 0 through 125 are being used. Autoscale adjusts the image so the smallest and largest number in that image or stack’s histogram become the darkest and brightest settings. For this image, pixels with the intensity of 125 will be displayed in pure white. The other values will be adjusted too to help show contrast between values that were too insignificant to see before.

Here is one image Bio-Formats imported with and without using Autoscale:
Autoscale readjusts the image based on the highest value in the entire data set. This means if the highest value in your dataset is close to maximum display value, Autoscale’s adjusting may be undetectable to the eye.

ImageJ/Fiji also has its own tools for adjusting the image, which are available by selecting Brightness/Contrast, which is under the Adjust option in the Image menu.

5.6 Managing memory in ImageJ/Fiji using Bio-Formats

When dealing with a large stack of images, you may receive a warning like this:

This means the allotted memory is less than what Bio-Formats needs to load all the images. If you have a very large data set, you may have to:

- View your stack with Data Browser
- Crop the view area
- Open only a subset of images
- Use Virtual Stack
- Increase ImageJ/Fiji’s memory.

If your files contain JPEG or JPEG-2000 images, you may see this memory warning even if your file size is smaller than the amount of allocated memory. This is because compressed images like JPEG need to be decompressed into memory before being displayed and require more memory than their file size suggests. If you are having this issue, try utilizing one of the memory management tools below.
5.6.1 View your stack with Data Browser

Data Browser is another part of Bio-Formats that enables users to view large 3, 4, or 5-D datasets by caching a subset of all the images available. This enables users to view a stack that is bigger than the computer’s memory.

You can select Data Browser as an option for View stack with, the leftmost, uppermost option in the Bio-Formats Import Options screen.

Note that when you use Data Browser, other features like cropping and specifying range are not available. You can, however, adjust the size of the image cache in the Data Browser after you open the files. You can read more about it on LOCI’s Data Browser page29.

5.6.2 Cropping the view area

Crop on Import is useful if your images are very large and you are only interested in one specific section of the stack you are importing. If you select this feature, you will see a screen where you can enter the height and width (in pixels) of the part of image you want to see. Note that these measurements are from the top left corner of the image.

5.6.3 Opening only a subset of images

The Specify Range for Each Series option is useful for viewing a portion of a data set where all the plane images are encapsulated into one file (e.g. the Zeiss LSM format). If your file has a large quantity of images, you can specify which channels, Z-planes, and times you want to load.

5.6.4 Use Virtual Stack

Virtual Stack conserves memory by not loading specific images until necessary. Note that unlike Data Browser, Virtual Stack does not contain a buffer and may produce choppy animations.

5.6.5 Increasing ImageJ/Fiji’s memory

Finally, you can also increase the amount of the computer memory devoted to ImageJ/Fiji by selecting Memory & Threads under the Edit menu.

29http://www.loci.wisc.edu/software/data-browser
Generally, allocating more than 75% of the computer’s total memory will cause ImageJ/Fiji to become slow and unstable.

Please note that unlike the other three features, ImageJ/Fiji itself provides this feature and not Bio-Formats. You can find out more about this feature by looking at ImageJ’s [documentation](http://rsbweb.nih.gov/ij/docs/menus/edit.html#options).

5.7 Upgrading the Bio-Formats importer for ImageJ to the latest trunk build

1) Download the latest trunk build of `loci_tools.jar` from 4.4 version Bio-Formats [downloads](http://downloads.openmicroscopy.org/bio-formats/)

30[^1]
31[^2]
2) Internet Explorer will ask you where it should save `loci_tools.jar`. Select ‘Desktop’.

3. Start ImageJ.

4. Select “Plugins > Utilities > ImageJ Properties...”
5) Scroll through the Properties window until you find a line that starts with “Menus.getPlugInsPath” (highlighted).

6) Leaving ImageJ and the Properties window open, click the Start button, then My Computer.
7) Type the path from step 5 into the address bar in the **My Computer** window, then hit the **Enter** key. The path should look something like this `C:\PROGRA~1\ImageJ\plugins\`

8) Click “loci_tools.jar” on your Desktop and drag it to the “plugins” window.
9. If you are asked to replace an existing file, click “Yes”.

10. Close ImageJ.

11. Open ImageJ.

12) ImageJ now recognizes the latest trunk build of the Bio-Formats importer.
OMERO.importer uses Bio-Formats to read image pixels and propagate metadata into the OMERO.server system. Please refer to the OMERO documentation\(^1\) for further information.

\(^1\)http://www.openmicroscopy.org/site/support/omero4/
7.1 BISQUE

The BISQUE\(^1\) (Bio-Image Semantic Query User Environment) Database, developed at the Center for Bio-Image Informatics at UCSB, was developed for the exchange and exploration of biological images. The Bisque system supports several areas useful for imaging researchers from image capture to image analysis and querying. The bisque system is centered around a database of images and metadata. Search and comparison of datasets by image data and content is supported. Novel semantic analyses are integrated into the system allowing high level semantic queries and comparison of image content.

Bisque integrates with Bio-Formats by calling the `showinf command line tool`.

7.2 OME Server

OME\(^2\) is a set of software that interacts with a database to manage images, image metadata, image analysis and analysis results. The OME system is capable of leveraging Bio-Formats to import files.

Please note - the OME server is no longer maintained and has now been superseded by the OMERO server\(^3\).

7.2.1 Installation

For OME Perl v2.6.1\(^4\) and later, the command line installer automatically downloads the latest `loci_tools.jar` and places it in the proper location. This location is configurable, but is `/OME/java/loci_tools.jar` by default.

For a list of what was recognized for a particular import into the OME server, go to the Image details page in the web interface, and click the “Image import” link in the upper right hand box.

Bio-Formats is capable of parsing original metadata for supported formats, and standardizes what it can into the OME data model. For the rest, it expresses the metadata in OME terms as key/value pairs using an OriginalMetadata custom semantic type. However, this latter method of metadata representation is of limited utility, as it is not a full conversion into the OME data model.

Bio-Formats is enabled in OME v2.6.1 for all formats except:

- OME-TIFF
- Metamorph HTD
- Deltavision DV
- Metamorph STK
- Bio-Rad PIC
- Zeiss LSM
- TIFF

\(^1\)http://www.bioimage.ucsb.edu/bisque
\(^2\)http://openmicroscopy.org/site/support/legacy/ome-server
\(^3\)http://www.openmicroscopy.org/site/support/omero4/
\(^4\)http://cvs.openmicroscopy.org.uk/
The above formats have their own Perl importers that override Bio-Formats, meaning that Bio-Formats is not used to process them by default. However, you can override this behavior (except for Metamorph HTD, which Bio-Formats does not support) by editing an OME database configuration value:

% psql ome

To see the current file format reader list:

ome=# select value from configuration where name='import_formats';

value
--
['OME::ImportEngine::OMETIFFreader', 'OME::ImportEngine::MetamorphHTDFormat',
'OME::ImportEngine::DVreader', 'OME::ImportEngine::STKreader',
'OME::ImportEngine::BioradReader', 'OME::ImportEngine::LSMreader',
'OME::ImportEngine::TIFFreader', 'OME::ImportEngine::BMPreader',
'OME::ImportEngine::DICOMreader', 'OME::ImportEngine::XMLreader',
'OME::ImportEngine::BioFormats']

(1 row)

To remove extraneous readers from the list:

ome=# update configuration set value='["OME::ImportEngine::MetamorphHTDFormat",
"OME::ImportEngine::XMLreader", "OME::ImportEngine::BioFormats"]' where
name='import_formats';

UPDATE 1

ome=# select value from configuration where name='import_formats';

value
--
['OME::ImportEngine::MetamorphHTDFormat', 'OME::ImportEngine::XMLreader',
'OME::ImportEngine::BioFormats']

(1 row)

To reset things back to how they were:

ome=# update configuration set value='["OME::ImportEngine::OMETIFFreader",
"OME::ImportEngine::OMETIFFreader", "OME::ImportEngine::DVreader"],
"OME::ImportEngine::STKreader", "OME::ImportEngine::BioradReader",
"OME::ImportEngine::LSMreader", "OME::ImportEngine::TIFFreader",
"OME::ImportEngine::BMPreader", "OME::ImportEngine::DICOMreader",
"OME::ImportEngine::XMLreader", "OME::ImportEngine::BioFormats"]' where
name='import_formats';

Lastly, please note that Li-Cor L2D files cannot be imported into an OME server (see this Trac ticket\(^5\) for details). Since the OME perl server has been discontinued, we have no plans to fix this limitation.

7.2.2 Upgrading

You can upgrade your OME server installation to take advantage of a new Bio-Formats release\(^6\) by overwriting the old loci_tools.jar with the new one.

\(^5\)http://dev.loci.wisc.edu/trac/software/ticket/266
\(^6\)http://downloads.openmicroscopy.org/bio-formats/
7.2.3 Source Code

The source code for the Bio-Formats integration with OME server spans three languages, using piped system calls in both directions to communicate, with imported pixels written to OMEIS pixels files. The relevant source files are:

- OmeisImporter.java\(^7\) – omebf Java command line tool
- BioFormats.pm\(^8\) – Perl module for OME Bio-Formats importer
- omeis.c\(^9\) – OMEIS C functions for Bio-Formats (search for “bioformats” case insensitively to find relevant sections)

\(^7\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/ome/OmeisImporter.java
\(^8\)http://svn.openmicroscopy.org.uk/svn/ome/trunk/src/perl2/OME/ImportEngine/BioFormats.pm
\(^9\)http://svn.openmicroscopy.org.uk/svn/ome/trunk/src/C/omeis/omeis.c
8.1 Command line tools

There are several scripts for using Bio-Formats on the command line.

8.1.1 Installation

Download bftools.zip\(^1\), unzip it into a new folder, then download loci_tools.jar\(^2\) and place it in the same folder.

The zip file contains both Unix scripts and Windows batch files. Currently available tools include:

- **showinf** Prints information about a given image file to the console, and displays the image itself in the Bio-Formats image viewer.
- **ijview** Displays the given image file in ImageJ using the Bio-Formats Importer plugin (requires ij.jar).
- **bfconvert** Converts an image file from one format to another. Bio-Formats must support writing to the output file (determined by extension; see the Supported Formats).
- **formatlist** Displays a list of supported file formats in HTML, plaintext or XML.
- **xmlindent** A simple XML prettifier similar to xmllint --format but more robust in that it attempts to produce output regardless of syntax errors in the XML.
- **xmlvalid** A command-line XML validation tool, useful for checking an OME-XML document for compliance with the OME-XML schema.
- **omeul** A command-line client-side import tool for OME.
- **tiffcomment** Dumps the comment from the given TIFF file’s first IFD entry; useful for examining the OME-XML block in an OME-TIFF file.

All scripts require **loci_tools.jar** in the same directory as the command line tools.

8.1.2 Tutorial

There is a Bio-Formats command line tools tutorial\(^3\) on the FARSIGHT web site.

8.1.3 Using the tools directly from source

If you have checked out the source from the Git repository you already have the command line tools in the tools directory. You can configure the scripts to use your source tree instead of **loci_tools.jar** in the same directory by following these steps:

1. Point your CLASSPATH to the checked-out directory and the JAR files in the jar folder.

\(^1\)http://downloads.openmicroscopy.org/bio-formats/
\(^2\)http://downloads.openmicroscopy.org/bio-formats/
\(^3\)http://www.farsight-toolkit.org/wiki/FARSIGHT_Tutorials/Bio-Formats
• E.g. on Windows with Java 1.6 or later, if you have checked out the source at C:\code\loci, set your CLASSPATH environment variable to the value C:\code\loci\jar*;C:\code\loci. You can access the environment variable configuration area by right-clicking on My Computer, choosing Properties, Advanced tab, Environment Variables button.

2. Compile the source with ant compile.

3. Set the LOCI_DEVEL environment variable to any value (the variable just needs to be defined).

8.2 FARSIGHT

FARSIGHT\(^4\) is a collection of modules for image analysis created by LOCI’s collaborators at the University of Houston\(^5\). These open source modules are built on the ITK library and thus can take advantage of ITK’s support for Bio-Formats to process otherwise unsupported image formats.

The principal FARSIGHT module that benefits from Bio-Formats is the Nucleus Editor\(^6\), though in principle any FARSIGHT-based code that reads image formats via the standard ITK mechanism will be able to leverage Bio-Formats.

See Also:

FARSIGHT Downloads page\(^7\)
FARSIGHT HowToBuild tutorial\(^8\)

8.3 i3dcore

i3dcore\(^9\), also known as the CBIA 3D image representation library, is a 3D image processing library developed at the Centre for Biomedical Image Analysis\(^10\). Together with i3dalgo\(^11\) and i4dcore\(^12\), i3dcore forms a continuously developed templated cross-platform C++ suite of libraries for multidimensional image processing and analysis.

i3dcore is capable of reading images with Bio-Formats using Java for C++\(^13\) (java4cpp).

See Also:

Download i3dcore\(^14\)
CBIA Software Development\(^15\)

8.4 ImgLib

ImgLib2\(^16\) is a multidimensional image processing library. It provides a general mechanism for writing image analysis algorithms, without writing case logic for bit depth\(^17\), or worrying about the source of the pixel data (arrays in memory, files on disk, etc.).

The SCIFIO\(^18\) project provides an ImgOpener\(^19\) utility class for reading data into ImgLib2 data structures using Bio-Formats.

\(^4\)http://www.farsight-toolkit.org/
\(^5\)http://www.uh.edu/
\(^6\)http://www.farsight-toolkit.org/wiki/NucleusEditor
\(^7\)http://www.farsight-toolkit.org/wiki/Special:FarsightDownloads
\(^8\)http://www.farsight-toolkit.org/wiki/FARSIGHT_HowToBuild
\(^9\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html
\(^10\)http://cbia.fi.muni.cz/software-development.html
\(^11\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dalgo/index.html
\(^12\)http://cbia.fi.muni.cz/user_dirs/of_doc/libi4d.html
\(^13\)http://java4cpp.kapott.org/
\(^14\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html#download
\(^15\)http://cbia.fi.muni.cz/software-development.html
\(^16\)http://imglib2.net/
\(^17\)http://en.wikipedia.org/wiki/Color_depth
\(^18\)http://scif.io/
8.5 ITK

The Insight Toolkit\(^{20}\) (ITK) is an open-source, cross-platform system that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional data.

ITK provides an ImageIO plug-in structure that works via discovery through a dependency injection scheme. This allows a program built on ITK to load plug-ins for reading and writing different image types without actually linking to the ImageIO libraries required for those types. Such encapsulation automatically grants two major boons: firstly, programs can be easily extended just by virtue of using ITK (developers do not have to specifically accommodate or anticipate what plug-ins may be used). Secondly, the architecture provides a distribution method for open source software, like Bio-Formats, which have licenses that might otherwise exclude them from being used with other software suites.

The SCIFIO ImageIO\(^{21}\) plugin provides an for ITK imageIO base that uses Bio-Formats\(^{22}\) to read and write supported life sciences file formats. This plugin allows any program built on ITK to read any of the image types supported by Bio-Formats.

8.5.1 Prerequisites

You should have CMake\(^{23}\) installed, to allow the configuration of ITK builds. If you want the latest ITK development build, you will need Git\(^{24}\) as well.

8.5.2 Installation

Simply download ITK from the Kitware software page\(^{25}\). Using CMake, set the following configuration flag:

\(\text{(NOTE: this flag is only visible in “advanced” mode within CMake)}\)

- \(\text{Fetch_SCIFIO} = \text{ON}\)

If you would like to use the utility classes included with the SCIFIO imageIO, also set the flag:

- \(\text{BUILD_TESTING} = \text{ON}\)

Then build ITK as normal. It will automatically download and build the latest SCIFIO imageIO plugin. Usage Applications using the installed ITK should automatically defer to the SCIFIO ImageIO, and thus Bio-Formats, when reading or saving images not natively supported by ITK.

To use the SCIFIO test utility, run:

\texttt{ITKIO_SCIFIO_Test_Driver}

from your \$/ITK_BUILD/bin directory. This program has four separate applications that can be directly invoked using the syntax:

\texttt{ITKIO_SCIFIO_Test_Driver [Program to run] [Program arguments]}

The programs are as follows:

- \texttt{itk_SCIFIO_Image_Info_Test} - Displays basic information to verify the SCIFIO imageIO works, using .fake images.
- \texttt{itk_SCIFIO_Image_IO_Test} - Reads an input image, and writes it out as a specified type
- \texttt{itk_RGB_SCIFIO_Image_Test} - Same as itk_SCIFIO_Image_IO_Test but for RGB\(^{26}\) types
- \texttt{itk_Vector_Image_SCIFIO_Image_IO_Test} - Same as itk_SCIFIO_Image_IO_Test but for VectorImage\(^{27}\) type

\(^{20}\)http://itk.org/
\(^{21}\)https://github.com/scifio/scifio-imageio
\(^{22}\)http://farsight-toolkit.org/wiki/Bio-Formats
\(^{23}\)http://www.cmake.org/
\(^{24}\)http://git-scm.com/
\(^{25}\)http://www.itk.org/ITK/resources/software.html
\(^{26}\)http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
\(^{27}\)http://www.itk.org/Doxygen/html/classitk_1_1VectorImage.html
For example, to convert a .czi image to a .tif, you would use:

`ITKIOSCIIFIOTestDriver itkSCIIFIOImageIOTest in.czi out.tif`

8.5.3 Troubleshooting

Please send any issues, suggestions or requests to the insight users mailing list\(^{28}\).

8.6 Qu for MATLAB

Qu for MATLAB\(^{29}\) is a MATLAB toolbox for the visualization and analysis of N-dimensional datasets targeted to the field of biomedical imaging, developed by Aaron Ponti.

- Uses Bio-Formats to read files
- Open source software available under the Mozilla Public License

See Also:

Qu for MATLAB download page\(^{30}\)

8.7 Subimager

Subimager\(^{31}\), the SUBprocess IMAGE servER, is an HTTP server that uses Bio-Formats as a back-end to serve .TIF images. Subimager is designed to be run as a subprocess of CellProfiler to provide CellProfiler with the capability to read and write a variety of image formats. It can be used as a stand-alone image server. It was developed by the Broad Institute\(^{32}\) to facilitate integration with their CellProfiler\(^{33}\) image analysis application.

\(^{28}\)http://www.itk.org/ITK/help/mailing.html

\(^{31}\)https://github.com/CellProfiler/subimager

\(^{32}\)http://www.broadinstitute.org/

\(^{33}\)http://www.cellprofiler.org/
CHAPTER
NINE

NUMERICAL DATA PROCESSING
APPLICATIONS

9.1 IDL

IDL\(^1\) (Interactive Data Language) is a popular data visualization and analysis platform used for interactive processing of large amounts of data including images.

IDL possesses the ability to interact with Java applications via its IDL-Java bridge. Karsten Rodenacker has written a script that uses Bio-Formats to read in image files to IDL.

9.1.1 Installation

Download the \texttt{ij_read_bio_formats.pro}\(^2\) script from Karsten Rodenacker’s IDL goodies (?)\(^3\) web site. See the comments at the top of the script for installation instructions and caveats.

9.1.2 Upgrading

To use a newer version of Bio-Formats, overwrite the requisite JAR files with the newer version\(^4\) and restart IDL.

9.2 KNIME

KNIME\(^5\) (Konstanz Information Miner) is a user-friendly and comprehensive open-source data integration, processing, analysis, and exploration platform. KNIME supports image import using Bio-Formats using the KNIME Image Processing\(^6\) (a.k.a. KNIP) plugin.

9.3 MATLAB

MATLAB\(^7\) is a high-level language and interactive environment that facilitates rapid development of algorithms for performing computationally intensive tasks.

Calling Bio-Formats from MATLAB is fairly straightforward, since MATLAB has built-in interoperability with Java. We have created a set of scripts\(^8\) for reading image files. Note the minimum supported MATLAB version is R2007b (7.5).

\(^{1}\)http://www.exelisvis.com/ProductsServices/IDL.aspx
\(^{2}\)http://www.helmholtz-muenchen.de/ibb/homepage/karsten.rodenacker/IDL/_pro/ij_read_bio_formats.pro
\(^{3}\)http://www.helmholtz-muenchen.de/ibb/homepage/karsten.rodenacker/IDL/index.php
\(^{4}\)http://downloads.openmicroscopy.org/bio-formats/
\(^{5}\)http://knime.org/
\(^{6}\)http://tech.knime.org/community/image-processing
\(^{7}\)http://www.mathworks.com/products/matlab/
\(^{8}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab
9.3.1 Installation

Download the M files\(^9\) and loci_tools.jar\(^{10}\) and place them in your MATLAB work directory.

9.3.2 Usage

Please see the *Bio-Formats MATLAB Guide* for usage instructions. If you intend to extend the existing .m files, please also see the *developer page* for more information on how to use Bio-Formats in general.

9.3.3 Performance

In our tests (MATLAB R14 vs. java 1.6.0_20), the script executes at approximately half the speed of our *showinf command line tool*, due to overhead from copying arrays.

9.3.4 Upgrading

To use a newer version of Bio-Formats, overwrite loci_tools.jar with the newer version\(^{11}\) and restart MATLAB.

9.3.5 Alternative scripts

Several other groups have developed their own MATLAB scripts that use Bio-Formats, including the following:

- https://github.com/prakatmac/bf-tools/

9.4 VisAD

The VisAD\(^{12}\) visualization toolkit is a Java component library for interactive and collaborative visualization and analysis of numerical data. VisAD uses Bio-Formats to read many image formats, notably TIFF.

9.4.1 Installation

The visad.jar file has Bio-Formats bundled inside, so no further installation is necessary.

9.4.2 Upgrading

It should be possible to use a newer version of Bio-Formats by putting the latest loci_tools.jar\(^{13}\) or bio-formats.jar\(^{14}\) before visad.jar in the class path. Alternately, you can create a “VisAD Lite” using the *make lite command* from VisAD source, and use the resultant visad-lite.jar, which is a stripped down version of VisAD without sample applications or Bio-Formats bundled in.

\(^9\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab
\(^{10}\)http://downloads.openmicroscopy.org/bio-formats/
\(^{11}\)http://downloads.openmicroscopy.org/bio-formats/
\(^{12}\)http://www.ssec.wisc.edu/%7Ebillh/visad.html
\(^{13}\)http://downloads.openmicroscopy.org/bio-formats/
\(^{14}\)http://downloads.openmicroscopy.org/bio-formats/
10.1 Bitplane Imaris

Imaris\(^1\) is Bitplane’s core scientific software module that delivers all the necessary functionality for data visualization, analysis, segmentation and interpretation of 3D and 4D microscopy datasets. Combining speed, precision and ease-of-use, Imaris provides a complete set of features for working with three- and four-dimensional multi-channel images of any size, from a few megabytes to multiple gigabytes in size.

As of version 7.2\(^2\), Imaris integrates with Fiji, which includes Bio-Formats. See this page\(^3\) for a detailed list of Imaris’ features.

10.2 CellProfiler

CellProfiler\(^4\)—developed by the Broad Institute\(^5\)’s Imaging Platform\(^6\)—is free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automatically. CellProfiler uses Bio-Formats to read images from disk, as well as write movies.

10.2.1 Installation

The CellProfiler distribution comes with Bio-Formats included, so no further installation is necessary.

10.2.2 Upgrading

It should be possible to use a newer version of Bio-Formats by replacing the bundled loci_tools.jar with a newer version.

- For example, on Mac OS X, Ctrl+click the CellProfiler icon, choose Show Package Contents, and replace the following files:
 - Contents/Resources/bioformats/loci_tools.jar
 - Contents/Resources/lib/python2.5/bioformats/loci_tools.jar

See Also:

CellProfiler web site\(^7\)

\(^1\)http://www.bitplane.com/
\(^2\)http://www.bitplane.com/go/releasenotes?product=Imaris&version=7.2&patch=0
\(^3\)http://www.bitplane.com/imaris/imaris
\(^4\)http://www.cellprofiler.org/
\(^5\)http://www.broadinstitute.org/
\(^6\)http://www.broadinstitute.org/science/platforms/imaging/imaging-platform
\(^7\)http://www.cellprofiler.org/
10.3 Comstat2

Comstat2 is a Java-based computer program for the analysis and treatment of biofilm images in 3D. It is the Master’s project of Martin Vorregaard.

Comstat2 uses the Bio-Formats Importer plugin for ImageJ to read files in TIFF and Leica LIF formats.

See Also:
Comstat2 - a modern 3D image analysis environment for biofilms

10.4 Endrov

Endrov (or http://www.endrov.net) (EV) is a multi-purpose image analysis program developed by the Thomas Burglin group at Karolinska Institute, Department of Biosciences and Nutrition.

10.4.1 Installation

The EV distribution comes bundled with the core Bio-Formats library (bio-formats.jar), so no further installation is necessary.

10.4.2 Upgrading

It should be possible to use a newer version of Bio-Formats by downloading the latest 4.4. version of the bio-formats.jar and putting it into the libs folder of the EV distribution, overwriting the old file.

You could also include some optional libraries, to add support for additional formats, if desired.

10.5 FocalPoint

FocalPoint is an image browser, similar to Windows Explorer or other file manager application, specifically designed to work with more complex image types. FocalPoint uses Bio-Formats to generate thumbnails for some formats.

10.5.1 Installation

FocalPoint is bundled with Bio-Formats, so no further installation is necessary.

10.5.2 Upgrading

It should be possible to use a newer version of Bio-Formats by overwriting the old loci_tools.jar within the FocalPoint distribution. For Mac OS X, you will have to control click the FocalPoint program icon, choose “Show Package Contents” and navigate into Contents/Resources/Java to find the loci_tools.jar file.

8http://www.comstat.dk/
9http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=5628
10https://github.com/mahogany/Endrov
11http://www.biosci.ki.se/groups/tbu
12http://www.ki.se/
13http://downloads.openmicroscopy.org/bio-formats/
14http://www.bioinformatics.bbsrc.ac.uk/projects/focalpoint/
16http://en.wikipedia.org/wiki/FileManager
17http://downloads.openmicroscopy.org/bio-formats/
10.6 Graphic Converter

Graphic Converter\(^\text{18}\) is a Mac OS application for opening, editing, and organizing photos. Versions 6.4.1 and later use Bio-Formats to open all file formats supported by Bio-Formats.

10.7 Icy

Icy\(^\text{19}\) is an open-source image analysis and visualization software package that combines a user-friendly graphical interface with the ability to write scripts and plugins that can be uploaded to a centralized website. It uses Bio-Formats internally to read images and acquisition metadata, so no further installation is necessary.

10.8 imago

Mayachitra imago\(^\text{20}\) is an advanced desktop image management package that enables scientists to easily store, manage, search, and analyze 3D biological images and their analysis results. imago integrates flexible annotation and metadata management with advanced image analysis tools.

imago uses Bio-Formats to read files in some formats, including Bio-Rad PIC, Image-Pro Workspace, Metamorph TIFF, Leica LCS LEI, Olympus FluoView FV1000, Nikon NIS-Elements ND2, and Zeiss LSM.

A free 30-day trial version of imago is available here\(^\text{21}\).

10.9 Iqm

Iqm\(^\text{22}\) is an image processing application written in Java. It is mainly constructed around the Java JAI library and furthermore it incorporates the functionality of the popular ImageJ image processing software.

Because iqm integrates with ImageJ, it can take advantage of the Bio-Formats ImageJ plugin to read image data.

10.10 Macnification

Macnification\(^\text{23}\) is a Mac OS X application for organizing, editing, analyzing and annotating microscopic images, designed for ease of use. It is being developed by Orbicule\(^\text{24}\).

Macnification uses Bio-Formats to read files in some formats, including Gatan DM3, ICS, ImagePro SEQ, ImagePro IPW, Meta- morph STK, OME-TIFF and Zeiss LSM.

See Also:

Free trial download\(^\text{25}\)

10.11 MIPAV

The MIPAV\(^\text{26}\) (Medical Image Processing, Analysis, and Visualization) application—developed at the Center for Information Technology\(^\text{27}\) at the National Institutes of Health\(^\text{28}\)—enables quantitative analysis and visualization of medical images of numerous

\(^{18}\)http://www.lemkesoft.com
\(^{19}\)http://icy.bioimageanalysis.org/
\(^{20}\)http://mayachitra.com/imago/index.html
\(^{21}\)http://mayachitra.com/imago/download-trial.php
\(^{22}\)http://code.google.com/p/iqm/
\(^{23}\)http://www.orbicule.com/macnification/
\(^{24}\)http://www.orbicule.com
\(^{25}\)http://www.orbicule.com/macnification/download
\(^{26}\)http://mipav.cit.nih.gov/
\(^{27}\)http://cit.nih.gov/
\(^{28}\)http://nih.gov/
modalities such as PET, MRI, CT, or microscopy. You can use Bio-Formats as a plugin for MIPAV to read images in the formats it supports.

10.11.1 Installation

Follow these steps to install the Bio-Formats plugin for MIPAV:

1. Download loci_tools.jar\(^{29}\) and drop it into your MIPAV folder.
2. Download the plugin source code\(^{30}\) into your user mipav/plugins folder.
3. From the command line, compile the plugin with:

   ```
   cd mipav/plugins
   javac -cp $MIPAV:$MIPAV/loci_tools.jar\;
   PlugInBioFormatsImporter.java
   ```

4. where $MIPAV is the location of your MIPAV installation.
5. Add loci_tools.jar to MIPAV’s class path:
 - How to do so depends on your platform.
 - E.g., in Mac OS X, edit the mipav.app/Contents/Info.plist file.

 See the readme file\(^{31}\) for more information.

 To upgrade, just overwrite the old loci_tools.jar with the latest one\(^{32}\). You may want to download the latest version of MIPAV first, to take advantage of new features and bug-fixes.

10.12 Vaa3D

Vaa3D\(^{33}\), developed by the Peng Lab\(^{34}\) at the HHMI Janelia Farm Research Campus\(^{35}\), is a handy, fast, and versatile 3D/4D/5D Image Visualization & Analysis System for Bioimages & Surface Objects. Vaa3D can use Bio-Formats via the Bio-Formats C++ bindings\(^{36}\) to read images.

10.13 VisBio

VisBio\(^{37}\) is a biological visualization tool designed for easy visualization and analysis of multidimensional image data. VisBio uses Bio-Formats to import files as the Bio-Formats library originally grew out of our efforts to continually expand the file format support within VisBio.

10.13.1 Installation

VisBio is bundled with Bio-Formats, so no further installation is necessary.

\(^{29}\)http://downloads.openmicroscopy.org/bio-formats/

\(^{30}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/utils/mipav/PlugInBioFormatsImporter.java

\(^{31}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/utils/mipav/readme.txt

\(^{32}\)http://downloads.openmicroscopy.org/bio-formats/

\(^{33}\)http://vaa3d.org

\(^{34}\)http://penglab.janelia.org/

\(^{35}\)http://www.hhmi.org/janelia/

\(^{37}\)http://www.loic.wisc.edu/visbio/
10.13.2 Upgrading

It should be possible to use a newer version of Bio-Formats\(^\text{38}\) by overwriting the old \texttt{bio-formats.jar} and optional libraries within the VisBio distribution. For Mac OS X, you’ll have to control click the VisBio program icon, choose “Show Package Contents” and navigate into Contents/Resources/Java to find the JAR files.

10.14 XuvTools

XuvTools\(^\text{39}\) is automated 3D stitching software for biomedical image data. As of release 1.8.0, XuvTools uses Bio-Formats to read image data.

\(^{38}\)http://downloads.openmicroscopy.org/bio-formats/

\(^{39}\)http://www.xuvtools.org
Part III

Developer Documentation
11.1 An in-depth guide to using Bio-Formats

11.1.1 Overview

This document describes various things that are useful to know when working with Bio-Formats. It is recommended that you obtain the Bio-Formats source by following the directions on the source code page, rather than using an official release. It is also recommended that you have a copy of the Javadocs nearby - the notes that follow will make more sense when you see the API. For a complete list of supported formats, see the Bio-Formats supported formats table. For a few working examples of how to use Bio-Formats, see these Github pages.

11.1.2 Basic file reading

Bio-Formats provides several methods for retrieving data from files in an arbitrary (supported) format. These methods fall into three categories: raw pixels, core metadata, and format-specific metadata. All methods described here are present and documented in loci.formats.IFormatReader - it is advised that you take a look at the source and/or the Javadocs. In general, it is recommended that you read files using an instance of ImageReader. While it is possible to work with readers for a specific format, ImageReader contains additional logic to automatically detect the format of a file and delegate subsequent calls to the appropriate reader.

Prior to retrieving pixels or metadata, it is necessary to call setId(String) on the reader instance, passing in the name of the file to read. Some formats allow multiple series (5D image stacks) per file; in this case you may wish to call setSeries(int) to change which series is being read.

Raw pixels are always retrieved one plane at a time. Planes are returned as raw byte arrays, using one of the openBytes methods.

Core metadata is the general term for anything that might be needed to work with the planes in a file. A list of core metadata fields is given below, with the appropriate accessor method in parentheses:

- image width (getSizeX())
- image height (getSizeY())
- number of series per file (getSeriesCount())
- total number of images per series (getImageCount())
- number of slices in the current series (getSizeZ())
- number of timepoints in the current series (getSizeT())

• number of actual channels in the current series (getSizeC())
• number of channels per image (getRGBChannelCount())
• the ordering of the images within the current series (getDimensionOrder())
• whether each image is RGB (isRGB())
• whether the pixel bytes are in little-endian order (isLittleEndian())
• whether the channels in an image are interleaved (isInterleaved())
• the type of pixel data in this file (getPixelType())

All file formats are guaranteed to accurately report core metadata. Format-specific metadata refers to any other data specified in the file - this includes acquisition and hardware parameters, among other things. This data is stored internally in a java.util.Hashtable, and can be accessed in one of two ways: individual values can be retrieved by calling getMetadataValue(String), which gets the value of the specified key. Alternatively, getMetadata() will return the entire Hashtable. Note that the keys in this Hashtable are different for each format, hence the name “format-specific metadata”.

See Bio-Formats metadata processing for more information on the metadata capabilities that Bio-Formats provides.

11.1.3 File reading extras

The previous section described how to read pixels as they are stored in the file. However, the native format is not necessarily convenient, so Bio-Formats provides a few extras to make file reading more flexible.

• There are a few “wrapper” readers (that implement IFormatReader) that take a reader in the constructor, and manipulate the results somehow, for convenience. Using them is similar to the java.io.InputStream/OutputStream model: just layer whichever functionality you need by nesting the wrappers.
 - BufferedImageReader extends IFormatReader, and allows pixel data to be returned as BufferedImages instead of raw byte arrays.
 - FileStitcher extends IFormatReader, and uses advanced pattern matching heuristics to group files that belong to the same dataset.
 - ChannelSeparator extends IFormatReader, and makes sure that all planes are grayscale - RGB images are split into 3 separate grayscale images.
 - ChannelMerger extends IFormatReader, and merges grayscale images to RGB if the number of channels is greater than 1.
 - ChannelFiller extends IFormatReader, and converts indexed color images to RGB images.
 - MinMaxCalculator extends IFormatReader, and provides an API for retrieving the minimum and maximum pixel values for each channel.
 - DimensionSwapper extends IFormatReader, and provides an API for changing the dimension order of a file.

13[^13]
14[^14]
15[^15]
16[^16]
17[^17]
18[^18]
19[^19]
20[^20]
21[^21]
22[^22]
23[^23]
24[^24]
25[^25]
26[^26]
27[^27]
28[^28]
• **ImageTools**\(^{29}\) and **loci.formats.gui.AWTImageTools**\(^{30}\) provide a number of methods for manipulating BufferedImage and primitive type arrays. In particular, there are methods to split and merge channels in a BufferedImage/array, as well as converting to a specific data type (e.g. convert short data to byte data).

11.1.4 Writing files

The following file formats can be written using Bio-Formats:

- TIFF (uncompressed, LZW, JPEG, or JPEG-2000)
- OME-TIFF (uncompressed, LZW, JPEG, or JPEG-2000)
- JPEG
- PNG
- AVI (uncompressed)
- QuickTime (uncompressed is supported natively; additional codecs use QTJava)
- Encapsulated PostScript (EPS)
- OME-XML (not recommended)

The writer API (see **loci.formats.IFormatWriter**\(^{31}\)) is very similar to the reader API, in that files are written one plane at time (rather than all at once).

All writers allow the output file to be changed before the last plane has been written. This allows you to write to any number of output files using the same writer and output settings (compression, frames per second, etc.), and is especially useful for formats that do not support multiple images per file.

Please see **loci.formats.tools.ImageConverter**\(^{32}\) and [this guide to exporting to OME-TIFF files](https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-tools/src/loci/formats/tools/ImageConverter.java) for examples of how to write files.

11.1.5 Arcane notes and implementation details

Known oddities:

- Importing multi-file formats (Leica LEI, PerkinElmer, FV1000 OIF, ICS, and Prairie TIFF, to name a few) can fail if any of the files are renamed. There are “best guess” heuristics in these readers, but they are not guaranteed to work in general. So please do not rename files in these formats.
- If you are working on a Macintosh, make sure that the data and resource forks of your image files are stored together. Bio-Formats does not handle separated forks (the native QuickTime reader tries, but usually fails).

11.2 Generating test images

Sometimes it is nice to have a file of a specific size or pixel type for testing. To generate a file (that contains gradient images):

```
touch "my-special-test-file\&pixelType=uint8\&sizeX=8192\&sizeY=8192.fake"
```

Whatever is before the `&` is the image name; remaining key value pairs should be pretty self-explanatory. Just replace the values with whatever you need for testing.

There are a few other keys that can be added as well:

\(^{29}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/ImageTools.java

\(^{30}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/gui/AWTImageTools.java

\(^{31}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatWriter.java

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sizeZ</td>
<td>number of Z sections</td>
</tr>
<tr>
<td>sizeC</td>
<td>number of channels</td>
</tr>
<tr>
<td>sizeT</td>
<td>number of timepoints</td>
</tr>
<tr>
<td>bitsPerPixel</td>
<td>number of valid bits (\leq number of bits implied by pixel type)</td>
</tr>
<tr>
<td>rgb</td>
<td>number of channels that are merged together</td>
</tr>
<tr>
<td>dimOrder</td>
<td>dimension order (e.g. XYZCT)</td>
</tr>
<tr>
<td>little</td>
<td>whether or not the pixel data should be little-endian</td>
</tr>
<tr>
<td>interleaved</td>
<td>whether or not merged channels are interleaved</td>
</tr>
<tr>
<td>indexed</td>
<td>whether or not a color lookup table is present</td>
</tr>
<tr>
<td>falseColor</td>
<td>whether or not the color lookup table is just for making the image look pretty</td>
</tr>
<tr>
<td>series</td>
<td>number of series (Images)</td>
</tr>
<tr>
<td>lutLength</td>
<td>number of entries in the color lookup table</td>
</tr>
</tbody>
</table>

You can often work with the .fake file directly, but in some cases support for those files is disabled and so you will need to convert the file to something else. Make sure that you have Bio-Formats built and the JARs in your CLASSPATH (individual JARs or just loci_tools.jar):

```bash
bfconvert test&pixelType=uint8&sizeX=8192&sizeY=8192.fake test.tiff
```

If you do not have the command line tools installed, substitute `loci.formats.tools.ImageConverter`\(^{33}\) for `bfconvert`.

BIO-FORMATS AS A JAVA LIBRARY

12.1 API documentation

12.1.1 Using Bio-Formats as a Java library

If you wish to make use of Bio-Formats within your own software, you can download bio-formats.jar to use it as a library. Just add bio-formats.jar to your CLASSPATH or build path. You will also need loci-common.jar for common I/O functions, ome-xml.jar for metadata standardization, and SLF4J for logging.

There are also certain packages that if present will be utilized to provide additional functionality. To include one, just place it in the same folder.

<table>
<thead>
<tr>
<th>Package</th>
<th>Filename</th>
<th>License</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache Jakarta POI library, LOCI fork</td>
<td>poi-loci.jar</td>
<td>Apache</td>
<td>For OLE-based formats (zvi, oib, ipw, cxd)</td>
</tr>
<tr>
<td>MDB Tools project Java port, LOCI fork</td>
<td>mdbtools-java.jar</td>
<td>LGPL</td>
<td>For Olympus CellR and Zeiss LSM metadata (mdb)</td>
</tr>
<tr>
<td>JAI Image I/O Tools pure Java implementation, LOCI fork</td>
<td>jai_imageio.jar</td>
<td>BSD</td>
<td>For JPEG2000-based formats (nd2, jp2)</td>
</tr>
<tr>
<td>NetCDF Java library</td>
<td>netcdf-4.0.jar</td>
<td>LGPL</td>
<td>For HDF5-based formats (Imaris 5.5, MINC MRI)</td>
</tr>
<tr>
<td>QuickTime for Java</td>
<td>QTJava.zip</td>
<td>Commercial</td>
<td>For additional QuickTime codecs</td>
</tr>
</tbody>
</table>

See the list in the Bio-Formats toplevel build file for a complete and up-to-date list of all optional libraries, which can all be found in our Git repository.

Examples of usage

ImageConverter - A simple command line tool for converting between formats.

ImageInfo - A more involved command line utility for thoroughly reading an input file, printing some information about it, and displaying the pixels onscreen using the Bio-Formats viewer.

MinimumWriter - A command line utility demonstrating the minimum amount of metadata needed to write a file.

PrintTimestamps\(^\text{17}\) - A command line example demonstrating how to extract timestamps from a file.

Simple_Read\(^\text{18}\) - A simple ImageJ plugin demonstrating how to use Bio-Formats to read files into ImageJ (see ImageJ).

Read_Image\(^\text{19}\) - An ImageJ plugin that uses Bio-Formats to build up an image stack, reading image planes one by one (see ImageJ).

Mass_Importer\(^\text{20}\) - A simple plugin for ImageJ that demonstrates how to open all image files in a directory using Bio-Formats, grouping files with similar names to avoiding opening the same dataset more than once (see ImageJ).

A Note on Java Web Start (loci_tools.jar vs. bio-formats.jar)

To use Bio-Formats with your Java Web Start application, we recommend using bio-formats.jar rather than loci_tools.jar—the latter is merely a bundle of bio-formats.jar plus all its optional dependencies.

The loci_tools.jar bundle is intended as a convenience (e.g. to simplify installation as an ImageJ plugin), but is by no means the only solution for developers. We recommend using bio-formats.jar as a separate entity depending on your needs as a developer.

The bundle is quite large because we have added support for several formats that need large helper libraries (e.g. Imaris' HDF-based format). However, these additional libraries are optional; Bio-Formats has been coded using reflection so that it can both compile and run without them.

When deploying a JNLP-based application, using loci_tools.jar directly is not the best approach, since every time Bio-Formats is updated, the server would need to feed another 8+ MB JAR file to the client. Rather, Web Start is a case where you should keep the JARS separate, since JNLP was designed to make management of JAR dependencies trivial for the end user. By keeping bio-formats.jar and the optional dependencies separate, only a <1 MB JAR needs to be updated when bio-formats.jar changes.

As a developer, you have the option of packaging bio-formats.jar with as many or as few optional libraries as you wish, to cut down on file size as needed. You are free to make whatever kind of “stripped down” version you require. You could even build a custom bio-formats.jar that excludes certain classes, if you like.

For an explicit enumeration of all the optional libraries included in loci_tools.jar, see the loci-tools.libraries variable of the ant/toplevel.properties\(^\text{21}\) file of the distribution. You can also read our notes about each in the source distribution’s Ant build.xml\(^\text{22}\) script.

Also see Bio-Formats Javadocs\(^\text{23}\)

12.2 Examples

12.2.1 Exporting files using Bio-Formats

This guide pertains to version 4.2 and later.

Basic conversion

The first thing we need to do is set up a reader:

```java
// create a reader that will automatically handle any supported format
IFormatReader reader = new ImageReader();
// tell the reader where to store the metadata from the dataset
reader.setMetadataStore(MetadataTools.createOMEXMLMetadata());
// initialize the dataset
reader.setId("/path/to/file");
```

Now, we set up our writer:

```java
```

\(^{17}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/utils/PrintTimestamps.java

\(^{18}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/Simple_Read.java

\(^{19}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/Read_Image.java

\(^{20}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/utils/Mass_Importer.java

\(^{21}\)https://github.com/openmicroscopy/bioformats/blob/develop/ant/toplevel.properties

\(^{22}\)https://github.com/openmicroscopy/bioformats/blob/develop/build.xml#L240

\(^{23}\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/
// create a writer that will automatically handle any supported output format
IFormatWriter writer = new ImageWriter();
// give the writer a MetadataRetrieve object, which encapsulates all of the
// dimension information for the dataset (among many other things)
writer.setMetadataRetrieve(MetadataTools.asRetrieve(reader.getMetadataStore()));
// initialize the writer
writer.setId("/path/to/output/file");

Note that the extension of the file name passed to 'writer.setId(...)' determines the file format of the exported file.

Now that everything is set up, we can start writing planes:

for (int series=0; series<reader.getSeriesCount(); series++) {
 reader.setSeries(series);
 writer.setSeries(series);

 for (int image=0; image<reader.getImageCount(); image++) {
 writer.saveBytes(image, reader.openBytes(image));
 }
}

Finally, make sure to close both the reader and the writer. Failure to do so can cause:

- file handle leaks
- memory leaks
- truncated output files

Fortunately, closing the files is very easy:

reader.close();
writer.close();

Converting large images

The flaw in the previous example is that it requires an image plane to be fully read into memory before it can be saved. In many cases this is fine, but if you are working with very large images (especially > 4 GB) this is problematic. The solution is to break each image plane into a set of reasonably-sized tiles and save each tile separately - thus substantially reducing the amount of memory required for conversion.

For now, we’ll assume that your tile size is 1024 x 1024, though in practice you will likely want to adjust this. Assuming you have an IFormatReader and IFormatWriter set up as in the previous example, let’s start writing planes:

int tileWidth = 1024;
int tileHeight = 1024;

for (int series=0; series<reader.getSeriesCount(); series++) {
 reader.setSeries(series);
 writer.setSeries(series);

 // determine how many tiles are in each image plane
 // for simplicity, we’ll assume that the image width and height are
 // multiples of 1024
 int tileRows = reader.getSizeY() / tileHeight;
 int tileColumns = reader.getSizeX() / tileWidth;

 for (int image=0; image<reader.getImageCount(); image++) {
 for (int row=0; row<tileRows; row++) {

for (int col=0; col<tileColumns; col++) {
 // open a tile - in addition to the image index, we need to specify
 // the (x, y) coordinate of the upper left corner of the tile,
 // along with the width and height of the tile
 int xCoordinate = col * tileSize;
 int yCoordinate = row * tileSize;
 byte[] tile =
 reader.openBytes(image, xCoordinate, yCoordinate, tileSize, tileSize);
 writer.saveBytes(
 image, tile, xCoordinate, yCoordinate, tileSize, tileSize);
}

As noted, the example assumes that the width and height of the image are multiples of the tile dimensions. Be careful, as this is not always the case; the last column and/or row may be smaller than preceding columns/rows. An exception will be thrown if you attempt to read or write a tile that is not completely contained by the original image plane. Most writers perform best if the tile width is equal to the image width, although specifying any valid width should work.

As before, you need to close the reader and writer.

Converting to multiple files

The recommended method of converting to multiple files is to use a single IFormatWriter, like so:

```java
// you should have set up a reader as in the first example
ImageWriter writer = new ImageWriter();
writer.setMetadataRetrieve(MetadataTools.asRetrieve(reader.getMetadataStore()));
// replace this with your own filename definitions
// in this example, we're going to write half of the planes to one file
// and half of the planes to another file
String[] outputFiles =
    new String[] {"/path/to/file/1.tiff", "/path/to/file/2.tiff"};
writer.setId(outputFiles[0]);
int planesPerFile = reader.getImageCount() / outputFiles.length;
for (int file=0; file<outputFiles.length; file++) {
    writer.changeOutputFile(outputFiles[file]);
    for (int image=0; image<planesPerFile; image++) {
        int index = file * planesPerFile + image;
        writer.saveBytes(image, reader.openBytes(index));
    }
}
reader.close();
writer.close();
```

The advantage here is that the relationship between the files is preserved when converting to formats that support multi-file datasets internally (namely OME-TIFF). If you are only converting to graphics formats (e.g. JPEG, AVI, MOV), then you could also use a separate IFormatWriter for each file, like this:

```java
// again, you should have set up a reader already
String[] outputFiles = new String[] {"/path/to/file/1.avi", "/path/to/file/2.avi"};
int planesPerFile = reader.getImageCount() / outputFiles.length;
for (int file=0; file<outputFiles.length; file++) {
    ImageWriter writer = new ImageWriter();
    writer.setMetadataRetrieve(MetadataTools.asRetrieve(reader.getMetadataStore()));
    writer.setId(outputFiles[file]);
    for (int image=0; image<planesPerFile; image++) {
        writer.saveBytes(image, reader.openBytes(index));
    }
}
```
for (int image=0; image<planesPerFile; image++) {
 int index = file * planesPerFile + image;
 writer.saveBytes(image, reader.openBytes(index));
}
writer.close();

Known issues

List of Trac tickets\(^{24}\)

12.2.2 Further details on exporting raw pixel data to OME-TIFF files

This document explains how to export pixel data to OME-TIFF using Bio-Formats version 4.2 and later. The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows:

```java
ServiceFactory factory = new ServiceFactory();
OMEXMLService service = factory.getInstance(OMEXMLService.class);
IMetadata omexml = service.createOMEXMLMetadata();
```

The ‘omexml’ object can now be used in our code to store OME-XML metadata, and by the file format writer to retrieve OME-XML metadata.

Now that we have somewhere to put metadata, we need to populate as much data as we can. The minimum amount of metadata required is:

- endianness of the pixel data
- the order in which dimensions are stored
- the bit depth of the pixel data
- the number of channels
- the number of timepoints
- the number of Z sections
- the width (in pixels) of an image
- the height (in pixels) of an image
- the number of samples per channel (3 for RGB images, 1 otherwise)

We populate that metadata as follows:

```java
omexml.setImageID("Image:0", 0);
omexml.setPixelsID("Pixels:0", 0);

// specify that the pixel data is stored in big-endian order
// replace 'TRUE' with 'FALSE' to specify little-endian order
omexml.setPixelsBinDataBigEndian(Boolean.TRUE, 0, 0);

omexml.setPixelsDimensionOrder(DimensionOrder.XYCZT, 0);
omexml.setPixelsType(PixelType.UINT16, 0);
omexml.setPixelsSizeX(new PositiveInteger(width), 0);
omexml.setPixelsSizeY(new PositiveInteger(height), 0);
omexml.setPixelsSizeZ(new PositiveInteger(zSectionCount), 0);
omexml.setPixelsSizeC(new PositiveInteger(channelCount * 24), 0);
```


12.2. Examples
SamplesPerChannel), 0);
omexml.setPixelsSizeT(new PositiveInteger(timepointCount), 0);

for (int channel=0; channel<channelCount; channel++) {
 omexml.setChannelID("Channel:0:" + channel, 0, channel);
 omexml.setChannelSamplesPerPixel(new PositiveInteger(samplesPerChannel), 0, channel);
}

There is much more metadata that can be stored; please see the Javadoc for loci.formats.meta.MetadataStore for a complete list.

Now that we have defined all of the metadata, we need to create a file writer:

ImageWriter writer = new ImageWriter();

Now we must associate the ‘omexml’ object with the file writer:

writer.setMetadataRetrieve(omexml);

The writer now knows to retrieve any metadata that it needs from ‘omexml’.

We now tell the writer which file it should write to:

writer.setId("output-file.ome.tiff");

It is critical that the file name given to the writer ends with ‘.ome.tiff’ or ‘.ome.tif’, as it is the file name extension that determines which format will be written.

Now that everything is set up, we can save the image data. This is done plane by plane, and we assume that the pixel data is stored in a 2D byte array ‘pixelData’:

int sizeC = omexml.getPixelsSizeC(0).getValue();
int sizeZ = omexml.getPixelsSizeZ(0).getValue();
int sizeT = omexml.getPixelsSizeT(0).getValue();
int samplesPerChannel = omexml.getChannelSamplesPerPixel(0).getValue();
sizeC /= samplesPerChannel;

int imageCount = sizeC * sizeZ * sizeT;

for (int image=0; image<imageCount; image++) {
 writer.saveBytes(image, pixelData[image]);
}

Finally, we must tell the writer that we are finished, so that the output file can be properly closed:

writer.close();

There should now be a complete OME-TIFF file at whichever path was specified above.

12.2.3 Converting files from FV1000 OIB/OIF to OME-TIFF

This document explains how to convert a file from FV1000 OIB/OIF to OME-TIFF using Bio-Formats version 4.2 and later.

The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows:
ServiceFactory factory = new ServiceFactory();
OMEXMLService service = factory.getInstance(OMEXMLService.class);
IMetadata omexml = service.createOMEXMLMetadata();

The ‘omexml’ object can now be used by both a file format reader and a file format writer for storing and retrieving OME-XML metadata.

Now that have somewhere to put metadata, we need to create a file reader and writer:

ImageReader reader = new ImageReader();
ImageWriter writer = new ImageWriter();

Now we must associate the ‘omexml’ object with the file reader and writer:

reader.setMetadataStore(omexml);
writer.setMetadataRetrieve(omexml);

The reader now knows to store all of the metadata that it parses into ‘omexml’, and the writer knows to retrieve any metadata that it needs from ‘omexml’.

We now tell the reader and writer which files will be read from and written to, respectively:

reader.setId("input-file.oib");
writer.setId("output-file.ome.tiff");

It is critical that the file name given to the writer ends with "*.ome.tiff" or "*.ome.tif", as it is the file name extension that determines which format will be written.

Now that everything is set up, we can convert the image data. This is done plane by plane:

for (int series=0; series<reader.getSeriesCount(); series++) {
 reader.setSeries(series);
 writer.setSeries(series);
 byte[] plane = new byte[FormatTools.getPlaneSize(reader)];
 for (int image=0; image<reader.getImageCount(); image++) {
 reader.openBytes(image, plane);
 writer.saveBytes(image, plane);
 }
}

The body of the outer ‘for’ loop may also be replaced with the following:

reader.setSeries(series);
writer.setSeries(series);

for (int image=0; image<reader.getImageCount(); image++) {
 byte[] plane = reader.openBytes(image);
 writer.saveBytes(image, plane);
}

But note that this will be a little slower.

Finally, we must tell the reader and writer that we are finished, so that the input and output files can be properly closed:

reader.close();
writer.close();
There should now be a complete OME-TIFF file at whichever path was specified above.

12.2.4 Using Bio-Formats in MATLAB

This section assumes that you have installed the M-files and `loci_tools.jar`, as instructed in the MATLAB user information page. Note the minimum supported MATLAB version is R2007b (7.5).

Opening an image file

The first thing to do is initialize a file with the `bfopen` function:

```matlab
data = bfopen('/path/to/data/file');
```

This function returns an n-by-4 cell array, where n is the number of series in the dataset. If s is the series index between 1 and n:

- The `data{s, 1}` element is an m-by-2 cell array, where m is the number of planes in the s-th series. If t is the plane index between 1 and m:
 - The `data{s, 1}{t, 1}` element contains the pixel data for the t-th plane in the s-th series.
 - The `data{s, 1}{t, 2}` element contains the label for the t-th plane in the s-th series.
- The `data{s, 2}` element contains original metadata key/value pairs that apply to the s-th series.
- The `data{s, 3}` element contains color lookup tables for each plane in the s-th series.
- The `data{s, 4}` element contains a standardized OME metadata structure, which is the same regardless of the input file format, and contains common metadata values such as physical pixel sizes - see OME metadata below for examples.

Accessing planes

Here is an example of how to unwrap specific image planes for easy access:

```matlab
data = bfopen('/path/to/data/file');
seriesCount = size(data, 1);
series1 = data{1, 1};
series2 = data{2, 1};
series3 = data{3, 1};
metadataList = data{1, 2};
% ...etc.
series1_planeCount = size(series1, 1);
series1_plane1 = series1{1, 1};
series1_label1 = series1{1, 2};
series1_plane2 = series1{2, 1};
series1_label2 = series1{2, 2};
series1_plane3 = series1{3, 1};
series1_label3 = series1{3, 2};
% ...etc.
```

Displaying images

If you want to display one of the images, you can do so as follows:

25https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab/bfopen.m
data = bfopen('/path/to/data/file');
% plot the 1st series's 1st image plane in a new figure
series1 = data{1, 1};
series1_plane1 = series1{1, 1};
series1_label1 = series1{1, 2};
series1_colorMaps = data{1, 3};
figure('Name', series1_label1);
if (isempty(series1_colorMaps{1}))
 colormap(gray);
else
 colormap(series1_colorMaps{1});
end
imagesc(series1_plane1);

This will display the first image of the first series with its associated color map (if present). If you would prefer not to apply the color maps associated with each image, simply comment out the calls to colormap.

If you have the image processing toolbox, you could instead use:

imshow(series1_plane1, []);

You can also create an animated movie (assumes 8-bit unsigned data):

v = linspace(0, 1, 256)';
cmap = [v v v];
for p = 1 : size(series1, 1)
 M(p) = im2frame(uint8(series1{p, 1}), cmap);
end
movie(M);

Retrieving metadata

There are two kinds of metadata:

- **Original metadata** is a set of key/value pairs specific to the input format of the data. It is stored in the data{s, 2} element of the data structure returned by bfopen.

- **OME metadata** is a standardized metadata structure, which is the same regardless of input file format. It is stored in the data{s, 4} element of the data structure returned by bfopen, and contains common metadata values such as physical pixel sizes, instrument settings, and much more. See the OME Model and Formats26 documentation for full details.

Original metadata To retrieve the metadata value for specific keys:

data = bfopen('/path/to/data/file');
% Query some metadata fields (keys are format-dependent)
metadata = data{1, 2};
subject = metadata.get('Subject');
title = metadata.get('Title');

To print out all of the metadata key/value pairs for the first series:

data = bfopen('/path/to/data/file');
metadata = data{1, 2};
metadataKeys = metadata.keySet().iterator();
for i=1:metadata.size()

26http://www.openmicroscopy.org/site/support/ome-model/
key = metadataKeys.nextElement();
value = metadata.get(key);
fprintf('%s = %s
', key, value)
end

OME metadata Conversion of metadata to the OME standard is one of Bio-Formats’ primary features. The OME metadata is always stored the same way, regardless of input file format.

To access physical voxel and stack sizes of the data:

data = bfopen('/path/to/data/file');
omeMeta = data{1, 4};
stackSizeX = omeMeta.getPixelsSizeX(0).getValue(); % image width, pixels
stackSizeY = omeMeta.getPixelsSizeY(0).getValue(); % image height, pixels
stackSizeZ = omeMeta.getPixelsSizeZ(0).getValue(); % number of Z slices
voxelSizeX = omeMeta.getPixelsPhysicalSizeX(0).getValue(); % in µm
voxelSizeY = omeMeta.getPixelsPhysicalSizeY(0).getValue(); % in µm
voxelSizeZ = omeMeta.getPixelsPhysicalSizeZ(0).getValue(); % in µm

For more information about the methods to retrieve the metadata, see the MetadataRetrieve27 Javadoc page.

To convert the OME metadata into a string, use the dumpXML() method:

omeXML = char(omeMeta.dumpXML());

Reading from an image file

The main inconvenience of the bfopen.m28 function is that it loads all the content of an image regardless of its size.

To access the file reader without loading all the data, use the low-level bfGetReader.m29 function:

reader = bfGetReader('path/to/data/file');

You can then access the OME metadata using the getMetadataStore() method:

omeMeta = reader.getMetadataStore();

Individual planes can be queried using the bfGetPlane.m30 function:

series1_plane1 = bfGetPlane(reader, 1);

Saving files

The basic code for saving a 5D array into an OME-TIFF file is located in the bfsave.m31 function.

For instance, the following code will save a single image of 64 pixels by 64 pixels with 8 unsigned bits per pixels:

27http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/meta/MetadataRetrieve.html
28https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab/bfopen.m
29https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab/bfGetReader.m
30https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab/bfGetPlane.m
31https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab/bfsave.m
And the following code snippet will produce an image of 64 pixels by 64 pixels with 2 channels and 2 timepoints:

```java
plane = zeros(64, 64, 1, 2, 2, 'uint8');
bfsave(plane, 'my-file.ome.tif');
```

For more information about the methods to store the metadata, see the MetadataStore\(^{32}\) Javadoc page.

12.2.5 Source code

If you are interested in the latest Bio-Formats source code from our Git\(^{33}\) repository, you can access it using the repository path:

```
git@github.com:openmicroscopy/bioformats.git
```

You can also browse the Bio-Formats source on GitHub\(^{34}\).

To build the code, you can use our Ant build script—try “\texttt{ant -p}” for a list of targets. In general, “ant jars” or “ant tools” is the correct command.

Lastly, you can browse the Bio-Formats Javadocs online\(^{35}\), or generate them yourself using the “docs” Ant target.

\(^{32}\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/loci/formats/meta/MetadataStore.html

\(^{33}\)http://git-scm.com/

\(^{34}\)https://github.com/openmicroscopy/bioformats

\(^{35}\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/
INTERFACING FROM NON-JAVA CODE

13.1 Interfacing with Bio-Formats from non-Java code

Bio-Formats is written in Java, and is easiest to use with other Java code. However, it is possible to call Bio-Formats from a program written in another language. But how to do so depends on your program’s needs.

Technologically, there are two broad categories of solutions: in-process approaches, and inter-process communication.

For details, see LOCI’s article Interfacing from non-Java code\(^1\).

Recommended in-process solution: Bio-Formats C++ bindings

Recommended inter-process solution: Subimager

13.2 Bio-Formats C++ bindings

To make Bio-Formats accessible to software written in C++, we have created a Bio-Formats C++ interface (BF-CPP for short). It uses LOCI’s jar2lib\(^2\) program to generate a C++ proxy class for each equivalent Bio-Formats Java class. The resulting proxies are then compiled into a library, which represents the actual interface from C++ to Bio-Formats. Using this library in your projects gives you access to the image support of Bio-Formats.

BF-CPP comes with some standalone examples which you can use as a starting point in your own project:

- `showinf`\(^3\)
- `minimum_writer`\(^4\)

Other projects using BF-CPP include:

- WiscScan\(^5\) which uses BF-CPP to write OME-TIFF\(^6\) files.
- XuvTools which uses an adapted version of BF-CPP called BlitzBioFormats\(^7\).

See the build instructions (Windows, Mac OS X, Linux) for details on compiling BF-CPP from source. Once this is done, simply include it in your project as you would any other external library.

13.3 Build instructions for C++ bindings

This package provides language bindings for calling into the Bio-Formats Java library from C++ in a cross-platform manner. As of this writing the bindings are functional with GCC on Linux and Mac OS X systems, as well as with Visual C++ 2005 and Visual C++ 2008 on Windows.

1. http://loci.wisc.edu/software/interfacing-non-java-code
2. http://loci.wisc.edu/software/jar2lib
5. http://loci.wisc.edu/software/wiscscan
7. http://www.xuvtools.org/devel/libblitzbioformats
13.3.1 Compile-time dependencies

To build the Bio-Formats C++ bindings from source, the following modules are required:

- **Apache Maven**\(^8\) Maven is a software project management and comprehension tool. Along with Ant, it is one of the supported build systems for the Bio-Formats Java library, and is used to generate the Bio-Formats C++ bindings.

- **CMake**\(^9\) CMake is a cross-platform, open source build system generator, commonly used to build C++ projects in a platform-independent manner. CMake supports GNU make as well as Microsoft Visual Studio, allowing the Bio-Formats C++ bindings to be compiled on Windows, Mac OS X, Linux and potentially other platforms.

- **Boost Thread**\(^10\) Boost is a project providing open source portable C++ source libraries. It has become a suite of de facto standard libraries for C++. The Bio-Formats C++ bindings require the Boost Thread module in order to handle C++ threads in a platform independent way.

- **Java Development Kit**\(^11\) At runtime, only the Java Runtime Environment (JRE) is necessary to execute the Bio-Formats code. However, the full J2SE development kit is required at compile time on some platforms (Windows in particular), since it comes bundled with the JVM shared library (jvm.lib) necessary to link with Java.

For information on installing these dependencies, refer to the page for your specific platform: Windows, Mac OS X, Linux.

13.3.2 How to build

The process of building the Bio-Formats C++ bindings is divided into two steps:

1. Generate a C++ project consisting of “proxies” which wrap the Java code. This step utilizes the Maven project management tool, specifically a Maven plugin called cppwrap.

2. Compile this generated C++ project. This step utilizes the cross-platform CMake build system.

For details on executing these build steps, refer to the page for your specific platform: Windows, Mac OS X, Linux.

13.3.3 Build results

If all goes well, the build system will:

1. Generate the Bio-Formats C++ proxy classes;
2. Build the Jace C++ library;
3. Build the Java Tools C++ library;
4. Build the Bio-Formats C++ shared library;
5. Build the showinf and minimum_writer command line tools, for testing the functionality.

Please be patient, as the build may require several minutes to complete.

Afterwards, the dist/scifio subdirectory will contain the following files:

1. `libjace.so` / `libjace.jnilib` / `jace.dll` : Jace shared library
2. `libscifio.so` / `libscifio.dylib` / `scifio.dll` : SCIFIO C++ shared library
3. `jace-runtime.jar` : Jace Java classes needed at runtime
4. `loci_tools.jar` : Bio-Formats Java library needed at runtime
5. `libjtools.so` / `libjtools.jnilib` / `jtools.dll` : Java Tools shared library
6. `showinf` / `showinf.exe` : Example command line application
7. `minimum_writer` / `minimum_writer.exe` : Example command line application

Items 1-4 are necessary and required to deploy Bio-Formats with your C++ application. Item 5 (jtools) is a useful helper library for managing the Java virtual machine from C++, but is not strictly necessary to use Bio-Formats. All other files, including the example programs and various build files generated by CMake, are not needed.

If you prefer, instead of using the loci_tools.jar bundle, you can provide individual JAR files as appropriate for your application. For details, see *using Bio-Formats as a Java library*.
Please direct any questions to the OME team on the forums\(^\text{12}\) or mailing lists\(^\text{13}\).

13.4 Building C++ bindings in Windows

13.4.1 Compile-time dependencies – Windows

Windows users will need to visit the appropriate web sites and download and install the relevant binaries for all the dependencies. To configure the tools, you will need to edit or create several environment variables on your system. Access them by clicking the “Environment Variables” button from Control Panel, System, Advanced tab. Use semicolons to separate multiple directories in the PATH variable.

13.4.2 Compile-time dependencies – Windows – Maven

Download Maven\(^\text{14}\).

Unpack the Maven archive into your Program Files, then add the folder’s bin subdirectory to your PATH environment variable; e.g.:

```
C:\Program Files\apache-maven-3.0.4\bin
```

Once set, new Command Prompts will recognize “mvn” as a valid command.

13.4.3 Compile-time dependencies – Windows – CMake

Download and run the CMake installer\(^\text{15}\).

During installation, select the “Add CMake to the system PATH for all users” option to ensure that Bio-Formats build system can find your CMake executable.

Once installed, new Command Prompts will recognize “cmake” and “cmake-gui” as valid commands.

13.4.4 Compile-time dependencies – Windows – Boost

The easiest way to install the Boost Thread library on Windows is to use the free installer from BoostPro\(^\text{16}\).

When running the installer:

- Under “Compilers,” check the version of Visual C++ matching your system.
- Under “Variants,” check all eight boxes.
- When choosing components, check “Boost DateTime” and “Boost Thread.”

13.4.5 Compile-time dependencies – Windows – Java Development Kit

Download and install the JDK\(^\text{17}\).

After the installation is complete, create a new environment variable called JAVA_HOME pointing to your Java installation; e.g.:

```
C:\Program Files\Java\jdk1.6.0_25
```

Setting JAVA_HOME is the easiest way to ensure that Maven can locate Java. You will also need to append your JDK’s client or server VM folder to the PATH; e.g.:

```
%JAVA_HOME%\jre\bin\client
```

\(^\text{12}\)http://www.openmicroscopy.org/community/
\(^\text{13}\)http://lists.openmicroscopy.org.uk/mailman/listinfo/
\(^\text{14}\)http://maven.apache.org/
\(^\text{15}\)http://cmake.org/
\(^\text{16}\)http://www.boostpro.com/download/
\(^\text{17}\)http://www.oracle.com/technetwork/java/javase/downloads/
This step ensures that a directory containing jvm.dll is present in the PATH. If you do not perform this step, you will receive a runtime error when attempting to initialize a JVM from native code.

Optionally, you can add the bin subdirectory to the PATH; e.g.:

```
%JAVA_HOME%\bin
```

Once set, new Command Prompts will recognize (e.g.) “javac” as a valid command.

13.4.6 Compile-time dependencies – Windows – Visual C++

In addition to the other prerequisites, you will also need a working copy of Visual C++. We have tested compilation with Visual C++ 2005 Professional and Visual C++ 2008 Express; other versions may or may not work.

You can download Visual C++ Express for free.

You must launch the environment at least once before you will be able to compile the Bio-Formats C++ bindings.

13.4.7 How to build - Windows

Run Command Prompt and change to your Bio-Formats working copy. Then run:

```
# generate the Bio-Formats C++ bindings
cd components\scifio
mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap

# build the Bio-Formats C++ bindings
cd target\cppwrap
mkdir build
cd build
cmake-gui ..
```

The CMake GUI will open. Click the Configure button, and a dialog will appear. Select your installed version of Visual Studio, and click Finish.

When configuring, you can use the J2L_WIN_BUILD_DEBUG flag to indicate if this will be a Debug or Release build. If the flag is checked it will build as Debug, unchecked will build as Release.

Once configuration is complete, click Configure again, repeating as necessary until the Generate button becomes available. Then click Generate. Once generation is complete, close the CMake window.

Back at the Command Prompt, type:

```
start jace.sln
```

The solution will then open in Visual Studio. Select Release or Debug as appropriate from the drop-down menu. Press F7 to compile (or select Build Solution from the Build menu).

13.5 Building C++ bindings in Mac OS X

13.5.1 Compile-time dependencies – Mac OS X

To install dependencies on Mac OS X, we advise using Homebrew:

```
brew install maven cmake boost
```

Unless otherwise configured, this will install binaries into /usr/local/.

18 http://www.microsoft.com/express/
19 http://mxcl.github.com/homebrew/
13.5.2 How to build – Mac OS X

The following commands will generate and build the Bio-Formats C++ bindings:

```
# generate the C++ bindings
cd components/scifio
mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap

# compile the C++ bindings
cd target/cppwrap
mkdir build
cd build
cmake ..
make
```

13.6 Building C++ bindings in Linux

13.6.1 Compile-time dependencies – Linux

The following directions are specific to Ubuntu Linux. Other Linux distributions may have similar packages available; check your package manager.

To install dependencies on Ubuntu Linux, execute:

```
# install code generation prerequisites
sudo aptitude install maven2

# install build prerequisites
sudo aptitude install build-essential cmake libboost-thread-dev

# install Java Development Kit
sudo aptitude install sun-java6-jdk
sudo update-alternatives --config java
```

Then select Sun’s Java implementation as the system default.

It may be possible to use a different Java compiler (i.e., omit the sun-java6-jdk package and update-alternatives step), but we have only tested the compilation process with Sun’s Java compiler.

13.6.2 How to build – Linux

The following commands will generate and build the Bio-Formats C++ bindings:

```
# generate the Bio-Formats C++ bindings
cd components/scifio
mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap

# build the Bio-Formats C++ bindings
cd target/cppwrap
mkdir build
cd build
cmake ..
make
```
SCIFIO provides the core architecture of the Bio-Formats library and also includes reader and writer implementations for open file formats. The more permissive BSD license enables non-GPL third party software to read and write OME-TIFF using SCIFIO alone.

14.1 SCientific Imaging Formats Input and Output

SCIFIO is a refactoring of Bio-Formats. Classic Bio-Formats uses OME-XML\(^1\) to model the metadata for a given image, standardizing all supported formats to this schema. This tight integration, along with the naming itself of Bio-Formats, discourages potential users from outside the life sciences (if their imaging requirements include metadata outside the OME-XML specification). Furthermore, the steps of processing image formats are obfuscated by their consolidation into a single Reader class; this increases the entry barrier for 3rd party developers to add support for additional formats. Finally, the GPL licensing of Bio-Formats precludes its inclusion in non-GPL software packages such as ImageJ, ITK, VCell and VisAD.

SCIFIO aims to resolve these issues by reversing the OME-XML dependency and teasing apart the stages of image format conversion and processing. SCIFIO will define the core components of flexible image format support. OME-XML will become one type of metadata, which Bio-Formats will still use to standardize the metadata of a wide variety of image formats. Thus Bio-Formats will become an extension to SCIFIO, but the underlying structure will allow any number of such extensions to coexist. Dynamic discovery mechanisms will allow these modules to be used as needed, as long as the underlying program incorporates the SCIFIO core. Further, the SCIFIO core will include support only for the open source formats currently supported by Bio-Formats, allowing distribution under the BSD license (though individual modules can fall under any licensing framework, and Bio-Formats will continue to have a dual GPL + commercial license).

For further information, see the SCIFIO home page\(^2\).

\(^1\)http://www.openmicroscopy.org/site/support/ome-model/ome-xml
\(^2\)http://scif.io/
15.1 Bio-Formats file format reader guide

This document is a brief guide to writing new Bio-Formats file format readers.

All format readers should extend either `loci.formats.FormatReader` or a reader in `loci.formats.in`.

15.1.1 Methods to override

- **boolean isSingleFile(String id)**
 Whether or not the named file is expected to be the only file in the dataset. This only needs to be overridden for formats whose datasets can contain more than one file.

- **boolean isThisType(RandomAccessInputStream)**
 Check the first few bytes of a file to determine if the file can be read by this reader. You can assume that index 0 in the stream corresponds to the index 0 in the file. Return true if the file can be read; false if not (or if there is no way of checking).

- **int fileGroupOption(String id)**
 Returns an indication of whether or not the files in a multi-file dataset can be handled individually. The return value should be one of the following:
 - `FormatTools.MUST_GROUP`: the files cannot be handled separately
 - `FormatTools.CAN_GROUP`: the files may be handled separately or as a single unit
 - `FormatTools.CANNOT_GROUP`: the files must be handled separately
 This method only needs to be overridden for formats whose datasets can contain more than one file.

- **String[] getSeriesUsedFiles(boolean noPixels)**
 You only need to override this if your format uses multiple files in a single dataset. This method should return a list of all files associated with the given file name and the current series (i.e. every file needed to display the current series). If the `noPixels` flag is set, then none of the files returned should contain pixel data. For an example of how this works, see `loci.formats.in.PerkinElmerReader`. It is recommended that the first line of this method be `FormatTools.assertId(currentId, true, 1)` - this ensures that the file name is non-null.

- **byte[] openBytes(int, byte[], int, int, int, int)**
 Returns a byte array containing the pixel data for a subimage specified image from the given file. The dimensions of the subimage (upper left X coordinate, upper left Y coordinate, width, and height) are specified in the final four int parameters. This should throw a `FormatException` if the image number is invalid (less than 0 or >= the number of images). The ordering of the array returned by `openBytes` should correspond to the values returned by `isLittleEndian()` and `isInterleaved()`. Also, the length of the byte array should be [image width * image height * bytes per pixel]. Extra bytes will generally be truncated. It is recommended that the first line of this method be `FormatTools.checkPlaneParameters(this, no, buf.length, x, y, w, h)` - this ensures that all of the parameters are valid.

• protected void initFile(String)\(^9\) The majority of the file parsing logic should be placed in this method. The idea is to call this method once (and only once!) when the file is first opened. Generally, you will want to start by calling super.initFile(String). You will also need to set up the stream for reading the file, as well as initializing any dimension information and metadata. Most of this logic is up to you; however, you should populate the ‘core’ variable (see loci.formats.CoreMetadata\(^10\)).

Note that each variable is initialized to 0 or null when super.initFile(String) is called. Also, super.initFile(String) constructs a Hashtable called “metadata” where you should store any relevant metadata.

• public void close(boolean fileOnly)\(^11\) Cleans up any resources used by the reader. Global variables should be reset to their initial state, and any open files or delegate readers should be closed.

Note that if the new format is a variant of a format currently supported by Bio-Formats, it is more efficient to make the new reader a subclass of the existing reader (rather than subclassing FormatReader\(^12\)). In this case, it is usually sufficient to override initFile(String) and isThisType(byte[]).

Every reader also has an instance of loci.formats.CoreMetadata\(^13\). All readers should populate the fields in CoreMetadata, which are essential to reading image planes.

If you read from a file using something other than RandomAccessInputStream\(^14\) or Location\(^15\), you must use the file name returned by Location.getMappedId(String), not the file name passed to the reader. Thus, a stub for initFile(String) might look like this:

protected void initFile(String id) throws FormatException, IOException {
 super.initFile(id);

 RandomAccessInputStream in = new RandomAccessInputStream(id);
 // alternatively,
 // FileInputStream in = new FileInputStream(Location.getMappedId(id));

 // read basic file structure and metadata from stream
}

For more details, see the Bio-Formats Javadocs\(^16\) for Location.mapId(String, String) and Location.getMappedId(String).

15.1.2 Variables to populate

There are a number of global variables defined in loci.formats.FormatReader\(^17\) that should be populated in the constructor of any implemented reader.

These variables are:

• boolean suffixNecessary Indicates whether or not a file name suffix is required; true by default
• boolean suffixSufficient Indicates whether or not a specific file name suffix guarantees that this reader can open a particular file; true by default
• boolean hasCompanionFiles Indicates whether or not there is at least one file in a dataset of this format that contains only metadata (no images); false by default
• String datasetDescription A brief description of the layout of files in datasets of this format; only necessary for multi-file datasets
• String[] domains An array of imaging domains for which this format is used. Domains are defined in loci.formats.FormatTools\(^18\).

\(^10\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/CoreMetadata.java
\(^11\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatReader.html#close(boolean)
\(^12\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/FormatReader.java
\(^13\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/CoreMetadata.java
\(^14\)https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/RandomAccessInputStream.java
\(^15\)https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/Location.java
\(^16\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/IFormatReader.html#mapId(java.lang.String, java.lang.String)
\(^17\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/FormatReader.java
\(^18\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/FormatTools.java
15.1.3 Other useful things

- `loci.common.RandomAccessInputStream`\(^{19}\) is a hybrid RandomAccessFile/InputStream class that is generally more efficient than either RandomAccessFile or InputStream, and implements the DataInput interface. It is recommended that you use this for reading files.

- `loci.formats.Location`\(^{20}\) provides an API similar to java.io.File, and supports File-like operations on URLs. It is highly recommended that you use this instead of File. See the Javadocs\(^{21}\) for additional information.

- `loci.common.DataTools`\(^{22}\) provides a number of methods for converting bytes to shorts, ints, longs, etc. It also supports reading most primitive types directly from a RandomAccessInputStream (or other DataInput implementation).

- `loci.formats.ImageTools`\(^{23}\) provides several methods for manipulating primitive type arrays that represent images. Consult the source or Javadocs for more information.

- If your reader relies on third-party code which may not be available to all users, it is strongly suggested that you make a corresponding service class that interfaces with the third-party code. Please see Bio-F ormats service and dependency infrastructure for a description of the service infrastructure, as well as the `loci.formats.services` package\(^{24}\).

- Several common image compression types are supported through subclasses of `loci.formats.codec.BaseCodec`\(^{25}\). These include JPEG, LZW, LZO, Base64, ZIP and RLE (PackBits).

- If you wish to convert a file’s metadata to OME-XML (strongly encouraged), please see Bio-F ormats metadata processing for further information.

- Utility methods for reading and writing individual bits from a byte array can be found in `loci.formats.codec.BitBuffer`\(^{26}\) and `loci.formats.codec.BitWriter`\(^{27}\).

- Once you have written your file format reader, add a line to the `readers.txt`\(^{28}\) file with the fully qualified name of the reader, followed by a “#” and the file extensions associated with the file format. Note that `ImageReader`\(^{29}\), the master file format reader, tries to identify which format reader to use according to the order given in `readers.txt`\(^{30}\), so be sure to place your reader in an appropriate position within the list.

- The easiest way to test your new reader is by calling “java loci.formats.tools.ImageInfo <file name>”. If all goes well, you should see all of the metadata and dimension information, along with a window showing the images in the file. `ImageReader`\(^{31}\) can take additional parameters; a brief listing is provided below for reference, but it is recommended that you take a look at the contents of `loci.formats.tools.ImageInfo`\(^{32}\) to see exactly what each one does.

\(^{19}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/RandomAccessInputStream.java

\(^{21}\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/

\(^{22}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/DataTools.java

\(^{24}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/codec/BaseCodec.java

\(^{25}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/codec/BitBuffer.java

\(^{26}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/codec/BitWriter.java

\(^{27}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/services/

\(^{28}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/services/

\(^{29}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/ImageReader.java

\(^{30}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/services/

\(^{31}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/ImageReader.java

### Argument	Action
-version | print the library version and exit
-file | the image file to read
-nopix | read metadata only, not pixels
-nocore | do not output core metadata
-nometa | do not parse format-specific metadata table
-nofilter | do not filter metadata fields
-thumbs | read thumbnails instead of normal pixels
-minmax | compute min/max statistics
-merge | combine separate channels into RGB image
-nocheck | force multi-file datasets to be read as individual files
-stitch | stitch files with similar names
-separate | split RGB image into separate channels
-expand | expand indexed color to RGB
-omexml | populate OME-XML metadata
-normalize | normalize floating point images*
-fast | paint RGB images as quickly as possible*
-debug | turn on debugging output
-range | specify range of planes to read (inclusive)
-series | specify which image series to read
-swap | override the default input dimension order
-shuffle | override the default output dimension order
-map | specify file on disk to which name should be mapped
-preload | pre-read entire file into a buffer; significantly reduces the time required to read the images, but requires more memory
-crop | crop images before displaying; argument is 'x,y,w,h'
-autoscale | used in combination with '-fast' to automatically adjust brightness and contrast
-novalid | do not perform validation of OME-XML
-omexml-only | only output the generated OME-XML
-format | read file with a particular reader (e.g., ZeissZVI)

* = may result in loss of precision

- If you wish to test using TestNG, [loci.tests.testng.FormatReaderTest](https://github.com/openmicroscopy/bioformats/blob/develop/components/test-suite/src/loci/tests/testng/FormatReaderTest.java) provides several basic tests that work with all Bio-Formats readers. See the FormatReaderTest source code for additional information.

- For more details, please look at the source code and [Javadoc](http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/). Studying existing readers is probably the best way to get a feel for the API; we would recommend first looking at [loci.formats.in.ImarisReader](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImarisReader.java) (this is the most straightforward one). [loci.formats.in.LIFReader](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LIFReader.java) and [InCellReader](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/InCellReader.java) are also good references that show off some of the nicer features of Bio-Formats.

If you have questions about Bio-Formats, please contact the [OME team](http://www.openmicroscopy.org/site/community).

33https://github.com/openmicroscopy/bioformats/blob/develop/components/test-suite/src/loci/tests/testng/FormatReaderTest.java
34http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-trunk/javadoc/
36https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LIFReader.java
38http://www.openmicroscopy.org/site/community
16.1 Developing Bio-Formats

If you are interested in working on the Bio-Formats source code itself, you can load it into your favorite IDE, or develop with your favorite text editor.

The Bio-Formats code is divided into several projects. Core components are located in subfolders of the components folder, with some components further classified into components/forks, components/legacy, components/native or components/stubs, depending on the nature of the project.

Each project has a corresponding Maven POM file, which can be used to work with the project in your favorite IDE, or from the command line, once you have cloned the source. Instructions for several popular options follow.

16.1.1 NetBeans

NetBeans comes with Maven support built in. To import the Bio-Formats source, perform the following steps:

1. Choose File > Open Project from the menu
2. Select the top-level folder of your Bio-Formats working copy
3. Expand the Modules folder and double-click desired project(s) to work with them

Alternately, you can clone the source directly from NetBeans into a project by selecting “Team > Git > Clone Other...” from the menu.

16.1.2 Eclipse

Eclipse uses the M2E plugin to work with Maven projects. It is more flexible than Eclipse’s built-in project management because M2E transparently converts between project dependencies and JAR dependencies (stored in the Maven repository in ~/.m2/repository) on the build path, depending which projects are currently open.

To import the Bio-Formats source into Eclipse 3.7 (Indigo), you must first install the M2E plugin:

1. From the Eclipse menu, choose Help > Install New Software...
2. In the “Work with:” dropdown, choose “–All Available Sites–”
3. In the filter box, type “m2e”
4. Check the box next to “m2e - Maven Integration for Eclipse” under “Collaboration”
5. Click Next, then Finish

You can then import the Bio-Formats source by choosing “File > Import > Existing Maven Projects” from the menu and browsing to the top-level folder of your Bio-Formats working copy.

1 https://github.com/openmicroscopy/bioformats/blob/develop/components/
2 https://github.com/openmicroscopy/bioformats/blob/develop/components/forks/
3 https://github.com/openmicroscopy/bioformats/blob/develop/components/legacy/
4 https://github.com/openmicroscopy/bioformats/blob/develop/components/native/
5 https://github.com/openmicroscopy/bioformats/blob/develop/components/stubs/
16.1.3 Command line

If you prefer developing code with a text editor such as vim or emacs, you can use the Ant or Maven command line tools to compile Bio-Formats. The Bio-Formats source tree provides parallel build systems for both Ant and Maven, so you can use either one to build the code.

For a list of Ant targets, run:

```sh
ant -p
```

When using Maven, Bio-Formats is configured to run the “install” target by default, so all JARs will be copied into your local Maven repository in `~/.m2/repository`. Simply run:

```sh
mvn
```

With either Ant or Maven, you can use similar commands in any subproject folder to build just that component.

16.2 Testing individual commits (internal developers)

At the bottom of many commit messages in https://github.com/openmicroscopy/bioformats, you will find a few lines similar to this:

To test, please run:

```sh
ant -Dtestng.directory=$DATA/metamorph test-automated
```

This shows the command(s) necessary to run automated tests against the files likely to be affected by that commit. If you want to run these tests, you will need to do the following:

Clone bioformats.git and checkout the appropriate branch (by following the directions on the [Git usage](http://www.openmicroscopy.org/site/support/omero4/developers/using-git.html) page). Run this command to build all of the JAR files:

```sh
$ ant clean jars
```

Switch to the test-suite component:

```sh
$ cd components/test-suite
```

Run the tests, where $DATA is the path to the full data repository:

```sh
$ ant -Dtestng.directory=$DATA/metamorph test-automated
```

By default, 512 MB of memory are allocated to the JVM. You can increase this by adding the `-Dtestng.memory=XXXm` option. You should now see output similar to this:

```
Buildfile: build.xml

init-title:
  [echo] -------------- loci-testing-framework --------------
init-timestamp:
init-version:
init-manifest-cp:
```

6<http://www.openmicroscopy.org/site/support/omero4/developers/using-git.html>
Each of the dots represents a single passed test; a '-' is a skipped test, and an 'F' is a failed test. This is mostly just for your amusement if you happen to be staring at the console while the tests run, as a more detailed report is logged to loci-software-test-$DATE.log (where “$DATE” is the date on which the tests started in “yyyy-MM-dd_hh-mm-ss” format).

If Ant reports that the build was successful, then there is nothing that you need to do. Otherwise, it is helpful if you can provide the command, branch name, number of failures at the bottom of the Ant output, and the loci-software-test-*.log file.

16.3 Public test data

Most of the data-driven tests would benefit from having a comprehensive set of public sample data (see also #4086). Formats for which we already have public sample data:

A ‘*’ indicates that we could generate more public data in this format.

- ICS (*)
- Leica LEI
- IPLab
- BMP (*)
- Image-Pro SEQ
- QuickTime (*)
- Bio-Rad PIC
- Image-Pro Workspace
- Fluoview/ABD TIFF (*)
- Perkin Elmer Ultraview
- Gatan DM3
- Zeiss LSM

7http://trac.openmicroscopy.org.uk/ome/ticket/4086
• Openlab LIFF (*)
• Leica LIF (*)
• TIFF (*)
• MNG (Download8) (*)

Formats for which we can definitely generate public sample data:

• PNG/APNG
• JPEG
• PGM
• FITS
• PCX
• GIF
• Openlab Raw
• OME-XML
• OME-TIFF
• AVI
• PICT
• LIM
• PSD
• Targa
• Bio-Rad Gel
• Fake
• ECAT-7 (minctoeat)
• NRRD
• JPEG-2000
• Micromanager
• Text
• DICOM
• MINC (rawminc)
• NIFTI (dicomnifti)
• Analyze 7.5 (medcon)
• SDT
• FV1000 .oib/.oif
• Zeiss ZVI
• Leica TCS
• Aperio SVS
• Imaris (raw)

Formats for which I need to check whether or not we can generate public sample data:

• IPLab Mac (Ivision)
• Deltavision

• MRC
• Gatan DM2
• Imaris (HDF)
• EPS
• Alicona AL3D
• Visitech
• InCell
• L2D
• FEI
• NAF
• MRW
• ARF
• LI-FLIM
• Oxford Instruments
• VG-SAM
• Hamamatsu HIS
• WA-TOP
• Seiko
• TopoMetrix
• UBM
• Quesant
• RHK
• Molecular Imaging
• JEOL
• Amira
• Unisoku
• Perkin Elmer Densitometer
• Nikon ND2
• SimplePCI .cxd
• Imaris (TIFF)
• Molecular Devices Gel
• Imacon .fff
• LEO
• JPK
• Nikon NEF
• Nikon TIFF
• Prairie
• Metamorph TIFF/STK/ND
• Improvision TIFF
• Photoshop TIFF
• FEI TIFF
• SimplePCI TIFF
• Burleigh
• SM-Camera
• SBIG

Formats for which we definitely cannot generate public sample data:
• TillVision
• Olympus CellR/APL
• Slidebook
• Cellomics
• CellWorX
• Olympus ScanR
• BD Pathway
• Opera Flex
• MIAS

16.4 Bio-Formats service and dependency infrastructure

16.4.1 Description

The Bio-Formats service infrastructure is an interface driven pattern for dealing with external and internal dependencies. The design goal was mainly to avoid the cumbersome usage of ReflectedUniverse where possible and to clearly define both service dependency and interface between components. This is generally referred to as dependency injection\(^9\), dependency inversion\(^{10}\) or component based design\(^{11}\).

It was decided, at this point, to forgo the usage of potentially more powerful but also more complicated solutions such as:

- Spring (http://spring.io)
- Guice (http://code.google.com/p/google-guice/)
- ...

The Wikipedia page for dependency injection\(^{12}\) contains many other implementations in many languages.

An added benefit is the potential code reuse possibilities as a result of decoupling of dependency and usage in Bio-Formats readers. Implementations of the initial Bio-Formats services were completed as part of BioFormatsCleanup and tickets #463\(^{13}\) and #464\(^{14}\).

16.4.2 Writing a service

- **Interface** – The basic form of a service is an interface which inherits from loci.common.services.Service\(^{15}\). Here is the very basic OMENotesService\(^{16}\) from the initial implementation in r5894:

\(^9\)http://en.wikipedia.org/wiki/Dependency_injection
\(^{10}\)http://en.wikipedia.org/wiki/Dependency_inversion_principle
\(^{11}\)http://en.wikipedia.org/wiki/Component-based_software_engineering
\(^{13}\)http://trac.openmicroscopy.org.uk/ome/ticket/463
\(^{14}\)http://trac.openmicroscopy.org.uk/ome/ticket/464
\(^{15}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/services/Service.java
\(^{16}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/services/OMENotesService.java
public interface OMENotesService extends Service {
 /**
 * Creates a new OME Notes instance.
 * @param filename Path to the file to create a Notes instance for.
 */
 public void newNotes(String filename);
}

• **Implementation** – This service then has an implementation, which is usually located in the Bio-Formats component or package which imports classes from an external, dynamic or other dependency. Again looking at the `OMENotesService`, the implementation is this time in the legacy ome-notes component as `OMENotesServiceImpl`:

 public class OMENotesServiceImpl extends AbstractService
 implements OMENotesService {
 /**
 * Default constructor.
 */
 public OMENotesServiceImpl() {
 checkClassDependency(Notes.class);
 }
 /* (non-Javadoc)
 * @see loci.formats.dependency.OMENotesService#newNotes()
 */
 public void newNotes(String filename) {
 new Notes(null, filename);
 }
 }

• **Style**
 – Extension of `AbstractService` to enable uniform runtime dependency checking is recommended. Java does not check class dependencies until classes are first instantiated so if you do not do this, you may end up with `ClassNotFoundException` or the like exceptions being emitted from your service methods. This is to be **strongly** discouraged. If a service has unresolvable classes on its CLASSPATH instantiation should fail, not service method invocation.
 – Service methods should not burden the implementer with numerous checked exceptions. Also external dependency exception instances should not be allowed to directly leak from a service interface. Please wrap these using a `ServiceException`.
 – By convention both the interface and implementation are expected to be in a package named `loci.*.services`. This is not a hard requirement but should be followed where possible.

• **Registration** – A service’s interface and implementation must finally be registered with the `loci.common.services.ServiceFactory` via the `services.properties` file. Following the `OMENotesService` again, here is an example registration:

 ...
 # OME notes service (implementation in legacy ome-notes component)
 loci.common.services.OMENotesService=loci.ome.notes.services.OMENotesServiceImpl
 ...

17https://github.com/openmicroscopy/bioformats/blob/develop/components/legacy/ome-notes/src/loci/ome/notes/services/OMENotesServiceImpl.java
18https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/services/ServiceFactory.java
19https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/services/Service.java
16.4.3 Using a service

```java
OMENotesService service = null;
try {
    ServiceFactory factory = new ServiceFactory();
    service = factory.getInstance(OMENotesService.class);
} catch (DependencyException de) {
    LOGGER.info("", de);
}
...

See open Trac tickets for Bio-Formats\(^\text{20}\) for information on work currently planned or in progress.
```

\(^\text{20}\)https://trac.openmicroscopy.org.uk/ome/report/44
Part IV

Formats
Bio-Formats supports over 120 different file formats. The Dataset Structure Table explains the file extension you should choose to open/import a dataset in any of these formats, while the Supported Formats table lists all of the formats and gives an indication of how well they are supported and whether Bio-Formats can write, as well as read, each format. The Summary of supported metadata fields table shows an overview of the OME data model fields populated for each format.

We are always looking for examples of files to help us provide better support for different formats. If you would like to help, you can upload files using our QA system uploader\(^2\). If you have any questions, or would prefer not to use QA, please email the ome-users mailing list\(^2\). If your format is already supported, please refer to the ‘we would like to have’ section on the individual page for that format, to see if your dataset would be useful to us.

\(^2\)http://qa.openmicroscopy.org.uk/qa/upload/
\(^2\)http://www.openmicroscopy.org/site/community/mailing-lists
This table shows the extension of the file that you should choose if you want to open/import a dataset in a particular format.

<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM</td>
<td>.aim</td>
<td>Single file</td>
</tr>
<tr>
<td>ARF</td>
<td>.arf</td>
<td>Single file</td>
</tr>
<tr>
<td>Adobe Photoshop</td>
<td>.psd</td>
<td>Single file</td>
</tr>
<tr>
<td>Adobe Photoshop TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Alicona AL3D</td>
<td>.al3d</td>
<td>Single file</td>
</tr>
<tr>
<td>Amersham Biosciences GEL</td>
<td>.gel</td>
<td>Single file</td>
</tr>
<tr>
<td>Amira</td>
<td>.am, .amiramesh, .grey, .hx, .labels</td>
<td>Single file</td>
</tr>
<tr>
<td>Analyze 7.5</td>
<td>.img, .hdr</td>
<td>One .img file and one similarly-named .hdr file</td>
</tr>
<tr>
<td>Andor SIF</td>
<td>.sif</td>
<td>Single file</td>
</tr>
<tr>
<td>Animated PNG</td>
<td>.png</td>
<td>Single file</td>
</tr>
<tr>
<td>Aperio SVS</td>
<td>.svs</td>
<td>Single file</td>
</tr>
<tr>
<td>Audio Video Interleave</td>
<td>.avi</td>
<td>Single file</td>
</tr>
<tr>
<td>BD Pathway</td>
<td>.exp, .tif</td>
<td>Multiple files (.exp, .dye, .ltp, ...) plus one or more directories containing .tif and .bmp files</td>
</tr>
<tr>
<td>Bio-Rad GEL</td>
<td>.1sc</td>
<td>Single file</td>
</tr>
<tr>
<td>Bio-Rad PIC</td>
<td>.pic, .xml, .raw</td>
<td>One or more .pic files and an optional .lse.xml file</td>
</tr>
<tr>
<td>Bitplane Imaris</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bitplane Imaris 3 (TIFF)</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bitplane Imaris 5.5 (HDF)</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bruker</td>
<td>(no extension)</td>
<td>One 'fid' and one 'acqp' plus several other metadata files and a 'pdata' directory</td>
</tr>
<tr>
<td>Burleigh</td>
<td>.img</td>
<td>Single file</td>
</tr>
<tr>
<td>Canon RAW</td>
<td>.cr2, .crw, .jpg, .thm, .wav</td>
<td>Single file</td>
</tr>
<tr>
<td>CellSens VSI</td>
<td>.vsi, .ets</td>
<td>One .vsi file and an optional directory with a similar name that contains at least one subdirectory with .ets files</td>
</tr>
<tr>
<td>CellWorx</td>
<td>.pnl, .htd, .log</td>
<td>One .htd file plus one or more .pnl or .tif files and optionally one or more .log files</td>
</tr>
<tr>
<td>Cellomics C01</td>
<td>.c01, .dib</td>
<td>One or more .c01 files</td>
</tr>
<tr>
<td>Compix Simple-PCI</td>
<td>.cxd</td>
<td>Single file</td>
</tr>
<tr>
<td>DICOM</td>
<td>.dic, .dcm, .dicom, .jp2, .j2ki, .j2kr, .raw, .ima</td>
<td>One or more .dcm or .dicom files</td>
</tr>
<tr>
<td>DNG</td>
<td>.cr2, .crw, .jpg, .thm, .wav, .tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Deltavision</td>
<td>.dv, .r3d, .r3d_d3d, .dv.log, .r3d.log</td>
<td>One .dv, .r3d, or .d3d file and up to two optional .log files</td>
</tr>
<tr>
<td>ECAT7</td>
<td>.v</td>
<td>Single file</td>
</tr>
<tr>
<td>Encapsulated PostScript</td>
<td>.eps, .epsi, .ps</td>
<td>Single file</td>
</tr>
</tbody>
</table>

Continued on next page
Table 17.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evotec Flex</td>
<td>.flex,.mea,.res</td>
<td>One directory containing one or more .flex files, and an optional directory containing an .mea and .res file. The .mea and .res files may also be in the same directory as the .flex file(s).</td>
</tr>
<tr>
<td>FEI TIFF</td>
<td>.tif,.tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>FEI/Philips</td>
<td>.img</td>
<td>Single file</td>
</tr>
<tr>
<td>Flexible Image Transport System</td>
<td>.fits,.fts</td>
<td>Single file</td>
</tr>
<tr>
<td>Fuji LAS 3000</td>
<td>.img,.inf</td>
<td>Single file</td>
</tr>
<tr>
<td>Gatan DM2</td>
<td>.dm2</td>
<td>Single file</td>
</tr>
<tr>
<td>Gatan Digital Micrograph</td>
<td>.dm3</td>
<td>Single file</td>
</tr>
<tr>
<td>Graphics Interchange Format</td>
<td>.gif</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu Aquacosmos</td>
<td>.naf</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu HIS</td>
<td>.his</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu NDPI</td>
<td>.ndpi</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu NDPIS</td>
<td>.ndpis</td>
<td>One .ndpis file and at least one .ndpi file</td>
</tr>
<tr>
<td>Hamamatsu VMS</td>
<td>.vms</td>
<td>One .vms file plus several .jpg files</td>
</tr>
<tr>
<td>Hitachi</td>
<td>.txt</td>
<td>One .txt file plus one similarly-named .tif, .bmp, or .jpg file</td>
</tr>
<tr>
<td>IMAGIC</td>
<td>.hed,.img</td>
<td>One .hed file plus one similarly-named .img file</td>
</tr>
<tr>
<td>IMOD</td>
<td>.mod</td>
<td>Single file</td>
</tr>
<tr>
<td>INR</td>
<td>.inv</td>
<td>Single file</td>
</tr>
<tr>
<td>IPLab</td>
<td>.ipl</td>
<td>Single file</td>
</tr>
<tr>
<td>IVision</td>
<td>.ipm</td>
<td>Single file</td>
</tr>
<tr>
<td>Imacon</td>
<td>.iff</td>
<td>Single file</td>
</tr>
<tr>
<td>Image Cytometry Standard</td>
<td>.ics,.ids</td>
<td>One .ics and possibly one .ids with a similar name</td>
</tr>
<tr>
<td>Image-Pro Sequence</td>
<td>.seq</td>
<td>Single file</td>
</tr>
<tr>
<td>Image-Pro Workspace</td>
<td>.ipw</td>
<td>Single file</td>
</tr>
<tr>
<td>Improvision TIFF</td>
<td>.tif,.tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>InCell 1000/2000</td>
<td>.xdce,.xml,.tif,.tif,.xlog</td>
<td>One .xdce file with at least one .tif/tiff or .im file</td>
</tr>
<tr>
<td>InCell 3000</td>
<td>.frm</td>
<td>Single file</td>
</tr>
<tr>
<td>JEOL</td>
<td>.dat,.img,.par</td>
<td>A single .dat file or an .img file with a similarly-named .par file</td>
</tr>
<tr>
<td>JPEG</td>
<td>.jpg,.jpeg,.jpe</td>
<td>Single file</td>
</tr>
<tr>
<td>JPEG-2000</td>
<td>.jp2,.j2k,.jpf</td>
<td>Single file</td>
</tr>
<tr>
<td>JPK Instruments</td>
<td>.jpk</td>
<td>Single file</td>
</tr>
<tr>
<td>JPX</td>
<td>.jpX</td>
<td>Single file</td>
</tr>
<tr>
<td>Khoros XV</td>
<td>.xv</td>
<td>Single file</td>
</tr>
<tr>
<td>Kodak Molecular Imaging</td>
<td>.bip</td>
<td>Single file</td>
</tr>
<tr>
<td>LEO</td>
<td>.sxm,.tif,.tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>LI-FLIM</td>
<td>.fli</td>
<td>Single file</td>
</tr>
<tr>
<td>Laboratory Imaging</td>
<td>.lim</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica</td>
<td>.lei,.tif,.tiff,.raw</td>
<td>One .lei file with at least one .tiff/tiff file and an optional .txt file</td>
</tr>
<tr>
<td>Leica Image File Format</td>
<td>.tif</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica SCN</td>
<td>.scn</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica TCS TIFF</td>
<td>.tif,.tiff,.xml</td>
<td>Single file</td>
</tr>
<tr>
<td>Li-Cor L2D</td>
<td>.l2d,.scn,.tif</td>
<td>One .l2d file with one or more directories containing .tif/tiff files</td>
</tr>
<tr>
<td>MIAS</td>
<td>.tif,.tiff,.txt</td>
<td>One directory per plate containing one directory per well, each with one or more .tif/.tiff files</td>
</tr>
<tr>
<td>MINC MRI</td>
<td>.mnc</td>
<td>Single file</td>
</tr>
<tr>
<td>Medical Research Council</td>
<td>.mrc,.st,.ali,.map,.rec</td>
<td>Single file</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metamorph STK</td>
<td>.stk,.nd,.tif</td>
<td>One or more .stk or .tif/.tiff files plus an optional .nd file</td>
</tr>
<tr>
<td>Metamorph TIFF</td>
<td>.tiff</td>
<td>One or more .tif/.tiff files</td>
</tr>
<tr>
<td>Micro-Manager</td>
<td>.tiff,.txt,.xml</td>
<td>A <code>metadata.txt</code> file plus or more .tif files</td>
</tr>
<tr>
<td>Minolta MRW</td>
<td>.mrw</td>
<td>Single file</td>
</tr>
<tr>
<td>Molecular Imaging</td>
<td>.sif</td>
<td>Single file</td>
</tr>
<tr>
<td>Multiple Network Graphics</td>
<td>.mng</td>
<td>Single file</td>
</tr>
<tr>
<td>NIH-FTI</td>
<td>.nii,.img,.hdr</td>
<td>A single .nii file or one .img file and a similarly-named .hdr file</td>
</tr>
<tr>
<td>NOAA-HRD Gridded Data Format</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>NRRD</td>
<td>.nrrd,.nhdr</td>
<td>A single .nrrd file or one .nhdr file and one other file containing the pixels</td>
</tr>
<tr>
<td>Nikon Elements TIFF</td>
<td>.tif,.tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon ND2</td>
<td>.nd2</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon NEF</td>
<td>.net,.tif,.tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon TIFF</td>
<td>.tif,.tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>OME-TIFF</td>
<td>.ome,.ome.tif</td>
<td>One or more .ome.tif files</td>
</tr>
<tr>
<td>OME-XML</td>
<td>.ome</td>
<td>Single file</td>
</tr>
<tr>
<td>Olympus APL</td>
<td>.apl,.tnb,.mtb</td>
<td>One .apl file, one .tnb file, one .tab file, and a directory containing one or more .tif files</td>
</tr>
<tr>
<td>Olympus FV1000</td>
<td>.oib,.oif,.pty,.lut</td>
<td>Single .oib file or one .oif file and a similarly-named directory containing .tif/.tiff files</td>
</tr>
<tr>
<td>Olympus Fluoview/ABD TIFF</td>
<td>.tif,.tiff</td>
<td>One or more .tif/.tiff files, and an optional .txt file</td>
</tr>
<tr>
<td>Olympus SIS TIFF</td>
<td>.tif,.tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Olympus ScanR</td>
<td>.dat,.xml,.tif</td>
<td>One .xml file, one <code>data</code> directory containing .tif/.tiff files, and optionally two .dat files</td>
</tr>
<tr>
<td>Olympus Slidebook</td>
<td>.sld,.spl</td>
<td>Single file</td>
</tr>
<tr>
<td>Openlab LIFF</td>
<td>.liff</td>
<td>Single file</td>
</tr>
<tr>
<td>Openlab RAW</td>
<td>.raw</td>
<td>Single file</td>
</tr>
<tr>
<td>Oxford Instruments</td>
<td>.top</td>
<td>Single file</td>
</tr>
<tr>
<td>PCX</td>
<td>.pex</td>
<td>Single file</td>
</tr>
<tr>
<td>PICT</td>
<td>.pict,.pct</td>
<td>Single file</td>
</tr>
<tr>
<td>POV-Ray</td>
<td>.df3</td>
<td>Single file</td>
</tr>
<tr>
<td>Perkin Elmer Densitometer</td>
<td>.hdr,.img</td>
<td>One .hdr file and a similarly-named .img file</td>
</tr>
<tr>
<td>PerkinElmer</td>
<td>.ano,.cfg,.csv,.htm,.rec,.tim,.zpo,.tif</td>
<td>One .htm file, several other metadata files (.tim,.ano,.csv, ...) and either .tif files or .2,.3,.4, etc. files</td>
</tr>
<tr>
<td>PerkinElmer Operetta</td>
<td>.tif,.tiff,.xml</td>
<td>Directory with XML file and one .tif/.tiff file per plane</td>
</tr>
<tr>
<td>Portable Gray Map</td>
<td>.pgm</td>
<td>Single file</td>
</tr>
<tr>
<td>Prairie TIFF</td>
<td>.tif,.cfg,.xml</td>
<td>One .xml file, one .cfg file, and one or more .tif/.tiff files</td>
</tr>
<tr>
<td>Pyramid TIFF</td>
<td>.tif,.tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Questant AFM</td>
<td>.afm</td>
<td>Single file</td>
</tr>
<tr>
<td>QuickTime</td>
<td>.mov</td>
<td>Single file</td>
</tr>
<tr>
<td>RHK Technologies</td>
<td>.sm2,.sm3</td>
<td>Single file</td>
</tr>
<tr>
<td>SBIG</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>SM Camera</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>SPCIImage Data</td>
<td>.sdt</td>
<td>Single file</td>
</tr>
<tr>
<td>SPIDER</td>
<td>.spi</td>
<td>Single file</td>
</tr>
<tr>
<td>Seiko</td>
<td>.xql,.xqf</td>
<td>Single file</td>
</tr>
<tr>
<td>SimplePCI TIFF</td>
<td>.tif,.tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Simulated data</td>
<td>.fake</td>
<td>Single file</td>
</tr>
<tr>
<td>Tagged Image File Format</td>
<td>.tif,.tif2,.tiff,.btf</td>
<td>Single file</td>
</tr>
<tr>
<td>Text</td>
<td>.txt,.csv</td>
<td>Single file</td>
</tr>
<tr>
<td>TillVision</td>
<td>.vws,.pst,.inf</td>
<td>One .vws file and possibly one similarly-named directory</td>
</tr>
<tr>
<td>TopoMetrix</td>
<td>.tf, .fr, .zfr, .zfp, .zfl</td>
<td>Single file</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trestle</td>
<td>.tif</td>
<td>One .tif file plus several other similarly-named files (e.g. .FocalPlane-, .sl.d, .slx, .ROI)</td>
</tr>
<tr>
<td>Truevision Targa</td>
<td>.tga</td>
<td>Single file</td>
</tr>
<tr>
<td>UBM</td>
<td>.pr3</td>
<td>Single file</td>
</tr>
<tr>
<td>Unisoku STM</td>
<td>.hdr, .dat</td>
<td>One .HDR file plus one similarly-named .DAT file</td>
</tr>
<tr>
<td>VG SAM</td>
<td>.dti</td>
<td>Single file</td>
</tr>
<tr>
<td>Varian FDF</td>
<td>.fdf</td>
<td>Single file</td>
</tr>
<tr>
<td>Visitech XYS</td>
<td>.xys, .html</td>
<td>Single file</td>
</tr>
<tr>
<td>VGSAM</td>
<td>.pr3</td>
<td>Single file</td>
</tr>
<tr>
<td>Unisoku STM</td>
<td>.hdr, .dat</td>
<td>One .HDR file plus one similarly-named .DAT file</td>
</tr>
<tr>
<td>Varian FDF</td>
<td>.fdf</td>
<td>Single file</td>
</tr>
<tr>
<td>Windows Bitmap</td>
<td>.bmp</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss AxioVision TIFF</td>
<td>.tif, .xml</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss CZI</td>
<td>.czi</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss Laser-Scanning Microscopy</td>
<td>.ls.m, .mdb</td>
<td>One or more .ls.m files; if multiple .ls.m files are present, an .mdb file should also be present</td>
</tr>
<tr>
<td>Zeiss Vision Image (ZVI)</td>
<td>.zvi</td>
<td>Single file</td>
</tr>
<tr>
<td>Zip</td>
<td>.zip</td>
<td>Single file</td>
</tr>
</tbody>
</table>

17.1 Flex Support

OMERO.importer supports importing analyzed Flex files from an Opera system.

Basic configuration is done via the importer.ini. Once the user has run the Importer once, this file will be in the following location:

- C:\Documents and Settings\<username>\omero\importer.ini

The user will need to modify or add the [FlexReaderServerMaps] section of the INI file as follows:

```ini
...[FlexReaderServerMaps]
CIA-1 = \\\hostname1\mount;\\archivehost1\mount
CIA-2 = \\\hostname2\mount;\\archivehost2\mount
```

where the key of the INI file line is the value of the “Host” tag in the .mea measurement XML file (here: <Host name=“CIA-1”>) and the value is a semicolon-separated list of escaped UNC path names to the Opera workstations where the Flex files reside.

Once this resolution has been encoded in the configuration file and you have restarted the importer, you will be able to select the .mea measurement XML file from the Importer user interface as the import target.
SUPPORTED FORMATS

Ratings legend and definitions

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>SCIFIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>3i SlideBook</td>
<td>.sld</td>
<td>✔️</td>
<td>✔️</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Andor Bio-Imaging Division (ABD) TIFF</td>
<td>.tif</td>
<td>✔️</td>
<td>✔️</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AIM</td>
<td>.aim</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Alicona 3D</td>
<td>.al3d</td>
<td>✔️</td>
<td>✔️</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Amersham Bio-sciences Gel</td>
<td>.gel</td>
<td>✔️</td>
<td>✔️</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Amira Mesh</td>
<td>.am, .ami-ramesh, .grey, .hx, .labels</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Analyze 7.5</td>
<td>.img, .hdr</td>
<td>✔️</td>
<td>✔️</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Animated PNG</td>
<td>.png</td>
<td>✔️</td>
<td>✔️</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Aperio SVS TIFF</td>
<td>.svs</td>
<td>✔️</td>
<td>✔️</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Applied Precision CellWorX</td>
<td>.htd, .pnl</td>
<td>✔️</td>
<td>✔️</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>AVI (Audio Video Interleave)</td>
<td>.avi</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Axon Raw Format</td>
<td>.arf</td>
<td>✔️</td>
<td>✔️</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>BD Pathway</td>
<td>.exp, .tif</td>
<td>✔️</td>
<td>✔️</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Becker & Hickl SPCImage</td>
<td>.sdt</td>
<td>✔️</td>
<td>✔️</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Bio-Rad Gel</td>
<td>.lsc</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Bio-Rad PIC</td>
<td>.pic, .raw, .xml</td>
<td>☢️</td>
<td>☢️</td>
<td>☢️</td>
<td>☢️</td>
<td>☢️</td>
<td>☢️</td>
<td>☢️</td>
</tr>
<tr>
<td>Bitplane Imaris</td>
<td>.ims</td>
<td>✔️</td>
<td>✔️</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Bruker MRI</td>
<td>.ims</td>
<td>✔️</td>
<td>✔️</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Burleigh</td>
<td>.img</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Canon DNG</td>
<td>.cr2, .crw</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Cellomics</td>
<td>.c01</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>cellSens VSI</td>
<td>.vsi</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

Continued on next page
Table 18.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>SCIFIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeltaVision</td>
<td>.dv, .r3d</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>DICOM</td>
<td>.dcm, .dcm</td>
<td>☑️</td>
<td>✔️</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
</tr>
<tr>
<td>ECAT7</td>
<td>.v</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>EPS (Encapsulated PostScript)</td>
<td>.eps, .eps, .ps</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Evotec/PerkinElmer Opera Flex</td>
<td>.flex, .mea, .res</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>FEI</td>
<td>.img</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>FEI TIFF</td>
<td>.tiff</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>FITS (Flexible Image Transport System)</td>
<td>.fits</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Gatan Digital Micrograph</td>
<td>.dm3</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Gatan Digital Micrograph 2</td>
<td>.dm2</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>GIF (Graphics Interchange Format)</td>
<td>.gif</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
</tr>
<tr>
<td>Hamamatsu Aquacosmos NAF</td>
<td>.naf</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Hamamatsu HIS</td>
<td>.his</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Hamamatsu ndpi</td>
<td>.ndpi</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Hamamatsu VMS</td>
<td>.vms</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Hitachi S-4800</td>
<td>.txt, .tif, .bmp, .jpg</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>ICS (Image Cytometry Standard)</td>
<td>.ics, .ids</td>
<td>☑️</td>
<td>☑️</td>
<td>❌</td>
<td>☑️</td>
<td>☑️</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Imacon</td>
<td>.iff</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>ImagePro Sequence</td>
<td>.seq</td>
<td>☑️</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>ImagePro Workspace</td>
<td>.ipw</td>
<td>☑️</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>IMAGIC</td>
<td>.hed, .img</td>
<td>☑️</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>IMOD</td>
<td>.mod</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Improvision Openlab LIFF</td>
<td>.liff</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Improvision Openlab Raw</td>
<td>.raw</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Improvision TIFF</td>
<td>.tiff</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>InCell 1000</td>
<td>.xdce, .tif</td>
<td>☑️</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>InCell 3000</td>
<td>.frm</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>INR</td>
<td>.inr</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>IPLab</td>
<td>.ipl</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>IPLab-Mac</td>
<td>.ipm</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>SCIFIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>JEOL</td>
<td>.dat, .img, .par</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPEG</td>
<td>.jpg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>JPEG 2000</td>
<td>.jp2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>JPX</td>
<td>.jp4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Khoros VIFF (Visualization Image File Format) Bitmap</td>
<td>.xv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Kodak BIP</td>
<td>.bip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Lambert Instruments FLIM</td>
<td>.flim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Leica LCS LEI</td>
<td>.lei, .tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Leica LAS AF LIF (Leica Image File Format)</td>
<td>.lif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Leica SCN</td>
<td>.scn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>LEO</td>
<td>.sxm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Li-Cor L2D</td>
<td>.l2d, .tif, .scn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>LIM (Laboratory Imaging/Nikon)</td>
<td>.lim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>MetaMorph 7.5 TIFF</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>MetaMorph Stack (STK)</td>
<td>.stk, .nd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>MIAS (Maia Scientific)</td>
<td>.tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Micro-Manager</td>
<td>.tif, .txt, .xml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>MINC MRI</td>
<td>.mnc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Minolta MRW</td>
<td>.mrw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>MNG (Multiple-image Network Graphics)</td>
<td>.mng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Molecular Imaging</td>
<td>.stp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>MRC (Medical Research Council)</td>
<td>.mrc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>NEF (Nikon Electronic Format)</td>
<td>.nef, .tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>NIFTI</td>
<td>.img, .hdr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Nikon Elements TIFF</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Nikon EZ-C1 TIFF</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Nikon NIS-Elements ND2</td>
<td>.nd2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>SCIFIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRRD (Nearly Raw Raster Data)</td>
<td>.nrrd, .nhdr, .raw, .txt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olympus CellR/APL</td>
<td>.apl, .mtb, .tnb, .tif, .obsep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olympus FluoView FV1000</td>
<td>.oib, .oif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olympus FluoView TIFF</td>
<td>.tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olympus ScanR</td>
<td>.xml, .dat, .tif</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olympus SIS TIFF</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OME-TIFF</td>
<td>.ome.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OME-XML</td>
<td>.ome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxford Instruments</td>
<td>.top</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCX (PC Paintbrush)</td>
<td>.pcx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PerkinElmer Densitometer</td>
<td>.pds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PerkinElmer Operetta</td>
<td>.tiff, .xml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PerkinElmer UltraView</td>
<td>.tiff, .2, .3, .4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGM (Portable Gray Map)</td>
<td>.pgm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adobe Photoshop PSD</td>
<td>.psd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photoshop TIFF</td>
<td>.tif, .tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICT (Macintosh Picture)</td>
<td>.pict</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNG (Portable Network Graphics)</td>
<td>.png</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prairie Technologies TIFF</td>
<td>.tif, .xml, .cfg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quesant</td>
<td>.afm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuickTime Movie</td>
<td>.mov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHK</td>
<td>.sm2, .sm3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBIG</td>
<td>.sm2, .sm3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seiko</td>
<td>.xqd, .xqf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SimplePCI & HCImage</td>
<td>.cxd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SimplePCI & HCImage TIFF</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM Camera</td>
<td>.tiff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Table 18.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
<th>Export</th>
<th>SCIFIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPIDER</td>
<td>.spi, .stk</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>Targa</td>
<td>.tga</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>Text</td>
<td>.txt</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>TIFF (Tagged Image File Format)</td>
<td>.tif</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>TillPhotonics TilVision</td>
<td>.vws</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>Topometrix</td>
<td>.tfr, .fr, .zfr, .zfp, .2fl</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>Trestle</td>
<td>.tif, .sld, .jpg</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>UBM</td>
<td>.pr3</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>Unisoku</td>
<td>.dat, .hdr</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>Varian FDF</td>
<td>.fdf</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>VG SAM</td>
<td>.dti</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>Viscitech XYS</td>
<td>.xys, .html</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>Velocity Clipping</td>
<td>.acr</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>WA-TOP</td>
<td>.wat</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>Windows Bitmap</td>
<td>.bmp</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>Zeiss AxioVision TIFF</td>
<td>.xml, .tiff</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>Zeiss AxioVision ZVI (Vision Image)</td>
<td>.zvi</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>Zeiss CZI</td>
<td>.czi</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
<tr>
<td>Zeiss LSM (Laser Scanning Microscope) 510/710</td>
<td>.lsm, .mdb</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
<td>🌿</td>
</tr>
</tbody>
</table>

Bio-Formats currently supports **127** formats

Ratings legend and definitions

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🌿</td>
<td>Outstanding</td>
</tr>
<tr>
<td>🌿</td>
<td>Very good</td>
</tr>
<tr>
<td>🌿</td>
<td>Good</td>
</tr>
<tr>
<td>🌿</td>
<td>Fair</td>
</tr>
<tr>
<td>🌿</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Pixels Our estimation of Bio-Formats’ ability to reliably extract complete and accurate pixel values from files in that format. The better this score, the more confident we are that Bio-Formats will successfully read your file without displaying an error message or displaying an erroneous image.

Metadata Our certainty in the thoroughness and correctness of Bio-Formats’ metadata extraction and conversion from files of that format into standard OME-XML. The better this score, the more confident we are that all meaningful metadata will be parsed and populated as OME-XML.
Openness This is not a direct expression of Bio-Formats’ performance, but rather indicates the level of cooperation the format’s controlling interest has demonstrated toward the scientific community with respect to the format. The better this score, the more tools (specification documents, source code, sample files, etc.) have been made available.

Presence This is also not directly related to Bio-Formats, but instead represents our understanding of the format’s popularity, and is also as a measure of compatibility between applications. The better this score, the more common the format and the more software packages include support for it.

Utility Our opinion of the format’s suitability for storing metadata-rich microscopy image data. The better this score, the wider the variety of information that can be effectively stored in the format.

Export This indicates whether Bio-Formats is capable of writing the format (Bio-Formats can read every format on this list).

SCIFIO This indicates whether format is supported by the SCIFIO core library (see the SCIFIO section of the licensing page\(^1\)).

18.1 3i SlideBook

Extensions: .sld

Developer: Intelligent Imaging Innovations\(^2\)

Owner: Intelligent Imaging Innovations\(^3\)

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions: 4.1, 4.2

Supported Metadata Fields: *3i SlideBook*

We currently have:

- Numerous SlideBook datasets

We would like to have:

- A SlideBook specification document
- More SlideBook datasets (preferably acquired with the most recent SlideBook software)

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▲

Utility: ▼

Additional Information

Source Code: SlidebookReader.java\(^4\)

Notes:

We strongly encourage users to export their .sld files to OME-TIFF using the SlideBook software. Bio-Formats is not likely to support the full range of metadata that is included in .sld files, and so exporting to OME-TIFF from SlideBook is the best way to ensure that all metadata is preserved.

See Also:

\(^1\)http://www.openmicroscopy.org/site/about/licensing-attribution

\(^2\)http://www.intelligent-imaging.com/

\(^3\)http://www.intelligent-imaging.com/

\(^4\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SlidebookReader.java
18.2 Andor Bio-Imaging Division (ABD) TIFF

Extensions: .tif
Developer: Andor Bioimaging Department
Owner: Andor Technology

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *Andor Bio-Imaging Division (ABD) TIFF*

We currently have:

- an ABD-TIFF specification document (from 2005 November, in PDF)
- a few ABD-TIFF datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ★
Presence: ▼
Utility: ●

Additional Information

Source Code: FluoviewReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

With a few minor exceptions, the ABD-TIFF format is identical to the Fluoview TIFF format.

18.3 AIM

Extensions: .aim
Developer: SCANCO Medical AG

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *AIM*

5 https://www.slidebook.com
6 http://www.andor.com/
7 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/FluoviewReader.java
8 http://www.scanco.ch
We currently have:
 • one .aim file
We would like to have:
 • an .aim specification document
 • more .aim files

 Ratings

Pixels: 🌡
Metadata: 🔧
Openness: 🔴
Presence: 🔴
Utility: 🔴

Additional Information

Source Code: AIMReader.java

Notes:

18.4 Alicona 3D

Extensions: .al3d
Owner: Alicona Imaging

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions: 1.0

Supported Metadata Fields: Alicona 3D
We currently have:
 • an AL3D specification document (v1.0, from 2003, in PDF)
 • a few AL3D datasets
We would like to have:
 • more AL3D datasets (Z series, T series, 16-bit)

 Ratings

Pixels: 🔧
Metadata: 🔧
Openness: 🔧
Presence: 🔴
Utility: 🔴

Additional Information

Source Code: AliconaReader.java

9 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/AIMReader.java
10 http://www.alicona.com/
12 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/AliconaReader.java
Notes:

Known deficiencies:

- Support for 16-bit AL3D images is present, but has never been tested.
- Texture data is currently ignored.

18.5 Amersham Biosciences Gel

Extensions: .gel

Developer: Molecular Dynamics

Owner: GE Healthcare Life Sciences

Support

- SCIFIO: ❌
- Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *Amersham Biosciences Gel*

We currently have:

- a GEL specification document (Revision 2, from 2001 Mar 15, in PDF)
- a few GEL datasets

We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▲
- Openness: ▲
- Presence: ▼
- Utility: ▼

Additional Information

Source Code: [GelReader.java](http://www.gelifesciences.com/)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See Also:

[Amersham Biosciences Gel Technical Overview](http://www.awaresystems.be/imaging/tiff/tifftags/docs/gel.html)

18.6 Amira Mesh

Extensions: .am, .amiramesh, .grey, .hx, .labels

Developer: Visage Imaging

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *Amira Mesh*

We currently have:

• a few Amira Mesh datasets

We would like to have:

• more Amira Mesh datasets

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: *AmiraReader.java*

Notes:

18.7 Analyze 7.5

Extensions: .img, .hdr

Developer: *Mayo Foundation Biomedical Imaging Resource*

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *Analyze 7.5*

We currently have:

• an Analyze 7.5 specification document

• several Analyze 7.5 datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

18. http://www.mayo.edu/bir
Additional Information

Source Code: `AnalyzeReader.java`20

Notes:

18.8 Animated PNG

Extensions: .png

Developer: The Animated PNG Project21

Support

SCIFIO: ✔

Export: ✔

Officially Supported Versions:

Supported Metadata Fields: *Animated PNG*

Freely Available Software:

- Firefox 3+22
- Opera 9.5+23
- KSquirrel24

We currently have:

- a specification document25
- several APNG files

We would like to have:

Ratings

Pixels: ★

Metadata: ★

Openness: ★

Presence: ★

Utility: ★

Additional Information

Source Code: `APNGReader.java`26

Notes:

18.9 Aperio SVS TIFF

Extensions: .svs

Owner: Aperio27

20https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/AnalyzeReader.java

21http://www.animatedpng.com/

22http://www.mozilla.com/firefox

23http://www.opera.com/download

24http://ksquirrel.sourceforge.net/download.php

25http://wiki.mozilla.org/APNG_Specification

26https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/APNGReader.java

27http://www.aperio.com/
Support

SCIFIO:
Export:

Officially Supported Versions: 8.0, 8.2, 9.0

Supported Metadata Fields: Aperio SVS TIFF

We currently have:
 • many SVS datasets
 • an SVS specification document
 • the ability to generate additional SVS datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: SVSReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See Also:

Aperio ImageScope

18.10 Applied Precision CellWorX

Extensions: .htd, .pnl

Developer: Applied Precision

Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: Applied Precision CellWorX

We currently have:
 • a few CellWorX datasets

We would like to have:
 • a CellWorX specification document
 • more CellWorX datasets

29 http://www.aperio.com/#imagescope-request
30 http://www.api.com
Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: CellWorxReader.java

Notes:

18.11 AVI (Audio Video Interleave)

Extensions: .avi
Developer: Microsoft

Support

SCIFIO: ✔
Export: ✔

Officially Supported Versions:

Supported Metadata Fields: AVI (Audio Video Interleave)

Freely Available Software:

• AVI Reader plugin for ImageJ
• AVI Writer plugin for ImageJ

We currently have:

• several AVI datasets

We would like to have:

• more AVI datasets, including:
 • files with audio tracks and/or multiple video tracks
 • files compressed with a common unsupported codec
 • 2+ GB files

Ratings

Pixels: ▼
Metadata: ▲
Openness: ▼
Presence: ▲
Utility: ▼

Additional Information

32 http://www.microsoft.com/
34 http://rsb.info.nih.gov/ij/plugins/avi.html
Source Code: AVIReader.java

Notes:

- Bio-Formats can save image stacks as AVI (uncompressed).
- The following codecs are supported for reading:
 - Microsoft Run-Length Encoding (MSRLE)
 - Microsoft Video (MSV1)
 - Raw (uncompressed)
 - JPEG

See Also:
AVI RIFF File Reference AVI on Wikipedia

18.12 Axon Raw Format

Extensions: .arf
Owner: INDECBioSystems

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Axon Raw Format

We currently have:

- one ARF dataset
- a specification document

We would like to have:

- more ARF datasets

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: ARFReader.java

Notes:

35 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/AVIReader.java
37 http://en.wikipedia.org/wiki/Audio_Video_Interleave
38 http://www.indecbiosystems.com/
40 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ARFReader.java
18.13 BD Pathway

Extensions: .exp, .tif
Owner: BD Biosciences

Support

SCIFIO: ×
Export: ×

Officially Supported Versions:
Supported Metadata Fields: BD Pathway

We currently have:
• a few BD Pathway datasets

We would like to have:
• more BD Pathway datasets

Ratings

Pixels: ▲
Metadata: ▲
Openness:
Presence: ▼
Utility:

Additional Information

Source Code: BDReader.java

Notes:

18.14 Becker & Hickl SPCImage

Extensions: .sdt
Owner: Becker-Hickl

Support

SCIFIO: ×
Export: ×

Officially Supported Versions:
Supported Metadata Fields: Becker & Hickl SPCImage

We currently have:
• an SDT specification document (from 2008 April, in PDF)
• an SDT specification document (from 2006 June, in PDF)
• Becker & Hickl’s SPCImage software
• a large number of SDT datasets

41 http://wwwbdbiosciences.com
42 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/BDReader.java
43 http://www.becker-hickl.de/
44 http://www.becker-hickl.de/software/tcspc/softwaretcpcspecial.htm
• the ability to produce new datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: □
Presence: □
Utility: □

Additional Information

Source Code: SDTReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

18.15 Bio-Rad Gel

Extensions: .1sc
Owner: Bio-Rad

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Bio-Rad Gel

We currently have:

• software that can read Bio-Rad Gel files
• several Bio-Rad Gel files

We would like to have:

• a Bio-Rad Gel specification
• more Bio-Rad Gel files

Ratings

Pixels: □
Metadata: ▼
Openness: ▼
Presence: □
Utility: ▼

Additional Information

Source Code: BioRadGelReader.java

Notes:

45https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SDTReader.java
46http://www.bio-rad.com
18.16 Bio-Rad PIC

Extensions: .pic, .raw, .xml
Developer: Bio-Rad
Owner: Carl Zeiss, Inc.48

Support

SCIFIO: \xmark
Export: \xmark

Officially Supported Versions:
Supported Metadata Fields: \textit{Bio-Rad PIC}

Freely Available Software:
- Bio-Rad PIC reader plugin for ImageJ49

We currently have:
- a PIC specification document (v4.5, in PDF)
- an older PIC specification document (v4.2, from 1996 December 16, in DOC)
- a large number of PIC datasets
- the ability to produce new datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▲
Utility: ▲

Additional Information

Source Code: BioRadReader.java50

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

- Commercial applications that support this format include:
 - Bitplane Imaris51
 - SVI Huygens52

18.17 Bitplane Imaris

Extensions: .ims
Owner: Bitplane53

Support

48http://www.zeiss.com/
49http://rsb.info.nih.gov/ij/plugins/biorad.html
50https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/BioRadReader.java
51http://www.bitplane.com/
52http://svi.nl/
53http://www.bitplane.com/
SCIFIO: ❌
Export: ❌
Officially Supported Versions: 2.7, 3.0, 5.5
Supported Metadata Fields: Bitplane Imaris

We currently have:

- an Imaris (RAW) specification document (from no later than 1997 November 11, in HTML)
- an Imaris 5.5 (HDF) specification document
- Bitplane’s bfFileReaderImaris3N code (from no later than 2005, in C++)
- several older Imaris (RAW) datasets
- one Imaris 3 (TIFF) dataset
- several Imaris 5.5 (HDF) datasets

We would like to have:

- an Imaris 3 (TIFF) specification document
- more Imaris 3 (TIFF) datasets

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: ImarisHDFReader.java, ImarisTiffReader.java, ImarisReader.java

Notes:

- There are three distinct Imaris formats:
 1. the old binary format (introduced in Imaris version 2.7)
 2. Imaris 3, a TIFF variant (introduced in Imaris version 3.0)
 3. Imaris 5.5, an HDF variant (introduced in Imaris version 5.5)

18.18 Bruker MRI

Developer: Bruker

Support

SCIFIO: ❌
Export: ❌
Officially Supported Versions:

Supported Metadata Fields: Bruker MRI

Freely Available Software:

54 http://flash.bitplane.com/support/faqs/faqview.cfm?mCat=6&inQuestionID=104
55 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImarisHDFReader.java
56 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImarisTiffReader.java
57 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImarisReader.java
58 http://www.bruker.com/
• Bruker plugin for ImageJ

We currently have:
• a few Bruker MRI datasets

We would like to have:
• an official specification document

Ratings

Pixels: ▼
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: BrukerReader.java

Notes:

18.19 Burleigh

Extensions: .img
Owner: Burleigh Instruments

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Burleigh

We currently have:
• Pascal code that can read Burleigh files (from ImageSXM)
• a few Burleigh files

We would like to have:
• a Burleigh file format specification
• more Burleigh files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

60 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/BrukerReader.java
Source Code: BurleighReader.java

Notes:

18.20 Canon DNG

Extensions: .cr2, .crw
Developer: Canon

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: Canon DNG

Freely Available Software:

• IrfanView

We currently have:

• a few example datasets

We would like to have:

• an official specification document

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: DNGReader.java

Notes:

18.21 Cellomics

Extensions: .c01
Developer: Thermo Fisher Scientific

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: Cellomics
We currently have:

• a few Cellomics .c01 datasets

We would like to have:

• a Cellomics .c01 specification document
• more Cellomics .c01 datasets

Ratings

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
</tbody>
</table>

Additional Information

Source Code: CellomicsReader.java

Notes:

18.22 cellSens VSI

Extensions: .vsi

Developer: Olympus

Support

- SCIFIO: ❌
- Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *cellSens VSI*

We currently have:

• a few example datasets

We would like to have:

• an official specification document

Ratings

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔴</td>
<td>🟣</td>
<td>🟢</td>
<td>🔴</td>
<td>🔴</td>
</tr>
</tbody>
</table>

Additional Information

Source Code: CellSensReader.java

Notes:

67 http://www.olympus.com/

18.23 DeltaVision

Extensions: .dv, .r3d

Owner: Applied Precision

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: DeltaVision

Freely Available Software:

- DeltaVision Opener plugin for ImageJ

Sample Datasets:

- Applied Precision Datasets

We currently have:

- a DV specification document (v2.10 or newer, in HTML)
- numerous DV datasets

We would like to have:

Ratings

Pixels: []

Metadata: []

Openness: []

Presence: []

Utility: []

Additional Information

Source Code: DeltavisionReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

- The Deltavision format is based on the Medical Research Council (MRC) file format.

- Commercial applications that support DeltaVision include:

 - Bitplane Imaris

 - SVI Huygens

 - Image-Pro Plus

See Also:

DeltaVision system description

69 http://www.api.com/
70 http://rsb.info.nih.gov/ij/plugins/trakc/delta.html
71 http://www.api.com/downloads/software/softwarexplorer2.0/SampleImages.zip
73 http://www.bitplane.com/
74 http://svi.nl/
75 http://www.mediacy.com/
76 http://api.com/deltavision.asp
18.24 DICOM

Extensions: .dcm, .dicom

Developer: National Electrical Manufacturers Association

Support

SCIFIO: ✅

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: DICOM

Freely Available Software:

- OsiriX Medical Imaging Software
- ezDICOM
- Wikipedia’s list of freeware health software

Sample Datasets:

- MRI Chest from FreeVol-3D web site
- Medical Image Samples from Sebastien Barre’s Medical Imaging page
- DICOM sample image sets from OsiriX web site

We currently have:

- DICOM specification documents (PS 3 - 2007, from 2006 December 28, in DOC and PDF)
- numerous DICOM datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▲

Openness: ▲

Presence: □

Utility: ▼

Additional Information

Source Code: DicomReader.java

Notes:

- DICOM stands for “Digital Imaging and Communication in Medicine”.
- Bio-Formats supports both compressed and uncompressed DICOM files.

See Also:

DICOM homepage

77 http://www.nema.org/
78 http://www.osirix-viewer.com/
79 http://www.sph.sc.edu/comd/orden/ezdicom.html
80 http://en.wikipedia.org/wiki/List_of_freeware_health_software#Imaging.2FVisualization
81 http://members.tripod.com/%7Eclunis_immensus/free3d/hk-40.zip
82 http://www.barre.nom.fr/medical/samples/
83 http://osirix-viewer.com/datasets/
84 http://medical.nema.org/dicom/2007/
85 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/DicomReader.java
86 http://medical.nema.org/
18.25 ECAT7

Extensions: .v
Developer: Siemens87

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: ECAT7

We currently have:
- a few ECAT7 files

We would like to have:
- an ECAT7 specification document
- more ECAT7 files

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: Ecat7Reader.java88
Notes:

18.26 EPS (Encapsulated PostScript)

Extensions: .eps, .epsi, .ps
Developer: Adobe89

Support
SCIFIO: ✔
Export: ✔

Officially Supported Versions:
Supported Metadata Fields: EPS (Encapsulated PostScript)
Freely Available Software:
- EPS Writer plugin for ImageJ90

We currently have:
- a few EPS datasets

87http://www.siemens.com
88https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/Ecat7Reader.java
89http://www.adobe.com/
90http://rsb.info.nih.gov/ij/plugins/eps-writer.html
• the ability to produce new datasets

We would like to have:

Ratings

Pixels: ▢
Metadata: ▢
Openness: ▢
Presence: ▲
Utility: ▼

Additional Information

Source Code: [EPSReader.java]
[EPSWriter.java]

Notes:

• Bio-Formats can save individual planes as EPS.
• Certain types of compressed EPS files are not supported.

18.27 Evotec/PerkinElmer Opera Flex

Extensions: .flex, .mea, .res

Developer: Evotec Technologies, now PerkinElmer

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *Evotec/PerkinElmer Opera Flex*

We currently have:

• many Flex datasets

We would like to have:

• a freely redistributable LuraWave LWF decoder

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: [FlexReader.java]

Notes:

The LuraWave LWF decoder library (i.e. lwf_jsdk2.6.jar) with license code is required to decode wavelet-compressed Flex files.

94 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/FlexReader.java
See Also:
LuraTech (developers of the proprietary LuraWave LWF compression used for Flex image planes)95

18.28 FEI

Extensions: .img
Developer: FEI96

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: FEI
We currently have:
• a few FEI files
We would like to have:
• a specification document
• more FEI files

Ratings
Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: FEIReader.java97

Notes:

18.29 FEI TIFF

Extensions: .tiff
Developer: FEI98

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: FEI TIFF
We currently have:

95http://www.luratech.com/
96http://www.fei.com/
97https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/FEIReader.java
98http://www.fei.com
• a few FEI TIFF datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: `FEITiffReader.java`\(^9\)

Notes:

18.30 FITS (Flexible Image Transport System)

Extensions: .fits

Developer: National Radio Astronomy Observatory\(^100\)

Support

SCIFIO: ✔
Export: ☑

Officially Supported Versions:

Supported Metadata Fields: *FITS (Flexible Image Transport System)*

We currently have:

• a FITS specification document\(^101\) (NOST 100-2.0, from 1999 March 29, in HTML)

• several FITS datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

Source Code: `FitsReader.java`\(^102\)

Notes:

See Also:

MAST/FITS homepage\(^103\) FITS Support Office\(^104\)

\(^100\)http://www.nrao.edu/

\(^103\)http://archive.stsci.edu/fits/

18.31 Gatan Digital Micrograph

Extensions: .dm3
Owner: Gatan105

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions: 3
Supported Metadata Fields: *Gatan Digital Micrograph*

Freely Available Software:
- DM3 Reader plugin for ImageJ106
- EMAN107

We currently have:
- Gatan’s ImageReader2003 code (from 2003, in C++)
- numerous DM3 datasets

We would like to have:
- a DM3 specification document

Ratings

Pixels: 🔺
Metadata: 🟺
Openness: 🔻
Presence: 🔻
Utility: 🔻

Additional Information

Source Code: GatanReader.java108

Notes:
Commercial applications that support .dm3 files include Datasqueeze109.

18.32 Gatan Digital Micrograph 2

Extensions: .dm2
Developer: Gatan110

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions: 2

105http://www.gatan.com/
106http://rsb.info.nih.gov/ij/plugins/DM3_Reader.html
107http://blake.bcm.edu/EMAN/
109http://www.datasqueezesoftware.com/
110http://www.gatan.com
Supported Metadata Fields: *Gatan Digital Micrograph 2*

We currently have:

- Pascal code that can read DM2 files (from ImageSXM)
- a few DM2 files

We would like to have:

- an official DM2 specification document
- more DM2 files

Ratings

Pixels: ▼

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

Additional Information

Notes:

18.33 GIF (Graphics Interchange Format)

Extensions: .gif

Developer: CompuServe[^12]

Owner: Unisys[^13]

Support

SCIFIO: ✅

Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *GIF (Graphics Interchange Format)*

Freely Available Software:

- Animated GIF Reader plugin for ImageJ[^14]
- GIF Stack Writer plugin for ImageJ[^15]

We currently have:

- a GIF specification document[^16] (Version 89a, from 1990, in HTML)
- numerous GIF datasets
- the ability to produce new datasets

We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▲
- Openness: ▼
- Presence: ▲
- Utility: ▼

Additional Information

Source Code: `GIFReader.java`¹¹⁷

Notes:

18.34 Hamamatsu Aquacosmos NAF

Extensions: .naf

Developer: Hamamatsu¹¹⁸

Support

- SCIFIO: ❌
- Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *Hamamatsu Aquacosmos NAF*

We currently have:

- a few NAF files

We would like to have:

- a specification document
- more NAF files

Ratings

- Pixels: ▼
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

Additional Information

Source Code: `NAFReader.java`¹¹⁹

Notes:

18.35 Hamamatsu HIS

Extensions: .his
Owner: Hamamatsu

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: Hamamatsu HIS

We currently have:
- Pascal code that can read HIS files (from ImageSXM)
- several HIS files

We would like to have:
- an HIS specification
- more HIS files

Ratings
Pixels: 🔽
Metadata: 🔽
Openness: 🔽
Presence: 🔽
Utility: 🔽

Additional Information
Source Code: HISReader.java

Notes:

18.36 Hamamatsu ndpi

Extensions: .ndpi
Developer: Hamamatsu

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: Hamamatsu ndpi

Freely Available Software:
- NDP.view

Sample Datasets:
• OpenSlide124

We currently have:
• many example datasets

We would like to have:
• an official specification document

Ratings

Pixels: ▼
Metadata:
Openness:

Presence: ▼
Utility: ▼

Additional Information

Source Code: NDPIReader.java125

Notes:

18.37 Hamamatsu VMS

Extensions: .vms

Developer: Hamamatsu126

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Hamamatsu VMS

Sample Datasets:
• OpenSlide127

We currently have:
• a few example datasets
 • developer documentation from the OpenSlide project128

We would like to have:
• an official specification document
 • more example datasets

Ratings

Pixels:
Metadata:
Openness: ▼

\begin{itemize}
\item 124http://openslide.cs.cmu.edu/download/openslide-testdata/Hamamatsu/
\item 125https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NDPIReader.java
\item 126http://www.hamamatsu.com
\item 127http://openslide.cs.cmu.edu/download/openslide-testdata/Hamamatsu-vms/
\item 128http://openslide.org/Hamamatsu%20format/
\end{itemize}
Additional Information

Source Code: HamamatsuVMSReader.java

Notes:

18.38 Hitachi S-4800

Extensions: .txt, .tif, .bmp, .jpg
Developer: Hitachi

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Hitachi S-4800

We currently have:

- several Hitachi S-4800 datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲

Presence: ▼
Utility: ▼

Additional Information

Source Code: HitachiReader.java

Notes:

18.39 ICS (Image Cytometry Standard)

Extensions: .ics, .ids
Developer: P. Dean et al.

Support

SCIFIO: ✅
Export: ✅

Officially Supported Versions: 1.0, 2.0

Supported Metadata Fields: ICS (Image Cytometry Standard)

Freely Available Software:

129 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/HamamatsuVMSReader.java
130 http://www.hitachi-hta.com/sites/default/files/technotes/Hitachi_4800_STEM.pdf
131 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/HitachiReader.java
• Libics (ICS reference library)132
• ICS Opener plugin for ImageJ133
• IrfanView134

We currently have:
• numerous ICS datasets

We would like to have:

\textbf{Ratings}

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▲
Utility: ▲

\textbf{Additional Information}

Source Code: \texttt{ICSReader.java}135 Source Code: \texttt{ICSWriter.java}136

Notes:
• ICS version 1.0 datasets have two files - an .ics file that contains all of the metadata in plain-text format, and an .ids file that contains all of the pixel data.
• ICS version 2.0 datasets are a single .ics file that contains both pixels and metadata.

Commercial applications that can support ICS include:
• Bitplane Imaris137
• SVI Huygens138

\section*{18.40 Imacon}

Extensions: .fff

Owner: Hasselblad139

\textbf{Support}

SCIFIO: ×

Export: ×

Officially Supported Versions:

Supported Metadata Fields: \textit{Imacon}

We currently have:
• one Imacon file

We would like to have:
• more Imacon files

132\url{http://libics.sourceforge.net/}
133\url{http://valelab.ucsf.edu/%7Enstuurman/IJplugins/Ics_Opener.html}
134\url{http://www.irfanview.com/}
135\url{https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/ICSReader.java}
136\url{https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/ICSWriter.java}
137\url{http://www.bitplane.com/}
138\url{http://svi.nl/}
139\url{http://www.hasselbladusa.com/}
Ratings
Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: ImaconReader.java

Notes:

18.41 ImagePro Sequence

Extensions: .seq
Owner: Media Cybernetics

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: ImagePro Sequence

We currently have:
• the Image-Pro Plus software
• a few SEQ datasets
• the ability to produce more datasets

We would like to have:
• an official SEQ specification document

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: SEQReader.java

Notes:

140 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImaconReader.java
141 http://www.mediacy.com/
143 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SEQReader.java
18.42 ImagePro Workspace

Extensions: .ipw
Owner: Media Cybernetics

Support

SCIFIO: ☒
Export: ☒

Officially Supported Versions:
Supported Metadata Fields: ImagePro Workspace

We currently have:
- the Image-Pro Plus software
- a few IPW datasets
- the ability to produce more datasets

We would like to have:
- an official IPW specification document
- more IPW datasets:
 - multiple datasets in one file
 - 2+ GB files

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: IPWReader.java

Notes:
Bio-Formats uses a modified version of the Apache Jakarta POI library to read IPW files.

18.43 IMAGIC

Extensions: .hed, .img
Developer: Image Science

Support

SCIFIO: ☒
Export: ☒

Officially Supported Versions:

144 http://www.mediacy.com/
146 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/IPWReader.java
147 http://jakarta.apache.org/poi/
148 http://www.imagescience.de
Supported Metadata Fields: *IMAGIC*

Freely Available Software:
- [em2em](http://www.imagescience.de/em2em.html)

We currently have:
- one example dataset
- official file format documentation

We would like to have:
- more example datasets

Ratings

Pixels: ▲

Metadata: ▲

Openness: ▲

Presence: ▼

Utility: ▼

Additional Information

Source Code: [ImagicReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImagicReader.java)

Notes:

See Also:

IMAGIC specification[^1]

18.44 IMOD

Extensions: .mod

Developer: [Boulder Laboratory for 3-Dimensional Electron Microscopy of Cells](http://bio3d.colorado.edu)

Owner: [Boulder Laboratory for 3-Dimensional Electron Microscopy of Cells](http://bio3d.colorado.edu)

Support

SCIFIO: ❌

Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *IMOD*

Freely Available Software:
- [IMOD](http://bio3d.colorado.edu/imod/)

We currently have:
- a few sample datasets
- official documentation[^5]

[^1]: http://www.imagescience.de/em2em.html
[^3]: http://www.imagescience.de/em2em.html
[^4]: http://bio3d.colorado.edu/imod/doc/binspec.html
We would like to have:

Ratings

Pixels: []
Metadata: []
Openness: [▲]
Presence: [▼]
Utility: [▼]

Additional Information

Source Code: [IMODReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/IMODReader.java)

Notes:

18.45 Improvision Openlab LIFF

Extensions: .liff

Developer: [Improvision](http://www.improvision.com/)

Owner: [PerkinElmer](http://www.perkinelmer.com/)

Support

SCIFIO: [X]

Export: [X]

Oficially Supported Versions: 2.0, 5.0

Supported Metadata Fields: *Improvision Openlab LIFF*

We currently have:

- an Openlab specification document (from 2000 February 8, in DOC)
- Improvision’s XLIFFFileImporter code for reading Openlab LIFF v5 files (from 2006, in C++)
- several Openlab datasets

We would like to have:

- more Openlab datasets (preferably with 32-bit integer data)

Ratings

Pixels: [▲]
Metadata: []
Openness: [▲]
Presence: []
Utility: [▼]

Additional Information

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.
See Also:
Openlab software review

18.46 Improvision Openlab Raw

Extensions: .raw
Developer: Improvision
Owner: PerkinElmer

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Improvision Openlab Raw

We currently have:
• an Openlab Raw specification document (from 2004 November 09, in HTML)
• a few Openlab Raw datasets

We would like to have:

Ratings
Pixels:
Metadata:
Openness:
 Presence:
Utility:

Additional Information
Source Code: OpenlabRawReader.java

Notes:
See Also:
Openlab software review

18.47 Improvision TIFF

Extensions: .tif
Developer: Improvision
Owner: PerkinElmer

Support

See Also:
Openlab software review

18.46. Improvision Openlab Raw
SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *Improvision TIFF*

We currently have:

- an Improvision TIFF specification document
- a few Improvision TIFF datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

Source Code: [ImprovisionTiffReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImprovisionTiffReader.java)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See Also:

[Openlab software overview](http://www.improvision.com/products/openlab/)

18.48 InCell 1000

Extensions: .xdce, .tif

Developer: GE

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *InCell 1000*

We currently have:

- a few InCell 1000 datasets

We would like to have:

- an InCell 1000 specification document
- more InCell 1000 datasets

169 http://www.improvision.com/products/openlab/
170 http://gelifesciences.com/
Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: InCellReader.java

Notes:

18.49 InCell 3000

Extensions: .frm
Developer: GE

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: InCell 3000

Sample Datasets:
- Broad Bioimage Benchmark Collection

We currently have:
- a few example datasets

We would like to have:
- an official specification document

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: InCell3000Reader.java

Notes:

172 http://gelifesciences.com/
173 http://www.broadinstitute.org/bbbc/BBBC013/
18.50 INR

Extensions: .inr

Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: INR

We currently have:

• several sample .inr datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: INRReader.java175

Notes:

18.51 IPLab

Extensions: .ipl

Developer: Scanalytics

Owner: was BD Biosystems176, now BioVision Technologies177

Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: IPLab

Freely Available Software:

• IPLab Reader plugin for ImageJ178

We currently have:

• an IPLab specification document (v3.6.5, from 2004 December 1, in PDF)

• several IPLab datasets

We would like to have:

175https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/INRReader.java
176http://wwwbdbiosciencescom/
177http://wwwbioviscomiplabhtml
178http://rsbinfo.nihgov/ij/plugins/iplab-readerhtml
• more IPLab datasets (preferably with 32-bit integer or floating point data)

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: IPLabReader.java

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Commercial applications that support IPLab include:

• Bitplane Imaris
• SVI Huygens

See Also:
IPLab software review

18.52 IPLab-Mac

Extensions: .ipm
Owner: BioVision Technologies

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: IPLab-Mac

We currently have:

• a few IPLab-Mac datasets
• a specification document

We would like to have:

• more IPLab-Mac datasets

Ratings
Pixels:
Metadata:
Openness:
Presence:

References:
179 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/IPLabReader.java
180 http://www.bitplane.com/
181 http://svi.nl/
182 http://www.biovis.com/iplab.htm
183 http://biovis.com/
Utility: ▼

Additional Information
Source Code: IvisionReader.java

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

18.53 JEOL

Extensions: .dat, .img, .par
Owner: JEOL

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: JEOL

We currently have:
• Pascal code that reads JEOL files (from ImageSXM)
• a few JEOL files

We would like to have:
• an official specification document
• more JEOL files

Ratings
Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: JEOLReader.java

Notes:

18.54 JPEG

Extensions: .jpg
Developer: Independent JPEG Group

Support
SCIFIO: ✔️

185 http://www.jeol.com
186 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/JEOLReader.java
187 http://www.ijg.org/
Export: ✔️

Officially Supported Versions:

Supported Metadata Fields: JPEG

We currently have:

- a JPEG specification document
 (v1.04, from 1992 September 1, in PDF)
- numerous JPEG datasets
- the ability to produce more datasets

We would like to have:

Ratings

Pixels: 🟢

Metadata: 🔴

Openness: 🟢

Presence: 🟢

Utility: 🔴

Additional Information

Source Code: JPEGReader.java

Source Code: JPEGWriter.java

Notes:

Bio-Formats can save individual planes as JPEG. Bio-Formats uses the Java Image I/O API to read and write JPEG files. JPEG stands for "Joint Photographic Experts Group".

See Also:

JPEG homepage

18.55 JPEG 2000

Extensions: .jp2

Developer: Independent JPEG Group

Support

SCIFIO: ✔️

Export: ✔️

Officially Supported Versions:

Supported Metadata Fields: JPEG 2000

Freely Available Software:

- JJ2000 (JPEG 2000 library for Java)

We currently have:

- a JPEG 2000 specification document
 (final draft, from 2000, in PDF)

188 http://www.w3.org/Graphics/JPEG/jfif3.pdf
189 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/JPEGReader.java
190 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/JPEGWriter.java
191 http://java.sun.com/j2se/1.4.2/docs/guide/imageio/index.html
192 http://www.jpeg.org/jpeg/index.html
193 http://www.ijg.org/
194 http://code.google.com/p/jj2000/
• a few .jp2 files

We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▼
- Openness: ▲
- Presence: ▼
- Utility: ▼

Additional Information

Source Code: JPEG2000Reader.java\(^{196}\) Source Code: JPEG2000Writer.java\(^{197}\)

Notes:

Bio-Formats uses the JAI Image I/O Tools\(^ {198}\) library to read JP2 files. JPEG stands for “Joint Photographic Experts Group”.

18.56 JPK

Extensions:.jpk

Developer: JPK Instruments\(^ {199}\)

Support

- SCIFIO: X
- Export: X

Officially Supported Versions:

Supported Metadata Fields: JPK

We currently have:

- Pascal code that can read JPK files (from ImageSXM)
- a few JPK files

We would like to have:

- an official specification document
- more JPK files

Ratings

- Pixels: ▼
- Metadata: ▼
- Openness: ▼
- Presence: ▼
- Utility: ▼

Additional Information

Source Code: JPKReader.java\(^ {200}\)

\(^{197}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/JPEG2000Writer.java

\(^{198}\)https://java.net/projects/jai-imageio

\(^{199}\)http://www.jpk.com

\(^{200}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/JPKReader.java
Notes:

18.57 JPX

Extensions: .jpx
Developer: JPEG Committee

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: JPX
We currently have:
• a few .jpx files

We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information
Source Code: JPXReader.java
Notes:

18.58 Khoros VIFF (Visualization Image File Format) Bitmap

Extensions: .xv
Developer: Khoral
Owner: AccuSoft

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: Khoros VIFF (Visualization Image File Format) Bitmap
Sample Datasets:
• VIFF Images

We currently have:

\[201\text{http://www.jpeg.org/jpeg2000/}\]
\[202\text{https://github.com/openmicroscopy/bioformats/blob/develop/components/bso-formats/src/loci/formats/in/JPXReader.java}\]
\[203\text{http://www.khoral.com/company/}\]
\[204\text{http://www.accusoft.com/company/}\]
\[205\text{http://netghost.narod.ru/gif/sample/images/viff/index.htm}\]
• several VIFF datasets

We would like to have:

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: [KhorosReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/KhorosReader.java)

Notes:

See Also:

18.59 Kodak BIP

Extensions: .bip

Developer: Kodak/Carestream

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Kodak BIP

We currently have:

• a few .bip datasets

We would like to have:

• an official specification document

Ratings

Pixels: ▶
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: [KodakReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/KodakReader.java)

Notes:

See Also:

http://carestream.com
Information on Image Station systems

18.60 Lambert Instruments FLIM

Extensions: .fli
Developer: Lambert Instruments

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: Lambert Instruments FLIM

We currently have:
• an LI-FLIM specification document
• several example LI-FLIM datasets

We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information
Source Code: LiFlimReader.java

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

18.61 Leica LCS LEI

Extensions: .lei, .tif
Developer: Leica Microsystems CMS GmbH
Owner: Leica

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: Leica LCS LEI

Freely Available Software:

210 http://carestream.com/PublicContent.aspx?langType=1033&id=448953
211 http://www.lambert-instruments.com
212 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LiFlimReader.java
213 http://www.leica-microsystems.com/
214 http://www.leica.com/
We currently have:

- an LEI specification document (beta 2.000, from no later than 2004 February 17, in PDF)
- many LEI datasets

We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▲
- Openness: ▲
- Presence: ▲
- Utility: ▲

Additional Information

Source Code: LeicaReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

LCS stands for “Leica Confocal Software”. LEI presumably stands for “Leica Experimental Information”.

Commercial applications that support LEI include:

- Bitplane Imaris
- SVI Huygens
- Image-Pro Plus

18.62 Leica LAS AF LIF (Leica Image File Format)

Extensions: .lif

Developer: Leica Microsystems CMS GmbH

Owner: Leica

Support

- SCIFIO: ✗
- Export: ✗

Officially Supported Versions: 1.0, 2.0

Supported Metadata Fields: Leica LAS AF LIF (Leica Image File Format)

Freely Available Software:

- Leica LAS AF Lite (links at bottom of page)

We currently have:

- a LIF specification document (version 2, from no later than 2007 July 26, in PDF)
• a LIF specification document (version 1, from no later than 206 April 3, in PDF)
• numerous LIF datasets

We would like to have:

Ratings

Pixels: 🟢
Metadata: 🟢
Openness: 🟢
Presence: 🟢
Utility: 🟢

Additional Information

Source Code: LIFReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

LAS stands for “Leica Application Suite”. AF stands for “Advanced Fluorescence”.

Commercial applications that support LIF include:

- Bitplane Imaris
- SVI Huygens
- Amira

18.63 Leica SCN

Extensions: .scn

Developer: Leica Microsystems

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions: 2012-03-10

Supported Metadata Fields: Leica SCN

We currently have:

• a few sample datasets

We would like to have:

• an official specification document
• sample datasets that cannot be opened

Ratings

Pixels: 🟢
Metadata: 🟢
Openness: 🟢

225http://svi.nl/
18.64 LEO

Extensions: .sxm
Owner: Zeiss

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: LEO

We currently have:

• Pascal code that can read LEO files (from ImageSXM)
• a few LEO files

We would like to have:

• an official specification document
• more LEO files

Ratings
Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: LeicaSCNReader.java
Notes:

18.65 Li-Cor L2D

Extensions: .l2d, .tif, .scn
Owner: LiCor Biosciences

Support
SCIFIO: ✗

Additional Information
Source Code: LEOReader.java
Notes:

228 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LeicaSCNReader.java
229 http://www.zeiss.de
231 http://www.licor.com/
Export: ✗
Officially Supported Versions:
Supported Metadata Fields: Li-Cor L2D
We currently have:
• a few L2D datasets
We would like to have:
• an official specification document
• more L2D datasets

Ratings
Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: L2DReader.java

Notes:
L2D datasets cannot be imported into OME using server-side import. They can, however, be imported from ImageJ, or using the omeul utility.

18.66 LIM (Laboratory Imaging/Nikon)

Extensions: .lim
Owner: Laboratory Imaging

Support
SCIFIO: ✗
Export: ✗
Officially Supported Versions:
Supported Metadata Fields: LIM (Laboratory Imaging/Nikon)
We currently have:
• several LIM files
• the ability to produce more LIM files
We would like to have:
• an official specification document

Ratings
Pixels: ▼
Metadata: ▼
Openness: ▼

232 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/L2DReader.java
233 http://www.lim.cz/
Bio-Formats Documentation, Release 4.4.9

18.67 MetaMorph 7.5 TIFF

Extensions: .tiff

Owner: Molecular Devices

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: MetaMorph 7.5 TIFF

We currently have:

• a few Metamorph 7.5 TIFF datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▲

Openness: ▲

Presence: ◊

Utility: ◊

Additional Information

Source Code: MetamorphTiffReader.java

Notes:

18.68 MetaMorph Stack (STK)

Extensions: .stk,.nd

Owner: Molecular Devices

Support

SCIFIO: ✗
Export:

Officially Supported Versions:

Supported Metadata Fields: *MetaMorph Stack (STK)*

We currently have:

- an STK specification document (from 2006 November 21, in DOC)
- an older STK specification document (from 2005 March 25, in DOC)
- an ND specification document (from 2002 January 24, in PDF)
- a large number of datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: *MetamorphReader.java*[^239]

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Commercial applications that support STK include:

- Bitplane Imaris[^240]
- SVI Huygens[^241]
- DIMIN[^242]

See Also:

Metamorph imaging system overview[^243]

18.69 MIAS (Maia Scientific)

Extensions: `.tif`

Developer: *Maia Scientific*[^244]

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *MIAS (Maia Scientific)*

We currently have:

[^239]: https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MetamorphReader.java
[^240]: http://www.bitplane.com/
[^241]: http://svi.nl/
[^242]: http://dimin.net/
[^243]: http://www.metamorph.com/
[^244]: http://www.maia-scientific.com/
• several MIAS datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: MIASReader.java245

Notes:

18.70 Micro-Manager

Extensions: .tif, .txt, .xml

Developer: Vale Lab246

Support

SCIFIO: ✔
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *Micro-Manager*

Freely Available Software:

• *Micro-Manager*247

We currently have:

• many Micro-manager datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information

Source Code: MicromanagerReader.java248

Notes:

245 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MIASReader.java
246 http://valelab.ucsf.edu/
247 http://micro-manager.org/
248 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/MicromanagerReader.java
18.71 MINC MRI

Extensions: .mnc
Developer: McGill University

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: MINC MRI

Freely Available Software:

- MINC

We currently have:

- a few MINC files

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: MINCReader.java

Notes:

18.72 Minolta MRW

Extensions: .mrw
Developer: Minolta

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Minolta MRW

Freely Available Software:

- dcraw

We currently have:

- several .mrw files

249 http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
250 http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
251 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MINCRReader.java
252 http://www.konicaminolta.com/
253 http://www.cybercom.net/%7Edcoffin/dcraw/
We would like to have:

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: MRWReader.java\(^{254}\)

Notes:

See Also:

Description of MRW format\(^{255}\)

18.73 MNG (Multiple-image Network Graphics)

Extensions: .mng

Developer: MNG Development Group\(^{256}\)

Support

SCIFIO: ✔
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: *MNG (Multiple-image Network Graphics)*

Freely Available Software:

- libmng (MNG reference library)\(^{257}\)

Sample Datasets:

- MNG sample files\(^{258}\)

We currently have:

- the libmng-testsuites\(^{259}\) package (from 2003 March 05, in C)
- a large number of MNG datasets

We would like to have:

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

\(^{257}\)http://sourceforge.net/projects/libmng/

\(^{258}\)http://sourceforge.net/projects/libmng/files/libmng-testsuites/MNGsuite-1.0/MNGsuite.zip/download

\(^{259}\)http://downloads.sourceforge.net/libmng/MNGsuite-20030305.zip
Additional Information

Source Code: MNGReader.java

Notes:

See Also:
MNG homepage MNG specification

18.74 Molecular Imaging

Extensions: .stp

Owner: Molecular Imaging Corp, San Diego CA (closed)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: Molecular Imaging

We currently have:

• Pascal code that reads Molecular Imaging files (from ImageSXM)
• a few Molecular Imaging files

We would like to have:

• an official specification document
• more Molecular Imaging files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: MolecularImagingReader.java

Notes:

18.75 MRC (Medical Research Council)

Extensions: .mrc

Developer: MRC Laboratory of Molecular Biology

Support

SCIFIO:

260https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/MNGReader.java

261http://www.libpng.org/pub/mng/

262http://www.libpng.org/pub/mng/spec

263https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MolecularImagingReader.java

264http://www2.mrc-lmb.cam.ac.uk/
Export:

Officially Supported Versions:

Supported Metadata Fields: *MRC (Medical Research Council)*

Sample Datasets:

- golgi.mrc265

We currently have:

- an MRC specification document266 (in HTML)
- another MRC specification document267 (in TXT)
- a few MRC datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: MRCReader.java268

Notes:

Commercial applications that support MRC include:

- Bitplane Imaris269

See Also:

MRC on Wikipedia270

18.76 NEF (Nikon Electronic Format)

Extensions: .nef, .tif

Developer: Nikon271

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *NEF (Nikon Electronic Format)*

Sample Datasets:

- nefile1.zip272

265http://bio3d.colorado.edu/imod/files/imod_data.tar.gz

266http://ami.scripps.edu/software/mrc/tools/mrc_specification.php

267http://bio3d.colorado.edu/imod/doc/mrc_format.txt

268https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MRCReader.java

269http://www.bitplane.com/

270http://en.wikipedia.org/wiki/MRC_%28file_format%29

271http://www.nikon.com/

272http://www.outbackphoto.com/workshop/NEF_conversion/nefile1.zip
• Sample NEF images

We currently have:

• a NEF specification document (v0.1, from 2003, in PDF)
• several NEF datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: NikonReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See Also:

NEF Conversion

18.77 NIfTI

Extensions: .img, .hdr

Developer: National Institutes of Health

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:

Supported Metadata Fields: NIfTI

Sample Datasets:

• Official test data

We currently have:

• NIfTI specification documents
• several NIfTI datasets

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲

http://www.nikondigital.org/articles/library/nikon_d2x_first_impressions.htm
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NikonReader.java
http://www.outbackphoto.com/workshop/NEF_conversion/nefconversion.html
http://www.nih.gov/
http://nifti.nimh.nih.gov/nifti-1/data
http://nifti.nimh.nih.gov/nifti-1/
18.78 Nikon Elements TIFF

Extensions: .tiff
Developer: Nikon

Support

- **SCIFIO:** ✗
- **Export:** ✗

Officially Supported Versions:

Supported Metadata Fields: Nikon Elements TIFF

- We currently have:
 - a few Nikon Elements TIFF files

- We would like to have:
 - more Nikon Elements TIFF files

Ratings

- **Pixels:**
- **Metadata:**
- **Openness:** ✖
- **Presence:** ✖
- **Utility:** ✖

Additional Information

Source Code: [NikonElementsTiffReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NikonElementsTiffReader.java)

Notes:

18.79 Nikon EZ-C1 TIFF

Extensions: .tiff
Developer: Nikon

Support

- **SCIFIO:** ✗
- **Export:** ✗

Officially Supported Versions:

Notes:

279 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NiftiReader.java
280 http://www.nikon.com
281 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NikonElementsTiffReader.java
282 http://www.nikon.com/
Officially Supported Versions:
Supported Metadata Fields: Nikon EZ-C1 TIFF

We currently have:
 • a few Nikon EZ-C1 TIFF files

We would like to have:

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information

Source Code: NikonTiffReader.java
Notes:

18.80 Nikon NIS-Elements ND2

Extensions: .nd2
Developer: Nikon USA

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: Nikon NIS-Elements ND2

Freely Available Software:
 • NIS-Elements Viewer from Nikon

We currently have:
 • many ND2 datasets

We would like to have:
 • an official specification document

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▲
Utility: ▲

Additional Information

283 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NikonTiffReader.java
284 http://www.nikonusa.com/
285 http://www.nis-elements.com/resources-downloads.html
Source Code: NativeND2Reader.java

Notes:

There are two distinct versions of ND2: an old version, which uses JPEG-2000 compression, and a new version which is either uncompressed or Zip-compressed. We are not aware of the version number or release date for either format.

Bio-Formats uses the JAI Image I/O Tools library to read ND2 files compressed with JPEG-2000.

There is also an ND2 reader that uses Nikon’s native libraries. To use it, you must be using Windows and have Nikon’s ND2 reader plugin for ImageJ installed. Additionally, you will need to download LegacyND2Reader.dll and place it in your ImageJ plugin folder.

18.81 NRRD (Nearly Raw Raster Data)

Extensions: .nrrd, .nhdr, .raw, .txt

Developer: Teem developers

Support

SCIFIO: ✔

Export: ❌

Officially Supported Versions:

Supported Metadata Fields: NRRD (Nearly Raw Raster Data)

Freely Available Software:

- nrrd (NRRD reference library)

Sample Datasets:

- Diffusion tensor MRI datasets

We currently have:

- an nrrd specification document (v1.9, from 2005 December 24, in HTML)

- a few nrrd datasets

We would like to have:

Ratings

Pixels: 🔵

Metadata: 🔵

Openness: 🔵

Presence: 🔴

Utility: 🔵

Additional Information

Source Code: NRRDReader.java

Notes:

286 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NativeND2Reader.java
287 http://java.net/projects/jai-imageio
289 https://github.com/openmicroscopy/bioformats/blob/develop/lib/LegacyND2Reader.dll?raw=true
290 http://teem.sourceforge.net/
291 http://teem.sourceforge.net/nrrd/
292 http://www.sci.utah.edu/~gk/DTI-data/
293 http://teem.sourceforge.net/nrrd/format.html
294 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/NRRDReader.java

18.81. NRRD (Nearly Raw Raster Data)
18.82 Olympus CellR/APL

Extensions: .apl, .mth, .tnb, .tif, .obsep

Owner: Olympus

Support

SCIFIO: ❌

Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *Olympus CellR/APL*

We currently have:

- a few CellR datasets

We would like to have:

- more Cellr datasets
 - an official specification document

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

Additional Information

Source Code: APLReader.java

Notes:

18.83 Olympus FluoView FV1000

Extensions: .oib, .oif

Owner: Olympus

Support

SCIFIO: ❌

Export: ❌

Officially Supported Versions: 1.0, 2.0

Supported Metadata Fields: *Olympus FluoView FV1000*

Freely Available Software:

- FV-Viewer from Olympus

We currently have:

- an OIF specification document (v2.0.0.0, from 2008, in PDF)

295http://www.olympus.com/
296https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/APLReader.java
297http://www.olympus.com/
298http://www.olympus.co.uk/microscopy/22_FluoView_FV1000__Confocal_Microscope.htm
• an FV1000 specification document (v1.0.0.0, from 2004 June 22, in PDF)
• older FV1000 specification documents (draft, in DOC and XLS)
• many FV1000 datasets

We would like to have:
• more OIB datasets (especially 2+ GB files)
• more FV1000 version 2 datasets

Ratings

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▲
Utility: ▲

Additional Information

Source Code: FV1000Reader.java

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Bio-Formats uses a modified version of the Apache Jakarta POI library to read OIB files. OIF stands for “Original Imaging Format”. OIB stands for “Olympus Image Binary”. OIF is a multi-file format that includes an .oif file and a directory of .tif, .roi, .pty, .lut, and .bmp files. OIB is a single file format.

Commercial applications that support this format include:

• Bitplane Imaris
• SVI Huygens

See Also:
Olympus FluoView Resource Center

18.84 Olympus FluoView TIFF

Extensions: .tif
Owner: Olympus

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: Olympus FluoView TIFF

Freely Available Software:

• DIMIN

300 http://jakarta.apache.org/poi/
301 http://www.bitplane.com/
302 http://svi.nl/
303 http://www.olympusflouview.com
304 http://www.olympus.com/
305 http://www.dimin.net/
We currently have:

- a FluoView specification document (from 2002 November 14, in DOC)
- Olympus’ FluoView Image File Reference Suite (from 2002 March 1, in DOC)
- several FluoView datasets

We would like to have:

Ratings

Pixels: [▲]
Metadata: [▲]
Openness: [▲]
Presence: [□]
Utility: [□]

Additional Information

Source Code: FluoviewReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Commercial applications that support this format include:

- Bitplane Imaris
- SVI Huygens

18.85 Olympus ScanR

Extensions: .xml, .dat, .tif

Developer: Olympus

Owner: Olympus

Support

SCIFIO: [✘]

Export: [✘]

Officially Supported Versions:

Supported Metadata Fields: *Olympus ScanR*

We currently have:

- several ScanR datasets

We would like to have:

Ratings

Pixels: [▲]
Metadata: [□]
Openness: [□]

306: https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/FluoviewReader.java
307: http://www.bitplane.com/
308: http://svi.nl/
309: http://www.olympus.com/
310: http://www.olympus.com/
18.86 Olympus SIS TIFF

Extensions: .tiff
Developer: Olympus

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: *Olympus SIS TIFF*

We currently have:
- a few example SIS TIFF files

We would like to have:

Ratings

Pixels: ❌
Metadata: ❌
Openness: ❌

Presence: ❌
Utility: ❌

Additional Information

Source Code: SISReader.java

Notes:

18.87 OME-TIFF

Extensions: .ome.tiff
Developer: Open Microscopy Environment

Support
SCIFIO: ✔️
Export: ✔️

Supported Metadata Fields: *OME-TIFF*

Note:

312http://www.olympus-sis.com/
313https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SISReader.java
314http://www.openmicroscopy.org/
We currently have:

- an OME-TIFF specification document315 (from 2006 October 19, in HTML)
- many OME-TIFF datasets
- the ability to produce additional datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: OMETiffReader.java316 Source Code: OMETiffWriter.java317

Notes:

Bio-Formats can save image stacks as OME-TIFF.

Commercial applications that support OME-TIFF include:

- Bitplane Imaris318
- SVI Huygens319

See Also:

OME-TIFF technical overview320

18.88 OME-XML

Extensions: .ome

Developer: Open Microscopy Environment321

Support

SCIFIO: ✔

Export: ✔

Supported Metadata Fields: *OME-XML*

We currently have:

- OME-XML specification documents322
- many OME-XML datasets
- the ability to produce more datasets

315http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/specification.html
316https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/OMETiffReader.java
317https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/OMETiffWriter.java
318http://www.bitplane.com/
319http://svi.nl/
320http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/index.html
321http://www.openmicroscopy.org/
322http://www.openmicroscopy.org/Schemas/
We would like to have:

Ratings

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▼</td>
<td>▲</td>
</tr>
</tbody>
</table>

Additional Information

Notes:

Bio-Formats uses the [OME-XML Java library](http://www.openmicroscopy.org/site/support/ome-model/ome-xml/java-library.html) to read OME-XML files.

Commercial applications that support OME-XML include:

- Bitplane Imaris
- SVI Huygens

18.89 Oxford Instruments

Extensions: .top
Owner: Oxford Instruments

Support

<table>
<thead>
<tr>
<th>SCIFIO</th>
<th>Export</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

Officially Supported Versions:

Supported Metadata Fields: Oxford Instruments

We currently have:

- Pascal code that can read Oxford Instruments files (from ImageSXM)
- a few Oxford Instruments files

We would like to have:

- an official specification document
- more Oxford Instruments files

Ratings

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
</tr>
</tbody>
</table>
Additional Information
Source Code: OxfordInstrumentsReader.java

Notes:

18.90 PCX (PC Paintbrush)

Extensions: .pcx
Developer: ZSoft Corporation

Support
SCIFIO: ✔
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: PCX (PC Paintbrush)

We currently have:
• several .pcx files
• the ability to generate additional .pcx files

We would like to have:

Ratings
Pixels: ⬆
Metadata: ⬇
Openness: ⬇
Presence: ⬇
Utility: ⬇

Additional Information
Source Code: PCXReader.java

Notes:

Commercial applications that support PCX include Zeiss LSM Image Browser.331

18.91 Perkin Elmer Densitometer

Extensions: .pds
Developer: Perkin Elmer332

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: Perkin Elmer Densitometer

330https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/PCXReader.java
331http://www.zeiss.de/C12567BE00472A5C/EmbedTitelIntern/LSMImageBrowser/$File/INST_IB.EXE
332http://www.perkinelmer.com

18.90. PCX (PC Paintbrush) 164
We currently have:
 • a few PDS datasets

We would like to have:
 • an official specification document
 • more PDS datasets

Ratings

<table>
<thead>
<tr>
<th>Pixels:</th>
<th>Metadata:</th>
<th>Openness:</th>
<th>Presence:</th>
<th>Utility:</th>
</tr>
</thead>
</table>

Additional Information

Source Code: [PDSReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PDSReader.java)\(^{333}\)

Notes:

18.92 PerkinElmer Operetta

Extensions: .tiff, .xml

Developer: PerkinElmer\(^{334}\)

Support

<table>
<thead>
<tr>
<th>SCIFIO:</th>
<th>Export:</th>
</tr>
</thead>
</table>

Officially Supported Versions:

Supported Metadata Fields: *PerkinElmer Operetta*

We currently have:
 • a few sample datasets

We would like to have:
 • an official specification document
 • more sample datasets

Ratings

<table>
<thead>
<tr>
<th>Pixels:</th>
<th>Metadata:</th>
<th>Openness:</th>
<th>Presence:</th>
<th>Utility:</th>
</tr>
</thead>
</table>

Additional Information

Source Code: [OperettaReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/OperettaReader.java)\(^{335}\)

\(^{333}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PDSReader.java

\(^{334}\)http://www.perkinelmer.com/

\(^{335}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/OperettaReader.java

18.92. PerkinElmer Operetta
Notes:

18.93 PerkinElmer UltraView

Extensions: .tif, .2, .3, .4, etc.

Owner: PerkinElmer

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: PerkinElmer UltraView

We currently have:

- several UltraView datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

Additional Information

Source Code: PerkinElmerReader.java

Notes:

Other associated extensions include: .tim, .zpo, .csv, .htm, .cfg, .ano, .rec

Commercial applications that support this format include:

- Bitplane Imaris
- Image-Pro Plus

See Also:

PerkinElmer UltraView system overview

18.94 PGM (Portable Gray Map)

Extensions: .pgm

Developer: Netpbm developers

Support

SCIFIO: ✔

Export: ✗
Officially Supported Versions:
Supported Metadata Fields: *PGM (Portable Gray Map)*
Freely Available Software:
 - Netpbm graphics filter
We currently have:
 - a PGM specification document (from 2003 October 3, in HTML)
 - a few PGM files
We would like to have:

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information
Source Code: PGMReader.java

Notes:

18.95 Adobe Photoshop PSD

Extensions: .psd
Developer: Adobe

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions: 1.0
Supported Metadata Fields: Adobe Photoshop PSD

We currently have:
 - a PSD specification document (v3.0.4, 16 July 1995)
 - a few PSD files
We would like to have:
 - more PSD files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼
Presence: ▼

341 http://netpbm.sourceforge.net/
342 http://netpbm.sourceforge.net/doc/pgm.html
343 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/PGMReader.java
344 http://www.adobe.com/
Utility:

Additional Information

Source Code: PSDReader.java

Notes:

18.96 Photoshop TIFF

Extensions: .tif, .tiff

Developer: Adobe

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: Photoshop TIFF

We currently have:

- a Photoshop TIFF specification document
- a few Photoshop TIFF files

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: PhotoshopTiffReader.java

Notes:

18.97 PICT (Macintosh Picture)

Extensions: .pict

Developer: Apple Computer

Support

SCIFIO: ✔

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: PICT (Macintosh Picture)

https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PSDReader.java

http://www.adobe.com

https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PhotoshopTiffReader.java

http://www.apple.com

18.96. Photoshop TIFF
We currently have:

- many PICT datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▲

Utility: ▼

Additional Information

Source Code: PictReader.java

Notes:

QuickTime for Java is required for reading vector files and some compressed files.

See Also:

PICT technical overview Another PICT technical overview

18.98 PNG (Portable Network Graphics)

Extensions: .png

Developer: PNG Development Group

Support

SCIFIO: ✔

Export: ✔

Officially Supported Versions:

Supported Metadata Fields: PNG (Portable Network Graphics)

Freely Available Software:

- PNG Writer plugin for ImageJ

We currently have:

- a PNG specification document (W3C/ISO/IEC version, from 2003 November 10, in HTML)
- several PNG datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▲
Presence: ⬆
Utility: ⬇

Additional Information

Source Code: APNGReader.java

Notes:
Bio-Formats uses the Java Image I/O API to read and write PNG files.

See Also:
PNG technical overview

18.99 Prairie Technologies TIFF

Extensions: .tif, .xml, .cfg
Developer: Prairie Technologies

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: Prairie Technologies TIFF

We currently have:
- many Prairie datasets

We would like to have:

Ratings

Pixels: ⬆
Metadata: ⬇
Openness: ⬇

Presence: ⬇
Utility: ⬇

Additional Information

Source Code: PrairieReader.java

Notes:

18.100 Quesant

Extensions: .afm

Developer: Quesant Instrument Corporation

Owner: KLA-Tencor Corporation

https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PrairieReader.java
http://java.sun.com/j2se/1.4.2/docs/guide/imageio/index.html
http://www.libpng.org/pub/png/
http://www.prairie-technologies.com/
Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: *Quesant*

We currently have:
 • Pascal code that can read Quesant files (from ImageSXM)
 • several Quesant files

We would like to have:
 • an official specification document
 • more Quesant files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: *QuesantReader.java*[^62]

Notes:

18.101 QuickTime Movie

Extensions: .mov
Owner: *Apple Computer*[^63]

Support

SCIFIO: ✔
Export: ✔

Officially Supported Versions:
Supported Metadata Fields: *QuickTime Movie*

Freely Available Software:
 • *QuickTime Player*[^64]

We currently have:
 • a *QuickTime specification document*[^65] (from 2001 March 1, in HTML)
 • several QuickTime datasets
 • the ability to produce more datasets

We would like to have:

[^63]: http://www.apple.com/
[^64]: http://www.apple.com/quicktime/download/
• more QuickTime datasets, including:
 – files compressed with a common, unsupported codec
 – files with audio tracks and/or multiple video tracks

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: NativeQTReader.java\(^{366}\) Source Code: QTWriter.java\(^{367}\)
Notes:
Bio-Formats has two modes of operation for QuickTime:
 • QTJava mode requires QuickTime\(^{368}\) to be installed.
 • Native mode works on systems with no QuickTime (e.g. Linux).

Bio-Formats can save image stacks as QuickTime movies. The following table shows supported codecs:

<table>
<thead>
<tr>
<th>Codec</th>
<th>Description</th>
<th>Native</th>
<th>QTJava</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw</td>
<td>Full Frames (Uncompressed)</td>
<td>read & write</td>
<td>read & write</td>
</tr>
<tr>
<td>iraw</td>
<td>Intel YUV Uncompressed</td>
<td>read only</td>
<td>read & write</td>
</tr>
<tr>
<td>rle</td>
<td>Animation (run length encoded RGB)</td>
<td>read only</td>
<td>read & write</td>
</tr>
<tr>
<td>jpeg</td>
<td>Still Image JPEG DIB</td>
<td>read only</td>
<td>read only</td>
</tr>
<tr>
<td>rpza</td>
<td>Apple Video 16 bit "road pizza"</td>
<td>read only (partial)</td>
<td>read only</td>
</tr>
<tr>
<td>mjpb</td>
<td>Motion JPEG codec</td>
<td>read only</td>
<td>read only</td>
</tr>
<tr>
<td>cvid</td>
<td>Cinepak</td>
<td>*</td>
<td>read & write</td>
</tr>
<tr>
<td>svq1</td>
<td>Sorenson Video</td>
<td>*</td>
<td>read & write</td>
</tr>
<tr>
<td>svq3</td>
<td>Sorenson Video 3</td>
<td>*</td>
<td>read & write</td>
</tr>
<tr>
<td>mp4v</td>
<td>MPEG-4</td>
<td>*</td>
<td>read & write</td>
</tr>
<tr>
<td>h263</td>
<td>H.263</td>
<td>*</td>
<td>read & write</td>
</tr>
</tbody>
</table>

See Also:
QuickTime software overview\(^{369}\)

18.102 RHK

Extensions: .sm2, .sm3

Owner: RHK Technologies\(^{370}\)

\(^{366}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/NativeQTReader.java
\(^{367}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/QTWriter.java
\(^{368}\)http://www.apple.com/quicktime/download/
\(^{369}\)http://www.apple.com/quicktime/
\(^{370}\)http://www.rhk-tech.com
Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: RHK

We currently have:

• Pascal code that can read RHK files (from ImageSXM)
• a few RHK files

We would like to have:

• an official specification document
• more RHK files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: RHKReader.java371

Notes:

18.103 SBIG

Owner: Santa Barbara Instrument Group (SBIG)372

Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: SBIG

We currently have:

• an official SBIG specification document373
• a few SBIG files

We would like to have:

• more SBIG files

Ratings

Pixels:
Metadata:

371https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/RHKReader.java
372http://www.sbig.com
373http://sbig.impulse.net/pdffiles/file.format.pdf

18.103. SBIG
Additional Information
Source Code: SBIGReader.java
Notes:

18.104 Seiko

Extensions: .xqd, .xqf
Owner: Seiko

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: Seiko

We currently have:
• Pascal code that can read Seiko files (from ImageSXM)
• a few Seiko files

We would like to have:
• an official specification document
• more Seiko files

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: SeikoReader.java
Notes:

18.105 SimplePCI & HCImage

Extensions: .cxd
Developer: Compix

Support

374 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SBIGReader.java
376 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SeikoReader.java
377 http://hcimage.com
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: *SimplePCI & HCImage*

We currently have:
- several SimplePCI files

We would like to have:

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▲
Presence: ▼
Utility: ▼

Additional Information
Source Code: [PCIReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PCIReader.java)

Notes:
Bio-Formats uses a modified version of the [Apache Jakarta POI library](http://jakarta.apache.org/poi/) to read CXD files.

See Also:
[SimplePCI software overview](http://hcimage.com/simple-pci-legacy/)

18.106 SimplePCI & HCImage TIFF

Extensions: .tiff

Developer: Hamamatsu

Support

SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: *SimplePCI & HCImage TIFF*

We currently have:
- a few SimplePCI TIFF datasets

We would like to have:
- more SimplePCI TIFF datasets

Ratings

Pixels: ▲
Metadata: ▼
Openness: ▲

18.107 SM Camera

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: SM Camera

We currently have:

• Pascal code that can read SM-Camera files (from ImageSXM)
• a few SM-Camera files

We would like to have:

• an official specification document
• more SM-Camera files

Ratings

Pixels: ▼
Metadata: ▼
Openness: ▼

Presence: ▼
Utility: ▼

Additional Information

Source Code: SimplePCITiffReader.java⁴⁸²

Notes:

18.108 SPIDER

Extensions: .spi, .stk

Developer: Wadsworth Center⁴⁸⁴

Support

SCIFIO: ❌
Export: ❌

Officially Supported Versions:

Supported Metadata Fields: SPIDER

Notes:

⁴⁸³https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SMCameraReader.java
⁴⁸⁴http://www.wadsworth.org/spider_doc/spider/docs/spider.html
Freely Available Software:
 • SPIDER385

We currently have:
 • a few example datasets
 • official file format documentation386

We would like to have:

\textbf{Ratings}

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: □
Utility: □

\textbf{Additional Information}

Source Code: SpiderReader.java387

Notes:

\section*{18.109 Targa}

Extensions: .tga
Developer: Truevision388

\textbf{Support}

SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: Targa

We currently have:
 • a Targa specification document
 • a few Targa files

We would like to have:

\textbf{Ratings}

Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: □
Utility: □

\textbf{Additional Information}

\begin{footnotesize}
385http://www.wadsworth.org/spider_doc/spider/docs/spider.html
386http://www.wadsworth.org/spider_doc/spider/docs/image_doc.html
387https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SpiderReader.java
388http://www.truevision.com
\end{footnotesize}
Source Code: TargaReader.java

Notes:

18.110 Text

Extensions: .txt

Support

SCIFIO: ✓

Export: ❌

Officially Supported Versions:

Supported Metadata Fields: Text

We currently have:

We would like to have:

Ratings

Pixels: ▲

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

Additional Information

Source Code: TextReader.java

Notes:

Reads tabular pixel data produced by a variety of software.

18.111 TIFF (Tagged Image File Format)

Extensions: .tif

Developer: Aldus and Microsoft

Owner: Adobe

Support

SCIFIO: ✓

Export: ✓

Officially Supported Versions:

Supported Metadata Fields: TIFF (Tagged Image File Format)

Sample Datasets:

- LZW TIFF data gallery
- Big TIFF

391http://www.adobe.com
392http://marlin.life.utsa.edu/Data_Gallery.html
393http://tiffcentral.com/
We currently have:

- a TIFF specification document\(^{394}\) (v6.0, from 1992 June 3, in PDF)
- many TIFF datasets
- a few BigTIFF datasets

We would like to have:

Ratings

- Pixels: ▲
- Metadata: ▲
- Openness: ▲
- Presence: ▲
- Utility: ▼

Additional Information

Notes:

Bio-Formats can also read BigTIFF files (TIFF files larger than 4 GB). Bio-Formats can save image stacks as TIFF or BigTIFF.

See Also:

[TIFF technical overview\(^{397}\)](http://www.awaresystems.be/imaging/tiff/faq.html#q3) [BigTIFF technical overview\(^{398}\)](http://www.awaresystems.be/imaging/tiff/bigtiff.html)

18.112 TillPhotonics TillVision

Extensions: .vws

Developer: Till Photonics\(^{399}\)

Support

- SCIFIO: ❌
- Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *TillPhotonics TillVision*

We currently have:

- several TillVision datasets

We would like to have:

- an official specification document

Ratings

- Pixels: ▼
- Metadata: ▼
- Openness: ▼
- Presence: ▼

\(^{397}\) http://www.awaresystems.be/imaging/tiff/faq.html#q3

Utility: ▼

Additional Information

Source Code: TillVisionReader.java400

Notes:

18.113 Topometrix

Extensions: .tfr, .ffr, .zfr, .zfp, .2fl

Owner: TopoMetrix (now Veeco)401

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Topometrix

We currently have:

• Pascal code that reads Topometrix files (from ImageSXM)
• a few Topometrix files

We would like to have:

• an official specification document
• more Topometrix files

Ratings

Pixels: ▼

Metadata: ▼

Openness: ▼

Presence: ▼

Utility: ▼

Additional Information

Source Code: TopometrixReader.java402

Notes:

18.114 Trestle

Extensions: .tif, .sld, .jpg

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Trestle

400https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/TillVisionReader.java

401http://www.veeco.com/

402https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/TopometrixReader.java
Sample Datasets:
 • OpenSlide403

We currently have:
 • a few example datasets
 • developer documentation from the OpenSlide project404

We would like to have:

\textbf{Ratings}

<table>
<thead>
<tr>
<th>Pixels:</th>
<th>Metadata:</th>
<th>Openness:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presence:</th>
<th>Utility:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
</tr>
</tbody>
</table>

\textbf{Additional Information}

Source Code: TrestleReader.java405

Notes:

\textbf{18.115 UBM}

Extensions: .pr3

\textbf{Support}

SCIFIO: \xmark

Export: \xmark

Officially Supported Versions:

Supported Metadata Fields: \textit{UBM}

We currently have:
 • Pascal code that can read UBM files (from ImageSXM)
 • one UBM file

We would like to have:
 • an official specification document
 • more UBM files

\textbf{Ratings}

<table>
<thead>
<tr>
<th>Pixels:</th>
<th>Metadata:</th>
<th>Openness:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presence:</th>
<th>Utility:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
</tr>
</tbody>
</table>

\textbf{Additional Information}

403http://openslide.cs.cmu.edu/download/openslide-testdata/Trestle/
404http://openslide.org/Trestle\%20format/
405https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/TrestleReader.java
18.116 Unisoku

Extensions: .dat, .hdr
Owner: Unisoku

Support

SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Unisoku

We currently have:
 • Pascal code that can read Unisoku files (from ImageX)
 • a few Unisoku files

We would like to have:
 • an official specification document
 • more Unisoku files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: UnisokuReader.java

Notes:

18.117 Varian FDF

Extensions: .fdf
Developer: Varian, Inc.

Support

SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Varian FDF

Notes:
We currently have:
 • a few Varian FDF datasets

We would like to have:
 • an official specification document
 • more Varian FDF datasets

Ratings
Pixels: []
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: VarianFDFReader.java

Notes:

18.118 VG SAM

Extensions: .dti

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: VG SAM

We currently have:
 • a few VG-SAM files

We would like to have:
 • an official specification document
 • more VG-SAM files

Ratings
Pixels: []
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: VGSAMReader.java

Notes:

18.118. VG SAM
18.119 VisiTech XYS

Extensions: .xys, .html
Developer: VisiTech International

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: VisiTech XYS

We currently have:
• several VisiTech datasets

We would like to have:
• an official specification document

Ratings
Pixels: ↑
Metadata: ▼
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: VisitechReader.java

Notes:

18.120 Volocity

Extensions: .mvd2
Developer: PerkinElmer

Support
SCIFIO: ❌
Export: ❌

Officially Supported Versions:
Supported Metadata Fields: Volocity

Sample Datasets:
• Volocity Demo

We currently have:
• many example Volocity datasets

We would like to have:

http://www.visitech.co.uk/
http://www.perkinelmer.com/pages/020/cellularimaging/products/volocitydemo.xhtml
• an official specification document
• any Volocity datasets that do not open correctly

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: VolocityReader.java416
Notes:
\texttt{.mvd2} files are Metakit database files417.

\textbf{18.121 Volocity Library Clipping}

Extensions: .acff
Developer: PerkinElmer418

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions:
Supported Metadata Fields: \textit{Volocity Library Clipping}
We currently have:
• several Volocity library clipping datasets
We would like to have:
• any datasets that do not open correctly
• an official specification document

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: VolocityClippingReader.java419
Notes:
416https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/VolocityReader.java
417http://equi4.com/metakit/
418http://www.perkinelmer.com/pages/020/cellularimaging/products/volocity.xhtml
419https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/VolocityClippingReader.java
RGB .acff files are not yet supported. See #6413420.

18.122 WA-TOP

Extensions: .wat
Developer: WA Technology
Owner: Oxford Instruments421

Support

SCIFIO: ☒
Export: ☒

Officially Supported Versions:
Supported Metadata Fields: WA-TOP

We currently have:

• Pascal code that can read WA-TOP files (from ImageSXM)
• a few WA-TOP files

We would like to have:

• an official specification document
• more WA-TOP files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: WATOPReader.java

Notes:

18.123 Windows Bitmap

Extensions: .bmp
Developer: Microsoft and IBM

Support

SCIFIO: ☒
Export: ☒

Officially Supported Versions:
Supported Metadata Fields: Windows Bitmap

Freely Available Software:

420 http://trac.openmicroscopy.org.uk/ome/ticket/6413
421 http://www.oxinst.com
422 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/WATOPReader.java
• BMP Writer plugin for ImageJ

We currently have:

• many BMP datasets

We would like to have:

Ratings

Pixels: ▶
Metadata: ▶
Openness: ◀
Presence: ▶
Utility: ◀

Additional Information

Source Code: BMPReader.java

Notes:

Compressed BMP files are currently not supported.

See Also:

Technical Overview General Resources

18.124 Zeiss AxioVision TIFF

Extensions: .xml, .tiff

Developer: Carl Zeiss MicroImaging GmbH

Owner: Carl Zeiss MicroImaging GmbH

Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: Zeiss AxioVision TIFF

Freely Available Software:

• Zeiss ZEN Lite

We currently have:

• many example datasets

We would like to have:

• an official specification document

Ratings

Pixels: ▶
Metadata: ▶

424 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/BMPReader.java
426 http://people.sc.fsu.edu/burkardt/data/bmp/bmp.html
427 http://www.zeiss.com/micro
428 http://www.zeiss.com/micro
Openness: ▼
Presence: ▼
Utility: ▼

Additional Information
Source Code: ZeissTIFFReader.java
Notes:

18.125 Zeiss AxioVision ZVI (Zeiss Vision Image)

Extensions: .zvi
Developer: Carl Zeiss MicroImaging GmbH (AxioVision)
Owner: Carl Zeiss MicroImaging GmbH

Support
SCIFIO: ✗
Export: ✗

Officially Supported Versions: 1.0, 2.0

Supported Metadata Fields: Zeiss AxioVision ZVI (Zeiss Vision Image)

Freely Available Software:
• Zeiss Axiovision LE

We currently have:
• a ZVI specification document (v2.0.5, from 2010 August, in PDF)
• an older ZVI specification document (v2.0.2, from 2006 August 23, in PDF)
• an older ZVI specification document (v2.0.1, from 2005 April 21, in PDF)
• an older ZVI specification document (v1.0.26.01.01, from 2001 January 29, in DOC)
• Zeiss’ ZvImageReader code (v1.0, from 2001 January 25, in C++)
• many ZVI datasets

We would like to have:

Ratings
Pixels: ▲
Metadata: ▲
Openness: ▲
Presence: ▲
Utility: ▲

Additional Information
Source Code: ZeissZVIReader.java
Notes:

430https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ZeissTIFFReader.java
431http://www.zeiss.com/axiovision
432http://www.zeiss.com/micro
433http://www.zeiss.de/c12567be0045ac1f1/Contents-Frame/cbe917247da02a1cc1256e0000491172

18.125. Zeiss AxioVision ZVI (Zeiss Vision Image) 188
Please note that while we have specification documents for this format, we are not able to distribute them to third parties. Bio-Formats uses a modified version of the Apache Jakarta POI library\(^{435}\) to read ZVI files. Commercial applications that support ZVI include Bitplane Imaris\(^{436}\).

See Also:
Axiovision software overview\(^{437}\)

18.126 Zeiss CZI

Extensions: .czi

Developer: Carl Zeiss MicroImaging GmbH\(^{438}\)

Support

SCIFIO: ✗

Export: ✗

Officially Supported Versions:

Supported Metadata Fields: Zeiss CZI

Freely Available Software:

- Zeiss ZEN 2011\(^{439}\)

We currently have:

- many example datasets
- official specificaiton documents

We would like to have:

Ratings

Pixels: 📈

Metadata: 📈

Openness: 📈

Presence: ☑️

Utility: 📈

Additional Information

Source Code: ZeissCZIReader.java\(^{440}\)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

18.127 Zeiss LSM (Laser Scanning Microscope) 510/710

Extensions: .lsm, .mdb

Owner: Carl Zeiss MicroImaging GmbH\(^{441}\)

\(^{435}\)http://jakarta.apache.org/poi/

\(^{436}\)http://www.bitplane.com/

\(^{437}\)http://www.zeiss.com/C12567BE0045ACF1/ContentsWWWIntern/668C9FDCBB18C6E2412568C10045A72E

\(^{438}\)http://www.zeiss.com/micro

\(^{439}\)http://www.zeiss.de/C12567BE0045ACF1/Contents-Frame/A57B6AE510CE8FF1C12578FE002A725D

\(^{440}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ZeissCZIReader.java

\(^{441}\)http://www.zeiss.com/micro
Support

SCIFIO: ❌

Export: ❌

Officially Supported Versions:

Supported Metadata Fields: *Zeiss LSM (Laser Scanning Microscope) 510/710*

Freely Available Software:

- Zeiss LSM Image Browser\(^{442}\)
- LSM Toolbox plugin for ImageJ\(^{443}\)
- LSM Reader plugin for ImageJ\(^{444}\)
- DIMIN\(^{445}\)

We currently have:

- LSM specification v3.2, from 2003 March 12, in PDF
- LSM specification v5.5, from 2009 November 23, in PDF
- LSM specification v6.0, from 2010 September 28, in PDF
- many LSM datasets

We would like to have:

Ratings

Pixels: ▲

Metadata: ▲

Openness: ●

Presence: ▲

Utility: ●

Additional Information

Source Code: *ZeissLSMReader.java*\(^{446}\)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Bio-Formats uses the [MDB Tools Java port](http://mdbtools.sourceforge.net/)\(^{447}\)

Commercial applications that support this format include:

- SVI Huygens\(^{448}\)
- Bitplane Imaris\(^{449}\)
- Amira\(^{450}\)
- Image-Pro Plus\(^{451}\)

\(^{442}\)http://www.zeiss.de/C12567BE00472A5C/EmbedTitleIntern/LSMImageBrowser/$File/INST_IB.EXE

\(^{443}\)http://imagejdocu.tudor.lu/Members/ppirrotte/lsmtoolbox

\(^{445}\)http://www.dimin.net/

\(^{446}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ZeissLSMReader.java

\(^{447}\)http://mdbtools.sourceforge.net/

\(^{448}\)http://www2.svi.nl/

\(^{449}\)http://www.bitplane.com/

\(^{450}\)http://www.amira.com/

\(^{451}\)http://www.mediacy.com/
SUMMARY OF SUPPORTED METADATA FIELDS

19.1 Format readers

<table>
<thead>
<tr>
<th>Format</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIMReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>APLReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>APNGReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ARFReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>AVIReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>AliconaReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>AmiraReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>AnalyzeReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>BDReader</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>418</td>
</tr>
<tr>
<td>BIFormatReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>BMPReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>BaseTiffReader</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>447</td>
</tr>
<tr>
<td>BaseZeissReader</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>392</td>
</tr>
<tr>
<td>BioRadGelReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>BioRadReader</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>435</td>
</tr>
<tr>
<td>BrukerReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>BurleighReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>CanonRawReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>CellSensReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>CellWorxReader</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>430</td>
</tr>
<tr>
<td>CellomicsReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td>DNGReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>DeltavisionReader</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>423</td>
</tr>
<tr>
<td>DicomReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>EPSReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>Ecat7Reader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>FEIReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>FEITiffReader</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>436</td>
</tr>
<tr>
<td>FV1000Reader</td>
<td>107</td>
<td>0</td>
<td>0</td>
<td>366</td>
</tr>
<tr>
<td>FakeReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>FitsReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>FlexReader</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>406</td>
</tr>
<tr>
<td>FluoviewReader</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>426</td>
</tr>
<tr>
<td>FujiReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>GIFReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>GatanDM2Reader</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>GatanReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>439</td>
</tr>
</tbody>
</table>

Continued on next page
Table 19.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>GelReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>HISReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>448</td>
</tr>
<tr>
<td>HRDGFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>HamamatsuVMSReader</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>HitachiReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td>ICSReader</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>403</td>
</tr>
<tr>
<td>IMODReader</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>431</td>
</tr>
<tr>
<td>INRReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>IPLabReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td>IPWReader</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>ImaconReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>ImageIOReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ImageReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>436</td>
</tr>
<tr>
<td>ImarisHDFReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>ImarisReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>ImarisTiffReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>ImprovisionTiffReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>InCell3000Reader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>InCellReader</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>408</td>
</tr>
<tr>
<td>IvisonReader</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>441</td>
</tr>
<tr>
<td>JEOLOReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>JPEG2000Reader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>JPEGReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>JPReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>JFXReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>KhorosReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>KodakReader</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>L2DReader</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>LEOReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>448</td>
</tr>
<tr>
<td>LIFReader</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>390</td>
</tr>
<tr>
<td>LIMReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>LegacyND2Reader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>LegacyQTReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>LeicaReader</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>419</td>
</tr>
<tr>
<td>LeicaSCNReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>LiFimReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>MIAReader</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>411</td>
</tr>
<tr>
<td>MINCReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>MNGReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>MRCReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>MRWReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>MetamorphReader</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>MetamorphTiffReader</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>437</td>
</tr>
<tr>
<td>MicromanagerReader</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>437</td>
</tr>
<tr>
<td>MinimalTiffReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>MolecularImagingReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>NAFReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ND2Reader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>NDFReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>NDFISReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>NRRDReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>NativeND2Reader</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>423</td>
</tr>
<tr>
<td>NativeQTReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>NiftiReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>NikonElementsTiffReader</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>425</td>
</tr>
</tbody>
</table>

Continued on next page
Table 19.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>NikonReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>NikonTiffReader</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>428</td>
</tr>
<tr>
<td>OMETiffReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>OMEXMLReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>OpenlabRawReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>OpenlabReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>OperettaReader</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>OxfordInstrumentsReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>PCIReader</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>PCXReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PDSReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>PGMReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PerkinElmerReader</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>PhotoshopTiffReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PictReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PovrayReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PrairieReader</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>430</td>
</tr>
<tr>
<td>PyramidTiffReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>QTReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>QuesantReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>RHKReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>SBIGReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>SDTReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>SEQReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>SIFReader</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>SSReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>SMCameraReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>SVSReader</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>ScanrReader</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>ScreenReader</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>441</td>
</tr>
<tr>
<td>SeikoReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>SimplePCTiffReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>SlidebookReader</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>441</td>
</tr>
<tr>
<td>SlidebookTiffReader</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>SpiderReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>TCSReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>TargaReader</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>TextReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>TiffDelegateReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>TiffJAIReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>TiffReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>TileJPEGReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>TillVisionReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>TopometrixReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>TrestleReader</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>UBMReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>UnisokuReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>VGSAMReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>VarianFDFReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>VisitechReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>VelocityClippingReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>VelocityReader</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>438</td>
</tr>
<tr>
<td>WATOPReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>ZeissCZIReader</td>
<td>149</td>
<td>0</td>
<td>0</td>
<td>324</td>
</tr>
</tbody>
</table>

Continued on next page
Table 19.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZeissLSMReader</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>374</td>
</tr>
<tr>
<td>ZeissTIFFReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ZeissZVIReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ZipReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
</tbody>
</table>

19.2 Metadata fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Arc - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Arc - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Arc - Model</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Arc - Power</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Arc - SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Arc - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>BooleanAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>BooleanAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>BooleanAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>BooleanAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>BooleanAnnotation - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Channel - AcquisitionMode</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Channel - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Channel - Color</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Channel - ContrastMethod</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Channel - EmissionWavelength</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>137</td>
</tr>
<tr>
<td>Channel - ExcitationWavelength</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>136</td>
</tr>
<tr>
<td>Channel - FilterSetRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

1http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_ID
2http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_LotNumber
3http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
4http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
5http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_Power
6http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
7http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Arc_Type
8http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
9http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Description
10http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Id
11http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
12http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#BooleanAnnotation_Value
13http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_AcquisitionMode
14http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_AcquisitionMode
15http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Color
16http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ContrastMethod
17http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
18http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
19http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterSetRef_ID

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel - Fluor 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Channel - ID 21</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel - IlluminationType 22</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsAttenuation 23</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsID 24</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsWavelength 25</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Channel - NDFilter 26</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Channel - Name 27</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>122</td>
</tr>
<tr>
<td>Channel - PinholeSize 28</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Channel - PockelCellSetting 29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Channel - SamplesPerPixel 30</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CommentAnnotation - AnnotationRef 31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>CommentAnnotation - Description 32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>CommentAnnotation - ID 33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>CommentAnnotation - Namespace 34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>CommentAnnotation - Value 35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Dataset - AnnotationRef 36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Dataset - Description 37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Dataset - ExperimenterGroupRef 38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Dataset - ExperimenterRef 39</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Dataset - ID 40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page
Table 19.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset-ImageRef</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Dataset-Name</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Detector-AmplificationGain</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Detector-Gain</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Detector-ID</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>119</td>
</tr>
<tr>
<td>Detector-LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Detector-Manufacturer</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>Detector-Type</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>124</td>
</tr>
<tr>
<td>Detector-Voltage</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Detector-Zoom</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>DetectorSettings-Binning</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>136</td>
</tr>
<tr>
<td>DetectorSettings-Gain</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>133</td>
</tr>
<tr>
<td>DetectorSettings-ID</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>121</td>
</tr>
<tr>
<td>DetectorSettings-Offset</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>DetectorSettings-ReadOutRate</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>DetectorSettings-Voltage</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>Dichroic-ID</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>Dichroic-LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Dichroic-Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Dichroic-Model</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>145</td>
</tr>
</tbody>
</table>

Continued on next page

42http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Dataset_Name
43http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_AmplificationGain
46http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_LotNumber
47http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
50http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
51http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
52http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Voltage
53http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
59http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ReadOutRate
62http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_LotNumber
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichroic - Serial-Number</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>DoubleAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>DoubleAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>DoubleAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>DoubleAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>DoubleAnnotation - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Ellipse - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - ID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Ellipse - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - RadiusX</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Ellipse - RadiusY</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Ellipse - StrokeColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - StrokeDashArray</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - StrokeWidth</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Ellipse - Text</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Ellipse - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - TheT</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Ellipse - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Ellipse - Transform</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Ellipse - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page

64http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
65http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
66http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Description
67http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
68http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
69http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#DoubleAnnotation_Value
70http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillColor
71http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillRule
72http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontFamily
73http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
74http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontStyle
75http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
76http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_LineCap
77http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Locked
78http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_RadiusX
79http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_RadiusY
80http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeColor
81http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeDashArray
82http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
83http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Text
84http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheC
85http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheT
86http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ
87http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Transform
88http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Visible
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellipse - X</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Ellipse - Y</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Experiment - Description</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Experiment - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Experiment - ID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Experiment - Type</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Experimenter - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Experimenter Email</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Experimenter - FirstName</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Experimenter - ID</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Experimenter - Institution</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Experimenter - LastName</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Experimenter - MiddleName</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Experimenter - UserName</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>ExperimenterGroup - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ExperimenterGroup - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ExperimenterGroup - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ExperimenterGroup - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ExperimenterGroup - Leader</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ExperimenterGroup - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Filament - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Filament - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
</tbody>
</table>

Continued on next page
Table 19.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filament - Model</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filament - Power</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filament - Serial Number</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filament - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>FileAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>FileAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>FileAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filter - FilterWheel</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Filter - ID</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Filter - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filter - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filter - SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filter - Type</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>FilterSet - DichroicRef</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>FilterSet - EmissionFilterRef</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>FilterSet - ExcitationFilterRef</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>FilterSet - ID</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>FilterSet - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>FilterSet - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
</tbody>
</table>

Continued on next page

111) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
112) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
113) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
114) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filament_Type
115) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
116) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
117) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Description
118) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
119) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
120) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filter_FilterWheel
121) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filter_ID
122) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_LotNumber
123) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
124) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
125) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filter_Type
126) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterFilterRef_ID
127) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
128) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterFilterRef_ID
129) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>FilterSet - Model¹³³</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>FilterSet - Serial-Number¹³⁴</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Image - Acquisition-Date¹³⁵</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - Annotation-Ref¹³⁶</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Image - Description¹³⁷</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>111</td>
</tr>
<tr>
<td>Image - ExperimentRef¹³⁸</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Image - ExperimenterGroupRef¹³⁹</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Image - ExperimenterRef¹⁴⁰</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Image - ID¹⁴¹</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - InstrumentRef¹⁴²</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>112</td>
</tr>
<tr>
<td>Image - MicrobeamManipulationRef¹⁴³</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Image - Name¹⁴⁴</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - ROIRef¹⁴⁵</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>ImagingEnvironment - AirPressure¹⁴⁶</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>ImagingEnvironment - CO2Percent¹⁴⁷</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>ImagingEnvironment - Humidity¹⁴⁸</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>ImagingEnvironment - Temperature¹⁴⁹</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Instrument - ID¹⁵⁰</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>108</td>
</tr>
<tr>
<td>Label - FillColor¹⁵¹</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - FillRule¹⁵²</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - FontFamily¹⁵³</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - FontSize¹⁵⁴</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Label - FontStyle¹⁵⁵</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

¹³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
¹³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
¹³⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
¹³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
¹³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
¹³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimentRef_ID
¹³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterGroupRef_ID
¹⁴⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterRef_ID
¹⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
¹⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
¹⁴³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#MicrobeamManipulationRef_ID
¹⁴⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
¹⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID
¹⁴⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_AirPressure
¹⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_CO2Percent
¹⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Humidity
¹⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature
¹⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
¹⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillColor
¹⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillRule
¹⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontFamily
¹⁵⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
¹⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontStyle

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label - ID</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Label - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - StrokeColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - StrokeDashArray</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label StrokeWidth</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Label - Text</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Label - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - TheT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - TheZ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - StrokeColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label Text</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Label Y</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Laser - FrequencyMultiplication</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Laser - ID</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Laser - LaserMedium</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Laser - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Laser - Manufacturer</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Laser - Model</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>Laser - PockelCell</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Laser - Power</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Laser - Pulse</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Laser - Pump</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Laser - RepetitionRate</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Laser - SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser - Tuneable</td>
<td>182</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Laser - Type</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Laser - Wavelength</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Light Emitting Diode - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Light Emitting Diode - Lot Number</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Light Emitting Diode - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Light Emitting Diode - Model</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Light Emitting Diode - Power</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Light Emitting Diode - Serial Number</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>LightPath - DichroicRef</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>LightPath - EmissionFilterRef</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>LightPath - ExcitationFilterRef</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Line - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Line - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - ID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Line - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - MarkerEnd</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - MarkerStart</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - StrokeColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - StrokeDashArray</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page

182 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#Laser_Tuneable
183 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#Laser_Type
184 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#Laser_Wavelength
185 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#LightSource_ID
186 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#ManufacturerSpec_LotNumber
187 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#ManufacturerSpec_Manufacturer
188 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#ManufacturerSpec_Model
189 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#LightSource_Power
190 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#ManufacturerSpec_SerialNumber
191 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#DichroicRef_ID
192 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#FilterRef_ID
193 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#FilterRef_ID
194 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillColor
195 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillRule
196 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontFamily
197 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
198 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontStyle
199 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
200 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_LineCap
201 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Shadow
202 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ShadowEnd
203 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ShadowStart
204 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeColor
205 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeDashArray
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line StrokeWidth</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Line - Text</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Line - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Line - TheZ</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Line - Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Line - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - X1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Line - X2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Line - Y1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Line - Y2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>ListAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ListAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ListAnnotation ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ListAnnotation Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>LongAnnotation AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>LongAnnotation Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>LongAnnotation ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>LongAnnotation Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>LongAnnotation Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - FillColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Mask - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - FontSize</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - Height</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
</tbody>
</table>

Continued on next page

206. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
207. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Text
208. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheC
209. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheT
210. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ
211. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Transform
212. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Visible
218. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Description
221. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
222. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Description
226. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillColor
227. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillRule
228. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontFamily
229. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
230. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_Height
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask - ID</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Mask - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Mask - StrokeDashArray</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - StrokeWidth</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - Text</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - TheT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - TheZ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - Transform</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - Width</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Mask - X</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Mask - Y</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>MicrobeamManipulation - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>MicrobeamManipulation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>MicrobeamManipulation - ROIRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>MicrobeamManipulation - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>MicrobeamManipulationLightSourceSettings - Attenuation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>MicrobeamManipulationLightSourceSettings - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>MicrobeamManipulationLightSourceSettings - Wavelength</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Microscope - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Microscope - Manufacturer</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
</tbody>
</table>

Continued on next page
Table 19.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope Model</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Microscope - Serial-Number</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Microscope - Type</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Objective - CalibratedMagnification</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Objective - Correction</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>126</td>
</tr>
<tr>
<td>Objective - ID</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>Objective - Immersion</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>Objective - Iris</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Objective LensNA</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>132</td>
</tr>
<tr>
<td>Objective - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Objective - Manufacturer</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Objective - Model</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>139</td>
</tr>
<tr>
<td>Objective - Nominal-Magnification</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>Objective - Serial-Number</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Objective - WorkingDistance</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>ObjectiveSettings - CorrectionCollar</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>ObjectiveSettings - ID</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>ObjectiveSettings - Medium</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>ObjectiveSettings - RefractiveIndex</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Pixels - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Pixels - BinDataBigEndian</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page

255 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
256 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
257 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Microscope_Type
258 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification
259 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
260 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
261 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
262 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Iris
263 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
264 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_LotNumber
265 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
266 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
267 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
268 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
269 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_WorkingDistance
270 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_CorrectionCollar
271 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
272 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_Medium
273 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
274 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
275 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
Table 19.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels - DimensionOrder²⁷⁶</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - ID²⁷⁷</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - PhysicalSizeX²⁷⁸</td>
<td>79</td>
<td>0</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>Pixels - PhysicalSizeY²⁷⁹</td>
<td>79</td>
<td>0</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>Pixels - PhysicalSizeZ²⁸⁰</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>111</td>
</tr>
<tr>
<td>Pixels - SizeC²⁸¹</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeT²⁸²</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeX²⁸³</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeY²⁸⁴</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeZ²⁸⁵</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - TimeIncrement²⁸⁶</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>135</td>
</tr>
<tr>
<td>Pixels - Type²⁸⁷</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane - AnnotationRef²⁸⁸</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Plane - DeltaT²⁸⁹</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>129</td>
</tr>
<tr>
<td>Plane - ExposureTime²⁹⁰</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>Plane - HashSHA1²⁹¹</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Plane - PositionX²⁹²</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>Plane - PositionY²⁹³</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>Plane - PositionZ²⁹⁴</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>131</td>
</tr>
<tr>
<td>Plane - TheC²⁹⁵</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane - TheT²⁹⁶</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane - TheZ²⁹⁷</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plate - AnnotationRef²⁹⁸</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Plate - ColumnNamingConvention²⁹⁹</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Plate - Columns³⁰⁰</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
</tbody>
</table>

²⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
²⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
²⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
²⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
²⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
²⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ColumnNamingConvention
³⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Columns

Continued on next page

19.2. Metadata fields

206
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate-Description 301</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Plate-ExternalIdentifier 302</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Plate-ID 303</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Plate-Name 304</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Plate-RowNamingConvention 305</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Plate-Rows 306</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Plate-Status 307</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Plate-WellOriginX 308</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Plate-WellOriginY 309</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>PlateAcquisition-AnnotationRef 310</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>PlateAcquisition-Description 311</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>PlateAcquisition-EndTime 312</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>PlateAcquisition-ID 313</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>PlateAcquisition-MaximumFieldCount 314</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>PlateAcquisition-Name 315</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>PlateAcquisition-StartTime 316</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>PlateAcquisition-WellSampleRef 317</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Point-FillColor 318</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Point-FillRule 319</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Point-FontFamily 320</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Point-FontSize 321</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Point-FontStyle 322</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Point-ID 323</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point - LineCap</td>
<td>324</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Point - Locked</td>
<td>325</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Point - StrokeColor</td>
<td>326</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Point StrokeDashArray</td>
<td>327</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Point StrokeWidth</td>
<td>328</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Point Text</td>
<td>329</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygon - FillColor</td>
<td>330</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygon - FillRule</td>
<td>331</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygon - FontFamily</td>
<td>332</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygon - FontSize</td>
<td>333</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygon FontStyle</td>
<td>334</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygon ID</td>
<td>335</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygon LineCap</td>
<td>336</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygon Locked</td>
<td>337</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygon Points</td>
<td>338</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygon StrokeColor</td>
<td>339</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygon StrokeDashArray</td>
<td>340</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygon StrokeWidth</td>
<td>341</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page
Table 19.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygon - Text</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Polygon - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polygon - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polygon - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Polygon - Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polygon - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polylines - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polylines - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polylines - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Polyline - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - ID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Polyline - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - MarkerEnd</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - MarkerStart</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - Points</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Polyline - StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polyline - StrokeDashArray</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polyline - StrokeWidth</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Polyline - Text</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Polyline - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polyline - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyline - Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polyline - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Project - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Project - DatasetRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Project - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Project - ExperimenterGroupRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Project - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Project - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Project - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ROI - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ROI - Description</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>ROI - ID</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>ROI - Name</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>ROI - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Reagent - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Reagent - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Reagent - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Reagent - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Reagent - ReagentIdentifier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
</tbody>
</table>

Continued on next page
Table 19.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle FontStyle396</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - Height 797</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - ID 398</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle LineCap 399</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle Locked 400</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - Stroke-Color 401</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle StrokeDashArray 402</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle StrokeWidth 403</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - Text 404</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - TheC 405</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - TheT 406</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - TheZ 407</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - Transform 408</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle Visible 409</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - Width 410</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - X 411</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle - Y 412</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - AnnotationRef 413</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - Description 414</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - ID 415</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - Name 416</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - PlateRef 417</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - ProtocolDescription 418</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Screen - ProtocolIdentifier 419</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page

19.2. Metadata fields
Table 19.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen - ReagentSetDescription[420]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Screen - ReagentSetIdentifier[421]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Screen - Type[422]</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>StageLabel - Name[423]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>StageLabel - X[424]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>StageLabel - Y[425]</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>StageLabel - Z[426]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TagAnnotation - AnnotationRef[427]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TagAnnotation - Description[428]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TagAnnotation - ID[429]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TagAnnotation - Namespace[430]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TagAnnotation - Value[431]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TermAnnotation - AnnotationRef[432]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TermAnnotation - Description[433]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TermAnnotation - ID[434]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TermAnnotation - Namespace[435]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TermAnnotation - Value[436]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TiffData - FirstC[437]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TiffData - FirstT[438]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TiffData - FirstZ[439]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TiffData - IFD[440]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TiffData - PlaneCount[441]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page
Table 19.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimestampAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TimestampAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TimestampAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TimestampAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TimestampAnnotation - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TransmittanceRange - CutIn</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>TransmittanceRange - CutInTolerance</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>TransmittanceRange - CutOut</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>TransmittanceRange - CutOutTolerance</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>TransmittanceRange - Transmittance</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>UUID - FileName</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>UUID - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Well - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Well - Color</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Well - Column</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Well - ExternalDescription</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Well - ExternalIdentifier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Well - ID</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Well - ReagentRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Well - Row</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Well - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>WellSample - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>WellSample - ID</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
</tbody>
</table>

Continued on next page

442 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
443 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Description
444 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
445 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
446 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#TimestampAnnotation_Value
447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutIn
448 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutInTolerance
449 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutOut
450 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutOutTolerance
451 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TiffData_TiffData_UUID_FileName
452 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#UniversallyUniqueIdentifier
453 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
454 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Color
455 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Column
456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_ExternalDescription
457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_ExternalIdentifier
458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#ReagentRef_ID
459 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Row
460 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Type
461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
462 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_ID
463 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
464 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_ID
Table 19.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>WellSample - ImageRef</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>WellSample - Index</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>WellSample - PositionX</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>WellSample - PositionY</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>WellSample - Timepoint</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>XMLAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>XMLAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>XMLAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>XMLAnnotation - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

19.2.1 SlidebookReader

This page lists supported metadata fields for the Bio-Formats Olympus Slidebook format reader.

These fields are from the OME data model[474]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 32 of them (6%).
- Of those, Bio-Formats fully or partially converts 32 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus Slidebook format reader:

- Channel: ID[475]
- Channel: NDFilter[476]
- Channel: Name[477]
- Channel: SamplesPerPixel[478]
- Image: AcquisitionDate[479]
- Image: Description[480]

[479]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html##Image_AcquisitionDate
19.2. Metadata fields

- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Objective : Correction
- Objective : ID
- Objective : Immersion
- Objective : Model
- Objective : NominalMagnification
- ObjectiveSettings : ID
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : ExposureTime
- Plane : TheC
- Plane : TheT
- Plane : TheZ
Total supported: 32
Total unknown or missing: 441

19.2.2 AIMReader

This page lists supported metadata fields for the Bio-Formats AIM format reader. These fields are from the OME data model\(^5\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats AIM format reader:

- Channel: ID\(^6\)
- Channel: SamplesPerPixel\(^7\)
- Image: AcquisitionDate\(^8\)
- Image: ID\(^9\)
- Image: Name\(^10\)
- Pixels: BinDataBigEndian\(^11\)
- Pixels: DimensionOrder\(^12\)
- Pixels: ID\(^13\)
- Pixels: PhysicalSizeX\(^14\)
- Pixels: PhysicalSizeY\(^15\)
- Pixels: PhysicalSizeZ\(^16\)
- Pixels: SizeC\(^17\)
- Pixels: SizeT\(^18\)
- Pixels: SizeX\(^19\)
- Pixels: SizeY\(^20\)
- Pixels: SizeZ\(^21\)
- Pixels: Type\(^22\)

\(^5\) http://www.openmicroscopy.org/site/support/ome-model/
\(^6\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^7\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^8\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^10\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^11\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^12\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^13\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^14\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^17\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^18\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^19\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^20\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^21\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^22\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
19.2.3 AliconaReader

This page lists supported metadata fields for the Bio-Formats Alicona AL3D format reader.

These fields are from the OME data model\(^\text{528}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 31 of them (6%).
- Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Alicona AL3D format reader:

- Channel : ID\(^\text{529}\)
- Channel : SamplesPerPixel\(^\text{530}\)
- Detector : ID\(^\text{531}\)
- Detector : Type\(^\text{532}\)
- DetectorSettings : ID\(^\text{533}\)
- DetectorSettings : Voltage\(^\text{534}\)
- Image : AcquisitionDate\(^\text{535}\)
- Image : ID\(^\text{536}\)
- Image : InstrumentRef\(^\text{537}\)
- Image : Name\(^\text{538}\)
- Instrument : ID\(^\text{539}\)
- Objective : CalibratedMagnification\(^\text{540}\)
- Objective : Correction\(^\text{541}\)
- Objective : ID\(^\text{542}\)

\(^{525}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC

\(^{526}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT

\(^{527}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ

\(^{528}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{529}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID

\(^{530}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{531}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID

\(^{532}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type

\(^{533}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID

\(^{534}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Voltage

\(^{535}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

\(^{536}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID

\(^{537}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID

\(^{538}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_Name

\(^{539}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification

\(^{540}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction

\(^{541}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
• Objective: Immersion
• Objective: WorkingDistance
• ObjectiveSettings: ID
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SizeC
• Pixels: SizeT
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 31
Total unknown or missing: 442

19.2.4 GelReader

This page lists supported metadata fields for the Bio-Formats Amersham Biosciences GEL format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

543http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
544http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_WorkingDistance
545http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
546http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
547http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
548http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
549http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
550http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
551http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
552http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
553http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
554http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
555http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
556http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
557http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
558http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
559http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
560http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Amersham Biosciences GEL format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19
Total unknown or missing: 454

19.2.5 AmiraReader

This page lists supported metadata fields for the Bio-Formats Amira format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Amira format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 20

Total unknown or missing: 453
19.2.6 AnalyzeReader

This page lists supported metadata fields for the Bio-Formats Analyze 7.5 format reader.

These fields are from the OME data model\(^{601}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Analyze 7.5 format reader:

- Channel : ID\(^{602}\)
- Channel : SamplesPerPixel\(^{603}\)
- Image : AcquisitionDate\(^{604}\)
- Image : Description\(^{605}\)
- Image : ID\(^{606}\)
- Image : Name\(^{607}\)
- Pixels : BinDataBigEndian\(^{608}\)
- Pixels : DimensionOrder\(^{609}\)
- Pixels : ID\(^{610}\)
- Pixels : PhysicalSizeX\(^{611}\)
- Pixels : PhysicalSizeY\(^{612}\)
- Pixels : PhysicalSizeZ\(^{613}\)
- Pixels : SizeC\(^{614}\)
- Pixels : SizeT\(^{615}\)
- Pixels : SizeX\(^{616}\)
- Pixels : SizeY\(^{617}\)
- Pixels : SizeZ\(^{618}\)
- Pixels : TimeIncrement\(^{619}\)
- Pixels : Type\(^{620}\)

\(^{601}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{602}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID

\(^{603}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{604}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

\(^{605}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description

\(^{606}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID

\(^{607}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name

\(^{608}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian

\(^{609}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder

\(^{610}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID

\(^{611}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX

\(^{612}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY

\(^{613}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ

\(^{614}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC

\(^{615}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT

\(^{616}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX

\(^{617}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY

\(^{618}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ

\(^{619}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement

\(^{620}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 22
Total unknown or missing: 451

19.2.7 SVSReader

This page lists supported metadata fields for the Bio-Formats Aperio SVS format reader.

These fields are from the OME data model\(^{624}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 18 of them (3%).
• Of those, Bio-Formats fully or partially converts 18 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Aperio SVS format reader:

• Channel: ID\(^{625}\)
• Channel: SamplesPerPixel\(^{626}\)
• Image: AcquisitionDate\(^{627}\)
• Image: Description\(^{628}\)
• Image: ID\(^{629}\)
• Image: Name\(^{630}\)
• Pixels: BinDataBigEndian\(^{631}\)
• Pixels: DimensionOrder\(^{632}\)
• Pixels: ID\(^{633}\)
• Pixels: SizeC\(^{634}\)
• Pixels: SizeT\(^{635}\)
• Pixels: SizeX\(^{636}\)
• Pixels: SizeY\(^{637}\)
• Pixels: SizeZ\(^{638}\)

\(^{621}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^{622}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^{623}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
\(^{624}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{625}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{626}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{627}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{628}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
\(^{629}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{630}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{631}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^{632}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^{633}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^{634}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^{635}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^{636}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^{637}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^{638}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ

19.2. Metadata fields
19.2.8 CellWorxReader

This page lists supported metadata fields for the Bio-Formats CellWorx format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 43 of them (9%).
- Of those, Bio-Formats fully or partially converts 43 (100%).

Supported fields

These fields are fully supported by the Bio-Formats CellWorx format reader:
- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- DetectorSettings: Gain
- DetectorSettings: ID
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
• Microscope : SerialNumber
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• Plate : ID
• Plate : Name
• PlateAcquisition : EndTime
• PlateAcquisition : ID
• PlateAcquisition : MaximumFieldCount
• PlateAcquisition : StartTime
• PlateAcquisition : WellSampleRef
• Well : Column
• Well : ID
• Well : Row
• WellSample : ID

657 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#ManufacturerSpec_SerialNumber
658 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
659 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Pixels_DimensionOrder
660 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Pixels_ID
661 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Pixels_PhysicalSizeX
662 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Pixels_PhysicalSizeY
663 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Pixels_SizeC
664 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Pixels_SizeT
665 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Pixels_SizeX
666 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Pixels_SizeY
667 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Pixels_SizeZ
668 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Pixels_Type
669 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Plane_TheC
670 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Plane_TheT
671 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Plane_TheZ
672 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ID
673 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Name
674 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_EndTime
675 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_ID
676 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount
677 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_StartTime
678 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSampleRef_ID
679 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Column
680 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_ID
681 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Row
19.2.9 AVIReader

This page lists supported metadata fields for the Bio-Formats Audio Video Interleave format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Audio Video Interleave format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ

683 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImageRef_ID
684 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_Index
685 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_PositionX
686 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_PositionY
687 http://www.openmicroscopy.org/site/support/ome-model/
688 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
689 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
690 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
691 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
692 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
693 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
694 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
695 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
696 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
697 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
698 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
699 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
700 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.10 ARFReader

This page lists supported metadata fields for the Bio-Formats ARF format reader. These fields are from the OME data model\(^705\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats ARF format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ

\(^701\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^702\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^703\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^704\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
\(^705\)http://www.openmicroscopy.org/site/support/ome-model/
\(^706\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^707\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^708\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^709\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^710\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^711\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^712\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^713\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^714\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^715\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^716\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^717\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^718\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ

19.2. Metadata fields
19.2.11 BDReader

This page lists supported metadata fields for the Bio-Formats BD Pathway format reader.

These fields are from the OME data model\(^7\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 55 of them (11%).
- Of those, Bio-Formats fully or partially converts 55 (100%).

Supported fields

These fields are fully supported by the Bio-Formats BD Pathway format reader:

- Channel: EmissionWavelength\(^7\)
- Channel: ExcitationWavelength\(^7\)
- Channel: ID\(^7\)
- Channel: Name\(^7\)
- Channel: SamplesPerPixel\(^7\)
- Detector: ID\(^7\)
- DetectorSettings: Binning\(^7\)
- DetectorSettings: Gain\(^7\)
- DetectorSettings: ID\(^7\)
- DetectorSettings: Offset\(^7\)
- Image: AcquisitionDate\(^7\)
- Image: ID\(^7\)
- Image: InstrumentRef\(^7\)

\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
\(^7\)http://www.openmicroscopy.org/site/support/ome-model/
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Offset
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^7\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
19.2. Metadata fields

- Image: Name
- Image: ROIRef
- Instrument: ID
- Objective: ID
- Objective: LensNA
- Objective: Manufacturer
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: DeltaT
- Plane: ExposureTime
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Plate: ColumnNamingConvention
- Plate: Description
- Plate: ID
- Plate: Name
19.2.12 SDTReader

This page lists supported metadata fields for the Bio-Formats SPCImage Data format reader. These fields are from the OME data model\(^779\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SPCImage Data format reader:

- Channel: ID\(^780\)

\(^763\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_RowNamingConvention
\(^764\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_ID
\(^765\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount
\(^766\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSampleRef_ID
\(^767\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROI_ID
\(^768\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Height
\(^769\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
\(^770\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Width
\(^771\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_X
\(^772\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Y
\(^773\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Column
\(^774\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_ID
\(^775\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Row
\(^776\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_ID
\(^777\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImageRef_ID
\(^778\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_Index
\(^779\)http://www.openmicroscopy.org/site/support/ome-model/
\(^780\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.13 BioRadGelReader

This page lists supported metadata fields for the Bio-Formats Bio-Rad GEL format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bio-Rad GEL format reader:
• Channel: ID

781 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
782 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
783 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
784 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
785 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
786 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
787 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
788 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
789 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
790 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
791 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
792 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
793 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
794 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
795 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
796 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
This page lists supported metadata fields for the Bio-Formats Bio-Rad PIC format reader.

These fields are from the OME data model\(^{817}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 38 of them (8%).
- Of those, Bio-Formats fully or partially converts 38 (100%).

\(^{799}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{800}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{801}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{802}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{803}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^{804}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^{805}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^{806}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{807}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{808}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^{809}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^{810}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^{811}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^{812}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^{813}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^{814}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^{815}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^{816}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ

\(^{817}\)http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Bio-Rad PIC format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Detector: Gain
- Detector: ID
- Detector: Offset
- Detector: Type
- DetectorSettings: Gain
- DetectorSettings: ID
- DetectorSettings: Offset
- Experiment: ID
- Experiment: Type
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: LensNA
- Objective: Model
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BinDataBigEndian
19.2.15 ImarisHDFReader

This page lists supported metadata fields for the Bio-Formats Bitplane Imaris 5.5 (HDF) format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bitplane Imaris 5.5 (HDF) format reader:

- Channel : Color
- Channel : ID
- Channel : SamplesPerPixel

842 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
843 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
844 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
845 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
846 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
847 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
848 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
849 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
850 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
851 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
852 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
853 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
854 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
855 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
856 http://www.openmicroscopy.org/site/support/ome-model/
857 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Color
858 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
859 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
• DetectorSettings : Gain
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 22
Total unknown or missing: 451

19.2.16 BrukerReader

This page lists supported metadata fields for the Bio-Formats Bruker format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Bruker format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Experimenter: ID
- Experimenter: Institution
- Experimenter: LastName
- Image: AcquisitionDate
- Image: ExperimenterRef
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 21

Total unknown or missing: 452
19.2.17 BurleighReader

This page lists supported metadata fields for the Bio-Formats Burleigh format reader.

These fields are from the OME data model\(^{[901]}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Burleigh format reader:

- Channel : ID\(^{[902]}\)
- Channel : SamplesPerPixel\(^{[903]}\)
- Image : AcquisitionDate\(^{[904]}\)
- Image : ID\(^{[905]}\)
- Image : Name\(^{[906]}\)
- Pixels : BinDataBigEndian\(^{[907]}\)
- Pixels : DimensionOrder\(^{[908]}\)
- Pixels : ID\(^{[909]}\)
- Pixels : PhysicalSizeX\(^{[910]}\)
- Pixels : PhysicalSizeY\(^{[911]}\)
- Pixels : PhysicalSizeZ\(^{[912]}\)
- Pixels : SizeC\(^{[913]}\)
- Pixels : SizeT\(^{[914]}\)
- Pixels : SizeX\(^{[915]}\)
- Pixels : SizeY\(^{[916]}\)
- Pixels : SizeZ\(^{[917]}\)
- Pixels : Type\(^{[918]}\)
- Plane : TheC\(^{[919]}\)

\(^{[901]}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{[902]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID

\(^{[903]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{[904]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

\(^{[905]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID

\(^{[906]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name

\(^{[907]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian

\(^{[908]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder

\(^{[909]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID

\(^{[910]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX

\(^{[911]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY

\(^{[912]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ

\(^{[913]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC

\(^{[914]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT

\(^{[915]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX

\(^{[916]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY

\(^{[917]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ

\(^{[918]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type

\(^{[919]}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
• Plane: TheT
• Plane: TheZ

Total supported: 20
Total unknown or missing: 453

19.2.18 DNGReader

This page lists supported metadata fields for the Bio-Formats DNG format reader.

These fields are from the OME data model\(^{922}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats DNG format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC

920 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
921 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
922 http://www.openmicroscopy.org/site/support/ome-model/
923 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
924 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
925 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
926 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
927 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
928 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
929 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
930 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
931 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
932 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
933 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
934 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
935 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
936 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
937 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC

19.2. Metadata fields
Total supported: 17
Total unknown or missing: 456

19.2.19 CellomicsReader

This page lists supported metadata fields for the Bio-Formats Cellomics C01 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 29 of them (6%).
- Of those, Bio-Formats fully or partially converts 29 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Cellomics C01 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ

938 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
939 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
940 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
941 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
942 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
943 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
944 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
945 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_xsd.html#BinData_BigEndian
946 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
947 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
948 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
949 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
950 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
951 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
952 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
953 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
954 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
19.2.20 CellSensReader

This page lists supported metadata fields for the Bio-Formats CellSens VSI format reader. These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats CellSens VSI format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
Bio-Formats Documentation, Release 4.4.9

- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.21 DeltavisionReader

This page lists supported metadata fields for the Bio-Formats Deltavision format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 50 of them (10%).
- Of those, Bio-Formats fully or partially converts 50 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Deltavision format reader:
- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID

974 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
975 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
976 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
977 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
978 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
979 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
980 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
981 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
982 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
983 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
984 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
985 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
986 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
987 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
988 http://www.openmicroscopy.org/site/support/ome-model/
989 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
990 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
991 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
• Channel : NDFilter
• Channel : Name
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Model
• Detector : Type
• DetectorSettings : Binning
• DetectorSettings : Gain
• DetectorSettings : ID
• DetectorSettings : ReadOutRate
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : InstrumentRef
• Image : Name
• ImagingEnvironment : Temperature
• Instrument : ID
• Objective : CalibratedMagnification
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Manufacturer
• Objective : Model
• Objective : NominalMagnification
• Objective : WorkingDistance

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_NDFilter
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ReadOutRate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_WorkingDistance

19.2. Metadata fields
• ObjectiveSettings: ID
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 50
Total unknown or missing: 423

19.2.22 DicomReader

This page lists supported metadata fields for the Bio-Formats DICOM format reader.

These fields are from the [OME data model](http://www.openmicroscopy.org/site/support/ome-model/). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.
Of the 473 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats DICOM format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 21

Total unknown or missing: 452

[1042] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
19.2.23 Ecat7Reader

This page lists supported metadata fields for the Bio-Formats ECAT7 format reader. These fields are from the OME data model\(^{1061}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats ECAT7 format reader:

- Channel : ID\(^{1062}\)
- Channel : SamplesPerPixel\(^{1063}\)
- Image : AcquisitionDate\(^{1064}\)
- Image : Description\(^{1065}\)
- Image : ID\(^{1066}\)
- Image : Name\(^{1067}\)
- Pixels : BinDataBigEndian\(^{1068}\)
- Pixels : DimensionOrder\(^{1069}\)
- Pixels : ID\(^{1070}\)
- Pixels : PhysicalSizeX\(^{1071}\)
- Pixels : PhysicalSizeY\(^{1072}\)
- Pixels : PhysicalSizeZ\(^{1073}\)
- Pixels : SizeC\(^{1074}\)
- Pixels : SizeT\(^{1075}\)
- Pixels : SizeX\(^{1076}\)
- Pixels : SizeY\(^{1077}\)
- Pixels : SizeZ\(^{1078}\)
- Pixels : Type\(^{1079}\)

\(^{1061}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{1062}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{1063}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{1064}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{1065}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
\(^{1066}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{1067}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{1068}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^{1069}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^{1070}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^{1071}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{1072}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{1073}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
\(^{1074}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^{1075}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^{1076}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^{1077}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^{1078}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^{1079}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 21
Total unknown or missing: 452

19.2.24 EPSReader

This page lists supported metadata fields for the Bio-Formats Encapsulated PostScript format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Encapsulated PostScript format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type

References:

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type

19.2. Metadata fields
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.25 FlexReader

This page lists supported metadata fields for the Bio-Formats Evotec Flex format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 67 of them (14%).
• Of those, Bio-Formats fully or partially converts 67 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Evotec Flex format reader:

• Channel: ID
• Channel: LightSourceSettingsID
• Channel: Name
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Type
• DetectorSettings: Binning
• DetectorSettings: ID
• Dichroic: ID
• Dichroic: Model
• Filter: FilterWheel
• Filter: ID
• Filter: Model
• Image: AcquisitionDate

1098 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1099 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1100 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1101 http://www.openmicroscopy.org/site/support/ome-model/
1102 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1103 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_ID
1104 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
1105 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1106 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
1107 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
1108 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
1109 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
1110 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Dichroic_ID
1111 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1112 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filter_FilterWheel
1113 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filter_ID
1114 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1115 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Laser: ID
- Laser: LaserMedium
- Laser: Type
- Laser: Wavelength
- LightPath: DichroicRef
- LightPath: EmissionFilterRef
- LightPath: ExcitationFilterRef
- Objective: CalibratedMagnification
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: LensNA
- ObjectiveSettings: ID
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• Plate : ColumnNamingConvention
• Plate : ExternalIdentifier
• Plate : ID
• Plate : Name
• Plate : RowNamingConvention
• PlateAcquisition : ID
• PlateAcquisition : MaximumFieldCount
• PlateAcquisition : StartTime
• PlateAcquisition : WellSampleRef
• Well : Column
• Well : ID
• Well : Row
• WellSample : ID
• WellSample : ImageRef
• WellSample : Index
• WellSample : PositionX

[1155]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Name
[1166]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_Index

19.2. Metadata fields
• WellSample : PositionY

Total supported: 67

Total unknown or missing: 406

19.2.26 FEIReader

This page lists supported metadata fields for the Bio-Formats FEI/Philips format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats FEI/Philips format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.27 FEITiffReader

This page lists supported metadata fields for the Bio-Formats FEI TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 37 of them (7%).
• Of those, Bio-Formats fully or partially converts 37 (100%).

Supported fields

These fields are fully supported by the Bio-Formats FEI TIFF format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Model
• Detector: Type
• Experimenter: ID
• Experimenter: LastName
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Microscope: Model
• Objective: Correction
• Objective: ID

1186 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1187 http://www.openmicroscopy.org/site/support/ome-model/1187
1188 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1189 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1190 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
1191 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1192 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
1193 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_ID
1194 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_LastName
1195 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1196 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
1197 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1198 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
1199 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1200 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
1201 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1202 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
1203 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID

19.2. Metadata fields 250
• Objective: Immersion
• Objective: NominalMagnification
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• StageLabel: Name
• StageLabel: X
• StageLabel: Y
• StageLabel: Z

Total supported: 37
Total unknown or missing: 436

19.2.28 FitsReader

This page lists supported metadata fields for the Bio-Formats Flexible Image Transport System format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#StageLabel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#StageLabel_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#StageLabel_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#StageLabel_Z
Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Flexible Image Transport System format reader:

- Channel: ID1226
- Channel: SamplesPerPixel1227
- Image: AcquisitionDate1228
- Image: ID1229
- Image: Name1230
- Pixels: BinDataBigEndian1231
- Pixels: DimensionOrder1232
- Pixels: ID1233
- Pixels: SizeC1234
- Pixels: SizeT1235
- Pixels: SizeX1236
- Pixels: SizeY1237
- Pixels: SizeZ1238
- Pixels: Type1239
- Plane: TheC1240
- Plane: TheT1241
- Plane: TheZ1242

Total supported: 17
Total unknown or missing: 456

19.2.29 GatanDM2Reader

This page lists supported metadata fields for the Bio-Formats Gatan DM2 format reader.

These fields are from the OME data model1243. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

1226http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1227http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1228http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1229http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1230http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1231http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
1232http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1233http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1234http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1235http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1236http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1237http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1238http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1239http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1240http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1241http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1242http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1243http://www.openmicroscopy.org/site/support/ome-model/
Of the 473 fields documented in the *metadata summary table*:

- The file format itself supports 28 of them (5%).
- Of those, Bio-Formats fully or partially converts 28 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Gatan DM2 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Detector: ID
- DetectorSettings: Binning
- DetectorSettings: ID
- Experimenter: FirstName
- Experimenter: ID
- Experimenter: LastName
- Image: AcquisitionDate
- Image: ExperimenterRef
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX

1244 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1245 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1246 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
1247 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
1248 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
1249 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_FirstName
1250 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_ID
1251 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_LastName
1252 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1253 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ExperimenterRef
1254 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1255 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_InstrumentRef
1256 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1257 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1258 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1259 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1260 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1261 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1262 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1263 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1264 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 28
Total unknown or missing: 445

19.2.30 GatanReader

This page lists supported metadata fields for the Bio-Formats Gatan Digital Micrograph format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 34 of them (7%).
• Of those, Bio-Formats fully or partially converts 34 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Gatan Digital Micrograph format reader:

• Channel : AcquisitionMode
• Channel : ID
• Channel : SamplesPerPixel
• Detector : ID
• DetectorSettings : ID
• DetectorSettings : Voltage
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Instrument : ID
• Objective : Correction

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_AcquisitionMode
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Voltage
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
- Objective: ID1284
- Objective: Immersion1285
- Objective: NominalMagnification1286
- ObjectiveSettings: ID1287
- Pixels: BinDataBigEndian1288
- Pixels: DimensionOrder1289
- Pixels: ID1290
- Pixels: PhysicalSizeX1291
- Pixels: PhysicalSizeY1292
- Pixels: PhysicalSizeZ1293
- Pixels: SizeC1294
- Pixels: SizeT1295
- Pixels: SizeX1296
- Pixels: SizeY1297
- Pixels: SizeZ1298
- Pixels: Type1299
- Plane: ExposureTime1300
- Plane: PositionX1301
- Plane: PositionY1302
- Plane: PositionZ1303
- Plane: TheC1304
- Plane: TheT1305
- Plane: TheZ1306

Total supported: 34

Total unknown or missing: 439
19.2.31 GIFReader

This page lists supported metadata fields for the Bio-Formats Graphics Interchange Format format reader.

These fields are from the OME data model\(^{1307}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Graphics Interchange Format format reader:

- Channel: ID\(^{1308}\)
- Channel: SamplesPerPixel\(^{1309}\)
- Image: AcquisitionDate\(^{1310}\)
- Image: ID\(^{1311}\)
- Image: Name\(^{1312}\)
- Pixels: BinDataBigEndian\(^{1313}\)
- Pixels: DimensionOrder\(^{1314}\)
- Pixels: ID\(^{1315}\)
- Pixels: SizeC\(^{1316}\)
- Pixels: SizeT\(^{1317}\)
- Pixels: SizeX\(^{1318}\)
- Pixels: SizeY\(^{1319}\)
- Pixels: SizeZ\(^{1320}\)
- Pixels: Type\(^{1321}\)
- Plane: TheC\(^{1322}\)
- Plane: TheT\(^{1323}\)
- Plane: TheZ\(^{1324}\)

Total supported: 17

Total unknown or missing: 456

\(^{1307}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{1308}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{1309}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{1310}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{1311}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{1312}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{1313}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
\(^{1314}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^{1315}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^{1316}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^{1317}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^{1318}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^{1319}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^{1320}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^{1321}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^{1322}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^{1323}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^{1324}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
19.2.32 NAFReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu Aquacosmos format reader.

These fields are from the OME data model\(^{1325}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu Aquacosmos format reader:

- Channel: ID\(^{1326}\)
- Channel: SamplesPerPixel\(^{1327}\)
- Image: AcquisitionDate\(^{1328}\)
- Image: ID\(^{1329}\)
- Image: Name\(^{1330}\)
- Pixels: BinDataBigEndian\(^{1331}\)
- Pixels: DimensionOrder\(^{1332}\)
- Pixels: ID\(^{1333}\)
- Pixels: SizeC\(^{1334}\)
- Pixels: SizeT\(^{1335}\)
- Pixels: SizeX\(^{1336}\)
- Pixels: SizeY\(^{1337}\)
- Pixels: SizeZ\(^{1338}\)
- Pixels: Type\(^{1339}\)
- Plane: TheC\(^{1340}\)
- Plane: TheT\(^{1341}\)
- Plane: TheZ\(^{1342}\)

Total supported: 17

Total unknown or missing: 456

\(^{1325}\) http://www.openmicroscopy.org/site/support/ome-model/

\(^{1326}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID

\(^{1327}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{1328}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

\(^{1330}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name

\(^{1331}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian

\(^{1332}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder

\(^{1333}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID

\(^{1334}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC

\(^{1335}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT

\(^{1336}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX

\(^{1337}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY

\(^{1338}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ

\(^{1339}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type

\(^{1340}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC

\(^{1341}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT

\(^{1342}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
19.2.33 HISReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu HIS format reader.

These fields are from the OME data model\(^{1343}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 25 of them (5%).
- Of those, Bio-Formats fully or partially converts 25 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu HIS format reader:

- Channel: ID\(^{1344}\)
- Channel: SamplesPerPixel\(^{1345}\)
- Detector: ID\(^{1346}\)
- Detector: Offset\(^{1347}\)
- Detector: Type\(^{1348}\)
- DetectorSettings: Binning\(^{1349}\)
- DetectorSettings: ID\(^{1350}\)
- Image: AcquisitionDate\(^{1351}\)
- Image: ID\(^{1352}\)
- Image: InstrumentRef\(^{1353}\)
- Image: Name\(^{1354}\)
- Instrument: ID\(^{1355}\)
- Pixels: BinDataBigEndian\(^{1356}\)
- Pixels: DimensionOrder\(^{1357}\)
- Pixels: ID\(^{1358}\)
- Pixels: SizeC\(^{1359}\)
- Pixels: SizeT\(^{1360}\)
- Pixels: SizeX\(^{1361}\)

\(^{1343}\)[http://www.openmicroscopy.org/site/support/ome-model/]
\(^{1344}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID]
\(^{1345}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel]
\(^{1346}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID]
\(^{1347}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Offset]
\(^{1348}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type]
\(^{1349}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning]
\(^{1350}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID]
\(^{1351}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate]
\(^{1352}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID]
\(^{1353}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID]
\(^{1354}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name]
\(^{1355}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID]
\(^{1356}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_xsd.html#BinData_BigEndian]
\(^{1357}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_BinData_BigEndian]
\(^{1358}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_BinData_BigEndian]
\(^{1359}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_SizeC]
\(^{1360}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_SizeT]
\(^{1361}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_SizeX]
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : ExposureTime
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 25
Total unknown or missing: 448

19.2.34 NDPIReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu NDPI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu NDPI format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY

1362 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1363 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1364 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1365 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
1366 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1367 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1368 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1369 http://www.openmicroscopy.org/site/support/ome-model/
1370 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1371 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1372 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1373 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1374 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1375 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
1376 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1377 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1378 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1379 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY

19.2. Metadata fields
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 19

Total unknown or missing: 454

19.2.35 HamamatsuVMSReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu VMS format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
 • The file format itself supports 24 of them (5%).
 • Of those, Bio-Formats fully or partially converts 24 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu VMS format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Objective: ID

19.2. Metadata fields
Bio-Formats Documentation, Release 4.4.9

19.2.36 HitachiReader

This page lists supported metadata fields for the Bio-Formats Hitachi format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 29 of them (6%).
- Of those, Bio-Formats fully or partially converts 29 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hitachi format reader:

- Channel: ID

1398 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
1399 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
1400 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1401 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1402 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1403 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1404 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1405 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeC
1406 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1407 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1408 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1409 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1410 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1411 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1412 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1413 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ID
1414 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID

19.2. Metadata fields
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Microscope: Model
• Microscope: SerialNumber
• Objective: ID
• Objective: WorkingDistance
• ObjectiveSettings: ID
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC

1416 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1417 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1418 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1419 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
1420 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1421 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1422 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
1423 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
1424 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_WorkingDistance
1425 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
1426 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_BinData_BigEndian
1427 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1428 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1429 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1430 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1431 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
1432 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1433 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1434 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1435 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1436 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1437 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1439 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
1440 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
1441 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC

19.2. Metadata fields
• Plane: TheT
• Plane: TheZ

Total supported: 29
Total unknown or missing: 444

19.2.37 ICSReader

This page lists supported metadata fields for the Bio-Formats Image Cytometry Standard format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 70 of them (14%).
• Of those, Bio-Formats fully or partially converts 70 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Image Cytometry Standard format reader:

• Channel: EmissionWavelength
• Channel: ExcitationWavelength
• Channel: ID
• Channel: Name
• Channel: PinholeSize
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Manufacturer
• Detector: Model
• Detector: Type
• DetectorSettings: Gain
• DetectorSettings: ID
• Dichroic: ID
• Dichroic: Model
• Experiment: ID

1442 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1443 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1444 http://www.openmicroscopy.org/site/support/ome-model/
1445 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
1446 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
1447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1448 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
1449 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PinholeSize
1450 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1451 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
1452 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Measure
1453 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1454 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
1455 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
1456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
1457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Dichroic_ID
1458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1459 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_ID
• Experiment: Type
• Experimenter: ID
• Experimenter: LastName
• Filter: ID
• Filter: Model
• FilterSet: DichroicRef
• FilterSet: EmissionFilterRef
• FilterSet: ExcitationFilterRef
• FilterSet: ID
• FilterSet: Model
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Laser: ID
• Laser: LaserMedium
• Laser: Manufacturer
• Laser: Model
• Laser: Power
• Laser: RepetitionRate
• Laser: Type
• Laser: Wavelength
• Microscope: Manufacturer
• Microscope: Model

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_LastName
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_LaserMedium
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_RepetitionRate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer

19.2. Metadata fields
• Objective: CalibratedMagnification
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• Objective: WorkingDistance
• ObjectiveSettings: ID
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ

1486 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification
1487 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
1488 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
1489 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
1490 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
1491 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1492 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_WorkingDistance
1493 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
1494 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1495 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1496 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1497 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html# Pixels_PhysicalSizeX
1498 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1499 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
1500 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1501 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1502 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1503 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1504 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1505 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
1506 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
1507 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
1508 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionX
1509 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
1510 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
19.2.38 ImaconReader

This page lists supported metadata fields for the Bio-Formats Imacon format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Imacon format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Experimenter: FirstName
- Experimenter: ID
- Experimenter: LastName
- Image: AcquisitionDate
- Image: ExperimenterRef
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT

1512 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1513 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1514 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1515 http://www.openmicroscopy.org/site/support/ome-model/
1516 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1517 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1518 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_FirstName
1519 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_ID
1520 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_LastName
1521 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1522 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterRef_ID
1523 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1524 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1525 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
1526 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1527 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1528 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1529 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
19.2.39 SEQReader

This page lists supported metadata fields for the Bio-Formats Image-Pro Sequence format reader. These fields are from the OME data model\(^{1537}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Image-Pro Sequence format reader:

- Channel: ID\(^{1538}\)
- Channel: SamplesPerPixel\(^{1539}\)
- Image: AcquisitionDate\(^{1540}\)
- Image: ID\(^{1541}\)
- Image: Name\(^{1542}\)
- Pixels: BinDataBigEndian\(^{1543}\)
- Pixels: DimensionOrder\(^{1544}\)
- Pixels: ID\(^{1545}\)
- Pixels: SizeC\(^{1546}\)
- Pixels: SizeT\(^{1547}\)

\(^{1530}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^{1531}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^{1532}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^{1533}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^{1534}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^{1535}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^{1536}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
\(^{1537}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{1538}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{1539}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{1540}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{1541}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{1542}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{1543}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
\(^{1544}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^{1545}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^{1546}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^{1547}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
• Pixels : SizeX\[1548
• Pixels : SizeY\[1549
• Pixels : SizeZ\[1550
• Pixels : Type\[1551
• Plane : TheC\[1552
• Plane : TheT\[1553
• Plane : TheZ\[1554

Total supported: 17
Total unknown or missing: 456

19.2.40 IPWReader

This page lists supported metadata fields for the Bio-Formats Image-Pro Workspace format reader.

These fields are from the OME data model\[1555. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 18 of them (3%).
• Of those, Bio-Formats fully or partially converts 18 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Image-Pro Workspace format reader:
• Channel : ID\[1556
• Channel : SamplesPerPixel\[1557
• Image : AcquisitionDate\[1558
• Image : Description\[1559
• Image : ID\[1560
• Image : Name\[1561
• Pixels : BinDataBigEndian\[1562
• Pixels : DimensionOrder\[1563
• Pixels : ID\[1564
• Pixels : SizeC\[1565

\[1548 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\[1549 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\[1550 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\[1551 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\[1552 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\[1553 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\[1554 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
\[1555 http://www.openmicroscopy.org/site/support/ome-model/
\[1556 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\[1557 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\[1558 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\[1559 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
\[1560 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\[1561 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\[1562 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
\[1563 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\[1564 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\[1565 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC

19.2. Metadata fields
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 18
Total unknown or missing: 455

19.2.41 ImagicReader

This page lists supported metadata fields for the Bio-Formats IMAGIC format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IMAGIC format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX

1560. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1566. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1567. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

19.2. Metadata fields
19.2.42 IMODReader

This page lists supported metadata fields for the Bio-Formats IMOD format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 42 of them (8%).
- Of those, Bio-Formats fully or partially converts 42 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IMOD format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Image: ROIRef

1584 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1585 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
1586 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1587 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1588 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1589 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1590 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1591 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1592 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1593 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1594 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1595 http://www.openmicroscopy.org/site/support/ome-model/
1596 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1597 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1598 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1599 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1600 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Point: ID
• Point: StrokeColor
• Point: StrokeDashArray
• Point: StrokeWidth
• Point: TheZ
• Point: X
• Point: Y
• Polygon: ID
• Polygon: Points
• Polygon: StrokeColor
• Polygon: StrokeDashArray
• Polygon: StrokeWidth

1602 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1603 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1604 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1605 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1606 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1607 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
1608 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1609 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1610 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1611 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1612 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1613 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1614 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1615 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1616 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1617 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
1618 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeColor
1619 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeDashArray
1620 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
1621 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ
1622 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Point_X
1623 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Point_Y
1624 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Point_Z
1625 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Polygon_Points
1626 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeColor
1627 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeDashArray

19.2. Metadata fields
• Polygon : StrokeWidth
• Polygon : TheZ
• Polyline : ID
• Polyline : Points
• Polyline : StrokeColor
• Polyline : StrokeDashArray
• Polyline : StrokeWidth
• Polyline : TheZ
• ROI : ID
• ROI : Name

Total supported: 42
Total unknown or missing: 431

19.2.43 OpenlabReader

This page lists supported metadata fields for the Bio-Formats Openlab LIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 30 of them (6%).
• Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Openlab LIFF format reader:

• Channel : ID
• Channel : Name
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Type
• DetectorSettings : Gain
• DetectorSettings : ID
• DetectorSettings: Offset1646
• Image: AcquisitionDate1647
• Image: ID1648
• Image: InstrumentRef1649
• Image: Name1650
• Instrument: ID1651
• Pixels: BinDataBigEndian1652
• Pixels: DimensionOrder1653
• Pixels: ID1654
• Pixels: PhysicalSizeX1655
• Pixels: PhysicalSizeY1656
• Pixels: SizeC1657
• Pixels: SizeT1658
• Pixels: SizeX1659
• Pixels: SizeY1660
• Pixels: SizeZ1661
• Pixels: Type1662
• Plane: PositionX1663
• Plane: PositionY1664
• Plane: PositionZ1665
• Plane: TheC1666
• Plane: TheT1667
• Plane: TheZ1668

Total supported: 30

Total unknown or missing: 443

1646http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Offset
1647http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1648http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1649http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
1650http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1651http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
1652http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_BigEndian
1653http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1654http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1655http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1656http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1657http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1658http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1659http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1660http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1661http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1662http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1663http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionX
1664http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
1665http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
1666http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1667http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1668http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
19.2.44 OpenlabRawReader

This page lists supported metadata fields for the Bio-Formats Openlab RAW format reader.

These fields are from the OME data model\(^\text{1669}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Openlab RAW format reader:

- Channel: ID\(^\text{1670}\)
- Channel: SamplesPerPixel\(^\text{1671}\)
- Image: AcquisitionDate\(^\text{1672}\)
- Image: ID\(^\text{1673}\)
- Image: Name\(^\text{1674}\)
- Pixels: BinDataBigEndian\(^\text{1675}\)
- Pixels: DimensionOrder\(^\text{1676}\)
- Pixels: ID\(^\text{1677}\)
- Pixels: SizeC\(^\text{1678}\)
- Pixels: SizeT\(^\text{1679}\)
- Pixels: SizeX\(^\text{1680}\)
- Pixels: SizeY\(^\text{1681}\)
- Pixels: SizeZ\(^\text{1682}\)
- Pixels: Type\(^\text{1683}\)
- Plane: TheC\(^\text{1684}\)
- Plane: TheT\(^\text{1685}\)
- Plane: TheZ\(^\text{1686}\)

Total supported: 17

Total unknown or missing: 456

\(^\text{1669}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^\text{1670}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^\text{1671}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^\text{1672}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^\text{1673}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^\text{1674}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^\text{1675}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^\text{1676}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^\text{1677}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^\text{1678}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^\text{1679}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^\text{1680}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^\text{1681}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^\text{1682}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^\text{1683}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^\text{1684}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^\text{1685}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ

19.2. Metadata fields
19.2.45 ImprovisionTIFFReader

This page lists supported metadata fields for the Bio-Formats Improvision TIFF format reader. These fields are from the OME data model\[1687\]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Improvision TIFF format reader:

- Channel: ID\[1688\]
- Channel: Name\[1689\]
- Channel: SamplesPerPixel\[1690\]
- Image: AcquisitionDate\[1691\]
- Image: Description\[1692\]
- Image: ID\[1693\]
- Image: Name\[1694\]
- Pixels: BinDataBigEndian\[1695\]
- Pixels: DimensionOrder\[1696\]
- Pixels: ID\[1697\]
- Pixels: PhysicalSizeX\[1698\]
- Pixels: PhysicalSizeY\[1699\]
- Pixels: PhysicalSizeZ\[1700\]
- Pixels: SizeC\[1701\]
- Pixels: SizeT\[1702\]
- Pixels: SizeX\[1703\]
- Pixels: SizeY\[1704\]
- Pixels: SizeZ\[1705\]

\[1687\]http://www.openmicroscopy.org/site/support/ome-model/
\[1688\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\[1689\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
\[1690\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\[1691\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\[1692\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
\[1693\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\[1694\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\[1695\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\[1696\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\[1697\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\[1698\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
\[1699\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
\[1700\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
\[1701\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\[1702\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\[1703\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\[1704\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\[1705\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 23
Total unknown or missing: 450

19.2.46 InCellReader

This page lists supported metadata fields for the Bio-Formats InCell 1000/2000 format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 65 of them (13%).
• Of those, Bio-Formats fully or partially converts 65 (100%).

Supported fields

These fields are fully supported by the Bio-Formats InCell 1000/2000 format reader:
• Channel: EmissionWavelength
• Channel: ExcitationWavelength
• Channel: ID
• Channel: Name
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Model
• Detector: Type
• DetectorSettings: Binning
• DetectorSettings: Gain
• DetectorSettings: ID
• Experiment: ID

1706 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
1707 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1708 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1709 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1710 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1711 http://www.openmicroscopy.org/site/support/ome-model/
1712 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
1713 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
1714 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1715 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
1716 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1717 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
1718 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1719 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
1720 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
1721 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
1722 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
1723 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_ID
• Experiment : Type
• Image : AcquisitionDate
• Image : Description
• Image : ExperimentRef
• Image : ID
• Image : InstrumentRef
• Image : Name
• ImagingEnvironment : Temperature
• Instrument : ID
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Manufacturer
• Objective : NominalMagnification
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY

1724 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_Type
1725 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1726 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
1727 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimentRef_ID
1728 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1729 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
1730 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1731 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature
1732 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
1733 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
1734 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
1735 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
1736 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
1737 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
1738 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
1739 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
1740 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
1741 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
1742 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1743 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1744 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1745 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1746 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1747 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1748 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1749 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
19.2. Metadata fields

- **Pixels**: SizeZ
- **Pixels**: Type
- **Plane**: DeltaT
- **Plane**: ExposureTime
- **Plane**: PositionX
- **Plane**: PositionY
- **Plane**: PositionZ
- **Plane**: TheC
- **Plane**: TheT
- **Plane**: TheZ
- **Plate**: ColumnNamingConvention
- **Plate**: ID
- **Plate**: Name
- **Plate**: RowNamingConvention
- **Plate**: WellOriginX
- **Plate**: WellOriginY
- **PlateAcquisition**: ID
- **PlateAcquisition**: MaximumFieldCount
- **PlateAcquisition**: WellSampleRef
- **Well**: Column
- **Well**: ID
- **Well**: Row
- **WellSample**: ID
- **WellSample**: ImageRef
- **WellSample**: Index
- **WellSample**: PositionX
• WellSample : PositionY

Total supported: 65
Total unknown or missing: 408

19.2.47 InCell3000Reader

This page lists supported metadata fields for the Bio-Formats InCell 3000 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats InCell 3000 format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT

1776 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_PositionY
1777 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1778 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1779 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1780 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1781 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1782 BinaryFile_xsd.html#BinData_BigEndian
1783 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1784 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1785 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1786 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1787 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1788 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1789 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1790 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1791 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT

19.2. Metadata fields
Total supported: 17

Total unknown or missing: 456

19.2.48 INRReader

This page lists supported metadata fields for the Bio-Formats INR format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats INR format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ

1794 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1795 http://www.openmicroscopy.org/site/support/ome-model/
1796 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1797 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1798 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1799 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1800 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1801 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1802 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1803 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1804 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1805 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1806 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
1807 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1808 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1809 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1810 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1811 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
19.2.49 IvisionReader

This page lists supported metadata fields for the Bio-Formats IVision format reader. These fields are from the OME data model\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 32 of them (6%).
- Of those, Bio-Formats fully or partially converts 32 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IVision format reader:

- Channel: ID\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID}
- Channel: SamplesPerPixel\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel}
- Detector: ID\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID}
- Detector: Type\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type}
- DetectorSettings: Binning\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning}
- DetectorSettings: Gain\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain}
- DetectorSettings: ID\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID}
- Image: AcquisitionDate\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate}
- Image: ID\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID}
- Image: InstrumentRef\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID}
- Image: Name\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name}
- Instrument: ID\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID}
- Objective: Correction\footnote{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction}

Total supported: 20
Total unknown or missing: 453
Bio-Formats Documentation, Release 4.4.9

- Objective : ID
- Objective : Immersion
- Objective : LensNA
- Objective : NominalMagnification
- ObjectiveSettings : ID
- ObjectiveSettings : RefractiveIndex
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : TimeIncrement
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 32
Total unknown or missing: 441

19.2.50 IPLabReader

This page lists supported metadata fields for the Bio-Formats IPLab format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 29 of them (6%).
- Of those, Bio-Formats fully or partially converts 29 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats IPLab format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Image: ROIRef
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: TimeIncrement
- Pixels: Type
- Plane: DeltaT
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- ROI: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROI_ID
• Rectangle : Height
• Rectangle : ID
• Rectangle : Width
• Rectangle : X
• Rectangle : Y

Total supported: 29

Total unknown or missing: 444

19.2.51 JEOLReader

This page lists supported metadata fields for the Bio-Formats JEOL format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JEOL format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY

1874 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Height
1875 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
1876 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Width
1877 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_X
1878 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Y
1879 http://www.openmicroscopy.org/site/support/ome-model/
1880 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1881 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1882 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1883 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1884 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1885 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1886 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1887 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1888 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1889 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1890 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1891 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY

19.2. Metadata fields
Total supported: 17
Total unknown or missing: 456

19.2.52 JPEG2000Reader

This page lists supported metadata fields for the Bio-Formats JPEG-2000 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPEG-2000 format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY

1892 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1893 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1894 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1895 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1896 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1897 http://www.openmicroscopy.org/site/support/ome-model/
1898 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1899 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1900 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1901 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1902 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1903 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1904 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1905 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1906 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1907 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1908 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1909 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 17
Total unknown or missing: 456

19.2.53 JPEGReader

This page lists supported metadata fields for the Bio-Formats JPEG format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPEG format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY

1910 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1911 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1912 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1913 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1914 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1915 http://www.openmicroscopy.org/site/support/ome-model/
1916 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1917 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1918 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1919 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1920 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1921 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1922 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1923 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1924 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1925 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1926 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1927 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.54 JPKReader

This page lists supported metadata fields for the Bio-Formats JPK Instruments format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPK Instruments format reader:
- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY

1928 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1929 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1930 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1931 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1932 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1933 http://www.openmicroscopy.org/site/support/ome-model/
1934 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1935 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1936 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1937 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1938 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1939 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1940 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1941 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1942 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1943 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1944 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1945 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY

19.2. Metadata fields
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 17
Total unknown or missing: 456

19.2.55 JPXReader

This page lists supported metadata fields for the Bio-Formats JPX format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPX format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.56 KhorosReader

This page lists supported metadata fields for the Bio-Formats Khoros XV format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Khoros XV format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY

1964 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1965 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1968 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1969 http://www.openmicroscopy.org/site/support/ome-model/
1971 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1972 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1974 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1975 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1978 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1979 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.57 KodakReader

This page lists supported metadata fields for the Bio-Formats Kodak Molecular Imaging format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 24 of them (5%).
• Of those, Bio-Formats fully or partially converts 24 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Kodak Molecular Imaging format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• ImagingEnvironment: Temperature
• Instrument: ID
• Microscope: Model
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID

1982 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1983 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1985 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1986 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1987 http://www.openmicroscopy.org/site/support/ome-model/
1989 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1990 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1993 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1996 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1997 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
1999 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
19.2.58 LiFlimReader

This page lists supported metadata fields for the Bio-Formats LI-FLIM format reader.

These fields are from the OME data model\(^{2012}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats LI-FLIM format reader:

- **Channel : ID**\(^ {2013}\)
- **Channel : SamplesPerPixel**\(^ {2014}\)
- **Image : AcquisitionDate**\(^ {2015}\)
- **Image : ID**\(^ {2016}\)
- **Image : Name**\(^ {2017}\)

\(^{2001}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY

\(^{2002}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC

\(^{2003}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT

\(^{2004}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX

\(^{2005}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY

\(^{2006}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ

\(^{2007}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type

\(^{2008}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime

\(^{2009}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC

\(^{2010}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT

\(^{2011}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ

\(^{2012}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{2013}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID

\(^{2014}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{2015}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

\(^{2016}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID

\(^{2017}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
• Image: ROIRef2018
• Pixels: BinDataBigEndian2019
• Pixels: DimensionOrder2020
• Pixels: ID2021
• Pixels: SizeC2022
• Pixels: SizeT2023
• Pixels: SizeX2024
• Pixels: SizeY2025
• Pixels: SizeZ2026
• Pixels: Type2027
• Plane: DeltaT2028
• Plane: ExposureTime2029
• Plane: TheC2030
• Plane: TheT2031
• Plane: TheZ2032
• Polygon: ID2033
• Polygon: Points2034
• ROI: ID2035

Total supported: 23

Total unknown or missing: 450

19.2.59 LeicaReader

This page lists supported metadata fields for the Bio-Formats Leica format reader. These fields are from the OME data model2036. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 54 of them (11%).
• Of those, Bio-Formats fully or partially converts 54 (100%).

2018http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID
2019http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
2020http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2021http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2022http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2023http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2024http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2025http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2026http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2027http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2028http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
2029http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
2030http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2031http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2032http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2033http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
2034http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Polygon_Points
2035http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROI_ID
2036http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Leica format reader:

- Channel: Color
- Channel: EmissionWavelength
- Channel: ExcitationWavelength
- Channel: ID
- Channel: Name
- Channel: PinholeSize
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Offset
- Detector: Type
- Detector: Voltage
- DetectorSettings: ID
- Filter: ID
- Filter: Model
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Instrument: ID
- LightPath: EmissionFilterRef
- Objective: Correction
- Objective: ID
- Objective: Immersion

2037 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Color
2038 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
2039 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
2040 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
2041 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
2042 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PinholeSize
2043 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
2044 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
2045 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Offset
2046 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
2047 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Voltage
2048 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
2049 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filter_ID
2050 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
2051 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
2052 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
2053 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
2054 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
2055 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
2056 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
2057 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
2058 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
2059 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
2060 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
• Objective : LensNA
• Objective : Model
• Objective : NominalMagnification
• Objective : SerialNumber
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• StageLabel: Name
• StageLabel: Z
• TransmittanceRange: CutIn
• TransmittanceRange: CutOut

Total supported: 54
Total unknown or missing: 419

19.2.60 LIFReader

This page lists supported metadata fields for the Bio-Formats Leica Image File Format format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 83 of them (17%).
• Of those, Bio-Formats fully or partially converts 83 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Leica Image File Format format reader:

• Channel: Color
• Channel: ExcitationWavelength
• Channel: ID
• Channel: LightSourceSettingsAttenuation
• Channel: LightSourceSettingsID
• Channel: Name
• Channel: PinholeSize
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Model
• Detector: Offset
• Detector: Type
• Detector: Zoom

2087 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#StageLabel_Name
2088 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#StageLabel_Z
2089 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutIn
2090 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutOut
2091 http://www.openmicroscopy.org/site/support/ome-model/
2092 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Color
2093 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
2094 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
2095 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_Attenuation
2096 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_ID
2097 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
2098 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PinholeSize
2099 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
2100 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
2101 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
2102 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Offset
2103 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
2104 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Zoom
• DetectorSettings: Gain
• DetectorSettings: ID
• DetectorSettings: Offset
• Filter: ID
• Filter: Model
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• Image: ROIRef
• Instrument: ID
• Label: FontSize
• Label: ID
• Label: StrokeWidth
• Label: Text
• Label: X
• Label: Y
• Laser: ID
• Laser: LaserMedium
• Laser: Type
• Laser: Wavelength
• LightPath: EmissionFilterRef
• Line: ID
• Line: X
• Line: X1

[2110] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

19.2. Metadata fields
• Line : Y1
• Line : Y2
• Microscope : Model
• Microscope : Type
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Model
• Objective : NominalMagnification
• Objective : SerialNumber
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type

2131 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_Y1
2132 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_Y2
2133 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
2134 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Microscope_Type
2135 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
2136 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
2137 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
2138 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
2139 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
2140 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
2141 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
2142 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
2143 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
2144 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
2145 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2146 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2147 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
2148 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
2149 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
2150 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2151 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2152 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2153 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2154 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2155 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
2156 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
19.2.61 LeicaSCNReader

This page lists supported metadata fields for the Bio-Formats Leica SCN format reader. These fields are from the OME data model2175. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 31 of them (6%).
- Of those, Bio-Formats fully or partially converts 31 (100%).

Total supported: 83

Total unknown or missing: 390
Supported fields

These fields are fully supported by the Bio-Formats Leica SCN format reader:

- Channel: ID
- Channel: IlluminationType
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: CalibratedMagnification
- Objective: ID
- Objective: LensNA
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : PositionX
• Plane : PositionY
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 31
Total unknown or missing: 442

19.2.62 LEOReader

This page lists supported metadata fields for the Bio-Formats LEO format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 25 of them (5%).
- Of those, Bio-Formats fully or partially converts 25 (100%).

Supported fields

These fields are fully supported by the Bio-Formats LEO format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : InstrumentRef
- Instrument : ID
- Objective : Correction
- Objective : ID
- Objective : Immersion

2200 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2201 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2203 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
2204 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2205 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2206 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2207 http://www.openmicroscopy.org/site/support/ome-model/
2208 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
2209 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
2210 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
2211 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
2212 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
2213 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
2214 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
2215 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
2216 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
2217 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
• Objective: WorkingDistance
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 25
Total unknown or missing: 448

19.2.63 L2DReader

This page lists supported metadata fields for the Bio-Formats Li-Cor L2D format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 27 of them (5%).
• Of those, Bio-Formats fully or partially converts 27 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Li-Cor L2D format reader:

• Channel: ID
• Channel: LightSourceSettingsID

2218 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_WorkingDistance
2219 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
2220 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2221 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2222 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
2223 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
2224 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2225 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2226 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2227 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2228 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2229 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2230 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2231 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2232 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2233 http://www.openmicroscopy.org/site/support/ome-model/
2234 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
2235 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Laser: ID
• Laser: LaserMedium
• Laser: Type
• Laser: Wavelength
• Microscope: Model
• Microscope: Type
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 27

Total unknown or missing: 446

2236 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
2237 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
2238 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
2239 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
2240 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
2241 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
2242 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
2243 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_ID
2244 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_LaserMedium
2245 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Type
2246 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Wavelength
2247 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
2248 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Microscope_Type
2249 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
2250 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2251 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2252 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2253 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2254 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2255 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2256 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2257 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2258 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2259 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2260 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ

19.2. Metadata fields
19.2.64 LIMReader

This page lists supported metadata fields for the Bio-Formats Laboratory Imaging format reader.

These fields are from the OME data model\(^{2261}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Laboratory Imaging format reader:

- Channel: ID\(^{2262}\)
- Channel: SamplesPerPixel\(^{2263}\)
- Image: AcquisitionDate\(^{2264}\)
- Image: ID\(^{2265}\)
- Image: Name\(^{2266}\)
- Pixels: BinDataBigEndian\(^{2267}\)
- Pixels: DimensionOrder\(^{2268}\)
- Pixels: ID\(^{2269}\)
- Pixels: SizeC\(^{2270}\)
- Pixels: SizeT\(^{2271}\)
- Pixels: SizeX\(^{2272}\)
- Pixels: SizeY\(^{2273}\)
- Pixels: SizeZ\(^{2274}\)
- Pixels: Type\(^{2275}\)
- Plane: TheC\(^{2276}\)
- Plane: TheT\(^{2277}\)
- Plane: TheZ\(^{2278}\)

Total supported: 17

Total unknown or missing: 456

\(^{2261}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2262}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{2263}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2264}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{2265}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{2266}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{2267}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
\(^{2268}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DimensionOrder
\(^{2269}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^{2270}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^{2271}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^{2272}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^{2273}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^{2274}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^{2275}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^{2276}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^{2277}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
19.2.65 MetamorphTiffReader

This page lists supported metadata fields for the Bio-Formats Metamorph TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
 • The file format itself supports 36 of them (7%).
 • Of those, Bio-Formats fully or partially converts 36 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Metamorph TIFF format reader:

- Channel : ID
- Channel : Name
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- ImagingEnvironment : Temperature
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY

http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
Bio-Formats Documentation, Release 4.4.9

- Pixels: SizeZ
- Pixels: Type
- Plane: DeltaT
- Plane: ExposureTime
- Plane: PositionX
- Plane: PositionY
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Plate: ColumnNamingConvention
- Plate: ID
- Plate: RowNamingConvention
- Well: Column
- Well: ID
- Well: Row
- WellSample: ID
- WellSample: ImageRef
- WellSample: Index

Total supported: 36
Total unknown or missing: 437

19.2.66 MetamorphReader

This page lists supported metadata fields for the Bio-Formats Metamorph STK format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 41 of them (8%).
- Of those, Bio-Formats fully or partially converts 41 (100%).

298 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
299 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
300 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
301 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
303 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
304 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
305 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
306 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
307 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ColumnNamingConvention
308 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ID
309 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_RowNamingConvention
310 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Column
311 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_ID
312 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Region
313 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_ID
314 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#ImageRef_ID
315 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_Index
316 http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Metamorph STK format reader:

- Channel : ID
- Channel : LightSourceSettingsID
- Channel : LightSourceSettingsWavelength
- Channel : Name
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Type
- DetectorSettings : Binning
- DetectorSettings : Gain
- DetectorSettings : ID
- DetectorSettings : ReadOutRate
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : InstrumentRef
- Image : Name
- ImagingEnvironment : Temperature
- Instrument : ID
- Laser : ID
- Laser : LaserMedium
- Laser : Type
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 41
Total unknown or missing: 432

19.2.67 MIASReader

This page lists supported metadata fields for the Bio-Formats MIAS format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 62 of them (13%).
• Of those, Bio-Formats fully or partially converts 62 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_THEC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ

19.2. Metadata fields
Supported fields

These fields are fully supported by the Bio-Formats MIAS format reader:

- Channel: Color
- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Ellipse: ID
- Ellipse: RadiusX
- Ellipse: RadiusY
- Ellipse: Text
- Ellipse: TheT
- Ellipse: TheZ
- Ellipse: X
- Ellipse: Y
- Experiment: Description
- Experiment: ID
- Experiment: Type
- Image: AcquisitionDate
- Image: ExperimentRef
- Image: ID
- Image: InstrumentRef
- Image: Name
- Image: ROIRef
- Instrument: ID
- Mask: FillColor
- Mask: Height
- Mask: ID
- Mask: StrokeColor
- Mask: Width
- Mask: X
- Mask: Y
- Objective: ID
- Objective: Model
- Objective: NominalMagnification
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: ExposureTime
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Plate: ColumnNamingConvention
- Plate: ExternalIdentifier
- Plate: ID
• Plate: Name
• Plate: RowNamingConvention
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: WellSampleRef
• ROI: ID
• Well: Column
• Well: ID
• Well: Row
• WellSample: ID
• WellSample: ImageRef
• WellSample: Index

Total supported: 62
Total unknown or missing: 411

19.2.68 MicromanagerReader

This page lists supported metadata fields for the Bio-Formats Micro-Manager format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 36 of them (7%).
• Of those, Bio-Formats fully or partially converts 36 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Micro-Manager format reader:
• Channel: ID
• Channel: Name
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Manufacturer

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_RowNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSampleRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Column
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Row
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImageRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_Index
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#ManufacturerSpec_Manufacturer
• Detector : Model

• Detector : SerialNumber

• Detector : Type

• DetectorSettings : Binning

• DetectorSettings : Gain

• DetectorSettings : ID

• DetectorSettings : Voltage

• Image : AcquisitionDate

• Image : Description

• Image : ID

• Image : InstrumentRef

• Image : Name

• ImagingEnvironment : Temperature

• Instrument : ID

• Pixels : BinDataBigEndian

• Pixels : DimensionOrder

• Pixels : ID

• Pixels : PhysicalSizeX

• Pixels : PhysicalSizeY

• Pixels : PhysicalSizeZ

• Pixels : SizeC

• Pixels : SizeT

• Pixels : SizeX

• Pixels : SizeY

• Pixels : SizeZ

• Pixels : Type

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Voltage

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
Bio-Formats Documentation, Release 4.4.9

19.2.69 MINCReader

This page lists supported metadata fields for the Bio-Formats MINC MRI format reader.

These fields are from the OME data model[2458]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats MINC MRI format reader:
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 21
Total unknown or missing: 452

19.2.70 MRWReader

This page lists supported metadata fields for the Bio-Formats Minolta MRW format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Minolta MRW format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.71 MNGReader

This page lists supported metadata fields for the Bio-Formats Multiple Network Graphics format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Multiple Network Graphics format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID

2489 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2490 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2491 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2492 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2493 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2494 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2495 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2496 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2497 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2498 http://www.openmicroscopy.org/site/support/ome-model/
2499 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
2500 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
2501 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
2502 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
2503 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
2504 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
2505 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2506 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID

19.2. Metadata fields
19.2.72 MolecularImagingReader

This page lists supported metadata fields for the Bio-Formats Molecular Imaging format reader. These fields are from the OME data model\(^{2516}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Molecular Imaging format reader:

- Channel: ID\(^{2517}\)
- Channel: SamplesPerPixel\(^{2518}\)
- Image: AcquisitionDate\(^{2519}\)
- Image: ID\(^{2520}\)
- Image: Name\(^{2521}\)
- Pixels: BinDataBigEndian\(^{2522}\)
- Pixels: DimensionOrder\(^{2523}\)
- Pixels: ID\(^{2524}\)

2507 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2508 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2509 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2510 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2511 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2512 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2513 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2514 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2515 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2516 http://www.openmicroscopy.org/site/support/ome-model/
2517 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
2518 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
2519 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
2520 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
2521 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
2522 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
2523 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2524 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
19.2.73 MRCReader

This page lists supported metadata fields for the Bio-Formats Medical Research Council format reader.

These fields are from the OME data model\(^{2536}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Medical Research Council format reader:

- Channel : ID\(^{2537}\)
- Channel : SamplesPerPixel\(^{2538}\)
- Image : AcquisitionDate\(^{2539}\)
- Image : ID\(^{2540}\)
- Image : Name\(^{2541}\)
- Pixels : BinDataBigEndian\(^{2542}\)

\(^{2525}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{2526}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{2527}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^{2528}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^{2529}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^{2530}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^{2531}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^{2532}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^{2533}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^{2534}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^{2535}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
\(^{2536}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2537}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{2538}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2539}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{2540}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{2541}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{2542}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 20
Total unknown or missing: 453

19.2.74 NikonReader

This page lists supported metadata fields for the Bio-Formats Nikon NEF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon NEF format reader:
• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate

2543 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2544 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2545 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
2546 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
2547 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
2548 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2549 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2550 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2551 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2552 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2553 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2554 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2555 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2556 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2557 http://www.openmicroscopy.org/site/support/ome-model/
2558 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
2559 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
2560 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.75 NiftiReader

This page lists supported metadata fields for the Bio-Formats NIfTI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 22 of them (4%).
• Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats NIfTI format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
Total supported: 22

Total unknown or missing: 451

19.2.76 NikonElementsTIffReader

This page lists supported metadata fields for the Bio-Formats Nikon Elements TIFF format reader.

These fields are from the OME data model2598. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

\begin{itemize}
 \item The file format itself supports 48 of them (10%).
 \item Of those, Bio-Formats fully or partially converts 48 (100%).
\end{itemize}

\begin{itemize}
\item Image : Description2579
\item Image : ID2580
\item Image : Name2581
\item Pixels : BinDataBigEndian2582
\item Pixels : DimensionOrder2583
\item Pixels : ID2584
\item Pixels : PhysicalSizeX2585
\item Pixels : PhysicalSizeY2586
\item Pixels : PhysicalSizeZ2587
\item Pixels : SizeC2588
\item Pixels : SizeT2589
\item Pixels : SizeX2590
\item Pixels : SizeY2591
\item Pixels : SizeZ2592
\item Pixels : TimeIncrement2593
\item Pixels : Type2594
\item Plane : TheC2595
\item Plane : TheT2596
\item Plane : TheZ2597
\end{itemize}

\begin{itemize}
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\item http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
\end{itemize}
Supported fields

These fields are fully supported by the Bio-Formats Nikon Elements TIFF format reader:

- Channel: AcquisitionMode[^2599]
- Channel: EmissionWavelength[^2600]
- Channel: ExcitationWavelength[^2601]
- Channel: ID[^2602]
- Channel: Name[^2603]
- Channel: PinholeSize[^2604]
- Channel: SamplesPerPixel[^2605]
- Detector: ID[^2606]
- Detector: Model[^2607]
- Detector: Type[^2608]
- DetectorSettings: Binning[^2609]
- DetectorSettings: Gain[^2610]
- DetectorSettings: ID[^2611]
- DetectorSettings: ReadOutRate[^2612]
- DetectorSettings: Voltage[^2613]
- Image: AcquisitionDate[^2614]
- Image: ID[^2615]
- Image: InstrumentRef[^2616]
- Image: Name[^2617]
- ImagingEnvironment: Temperature[^2618]
- Instrument: ID[^2619]
- Objective: CalibratedMagnification[^2620]
- Objective: Correction[^2621]
- Objective: ID[^2622]

[^2599]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_AcquisitionMode
[^2600]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
[^2601]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
[^2602]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
[^2603]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PinholeSize
[^2604]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
[^2605]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
[^2606]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
[^2607]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
[^2608]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
[^2609]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
[^2610]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
[^2611]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ReadOutRate
[^2612]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Voltage
[^2613]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
[^2614]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
[^2615]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
[^2616]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature
[^2617]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
[^2618]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification
[^2619]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
[^2620]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• ObjectiveSettings: ID
• ObjectiveSettings: RefractiveIndex
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 48

Total unknown or missing: 425

2623 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
2624 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
2625 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
2626 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
2627 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
2628 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
2629 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2630 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2631 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
2632 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
2633 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
2634 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2635 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2636 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2637 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2638 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2639 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2640 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
2641 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionX
2642 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
2643 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
2644 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2645 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2646 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
19.2.77 NikonTiffReader

This page lists supported metadata fields for the Bio-Formats Nikon TIFF format reader.

These fields are from the OME data model\(^{2647}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 45 of them (9%).
- Of those, Bio-Formats fully or partially converts 45 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon TIFF format reader:

- Channel : EmissionWavelength\(^{2648}\)
- Channel : ExcitationWavelength\(^{2649}\)
- Channel : ID\(^{2650}\)
- Channel : PinholeSize\(^{2651}\)
- Channel : SamplesPerPixel\(^{2652}\)
- Detector : Gain\(^{2653}\)
- Detector : ID\(^{2654}\)
- Detector : Type\(^{2655}\)
- Dichroic : ID\(^{2656}\)
- Dichroic : Model\(^{2657}\)
- Filter : ID\(^{2658}\)
- Filter : Model\(^{2659}\)
- Image : AcquisitionDate\(^{2660}\)
- Image : Description\(^{2661}\)
- Image : ID\(^{2662}\)
- Image : InstrumentRef\(^{2663}\)
- Image : Name\(^{2664}\)
- Instrument : ID\(^{2665}\)

\(^{2647}\)[http://www.openmicroscopy.org/site/support/ome-model/]
\(^{2648}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength]
\(^{2649}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength]
\(^{2650}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID]
\(^{2651}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PinholeSize]
\(^{2652}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel]
\(^{2653}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Gain]
\(^{2654}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID]
\(^{2655}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type]
\(^{2656}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Dichroic_ID]
\(^{2657}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model]
\(^{2658}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filter_ID]
\(^{2659}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model]
\(^{2660}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate]
\(^{2661}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description]
\(^{2662}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID]
\(^{2663}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID]
\(^{2664}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name]
\(^{2665}\)[http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID]
• Laser : ID
• Laser : LaserMedium
• Laser : Model
• Laser : Type
• Laser : Wavelength
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : NominalMagnification
• Objective : WorkingDistance
• ObjectiveSettings : ID
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_LaserMedium
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Wavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_WorkingDistance
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT

19.2. Metadata fields
19.2.78 NativeND2Reader

This page lists supported metadata fields for the Bio-Formats Nikon ND2 format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 50 of them (10%).
- Of those, Bio-Formats fully or partially converts 50 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon ND2 format reader:

- **Channel**: AcquisitionMode
- **Channel**: Color
- **Channel**: EmissionWavelength
- **Channel**: ExcitationWavelength
- **Channel**: ID
- **Channel**: Name
- **Channel**: PinholeSize
- **Channel**: SamplesPerPixel
- **Detector**: ID
- **Detector**: Model
- **Detector**: Type
- **DetectorSettings**: Binning
- **DetectorSettings**: Gain
- **DetectorSettings**: ID
- **DetectorSettings**: ReadOutRate
- **DetectorSettings**: Voltage
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• ImagingEnvironment: Temperature
• Instrument: ID
• Objective: CalibratedMagnification
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• ObjectiveSettings: ID
• ObjectiveSettings: RefractiveIndex
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ}\]
\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type}\]
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 50
Total unknown or missing: 423

19.2.79 NRRDReader

This page lists supported metadata fields for the Bio-Formats NRRD format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats NRRD format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX

2736 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
2737 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
2739 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
2740 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
2741 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2742 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2743 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2744 http://www.openmicroscopy.org/site/support/ome-model/
2745 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
2746 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
2747 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
2748 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
2749 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
2750 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
2751 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2752 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2753 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
19.2.80 APLReader

This page lists supported metadata fields for the Bio-Formats Olympus APL format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus APL format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : Size
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 454

19.2.81 FV1000Reader

This page lists supported metadata fields for the Bio-Formats Olympus FV1000 format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 107 of them (22%).
• Of those, Bio-Formats fully or partially converts 107 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus FV1000 format reader:
• Channel : EmissionWavelength
• Channel : ExcitationWavelength
• Channel : ID
• Channel : IlluminationType

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_IlluminationType
• Channel: LightSourceSettingsID
• Channel: LightSourceSettingsWavelength
• Channel: Name
• Channel: SamplesPerPixel
• Detector: Gain
• Detector: ID
• Detector: Type
• Detector: Voltage
• DetectorSettings: ID
• Dichroic: ID
• Dichroic: Model
• Ellipse: FontSize
• Ellipse: ID
• Ellipse: RadiusX
• Ellipse: RadiusY
• Ellipse: StrokeWidth
• Ellipse: TheT
• Ellipse: TheZ
• Ellipse: Transform
• Ellipse: X
• Ellipse: Y
• Filter: ID
• Filter: Model
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_Wavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Gain
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Voltage
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Dichroic_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_RadiusX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_RadiusY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Transform
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
• Image: Name
• Image: ROIRef
• Instrument: ID
• Laser: ID
• Laser: LaserMedium
• Laser: Type
• Laser: Wavelength
• LightPath: DichroicRef
• LightPath: EmissionFilterRef
• Line: FontSize
• Line: ID
• Line: StrokeWidth
• Line: TheT
• Line: TheZ
• Line: Transform
• Line: X1
• Line: X2
• Line: Y1
• Line: Y2
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Model
• Objective: NominalMagnification
• Objective: WorkingDistance

19.2. Metadata fields

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_LaserMedium
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Wavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DichroicRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Shape_Transform
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Line_X1
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Line_X2
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Line_Y1
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Line_Y2
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/omexml.html#Objective_WorkingDistance
Bio-Formats Documentation, Release 4.4.9

- ObjectiveSettings: ID
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: TimeIncrement
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Point: FontSize
- Point: ID
- Point: StrokeWidth
- Point: TheT
- Point: TheZ
- Point: X
- Point: Y
- Polygon: FontSize
- Polygon: ID

2842: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
2843: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
2844: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2845: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2846: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
2847: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
2848: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
2849: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2850: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2851: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2852: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2853: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2854: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
2855: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2856: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2857: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2858: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2859: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Point_FontSize
2860: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Point_ID
2861: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Point_StrokeWidth
2862: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Point_TheT
2863: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Point_TheZ
2864: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Point_X
2865: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Point_Y
2866: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Shape_FontSize
2867: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Shape_ID

19.2. Metadata fields
- Polygon: Points
- Polygon: StrokeWidth
- Polygon: TheT
- Polygon: TheZ
- Polygon: Transform
- Polyline: FontSize
- Polyline: ID
- Polyline: Points
- Polyline: StrokeWidth
- Polyline: TheT
- Polyline: TheZ
- Polyline: Transform
- ROI: ID
- Rectangle: FontSize
- Rectangle: Height
- Rectangle: ID
- Rectangle: StrokeWidth
- Rectangle: TheT
- Rectangle: TheZ
- Rectangle: Transform
- Rectangle: Width
- Rectangle: X
- Rectangle: Y
- TransmittanceRange: CutIn
- TransmittanceRange: CutOut

Total supported: 107

Total unknown or missing: 366
19.2.82 FluoviewReader

This page lists supported metadata fields for the Bio-Formats Olympus Fluoview/ABD TIFF format reader. These fields are from the OME data model\(^{2893}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 47 of them (9%).
- Of those, Bio-Formats fully or partially converts 47 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus Fluoview/ABD TIFF format reader:

- Channel: ID\(^{2894}\)
- Channel: Name\(^{2895}\)
- Channel: SamplesPerPixel\(^{2896}\)
- Detector: ID\(^{2897}\)
- Detector: Manufacturer\(^{2898}\)
- Detector: Model\(^{2899}\)
- Detector: Type\(^{2900}\)
- DetectorSettings: Gain\(^{2901}\)
- DetectorSettings: ID\(^{2902}\)
- DetectorSettings: Offset\(^{2903}\)
- DetectorSettings: ReadOutRate\(^{2904}\)
- DetectorSettings: Voltage\(^{2905}\)
- Image: AcquisitionDate\(^{2906}\)
- Image: Description\(^{2907}\)
- Image: ID\(^{2908}\)
- Image: InstrumentRef\(^{2909}\)
- Image: Name\(^{2910}\)
- ImagingEnvironment: Temperature\(^{2911}\)

\(^{2893}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2894}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{2895}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
\(^{2896}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2897}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
\(^{2898}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
\(^{2899}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
\(^{2900}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
\(^{2901}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
\(^{2902}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
\(^{2903}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Offset
\(^{2904}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ReadOutRate
\(^{2905}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Voltage
\(^{2906}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{2907}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
\(^{2908}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{2909}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
\(^{2910}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{2911}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature
- **Instrument**: ID
- **Objective**: CalibratedMagnification
- **Objective**: Correction
- **Objective**: ID
- **Objective**: Immersion
- **Objective**: LensNA
- **Objective**: Model
- **ObjectiveSettings**: ID
- **Pixels**: BinDataBigEndian
- **Pixels**: DimensionOrder
- **Pixels**: ID
- **Pixels**: PhysicalSizeX
- **Pixels**: PhysicalSizeY
- **Pixels**: PhysicalSizeZ
- **Pixels**: SizeC
- **Pixels**: SizeT
- **Pixels**: SizeX
- **Pixels**: SizeY
- **Pixels**: SizeZ
- **Pixels**: TimeIncrement
- **Pixels**: Type
- **Plane**: DeltaT
- **Plane**: ExposureTime
- **Plane**: PositionX
- **Plane**: PositionY
- **Plane**: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 47
Total unknown or missing: 426

19.2.83 ScanrReader

This page lists supported metadata fields for the Bio-Formats Olympus ScanR format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 41 of them (8%).
• Of those, Bio-Formats fully or partially converts 41 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus ScanR format reader:

• Channel: ID
• Channel: Name
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeX

2938 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2939 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2940 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2941 http://www.openmicroscopy.org/site/support/ome-model/
2942 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
2943 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
2944 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
2945 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
2946 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
2947 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
2948 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
2949 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2950 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2951 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
2952 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
2953 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2954 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2955 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX

19.2. Metadata fields
• Pixels: SizeY2956
• Pixels: SizeZ2957
• Pixels: Type2958
• Plane: DeltaT2959
• Plane: ExposureTime2960
• Plane: PositionX2961
• Plane: PositionY2962
• Plane: TheC2963
• Plane: TheT2964
• Plane: TheZ2965
• Plate: ColumnNamingConvention2966
• Plate: Columns2967
• Plate: ID2968
• Plate: Name2969
• Plate: RowNamingConvention2970
• Plate: Rows2971
• PlateAcquisition: ID2972
• PlateAcquisition: MaximumFieldCount2973
• PlateAcquisition: WellSampleRef2974
• Well: Column2975
• Well: ID2976
• Well: Row2977
• WellSample: ID2978
• WellSample: ImageRef2979
• WellSample: Index2980
• WellSample: PositionX2981

2956 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2957 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2958 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2959 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
2960 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
2962 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
2963 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2964 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2965 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2966 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ColumnNamingConvention
2967 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Columns
2968 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ID
2969 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Name
2970 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_RowNamingConvention
2971 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Rows
2972 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_ID
2973 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount
2974 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSampleRef_ID
2975 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Column
2976 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_ID
2977 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Row
2978 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_ID
2979 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImageRef_ID
2980 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#WellSample_Index
2981 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_PositionX

19.2. Metadata fields
19.2.84 SISReader

This page lists supported metadata fields for the Bio-Formats Olympus SIS TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 31 of them (6%).
- Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus SIS TIFF format reader:

- Channel: ID
- Channel: Name
- Channel: SamplesPerPixel
- Detector: ID
- Detector: Model
- Detector: Type
- DetectorSettings: ID
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: Correction
- Objective: ID
- Objective: Immersion
- Objective: NominalMagnification
19.2.85 OMETiffReader

This page lists supported metadata fields for the Bio-Formats OME-TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats OME-TIFF format reader:

- Channel : ID
- Channel : SamplesPerPixel

References:

- ObjectiveSettings : ID
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 31
Total unknown or missing: 442

19.2. Metadata fields
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.86 OMEXMLReader

This page lists supported metadata fields for the Bio-Formats OME-XML format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats OME-XML format reader:
• Channel: ID
• Channel: SamplesPerPixel
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

 Supported fields

These fields are fully supported by the Bio-Formats Oxford Instruments format reader:

- Channel : ID
- Channel : SamplesPerPixel

19.2.87 OxfordInstrumentsReader

This page lists supported metadata fields for the Bio-Formats Oxford Instruments format reader.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Oxford Instruments format reader:

- Channel : ID
- Channel : SamplesPerPixel
This page lists supported metadata fields for the Bio-Formats PCX format reader. These fields are from the OME data model\[3072]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

\[3054\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\[3055\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
\[3056\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\[3057\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\[3058\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\[3059\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\[3060\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\[3061\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
\[3062\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
\[3063\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\[3064\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\[3065\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\[3066\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\[3067\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\[3068\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\[3069\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\[3070\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\[3071\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
\[3072\]http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats PCX format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.89 PDSReader

This page lists supported metadata fields for the Bio-Formats Perkin Elmer Densitometer format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Perkin Elmer Densitometer format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: PositionX
- Plane: PositionY
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 21

Total unknown or missing: 452
19.2.90 OperettaReader

This page lists supported metadata fields for the Bio-Formats PerkinElmer Operetta format reader.

These fields are from the OME data model\(^{1112}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 41 of them (8%).
- Of those, Bio-Formats fully or partially converts 41 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PerkinElmer Operetta format reader:

- Channel : ID\(^{3113}\)
- Channel : Name\(^{3114}\)
- Channel : SamplesPerPixel\(^{3115}\)
- Experimenter : ID\(^{3116}\)
- Experimenter : LastName\(^{3117}\)
- Image : AcquisitionDate\(^{3118}\)
- Image : ExperimenterRef\(^{3119}\)
- Image : ID\(^{3120}\)
- Image : Name\(^{3121}\)
- Pixels : BinDataBigEndian\(^{3122}\)
- Pixels : DimensionOrder\(^{3123}\)
- Pixels : ID\(^{3124}\)
- Pixels : PhysicalSizeX\(^{3125}\)
- Pixels : PhysicalSizeY\(^{3126}\)
- Pixels : SizeC\(^{3127}\)
- Pixels : SizeT\(^{3128}\)
- Pixels : SizeX\(^{3129}\)
- Pixels : SizeY\(^{3130}\)

\(^{1112}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{3113}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID

\(^{3114}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name

\(^{3115}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{3116}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_ID

\(^{3117}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_LastName

\(^{3118}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

\(^{3119}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

\(^{3120}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ExperimenterRef

\(^{3121}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID

\(^{3122}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name

\(^{3123}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ExperimenterRef

\(^{3124}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ExperimenterRef

\(^{3125}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX

\(^{3126}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY

\(^{3127}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC

\(^{3128}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT

\(^{3129}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX

\(^{3130}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: Columns
• Plate: Description
• Plate: ExternalIdentifier
• Plate: ID
• Plate: Name
• Plate: Rows
• PlateAcquisition: ID
• PlateAcquisition: MaximumFieldCount
• PlateAcquisition: WellSampleRef
• Well: Column
• Well: ID
• Well: Row
• WellSample: ID
• WellSample: ImageRef
• WellSample: Index

Total supported: 41
Total unknown or missing: 432
19.2.91 PerkinElmerReader

This page lists supported metadata fields for the Bio-Formats PerkinElmer format reader.

These fields are from the OME data model\(^{3154}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 28 of them (5%).
- Of those, Bio-Formats fully or partially converts 28 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PerkinElmer format reader:

- Channel: EmissionWavelength\(^{3155}\)
- Channel: ExcitationWavelength\(^{3156}\)
- Channel: ID\(^{3157}\)
- Channel: SamplesPerPixel\(^{3158}\)
- Image: AcquisitionDate\(^{3159}\)
- Image: ID\(^{3160}\)
- Image: InstrumentRef\(^{3161}\)
- Image: Name\(^{3162}\)
- Instrument: ID\(^{3163}\)
- Pixels: BinDataBigEndian\(^{3164}\)
- Pixels: DimensionOrder\(^{3165}\)
- Pixels: ID\(^{3166}\)
- Pixels: PhysicalSizeX\(^{3167}\)
- Pixels: PhysicalSizeY\(^{3168}\)
- Pixels: SizeC\(^{3169}\)
- Pixels: SizeT\(^{3170}\)
- Pixels: SizeX\(^{3171}\)
- Pixels: SizeY\(^{3172}\)

\(^{3154}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{3155}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
\(^{3156}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
\(^{3157}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{3158}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{3159}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{3160}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{3161}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
\(^{3162}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{3163}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
\(^{3164}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
\(^{3165}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^{3166}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^{3167}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{3168}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{3169}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^{3170}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^{3171}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^{3172}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
Bio-Formats Documentation, Release 4.4.9

• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 28
Total unknown or missing: 445

19.2.92 PGMReader

This page lists supported metadata fields for the Bio-Formats Portable Gray Map format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Portable Gray Map format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder

3173 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3174 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3175 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
3176 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
3178 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
3179 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
3180 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3181 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
3182 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
3183 http://www.openmicroscopy.org/site/support/ome-model/
3184 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3185 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3186 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3187 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3188 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3189 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3190 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
19.2.93 PSDReader

This page lists supported metadata fields for the Bio-Formats Adobe Photoshop format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Adobe Photoshop format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 17
Total unknown or missing: 456
Meta-Format Documentation, Release 4.4.9

- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.94 PhotoshopTiffReader

This page lists supported metadata fields for the Bio-Formats Adobe Photoshop TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Adobe Photoshop TIFF format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
This page lists supported metadata fields for the Bio-Formats PICT format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Supported fields

These fields are fully supported by the Bio-Formats PICT format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 17

Total unknown or missing: 456

19.2.95 PictReader

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

3227 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3228 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3229 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3230 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3231 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3232 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3233 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3234 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3235 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
3236 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
3237 http://www.openmicroscopy.org/Site/support/ome-model/
3238 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3239 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3240 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3241 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3242 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3243 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3244 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.96 APNGReader

This page lists supported metadata fields for the Bio-Formats Animated PNG format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Animated PNG format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder

3245 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3246 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3247 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3248 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3249 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3250 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3251 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3252 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3253 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
3254 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
3255 http://www.openmicroscopy.org/site/support/ome-model/
3256 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3257 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3258 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3259 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image,ID
3260 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3261 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3262 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.97 PrairieReader

This page lists supported metadata fields for the Bio-Formats Prairie TIFF format reader.

These fields are from the OME data model[3273]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 43 of them (9%).
• Of those, Bio-Formats fully or partially converts 43 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Prairie TIFF format reader:

• Channel: ID
• Channel: Name
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Type
• Detector: Zoom
• DetectorSettings: Gain

[3263](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID)
[3264](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC)
[3265](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT)
[3266](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX)
[3267](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY)
[3268](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ)
[3269](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type)
[3270](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC)
[3271](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT)
[3272](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ)
• DetectorSettings: ID
• DetectorSettings: Offset
• Image: AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Instrument: ID
• Laser: ID
• Laser: Power
• Microscope: Model
• Objective: Correction
• Objective: ID
• Objective: Immersion
• Objective: LensNA
• Objective: Manufacturer
• Objective: NominalMagnification
• ObjectiveSettings: ID
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Offset
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ManufacturerSpec
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY

19.2. Metadata fields
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type
• Plane : DeltaT
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 43
Total unknown or missing: 430

19.2.98 QuesantReader

This page lists supported metadata fields for the Bio-Formats Quesant AFM format reader.
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Quesant AFM format reader:
• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian

19.2. Metadata fields
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 20
Total unknown or missing: 453

19.2.99 NativeQTReader

This page lists supported metadata fields for the Bio-Formats QuickTime format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats QuickTime format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: SizeX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 17
Total unknown or missing: 456

19.2.100 RHKReader

This page lists supported metadata fields for the Bio-Formats RHK Technologies format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats RHK Technologies format reader:
• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : Description

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
• Image: ID3361
• Image: Name3362
• Pixels: BinDataBigEndian3363
• Pixels: DimensionOrder3364
• Pixels: ID3365
• Pixels: PhysicalSizeX3366
• Pixels: PhysicalSizeY3367
• Pixels: SizeC3368
• Pixels: SizeT3369
• Pixels: SizeX3370
• Pixels: SizeY3371
• Pixels: SizeZ3372
• Pixels: Type3373
• Plane: TheC3374
• Plane: TheT3375
• Plane: TheZ3376

Total supported: 20
Total unknown or missing: 453

19.2.101 SBIGReader

This page lists supported metadata fields for the Bio-Formats SBIG format reader.

These fields are from the OME data model3377. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SBIG format reader:

• Channel: ID3378

3361http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3362http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3363http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3364http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3365http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3366http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
3367http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
3368http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3369http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3370http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3371http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3372http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3373http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3374http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3375http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
3376http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
3377http://www.openmicroscopy.org/site/support/ome-model/
3378http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 20
Total unknown or missing: 453

19.2.102 SeikoReader

This page lists supported metadata fields for the Bio-Formats Seiko format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Seiko format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 20
Total unknown or missing: 453

19.2.103 PCIReader

This page lists supported metadata fields for the Bio-Formats Compix Simple-PCI format reader.

3399 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3400 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3401 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3402 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
3403 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3404 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3405 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3406 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
3407 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
3408 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3409 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3410 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3411 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3412 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3413 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3414 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3415 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
3416 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ

19.2. Metadata fields
These fields are from the OME data model[^1]. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 27 of them (5%).
- Of those, Bio-Formats fully or partially converts 27 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Compix Simple-PCI format reader:

- **Channel**: ID[^2]
- **Channel**: SamplesPerPixel[^3]
- **Detector**: ID[^4]
- **Detector**: Type[^5]
- **DetectorSettings**: Binning[^6]
- **DetectorSettings**: ID[^7]
- **Image**: AcquisitionDate[^8]
- **Image**: ID[^9]
- **Image**: InstrumentRef[^10]
- **Image**: Name[^11]
- **Instrument**: ID[^12]
- **Pixels**: BinDataBigEndian[^13]
- **Pixels**: DimensionOrder[^14]
- **Pixels**: ID[^15]
- **Pixels**: PhysicalSizeX[^16]
- **Pixels**: PhysicalSizeY[^17]
- **Pixels**: SizeC[^18]
- **Pixels**: SizeT[^19]
- **Pixels**: SizeX[^20]
- **Pixels**: SizeY[^21]

[^1]: http://www.openmicroscopy.org/site/support/ome-model/
[^2]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
[^3]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
[^4]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
[^5]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
[^6]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
[^7]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
[^8]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
[^9]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
[^13]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
[^14]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
[^15]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
[^16]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
[^17]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
[^18]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
[^19]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
[^20]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
[^21]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY

19.2. Metadata fields

[^1]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
[^2]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
[^3]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
[^4]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
[^5]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
[^6]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
[^7]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
[^8]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
[^10]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
[^12]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
[^13]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
[^14]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
[^16]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
[^17]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
[^18]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
[^19]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
[^20]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 27
Total unknown or missing: 446

19.2.104 SimplePCITiffReader

This page lists supported metadata fields for the Bio-Formats SimplePCI TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 31 of them (6%).
• Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SimplePCI TIFF format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Detector: ID
• Detector: Model
• Detector: Type
• DetectorSettings: Binning
• DetectorSettings: ID
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: ImageID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Objective: ID
• Objective: Immersion
• Objective: NominalMagnification
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 31
Total unknown or missing: 442

19.2.105 SMCameraReader

This page lists supported metadata fields for the Bio-Formats SM Camera format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.
Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SM Camera format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 17

Total unknown or missing: 456

19.2.106 SpiderReader

This page lists supported metadata fields for the Bio-Formats SPIDER format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.
Of the 473 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SPIDER format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 19

Total unknown or missing: 454
19.2.107 TargaReader

This page lists supported metadata fields for the Bio-Formats Truevision Targa format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 18 of them (3%).
- Of those, Bio-Formats fully or partially converts 18 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Truevision Targa format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

3517 http://www.openmicroscopy.org/site/support/ome-model/
3518 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3519 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3520 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3521 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
3522 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3523 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3524 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3525 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3526 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3527 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3528 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3529 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3530 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3531 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3532 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3533 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3534 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
3535 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
Total supported: 18
Total unknown or missing: 455

19.2.108 **TextReader**

This page lists supported metadata fields for the Bio-Formats Text format reader. These fields are from the [OME data model](http://www.openmicroscopy.org/site/support/ome-model/). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Text format reader:

- Channel: `ID`
- Channel: `SamplesPerPixel`
- Image: `AcquisitionDate`
- Image: `ID`
- Image: `Name`
- Pixels: `BinDataBigEndian`
- Pixels: `DimensionOrder`
- Pixels: `ID`
- Pixels: `SizeC`
- Pixels: `SizeT`
- Pixels: `SizeX`
- Pixels: `SizeY`
- Pixels: `SizeZ`
- Pixels: `Type`
- Plane: `TheC`
- Plane: `TheT`
- Plane: `TheZ`

3536 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3537 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3538 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3539 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3540 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3541 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3542 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3543 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3544 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3545 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3546 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3547 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3548 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3549 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3550 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3551 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
3552 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ

19.2. Metadata fields
Total supported: 17
Total unknown or missing: 456

19.2.109 TiffReader

This page lists supported metadata fields for the Bio-Formats Tagged Image File Format format reader.

These fields are from the OME data model\(^{3554}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Tagged Image File Format format reader:

- **Channel**: ID\(^{3555}\)
- **Channel**: SamplesPerPixel\(^{3556}\)
- **Image**: AcquisitionDate\(^{3557}\)
- **Image**: Description\(^{3558}\)
- **Image**: ID\(^{3559}\)
- **Image**: Name\(^{3560}\)
- **Pixels**: BinDataBigEndian\(^{3561}\)
- **Pixels**: DimensionOrder\(^{3562}\)
- **Pixels**: ID\(^{3563}\)
- **Pixels**: PhysicalSizeZ\(^{3564}\)
- **Pixels**: SizeC\(^{3565}\)
- **Pixels**: SizeT\(^{3566}\)
- **Pixels**: SizeX\(^{3567}\)
- **Pixels**: SizeY\(^{3568}\)
- **Pixels**: SizeZ\(^{3569}\)
- **Pixels**: TimeIncrement\(^{3570}\)
- **Pixels**: Type\(^{3571}\)

\(^{3554}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{3555}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID

\(^{3556}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{3557}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

\(^{3558}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description

\(^{3559}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID

\(^{3560}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name

\(^{3561}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian

\(^{3562}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder

\(^{3563}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID

\(^{3564}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ

\(^{3565}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC

\(^{3566}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT

\(^{3567}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX

\(^{3568}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY

\(^{3569}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ

\(^{3570}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimIncrement

\(^{3571}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type

19.2. Metadata fields
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 20
Total unknown or missing: 453

19.2.110 TillVisionReader

This page lists supported metadata fields for the Bio-Formats TillVision format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats TillVision format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Experiment: ID
• Experiment: Type
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY

19.2. Metadata fields
• Pixels: SizeZ
• Pixels: Type
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 20
Total unknown or missing: 453

19.2.111 TopometrixReader

This page lists supported metadata fields for the Bio-Formats TopoMetrix format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats TopoMetrix format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 20
Total unknown or missing: 453

19.2.112 TrestleReader

This page lists supported metadata fields for the Bio-Formats Trestle format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 24 of them (5%).
• Of those, Bio-Formats fully or partially converts 24 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Trestle format reader:
• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Image: ROIRef
• Mask: Height
• Mask: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
• Mask: Width
• Mask: X
• Mask: Y
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• ROI: ID

Total supported: 24
Total unknown or missing: 449

19.2.113 UBMReader

This page lists supported metadata fields for the Bio-Formats UBM format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats UBM format reader:
• Channel: ID

3626 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_Width
3627 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_X
3628 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_Y
3629 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3630 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3631 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3632 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3633 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3634 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3635 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3636 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3637 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3638 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3639 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
3640 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
3641 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ROI_ID
3642 http://www.openmicroscopy.org/site/support/ome-model/
3643 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

19.2.114 UnisokuReader

This page lists supported metadata fields for the Bio-Formats Unisoku STM format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Unisoku STM format reader:

• Channel: ID

3644 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel)
3645 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate)
3646 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID)
3647 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name)
3648 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian)
3649 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder)
3650 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID)
3651 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC)
3652 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT)
3653 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX)
3654 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY)
3655 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ)
3656 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type)
3657 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC)
3658 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT)
3659 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ)
3660 [Link](http://www.openmicroscopy.org/site/support/ome-model/)
3661 [Link](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID)
19.2.115 VarianFDFReader

This page lists supported metadata fields for the Bio-Formats Varian FDF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Total supported: 20

Total unknown or missing: 453
Supported fields

These fields are fully supported by the Bio-Formats Varian FDF format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: PositionX
- Plane: PositionY
- Plane: PositionZ
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 23

Total unknown or missing: 450
19.2.116 VGSAMReader

This page lists supported metadata fields for the Bio-Formats VG SAM format reader.

These fields are from the OME data model\(^1\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats VG SAM format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 17

Total unknown or missing: 456

\(^1\) http://www.openmicroscopy.org/site/support/ome-model/
\(^2\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^3\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^4\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^5\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^6\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^7\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^8\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^9\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^10\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^11\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^12\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^13\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^14\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^15\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^16\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^17\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^18\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
19.2.117 VisitechReader

This page lists supported metadata fields for the Bio-Formats Visitech XYS format reader.

These fields are from the OME data model\(^{3723}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Visitech XYS format reader:

- Channel: ID\(^{3724}\)
- Channel: SamplesPerPixel\(^{3725}\)
- Image: AcquisitionDate\(^{3726}\)
- Image: ID\(^{3727}\)
- Image: Name\(^{3728}\)
- Pixels: BinDataBigEndian\(^{3729}\)
- Pixels: DimensionOrder\(^{3730}\)
- Pixels: ID\(^{3731}\)
- Pixels: SizeC\(^{3732}\)
- Pixels: SizeT\(^{3733}\)
- Pixels: SizeX\(^{3734}\)
- Pixels: SizeY\(^{3735}\)
- Pixels: SizeZ\(^{3736}\)
- Pixels: Type\(^{3737}\)
- Plane: TheC\(^{3738}\)
- Plane: TheT\(^{3739}\)
- Plane: TheZ\(^{3740}\)

Total supported: 17

Total unknown or missing: 456

\(^{3723}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{3724}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{3725}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{3726}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{3727}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{3728}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{3729}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^{3730}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^{3731}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^{3732}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^{3733}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^{3734}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^{3735}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^{3736}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^{3737}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^{3738}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^{3739}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^{3740}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
19.2.118 VolocityClippingReader

This page lists supported metadata fields for the Bio-Formats Volocity Library Clipping format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Volocity Library Clipping format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 17

Total unknown or missing: 456

http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
19.2.119 VolocityReader

This page lists supported metadata fields for the Bio-Formats Volocity Library format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 35 of them (7%).
- Of those, Bio-Formats fully or partially converts 35 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Volocity Library format reader:

- Channel : ID
- Channel : Name
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Model
- DetectorSettings : ID
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Objective : Correction
- Objective : ID
- Objective : Immersion
- Objective : NominalMagnification
- ObjectiveSettings : ID
- Pixels : BinDataBigEndian

[3762]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
[3766]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 35
Total unknown or missing: 438

19.2.120 WATOPReader

This page lists supported metadata fields for the Bio-Formats WA Technology TOP format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).
Supported fields

These fields are fully supported by the Bio-Formats WA Technology TOP format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 20

Total unknown or missing: 453

19.2.121 BMPReader

This page lists supported metadata fields for the Bio-Formats Windows Bitmap format reader.

3796 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3797 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3798 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3799 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
3800 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3801 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3802 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3803 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3804 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3805 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
3806 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
3807 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3808 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3809 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3810 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3811 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3812 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3813 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3814 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
3815 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
These fields are from the OME data model3816. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Windows Bitmap format reader:

- Channel: ID3817
- Channel: SamplesPerPixel3818
- Image: AcquisitionDate3819
- Image: ID3820
- Image: Name3821
- Pixels: BinDataBigEndian3822
- Pixels: DimensionOrder3823
- Pixels: ID3824
- Pixels: PhysicalSizeX3825
- Pixels: PhysicalSizeY3826
- Pixels: SizeC3827
- Pixels: SizeT3828
- Pixels: SizeX3829
- Pixels: SizeY3830
- Pixels: SizeZ3831
- Pixels: Type3832
- Plane: TheC3833
- Plane: TheT3834
- Plane: TheZ3835

Total supported: 19

Total unknown or missing: 454

3816http://www.openmicroscopy.org/site/support/ome-model/
3817http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3818http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3819http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3820http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3821http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3822http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3823http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3824http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3825http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
3826http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
3827http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3828http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3829http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3830http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3831http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3832http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3833http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3834http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
3835http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ

19.2. Metadata fields
19.2.122 ZeissTIFFReader

This page lists supported metadata fields for the Bio-Formats Zeiss AxioVision TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss AxioVision TIFF format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 17

Total unknown or missing: 456

3836 http://www.openmicroscopy.org/site/support/ome-model/
3837 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3838 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3839 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3840 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3841 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3842 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3843 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3844 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3845 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3846 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3847 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3848 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3849 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3850 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3851 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3852 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
3853 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
19.2.123 **ZeissZVIReader**

This page lists supported metadata fields for the Bio-Formats Zeiss Vision Image (ZVI) format reader. These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss Vision Image (ZVI) format reader:

- Channel: ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: Name
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: **17**

Total unknown or missing: **456**

3856 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3857 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3860 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3863 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3864 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3865 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3868 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
19.2.124 ZeissCZIReader

This page lists supported metadata fields for the Bio-Formats Zeiss CZI format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 149 of them (31%).
- Of those, Bio-Formats fully or partially converts 149 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss CZI format reader:

- Arc : LotNumber
- Arc : Manufacturer
- Arc : Model
- Arc : Power
- Arc : SerialNumber
- Channel : Color
- Channel : EmissionWavelength
- Channel : ExcitationWavelength
- Channel : ID
- Channel : Name
- Channel : PinholeSize
- Channel : SamplesPerPixel
- Detector : AmplificationGain
- Detector : Gain
- Detector : ID
- Detector : LotNumber
- Detector : Manufacturer
- Detector : Model

[3884] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
• Detector: Offset
• Detector: SerialNumber
• Detector: Type
• Detector: Zoom
• DetectorSettings: Binning
• DetectorSettings: ID
• Dichroic: ID
• Dichroic: LotNumber
• Dichroic: Manufacturer
• Dichroic: Model
• Dichroic: SerialNumber
• Ellipse: ID
• Ellipse: RadiusX
• Ellipse: RadiusY
• Ellipse: Text
• Ellipse: X
• Ellipse: Y
• Experimenter: Email
• Experimenter: FirstName
• Experimenter: ID
• Experimenter: Institution
• Experimenter: LastName
• Experimenter: MiddleName
• Experimenter: UserName
• Filament: LotNumber
• Filament: Manufacturer
• Filament: Model
• Filament: Power
• Filament: SerialNumber
• Filter: FilterWheel
• Filter: ID
• Filter: LotNumber
• Filter: Manufacturer
• Filter: Model
• Filter: SerialNumber
• Filter: Type
• FilterSet: DichroicRef
• FilterSet: EmissionFilterRef
• FilterSet: ExcitationFilterRef
• FilterSet: ID
• FilterSet: LotNumber
• FilterSet: Manufacturer
• FilterSet: Model
• FilterSet: SerialNumber
• Image: AcquisitionDate
• Image: ExperimenterRef
• Image: ID
• Image: Name
• Image: ROIRef
• ImagingEnvironment: AirPressure
• ImagingEnvironment: CO2Percent
• ImagingEnvironment: Humidity
• **ImagingEnvironment**: Temperature

• **Instrument**: ID

• **Laser**: LotNumber

• **Laser**: Manufacturer

• **Laser**: Model

• **Laser**: Power

• **Laser**: SerialNumber

• **LightEmittingDiode**: LotNumber

• **LightEmittingDiode**: Manufacturer

• **LightEmittingDiode**: Model

• **LightEmittingDiode**: Power

• **LightEmittingDiode**: SerialNumber

• **Line**: ID

• **Line**: Text

• **Line**: X1

• **Line**: X2

• **Line**: Y1

• **Line**: Y2

• **Microscope**: LotNumber

• **Microscope**: Manufacturer

• **Microscope**: Model

• **Microscope**: SerialNumber

• **Microscope**: Type

• **Objective**: CalibratedMagnification

• **Objective**: Correction

• **Objective**: ID

19.2. Metadata fields
• Objective: Immersion
• Objective: Iris
• Objective: LensNA
• Objective: LotNumber
• Objective: Manufacturer
• Objective: Model
• Objective: NominalMagnification
• Objective: SerialNumber
• Objective: WorkingDistance
• ObjectiveSettings: CorrectionCollar
• ObjectiveSettings: ID
• ObjectiveSettings: Medium
• ObjectiveSettings: RefractiveIndex
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: PhysicalSizeZ
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Iris
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_LotNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_WorkingDistance
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_CorrectionCollar
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_Medium
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_BinDataBigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
• Plane: ExposureTime
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Polygon: ID
• Polygon: Points
• Polygon: Text
• Polyline: ID
• Polyline: Points
• Polyline: Text
• ROI: Description
• ROI: ID
• ROI: Name
• Rectangle: Height
• Rectangle: ID
• Rectangle: Text
• Rectangle: Width
• Rectangle: X
• Rectangle: Y
• TransmittanceRange: CutIn
• TransmittanceRange: CutInTolerance
• TransmittanceRange: CutOut
• TransmittanceRange: CutOutTolerance

19.2. Metadata fields
- TransmittanceRange : Transmittance

Total supported: 149
Total unknown or missing: 324

19.2.125 ZeissLSMReader

This page lists supported metadata fields for the Bio-Formats Zeiss Laser-Scanning Microscopy format reader. These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 99 of them (20%).
- Of those, Bio-Formats fully or partially converts 99 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss Laser-Scanning Microscopy format reader:

- Channel : Color
- Channel : ID
- Channel : Name
- Channel : PinholeSize
- Channel : SamplesPerPixel
- Detector : AmplificationGain
- Detector : Gain
- Detector : ID
- Detector : Type
- Detector : Zoom
- DetectorSettings : Binning
- DetectorSettings : ID
- Dichroic : ID
- Dichroic : Model
- Ellipse : FontSize
- Ellipse : ID

19.2. Metadata fields

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_Transmittance}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Color}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PinholeSize}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_AmplificationGain}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Gain}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Zoom}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Dichroic_ID}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Dichroic_Model}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize}\]

\[\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID}\]
• Ellipse: RadiusX
• Ellipse: RadiusY
• Ellipse: StrokeWidth
• Ellipse: Transform
• Ellipse: X
• Ellipse: Y
• Experimenter: ID
• Experimenter: UserName
• Filter: ID
• Filter: Model
• Filter: Type
• Image: AcquisitionDate
• Image: Description
• Image: ID
• Image: InstrumentRef
• Instrument: ID
• Label: FontSize
• Label: ID
• Label: StrokeWidth
• Label: Text
• Label: X
• Label: Y
• Laser: ID
• Laser: LaserMedium

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_RadiusX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_RadiusY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_Transform
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Label_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Label_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#LightSource_ID

19.2. Metadata fields
Bio-Formats Documentation, Release 4.4.9

• Laser : Model4065
• Laser : Type4066
• Laser : Wavelength4067
• LightPath : DichroicRef4068
• LightPath : EmissionFilterRef4069
• Line : FontSize4070
• Line : ID4071
• Line : StrokeWidth4072
• Line : X14073
• Line : X24074
• Line : Y14075
• Line : Y24076
• Objective : Correction4077
• Objective : ID4078
• Objective : Immersion4079
• Objective : Iris4080
• Objective : LensNA4081
• Objective : NominalMagnification4082
• ObjectiveSettings : ID4083
• Pixels : BinDataBigEndian4084
• Pixels : DimensionOrder4085
• Pixels : ID4086
• Pixels : PhysicalSizeX4087
• Pixels : PhysicalSizeY4088
• Pixels : PhysicalSizeZ4089
• Pixels : SizeC4090

4065http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
4066http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Type
4067http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Wavelength
4068http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DichroicRef_ID
4069http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
4070http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
4071http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
4072http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
4073http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_X1
4074http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_X2
4075http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_Y1
4076http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_Y2
4077http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
4078http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
4079http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
4080http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Iris
4081http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
4082http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
4083http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
4084http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
4085http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
4086http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
4087http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
4088http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
4089http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
4090http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC

19.2. Metadata fields 392
19.2. Metadata fields

- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: TimeIncrement
- Pixels: Type
- Plane: DeltaT
- Plane: PositionX
- Plane: PositionY
- Plane: PositionZ
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Polygon: FontSize
- Polygon: ID
- Polygon: Points
- Polygon: StrokeWidth
- Polyline: FontSize
- Polyline: ID
- Polyline: Points
- Polyline: StrokeWidth
- ROI: ID
- Rectangle: FontSize
- Rectangle: Height
- Rectangle: ID
- Rectangle: StrokeWidth

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Polygon_Points
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Polyline_Points
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Polyline_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ROI_ Height
• Rectangle: Width
• Rectangle: X
• Rectangle: Y
• TransmittanceRange: CutIn
• TransmittanceRange: CutOut

Total supported: 99

Total unknown or missing: 374

The version 4 releases use the June 2012 release of the OME-Model
Symbols

.lsc, 109
.2, 166
.2fl, 180
.3, 166
.4, 166
.acff, 185
.afm, 170
.aim, 100
.alt3d, 101
.am, 102
.amiramesh, 102
.apl, 157
.arf, 107
.avi, 106
.bip, 141
.bmp, 126, 186
.c01, 113
.cfg, 170
.cr2, 113
.crw, 113
.exd, 174
.ezi, 189
.dat, 137, 160, 182
.dcm, 115
.dicom, 115
.dm2, 121
.dm3, 120
.dti, 183
.dv, 114
.eps, 117
.epsi, 117
.exp, 107
.fdf, 182
.fft, 127
.ftr, 180
.fits, 120
.flx, 118
.fli, 142
.frm, 134
.gel, 102
.gif, 122
.grey, 102
.hdr, 103, 154, 182
.hed, 129
.his, 123
.htd, 105
.html, 183
.hx, 102
.ics, 126
.ids, 126
.imag, 103, 112, 119, 129, 137, 154
.ims, 110
.inr, 134
.ipl, 135
.ipm, 136
.ipw, 128
.jp2, 138
.jpeg, 126, 137, 180
.jpik, 139
.jpix, 140
.l2d, 145
.labels, 102
.lei, 142
.lif, 143
.liff, 131
.lim, 146
.lsm, 189
.mdb, 189
.me, 118
.mnc, 149
.mng, 151
.mod, 130
.mov, 171
.mrc, 152
.mrw, 150
.mtb, 157
.mvd2, 184
.naf, 123
.nd, 147
.nd2, 156
.ndpi, 124
.nef, 153
.nhdr, 157
.nrrd, 157
.obsep, 157
.oib, 158
.of, 158
.ome, 162
.ome.tif, 161
.par, 137
.pcx, 164
.pds, 164
.pg, 166
.pic, 109
.pict, 168
A
Adobe Photoshop PSD, 167
AIM, 100
Alicona 3D, 101
Amersham Biosciences Gel, 102
Amira Mesh, 102
Analyze 7.5, 103
Andor Bio-Imaging Division (ABD) TIFF, 100
Animated PNG, 104
Aperio SVS TIFF, 104
Applied Precision CellWorX, 105
AVI (Audio Video Interleave), 106
Axon Raw Format, 107

B
BD Pathway, 107
Becker & Hickl SPCLmage, 108
bfconvert, 43
Bio-Rad Gel, 109
Bio-Rad PIC, 109
Bitplane Imaris, 110
Bruker MRI, 111
Burleigh, 112
C
Canon DNG, 113
Cellomics, 113
cellSens VSI, 114
CLASSPATH, 58
D
DeltaVision, 114
DICOM, 115
E
ECAT7, 116
evironment variable
CLASSPATH, 58
EPS (Encapsulated PostScript), 117
Evotec/PerkinElmer Opera Flex, 118
Export, 99
F
FEI, 119
FEI TIFF, 119
FITS (Flexible Image Transport System), 120
formatlist, 43
G
Gatan Digital Micrograph, 120
Gatan Digital Micrograph 2, 121
GIF (Graphics Interchange Format), 122
H
Hamamatsu Aquacosmos NAF, 123
Hamamatsu HIS, 123
Hamamatsu ndpi, 124
Hamamatsu VMS, 125
Hitachi S-4800, 126
I
ICS (Image Cytometry Standard), 126
ijview, 43
Imacon, 127
ImagePro Sequence, 128
ImagePro Workspace, 128
IMAGIC, 129
IMOD, 130
Improvision Openlab LIFF, 131
Improvision Openlab Raw, 132
Improvision TIFF, 132
InCell 1000, 133
InCell 3000, 134
INR, 134
IPLab, 135
IPLab-Mac, 136
J
JEOL, 137
Bio-Formats Documentation, Release 4.4.9

JPEG, 137
JPEG 2000, 138
JPK, 139
JPX, 140

K
Khoros VIFF (Visualization Image File Format) Bitmap, 140
Kodak BIP, 141

L
Lambert Instruments FLIM, 142
Leica LAS AF LIF (Leica Image File Format), 143
Leica LCS LEL, 142
Leica SCN, 144
LEO, 145
Li-Cor L2D, 145
LIM (Laboratory Imaging/Nikon), 146

M
Metadata, 98
MetaMorph 7.5 TIFF, 147
MetaMorph Stack (STK), 147
MIAS (Maia Scientific), 148
Micro-Manager, 149
MINC MRI, 149
Minolta MRW, 150
MNG (Multiple-image Network Graphics), 151
Molecular Imaging, 152
MRC (Medical Research Council), 152

N
NEF (Nikon Electronic Format), 153
NIITI, 154
Nikon Elements TIFF, 155
Nikon EZ-C1 TIFF, 155
Nikon NIS-Elements ND2, 156
NRRD (Nearly Raw Raster Data), 157

O
Olympus CellR/APL, 157
Olympus FluoView FV1000, 158
Olympus FluoView TIFF, 159
Olympus ScanR, 160
Olympus SIS TIFF, 161
OME-TIFF, 161
OME-XML, 162
omeufl, 43
Openness, 99
Oxford Instruments, 163

P
PCX (PC Paintbrush), 164
PerkinElmer Densitometer, 164
PerkinElmer Operetta, 165
PerkinElmer UltraView, 166
PGM (Portable Gray Map), 166
Photoshop TIFF, 168
PICT (Macintosh Picture), 168
Pixels, 98
PNG (Portable Network Graphics), 169
Prairie Technologies TIFF, 170
Presence, 99

Q
Quesant, 170
QuickTime Movie, 171

R
Ratings legend and definitions, 98
RHK, 172

S
SBIG, 173
SCIFIO, 99
Seiko, 174
showinf, 43
SimplePCI & HCImage, 174
SimplePCI & HCImage TIFF, 175
SM Camera, 176
SPIDER, 176

T
Targa, 177
Text, 178
TIFF (Tagged Image File Format), 178
tiffcomment, 43
TillPhotonics TillVision, 179
Topometrix, 180
Trestle, 180

U
UBM, 181
Unisoku, 182
Utility, 99

V
Varian FDF, 182
VG SAM, 183
VisiTech XYS, 183
Volocity, 184
Volocity Library Clipping, 185

W
WA-TOP, 186
Windows Bitmap, 186

X
xmlindent, 43
xmlvalid, 43

Z
Zeiss AxioVision TIFF, 187
Zeiss AxioVision ZVI (Zeiss Vision Image), 188
Zeiss CZI, 189
Zeiss LSM (Laser Scanning Microscope) 510/710, 189