Contents

I About Bio-Formats

1 **Bio-Formats metadata processing**
2 **Help**
 2.1 Reporting a bug
 2.2 Troubleshooting
3 **Bio-Formats versions**
 3.1 Version history

II User Information

4 **Using Bio-Formats with ImageJ and Fiji**
 4.1 ImageJ
 4.2 Fiji
 4.3 Bio-Formats features in ImageJ and Fiji
 4.4 Installing Bio-Formats in ImageJ
 4.5 Using Bio-Formats to load images into ImageJ
 4.6 Managing memory in ImageJ/Fiji using Bio-Formats
 4.7 Upgrading the Bio-Formats importer for ImageJ to the latest trunk build

5 **OMERO**

6 **Image server applications**
 6.1 BISQUE
 6.2 OME Server

7 **Libraries and scripting applications**
 7.1 Command line tools
 7.2 FARSIGHT
 7.3 i3dcore
 7.4 ImgLib
 7.5 ITK
 7.6 Qu for MATLAB
 7.7 Subimager

8 **Numerical data processing applications**
 8.1 IDL
 8.2 KNIME
 8.3 MATLAB
9 Visualization and analysis applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Bitplane Imaris</td>
</tr>
<tr>
<td>9.2</td>
<td>CellProfiler</td>
</tr>
<tr>
<td>9.3</td>
<td>Comstat2</td>
</tr>
<tr>
<td>9.4</td>
<td>Endrov</td>
</tr>
<tr>
<td>9.5</td>
<td>FocalPoint</td>
</tr>
<tr>
<td>9.6</td>
<td>Graphic Converter</td>
</tr>
<tr>
<td>9.7</td>
<td>Icy</td>
</tr>
<tr>
<td>9.8</td>
<td>imagemagick</td>
</tr>
<tr>
<td>9.9</td>
<td>Iqmm</td>
</tr>
<tr>
<td>9.10</td>
<td>Magnification</td>
</tr>
<tr>
<td>9.11</td>
<td>MIPAV</td>
</tr>
<tr>
<td>9.12</td>
<td>Vaa3D</td>
</tr>
<tr>
<td>9.13</td>
<td>VisBio</td>
</tr>
<tr>
<td>9.14</td>
<td>XuvTools</td>
</tr>
</tbody>
</table>

III Developer Documentation

<table>
<thead>
<tr>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Using Bio-Formats</td>
</tr>
<tr>
<td>10.1</td>
<td>An in-depth guide to using Bio-Formats</td>
</tr>
<tr>
<td>10.2</td>
<td>Generating test images</td>
</tr>
<tr>
<td>11</td>
<td>Bio-Formats as a Java library</td>
</tr>
<tr>
<td>11.1</td>
<td>API documentation</td>
</tr>
<tr>
<td>11.2</td>
<td>Examples</td>
</tr>
<tr>
<td>12</td>
<td>Interfacing from non-Java code</td>
</tr>
<tr>
<td>12.1</td>
<td>Solutions for interfacing from non-Java code</td>
</tr>
<tr>
<td>12.2</td>
<td>Bio-Formats C++ bindings</td>
</tr>
<tr>
<td>12.3</td>
<td>Build instructions for C++ bindings</td>
</tr>
<tr>
<td>12.4</td>
<td>Building C++ bindings in Windows</td>
</tr>
<tr>
<td>12.5</td>
<td>Building C++ bindings in Mac OS X</td>
</tr>
<tr>
<td>12.6</td>
<td>Building C++ bindings in Linux</td>
</tr>
<tr>
<td>13</td>
<td>SCIFIO</td>
</tr>
<tr>
<td>13.1</td>
<td>SCientific Imaging Formats Input and Output</td>
</tr>
<tr>
<td>14</td>
<td>Writing new Bio-Formats file format readers</td>
</tr>
<tr>
<td>14.1</td>
<td>Bio-Formats file format reader guide</td>
</tr>
<tr>
<td>15</td>
<td>Contributing to Bio-Formats</td>
</tr>
<tr>
<td>15.1</td>
<td>Developing Bio-Formats</td>
</tr>
<tr>
<td>15.2</td>
<td>Testing individual commits (internal developers)</td>
</tr>
<tr>
<td>15.3</td>
<td>Public test data</td>
</tr>
<tr>
<td>15.4</td>
<td>Bio-Formats service and dependency infrastructure</td>
</tr>
</tbody>
</table>

IV Formats

<table>
<thead>
<tr>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Dataset Structure Table</td>
</tr>
<tr>
<td>16.1</td>
<td>Flex Support</td>
</tr>
</tbody>
</table>
17 Supported Formats
17.1 3i SlideBook ... 112
17.2 Andor Bio-Imaging Division (ABD) TIFF 113
17.3 AIM .. 113
17.4 Alicona 3D .. 114
17.5 Amersham Biosciences Gel 115
17.6 Amira Mesh .. 116
17.7 Analyze 7.5 ... 117
17.8 Animated PNG ... 117
17.9 Aperio SVS TIFF ... 118
17.10 Applied Precision CellWorX 119
17.11 AVI (Audio Video Interleave) 120
17.12 Axon Raw Format .. 121
17.13 BD Pathway ... 122
17.14 Becker & Hickl SPCImage 122
17.15 Bio-Rad Gel .. 123
17.16 Bio-Rad PIC ... 124
17.17 Bitplane Imaris ... 125
17.18 Bruker MRI ... 126
17.19 Burleigh ... 127
17.20 Canon DNG ... 128
17.21 Cellomics .. 128
17.22 cellSens VSI .. 129
17.23 DeltaVision .. 130
17.24 DICOM .. 131
17.25 ECAT7 ... 132
17.26 EPS (Encapsulated PostScript) 133
17.27 Evotec/PerkinElmer Opera Flex 134
17.28 FEI .. 134
17.29 FEI TIFF .. 135
17.30 FITS (Flexible Image Transport System) 136
17.31 Gatan Digital Micrograph 137
17.32 Gatan Digital Micrograph 2 137
17.33 GIF (Graphics Interchange Format) 138
17.34 Hamamatsu Aquacosmos NAF 139
17.35 Hamamatsu HIS .. 140
17.36 Hamamatsu ndpi ... 141
17.37 Hamamatsu VMS ... 141
17.38 Hitachi S-4800 ... 142
17.39 ICS (Image Cytometry Standard) 143
17.40 Imacon .. 144
17.41 ImagePro Sequence 145
17.42 ImagePro Workspace 145
17.43 IMAGIC .. 146
17.44 IMOD .. 147
17.45 Improvision Openlab LIFF 148
17.46 Improvision Openlab Raw 149
17.47 Improvision TIFF ... 150
17.48 InCell 1000 .. 151
17.49 InCell 3000 .. 151
17.50 INR .. 152
17.51 IPLab ... 153
17.52 IPLab-Mac .. 154
17.53 JEOL .. 155
<table>
<thead>
<tr>
<th>Page</th>
<th>File Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.54</td>
<td>JPEG</td>
</tr>
<tr>
<td>17.55</td>
<td>JPEG 2000</td>
</tr>
<tr>
<td>17.56</td>
<td>JPK</td>
</tr>
<tr>
<td>17.57</td>
<td>JPX</td>
</tr>
<tr>
<td>17.58</td>
<td>Khoros VIFF (Visualization Image File Format) Bitmap</td>
</tr>
<tr>
<td>17.59</td>
<td>Kodak BIP</td>
</tr>
<tr>
<td>17.60</td>
<td>Lambert Instruments FLIM</td>
</tr>
<tr>
<td>17.61</td>
<td>Leica LCS LEI</td>
</tr>
<tr>
<td>17.62</td>
<td>Leica LAS AF LIF (Leica Image File Format)</td>
</tr>
<tr>
<td>17.63</td>
<td>Leica SCN</td>
</tr>
<tr>
<td>17.64</td>
<td>LEO</td>
</tr>
<tr>
<td>17.65</td>
<td>Li-Cor L2D</td>
</tr>
<tr>
<td>17.66</td>
<td>LIM (Laboratory Imaging/Nikon)</td>
</tr>
<tr>
<td>17.67</td>
<td>MetaMorph 7.5 TIFF</td>
</tr>
<tr>
<td>17.68</td>
<td>MetaMorph Stack (STK)</td>
</tr>
<tr>
<td>17.69</td>
<td>MIAS (Maia Scientific)</td>
</tr>
<tr>
<td>17.70</td>
<td>Micro-Manager</td>
</tr>
<tr>
<td>17.71</td>
<td>MINC MRI</td>
</tr>
<tr>
<td>17.72</td>
<td>Minolta MRW</td>
</tr>
<tr>
<td>17.73</td>
<td>MNG (Multiple-image Network Graphics)</td>
</tr>
<tr>
<td>17.74</td>
<td>Molecular Imaging</td>
</tr>
<tr>
<td>17.75</td>
<td>MRC (Medical Research Council)</td>
</tr>
<tr>
<td>17.76</td>
<td>NEF (Nikon Electronic Format)</td>
</tr>
<tr>
<td>17.77</td>
<td>NifTI</td>
</tr>
<tr>
<td>17.78</td>
<td>Nikon Elements TIFF</td>
</tr>
<tr>
<td>17.79</td>
<td>Nikon EZ-C1 TIFF</td>
</tr>
<tr>
<td>17.80</td>
<td>Nikon NIS-Elements ND2</td>
</tr>
<tr>
<td>17.81</td>
<td>NNRD (Nearly Raw Raster Data)</td>
</tr>
<tr>
<td>17.82</td>
<td>Olympus CellR/APL</td>
</tr>
<tr>
<td>17.83</td>
<td>Olympus FluoView FV1000</td>
</tr>
<tr>
<td>17.84</td>
<td>Olympus FluoView TIFF</td>
</tr>
<tr>
<td>17.85</td>
<td>Olympus ScanR</td>
</tr>
<tr>
<td>17.86</td>
<td>Olympus SIS TIFF</td>
</tr>
<tr>
<td>17.87</td>
<td>OME-TIFF</td>
</tr>
<tr>
<td>17.88</td>
<td>OME-XML</td>
</tr>
<tr>
<td>17.89</td>
<td>Oxford Instruments</td>
</tr>
<tr>
<td>17.90</td>
<td>PCX (PC Paintbrush)</td>
</tr>
<tr>
<td>17.91</td>
<td>Perkin Elmer Densitometer</td>
</tr>
<tr>
<td>17.92</td>
<td>PerkinElmer Operetta</td>
</tr>
<tr>
<td>17.93</td>
<td>PerkinElmer UltraView</td>
</tr>
<tr>
<td>17.94</td>
<td>PGM (Portable Gray Map)</td>
</tr>
<tr>
<td>17.95</td>
<td>Adobe Photoshop PSD</td>
</tr>
<tr>
<td>17.96</td>
<td>Photoshop TIFF</td>
</tr>
<tr>
<td>17.97</td>
<td>PICT (Macintosh Picture)</td>
</tr>
<tr>
<td>17.98</td>
<td>PNG (Portable Network Graphics)</td>
</tr>
<tr>
<td>17.99</td>
<td>Prairie Technologies TIFF</td>
</tr>
<tr>
<td>17.100</td>
<td>Quesant</td>
</tr>
<tr>
<td>17.101</td>
<td>QuickTime Movie</td>
</tr>
<tr>
<td>17.102</td>
<td>RHK</td>
</tr>
<tr>
<td>17.103</td>
<td>SBIG</td>
</tr>
<tr>
<td>17.104</td>
<td>Seiko</td>
</tr>
<tr>
<td>17.105</td>
<td>SimplePCI & HCImage</td>
</tr>
<tr>
<td>17.106</td>
<td>SimplePCI & HCImage TIFF</td>
</tr>
<tr>
<td>17.107</td>
<td>SM Camera</td>
</tr>
</tbody>
</table>
The following documentation is split into four parts. *About Bio-Formats* explains the goal of the software, discusses how it processes metadata, and provides other useful information such as version history and how to report bugs. *User Information* focusses on how to use Bio-Formats as a plugin for ImageJ and Fiji, and also gives details of other software packages which can use Bio-Formats to read and write microscopy formats. *Developer Documentation* covers more in-depth information on using Bio-Formats as a Java library and how to interface from non-Java codes. Finally, *Formats* is a guide to all the file formats currently supported by Bio-Formats.
Part I

About Bio-Formats
Bio-Formats is a standalone Java library for reading and writing life sciences image file formats. It is capable of parsing both pixels and metadata for a large number of formats, as well as writing to several formats.

The primary goal of Bio-Formats is to facilitate the exchange of microscopy data between different software packages and organizations. It achieves this by converting proprietary microscopy data into an open standard called the OME data model\(^1\), particularly into the OME-TIFF\(^2\) file format.

We believe the standardization of microscopy metadata to a common structure is of vital importance to the community. A brief article on the benefits of standardization\(^3\) from thinkstandards.net\(^4\) provides an excellent summary.

\(^1\)http://genomebiology.com/2005/6/5/R47
\(^2\)http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
\(^3\)http://www.thinkstandards.net/benefits.html
\(^4\)http://www.thinkstandards.net/
BIO-FORMATS METADATA PROCESSING

Pixels in microscopy are almost always very straightforward, stored on evenly spaced rectangular grids. It is the metadata (details about the acquisition, experiment, user, and other information) that can be complex. Using the OME data model enables applications to support a single metadata format, rather than the multitude of proprietary formats available today.

Every file format has a distinct set of metadata, stored differently. Bio-Formats processes and converts each format’s metadata structures into a standard form called the **OME data model**\(^1\), according to the **OME-XML**\(^2\) specification. We have defined an open exchange format called **OME-TIFF**\(^3\) that stores its metadata as OME-XML. Any software package that supports OME-TIFF is also compatible with the dozens of formats listed on the Bio-Formats page, because Bio-Formats can convert your files to OME-TIFF format.

To facilitate support of OME-XML, we have created a library in Java\(^4\) for reading and writing OME-XML\(^5\) metadata. There are three types of metadata in Bio-Formats, which we call core metadata, original metadata, and OME metadata.

1. **Core metadata** only includes things necessary to understand the basic structure of the pixels: image resolution; number of focal planes, time points, channels, and other dimensional axes; byte order; dimension order; color arrangement (RGB, indexed color or separate channels); and thumbnail resolution.

2. **Original metadata** is information specific to a particular file format. These fields are key/value pairs in the original format, with no guarantee of cross-format naming consistency or compatibility. Nomenclature often differs between formats, as each vendor is free to use their own terminology.

3. **OME metadata** is information from #1 and #2 converted by Bio-Formats into the OME data model. **Performing this conversion is the primary purpose of Bio-Formats.** Bio-Formats uses its ability to convert proprietary metadata into OME-XML as part of its integration with the OME and OMERO servers—essentially, they are able to populate their databases in a structured way because Bio-Formats sorts the metadata into the proper places. This conversion is nowhere near complete or bug free, but we are constantly working to improve it. We would greatly appreciate any and all input from users concerning missing or improperly converted metadata fields.

\(^1\)http://genomebiology.com/2005/6/5/R47
\(^2\)http://www.openmicroscopy.org/site/support/ome-model/ome-xml
\(^3\)http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
\(^4\)http://www.openmicroscopy.org/site/support/ome-model/ome-xml/java-library.html
\(^5\)http://www.openmicroscopy.org/site/support/ome-model/ome-xml
For help, see the Bio-Formats\(^1\), File Formats\(^2\) and OME-XML and OME-TIFF\(^3\) sections of the OME FAQ\(^4\) for answers to some common questions. Please contact us\(^5\) if you have any questions or problems with Bio-Formats. There is a [guide for reporting bugs here]\(^6\).

For advanced users and developers, further information is available on the troubleshooting page.

2.1 Reporting a bug

2.1.1 Before filing a bug report

If you think you have found a bug in Bio-Formats, the first thing to do is update your version of Bio-Formats to the latest trunk version. It is possible that the problem has already been addressed. For both Fiji and ImageJ users, select Update LOCI Plugins under the LOCI menu. Select Trunk Build.

You can also download the newest version of Bio-Formats\(^6\). If you are not sure which version you need, select the Trunk Build under LOCI Tools complete bundle.

2.1.2 Sending a bug report

If you can still reproduce the bug after updating to the newest version of Bio-Formats, please send us a bug report. To ensure that any inquiries you make are resolved promptly, please include the following information:

- **Exact error message.** Copy and paste any error messages into the text of your email. Alternatively, attach a screenshot of the relevant windows.

- **Version information.** Indicate which release of Bio-Formats, which operating system, and which version of Java you are using.

- **Non-working data.** If possible, please send a non-working file. This helps us ensure that the problem is fixed for next release and will not reappear in later releases. We can provide you with an FTP server for uploading your file(s) if needed. Note that any data provided is used for internal testing only; we do not make images publicly available unless given explicit permission to do so.

- **Metadata and screenshots.** If possible, include any additional information about your data. We are especially interested in the expected dimensions (width, height, number of channels, Z slices, and timepoints). Screenshots of the image being successfully opened in other software are also useful.

\(^1\)[http://www.openmicroscopy.org/site/support/faq/bio-formats]
\(^2\)[http://www.openmicroscopy.org/site/support/faq/file-formats]
\(^3\)[http://www.openmicroscopy.org/site/support/faq/ome-xml-and-ome-tiff]
\(^4\)[http://www.openmicroscopy.org/site/support/faq]
\(^5\)[http://www.openmicroscopy.org/site/community/mailing-lists]
\(^6\)[http://www.openmicroscopy.org/site/products/bio-formats/downloads/]
- **Format details.** If you are requesting support for a new format, we ask that you send as much data as you have regarding this format (sample files, specifications, vendor/manufacturer information, etc.). This helps us to better support the format and ensures future versions of the format are also supported.

Once you have gathered all the relevant information, send it as an e-mail to the OME Users mailing list.7

Please be patient - it may be a few days until you receive a response, but we reply to every email inquiry we receive.

2.2 Troubleshooting

This page is aimed at anyone who is responsible for supporting Bio-Formats, but may also be useful for advanced users looking to troubleshoot their own problems. Eventually, it might be best to move some of this to the FAQ or other documentation.

2.2.1 General tips

- Make sure to read the FAQ8, particularly the “File Formats”, “Bio-Formats”, and “OME-XML & OME-TIFF” sections

- If this page doesn’t help, it is worth quickly checking the following places where questions are commonly asked and/or bugs are reported:
 - OME Trac9
 - Fiji Bugzilla (for ImageJ/Fiji issues)10
 - ome-devel mailing list11 (searchable using google with ’site:lists.openmicroscopy.org.uk’)
 - ome-users mailing list12 (searchable using google with ’site:lists.openmicroscopy.org.uk’)
 - ImageJ mailing list (for ImageJ/Fiji issues)13

- Make sure to ask for a _specific_ error message or description of the unexpected behavior, if one is not provided (“it does not work” is obviously not adequate).

- “My (12, 14, 16)-bit images look all black when I open them” is a common issue. In ImageJ/Fiji, this is almost always fixable by checking the “Autoscale” option; with the command line tools, the “-autoscale -fast” options should work. The problem is typically that the pixel values are very, very small relative to the maximum possible pixel value (4095, 16383, and 65535, respectively), so when displayed the pixels are effectively black.

- If the file is very, very small (4096 bytes) and any exception is generated when reading the file, then make sure it is not a Mac OS X resource fork14. The ‘file’ command should tell you:

```
$ file /path/to/suspicious-file
suspicious-file: AppleDouble encoded Macintosh file
```

8 http://www.openmicroscopy.org/site/support/faq
9 http://trac.openmicroscopy.org.uk/ome
10 http://fiji.sc/cgi-bin/bugzilla/index.cgi
2.2.2 Tips for ImageJ/Fiji

- The Bio-Formats version being used can be found by selecting “Help > About Plugins > LOCI Plugins”.
- “How do I make the options window go away?” is a common question. There are a few ways to do this:
 - To disable the options window only for files in a specific format, select “Plugins > LOCI > LOCI Plugins Configuration”, then pick the format from the list and make sure the “Windowless” option is checked.
 - To avoid the options window entirely, use the “Plugins > LOCI > Bio-Formats Windowless Importer” menu item to import files.
 - Open files by calling the Bio-Formats importer plugin from a macro.
- A not uncommon cause of problems is that the user has multiple copies of loci_tools.jar in their ImageJ plugins folder, or has a copy of loci_tools.jar and a copy of bio-formats.jar. It is often difficult to determine for sure that this is the problem - the only error message that pretty much guarantees it is a “NoSuchMethodException”. If the user maintains that they downloaded the latest version and whatever error message/odd behavior they are seeing looks like it was fixed already, then it is worth suggesting that they remove all copies of loci_tools.jar and download a fresh version.

2.2.3 Tips for command line tools

- When run with no arguments, all of the command line tools will print information on usage.
- When run with the `-version` argument, `showinf` and `bfconvert` will display the version of Bio-Formats that is being used (version number, build date, and Git commit reference).

2.2.4 Tips by format

3I/Olympus Slidebook (.sld)

- Slidebook support is generally not great, despite a lot of effort. This is the one format for which it is recommended to just export to OME-TIFF from the acquisition software and work with the exported files. Happily, there is free software from 3I which can do the export post-acquisition: https://www.slidebook.com/reader.php

DICOM

- Health care or institutional regulations often prevent users from sending problematic files, so often we have to solve the problem blind. In these cases, it is important to get the exact error message, and inform the user that fixing the problem may be an iterative process (i.e. they might have to try a couple of trunk builds before we can finally fix the problem).

ZVI

- If the ZVI reader plugin is installed in ImageJ/Fiji, then it will be used instead of Bio-Formats to read ZVI files. To check if this is the cause of the problem, make sure that the file opens correctly using “Plugins > LOCI > Bio-Formats Importer”; if that works, then just remove ZVI_Reader.class from the plugins folder.
Bio-Formats is updated whenever a significant bug fix is made, or whenever a new version of OMERO\(^1\) is released. The version number is three numbers separated by dots; e.g., 4.0.0. See the version history for a list of major changes in each release.

The latest stable version of Bio-Formats is 4.4.8-DEV. For future development directions, see the 4.5\(^2\) and 5.0\(^3\) roadmaps.

3.1 Version history

3.1.1 4.4.6 (2013 February 7)

- Many bug fixes

3.1.2 4.4.5 (2012 November 13)

- Restructured and improved documentation
- **Many bug fixes, including:**
 - File grouping in many multi-file formats
 - Maven build fixes
 - ITK plugin fixes

3.1.3 4.4.4 (2012 September 24)

- Many bug fixes

3.1.4 4.4.2 (2012 August 22)

- Security fix for OMERO plugins for ImageJ

\(^1\)http://www.openmicroscopy.org/site/support/omero4/

\(^2\)http://trac.openmicroscopy.org.uk/ome/query?group=status&component=Bio-Formats&milestone=OMERO-4.5

\(^3\)http://trac.openmicroscopy.org.uk/ome/query?group=status&component=Bio-Formats&milestone=OMERO-5.0
3.1.5 4.4.1 (2012 July 20)

- Fix a bug that prevented BigTIFF files from being read
- Fix a bug that prevented PerkinElmer .flex files from importing into OMERO

3.1.6 4.4.0 (2012 July 13)

- Many, many bug fixes
- Added support for:
 - .nd2 files from Nikon Elements version 4
 - PerkinElmer Operetta data
 - MJPEG-compressed AVIs
 - MicroManager datasets with multiple positions
 - Zeiss CZI data
 - IMOD data

3.1.7 4.3.3 (2011 October 18)

- Many bug fixes, including:
 - Speed improvements to HCImage/SimplePCI and Zeiss ZVI files
 - Reduce memory required by Leica LIF reader
 - More accurately populate metadata for Prairie TIFF datasets
 - Various fixes to improve the security of the OMERO plugin for ImageJ
 - Better dimension detection for Bruker MRI datasets
 - Better thumbnail generation for histology (SVS, NDPI) datasets
 - Fix stage position parsing for Metamorph TIFF datasets
 - Correctly populate the channel name for PerkinElmer Flex files

3.1.8 4.3.2 (2011 September 15)

- Many bug fixes, including:
 - Better support for Volocity datasets that contain compressed data
 - More accurate parsing of ICS metadata
 - More accurate parsing of cellSens .vsi files
- Added support for a few new formats
 - .inr
 - Canon DNG
 - Hitachi S-4800
 - Kodak .bip
– JPX
– Volocity Library Clipping (.acff)
– Bruker MRI

• Updated Zeiss LSM reader to parse application tags
• Various performance improvements, particularly for reading/writing TIFFs
• Updated OMERO ImageJ plugin to work with OMERO 4.3.x

3.1.9 4.3.1 (2011 July 8)

• **Several bug fixes, including:**
 – Fixes for multi-position Deltavision files
 – Fixes for MicroManager 1.4 data
 – Fixes for 12 and 14-bit JPEG-2000 data
 – Various fixes for reading Volocity .mvd2 datasets
• Added various options to the ‘showinf’ and ‘bfconvert’ command line tools
• Added better tests for OME-XML backwards compatibility
• Added the ability to roughly stitch tiles in a multi-position dataset

3.1.10 4.3.0 (2011 June 14)

• **Many bug fixes, including:**
 – Many fixes for reading and writing sub-images
 – Fixes for stage position parsing in the Zeiss formats
 – File type detection fixes
• Updated JPEG-2000 reading and writing support to be more flexible
• **Added support for 9 new formats:**
 – InCell 3000
 – Trestle
 – Hamamatsu .ndpi
 – Hamamatsu VMS
 – SPIDER
 – Volocity .mvd2
 – Olympus SIS TIFF
 – IMAGIC
 – cellSens VSI
• Updated to 2011-06 OME-XML schema
• Minor speed improvements in many formats
• Switched version control system from SVN to Git
• Moved all Trac tickets into the OME Trac: http://trac.openmicroscopy.org.uk
• Improvements to testing frameworks
• Added Maven build system as an alternative to the existing Ant build system
• Added pre-compiled C++ bindings to the download page

3.1.11 4.2.2 (2010 December 6)

• **Several bug fixes, notably:**
 – Metadata parsing fixes for Zeiss LSM, Metamorph STK, and FV1000
 – Prevented leaked file handles when exporting to TIFF/OME-TIFF
 – Fixed how BufferedImage objects are converted to byte arrays
• Proper support for OME-XML XML annotations
• Added support for SCANDO Medical .aim files
• Minor improvements to ImageJ plugins
• Added support for reading JPEG-compressed AVI files

3.1.12 4.2.1 (2010 November 12)

• Many, many bug fixes
• **Added support for 7 new formats:**
 – CellWorX .pnl
 – ECAT7
 – Varian FDF
 – Perkin Elmer Densitometer
 – FEI TIFF
 – Compix/SimplePCI TIFF
 – Nikon Elements TIFF
• Updated Zeiss LSM metadata parsing, with generous assistance from Zeiss, FMI, and MPI-CBG
• Lots of work to ensure that converted OME-XML validates
• Improved file stitching functionality; non-numerical file patterns and limited regular expression-style patterns are now supported

3.1.13 4.2.0 (2010 July 9)

• Fixed many, many bugs in all aspects of Bio-Formats
• Reworked ImageJ plugins to be more user- and developer-friendly
• Added many new unit tests
• Added support for approximately 25 new file formats, primarily in the SPM domain
• Rewrote underlying I/O infrastructure to be thread-safe and based on Java NIO
• Rewrote OME-XML parsing/generation layer; OME-XML 2010-06 is now supported
• Improved support for exporting large images
• Improved support for exporting to multiple files
• Updated logging infrastructure to use slf4j and log4j

3.1.14 4.1.1 (2009 December 3)
• Fixed many bugs in popular file format readers

4.1 (2009 October 21):
• Fixed many bugs in most file format readers
• Significantly improved confocal and HCS metadata parsing
• Improved C++ bindings
• Eliminated references to Java AWT classes in core Bio-Formats packages
• Added support for reading Flex datasets from multiple servers
• Improved OME-XML generation; generated OME-XML is now valid
• Added support for Olympus ScanR data
• Added OSGi information to JARs
• Added support for Amira Mesh files
• Added support for LI-FLIM files
• Added more informative exceptions
• Added support for various types of ICS lifetime data
• Added support for Nikon EZ-C1 TIFFs
• Added support for Maia Scientific MIAS data

3.1.15 4.0.1 (2009 June 1)
• Lots of bug fixes in most format readers and writers
• Added support for Analyze 7.1 files
• Added support for Nifti files
• Added support for Cellomics .c01 files
• Refactored ImageJ plugins
• Bio-Formats, the common package, and the ImageJ plugins now require Java 1.5
• Eliminated native library dependency for reading lossless JPEGs
• Changed license from GPL v3 or later to GPL v2 or later
• Updated Olympus FV1000, Zeiss LSM, Zeiss ZVI and Nikon ND2 readers to parse ROI data
• Added option to ImageJ plugin for displaying ROIs parsed from the chosen dataset
• Fixed BufferedImage construction for signed data and unsigned int data
3.1.16 4.0.0 (2009 March 3)

- Improved OME data model population for Olympus FV1000, Nikon ND2, Metamorph STK, Leica LEI, Leica LIF, InCell 1000 and MicroManager
- Added TestNG tests for format writers
- Added option to ImageJ plugin to specify custom colors when customizing channels
- Added ability to upgrade the ImageJ plugin from within ImageJ
- Fixed bugs in Nikon ND2, Leica LIF, BioRad PIC, TIFF, PSD, and OME-TIFF
- Fixed bugs in Data Browser and Exporter plugins
- Added support for Axon Raw Format (ARF), courtesy of Johannes Schindelin
- Added preliminary support for IPLab-Mac file format

3.1.17 2008 December 29

- Improved metadata support for Deltavision, Zeiss LSM, MicroManager, and Leica LEI
- Restructured code base/build system to be component-driven
- Added support for JPEG and JPEG-2000 codecs within TIFF, OME-TIFF and OME-XML
- Added support for 16-bit compressed Flex files
- Added support for writing JPEG-2000 files
- Added support for Minolta MRW format
- Added support for the 2008-09 release of OME-XML
- Removed dependency on JMagick
- Re-added caching support to data browser plugin
- Updated loci.formats.Codec API to be more user-friendly
- Expanded loci.formats.MetadataStore API to better represent the OME-XML model
- Improved support for Nikon NEF
- Improved support for TillVision files
- Improved ImageJ import options dialog
- Fixed bugs with Zeiss LSM files larger than 4 GB
- Fixed minor bugs in most readers
- Fixed bugs with exporting from an Image5D window
- Fixed several problems with virtual stacks in ImageJ

3.1.18 2008 August 30

- Fixed bugs in many file format readers
- Fixed several bugs with swapping dimensions
- Added support for Olympus CellR/APL files
- Added support for MINC MRI files
• Added support for Aperio SVS files compressed with JPEG 2000
• Added support for writing OME-XML files
• Added support for writing APNG files
• Added faster LZW codec
• Added drag and drop support to ImageJ shortcut window
• Re-integrated caching into the data browser plugin

3.1.19 2008 July 1

• Fixed bugs in most file format readers
• Fixed bugs in OME and OMERO download functionality
• Fixed bugs in OME server-side import
• Improved metadata storage/retrieval when uploading to and downloading from the OME Perl server
• Improved Bio-Formats ImageJ macro extensions
• Major updates to MetadataStore API
• Updated OME-XML generation to use 2008-02 schema by default
• Addressed time and memory performance issues in many readers
• Changed license from LGPL to GPL
• Added support for the FEI file format
• Added support for uncompressed Hamamatsu Aquacosmos NAF files
• Added support for Animated PNG files
• Added several new options to Bio-Formats ImageJ plugin
• Added support for writing ICS files

3.1.20 2008 April 17

• Fixed bugs in Slidebook, ND2, FV1000 OIB/OIF, Perkin Elmer, TIFF, Prairie, Openlab, Zeiss LSM, MNG, Molecular Dynamics GEL, and OME-TIFF
• Fixed bugs in OME and OMERO download functionality
• Fixed bugs in OME server-side import
• Fixed bugs in Data Browser
• Added support for downloading from OMERO 2.3 servers
• Added configuration plugin
• Updates to MetadataStore API
• Updates to OME-XML generation - 2007-06 schema used by default
• Added support for Li-Cor L2D format
• Major updates to TestNG testing framework
• Added support for writing multi-series OME-TIFF files

3.1. Version history
• Added support for writing BigTIFF files

3.1.21 2008 Feb 12

• Fixed bugs in QuickTime, SimplePCI and DICOM
• Fixed a bug in channel splitting logic

3.1.22 2008 Feb 8

• Many critical bugfixes in format readers and ImageJ plugins
• Newly reborn Data Browser for 5D image visualization
 – some combinations of import options do not work yet

3.1.23 2008 Feb 1

• Fixed bugs in Zeiss LSM, Metamorph STK, FV1000 OIB/OIF, Leica LEI, TIFF, Zeiss ZVI, ICS, Prairie, Open-
 lab LIFF, Gatan, DICOM, QuickTime
• Fixed bug in OME-TIFF writer
• Major changes to MetadataStore API
• Added support for JPEG-compressed TIFF files
• Added basic support for Aperio SVS files
 – JPEG2000 compression is still not supported
• Improved “crop on import” functionality
• Improvements to bfconvert and bfview
• Improved OME-XML population for several formats
• Added support for JPEG2000-compressed DICOM files
• EXIF data is now parsed from TIFF files

3.1.24 2007 Dec 28

• Fixed bugs in Leica LEI, Leica TCS, SDT, Leica LIF, Visitech, DICOM, Imaris 5.5 (HDF), and Slidebook
 readers
• Better parsing of comments in TIFF files exported from ImageJ
• Fixed problem with exporting 48-bit RGB data
• Added logic to read multi-series datasets spread across multiple files
• Improved channel merging in ImageJ - requires ImageJ 1.39l
• Support for hyperstacks and virtual stacks in ImageJ - requires ImageJ 1.39l
• Added API for reading directly from a byte array or InputStream
• Metadata key/value pairs are now stored in ImageJ’s “Info” property
• Improved OMERO download plugin - it is now much faster
• Added “open all series” option to ImageJ importer
• ND2 reader based on Nikon’s SDK now uses our own native bindings
• Fixed metadata saving bug in ImageJ
• Added sub-channel labels to ImageJ windows
• Major updates to 4D Data Browser
• Minor updates to automated testing suite

3.1.25 2007 Dec 1
• Updated OME plugin for ImageJ to support downloading from OMERO
• Fixed bug with floating point TIFFs
• Fixed bugs in Visitech, Zeiss LSM, Imaris 5.5 (HDF)
• Added alternate ND2 reader that uses Nikon’s native libraries
• Fixed calibration and series name settings in importer
• Added basic support for InCell 1000 datasets

3.1.26 2007 Nov 21
• Fixed bugs in ND2, Leica LIF, DICOM, Zeiss ZVI, Zeiss LSM, FV1000 OIB, FV1000 OIF, BMP, Evotec Flex, BioRad PIC, Slidebook, TIFF
• Added new ImageJ plugins to slice stacks and do “smart” RGB merging
• Added “windowless” importer plugin
 – uses import parameters from IJ_Prefs.txt, without prompting the user
• Improved stack slicing and colorizing logic in importer plugin
• Added support for DICOM files compressed with lossless JPEG
 – requires native libraries
• Fixed bugs with signed pixel data
• Added support for Imaris 5.5 (HDF) files
• Added 4 channel merging to importer plugin
• Added API methods for reading subimages
• Major updates to the 4D Data Browser

3.1.27 2007 Oct 17
• Critical OME-TIFF bugfixes
• Fixed bugs in Leica LIF, Zeiss ZVI, TIFF, DICOM, and AVI readers
• Added support for JPEG-compressed ZVI images
• Added support for BigTIFF
• Added importer plugin option to open each plane in a new window

3.1. Version history
• Added MS Video 1 codec for AVI

3.1.28 2007 Oct 1

• Added support for compressed DICOM images
• Added support for uncompressed LIM files
• Added support for Adobe Photoshop PSD files
• Fixed bugs in DICOM, OME-TIFF, Leica LIF, Zeiss ZVI, Visitech, PerkinElmer and Metamorph
• Improved indexed color support
• Addressed several efficiency issues
• Fixed how multiple series are handled in 4D data browser
• Added option to reorder stacks in importer plugin
• Added option to turn off autoscaling in importer plugin
• Additional metadata convenience methods

3.1.29 2007 Sept 11

• Major improvements to ND2 support; lossless compression now supported
• Support for indexed color images
• Added support for Simple-PCI .cxd files
• Command-line OME-XML validation
• Bugfixes in most readers, especially Zeiss ZVI, Metamorph, PerkinElmer and Leica LEI
• Initial version of Bio-Formats macro extensions for ImageJ

3.1.30 2007 Aug 1

• Added support for latest version of Leica LIF
• Fixed several issues with Leica LIF, Zeiss ZVI
• Better metadata mapping for Zeiss ZVI
• Added OME-TIFF writer
• Added MetadataRetrieve API for retrieving data from a MetadataStore
• Miscellaneous bugfixes

3.1.31 2007 July 16

• Fixed several issues with ImageJ plugins
• Better support for Improvision and Leica TCS TIFF files
• Minor improvements to Leica LIF, ICS, QuickTime and Zeiss ZVI readers
• Added searchable metadata window to ImageJ importer
3.1.32 2007 July 2

- Fixed issues with ND2, Openlab LIFF and Slidebook
- Added support for Visitec XYS
- Added composite stack support to ImageJ importer

3.1.33 2007 June 18

- Fixed issues with ICS, ND2, MicroManager, Leica LEI, and FV1000 OIF
- Added support for large (> 2 GB) ND2 files
- Added support for new version of ND2
- Minor enhancements to ImageJ importer
- Implemented more flexible logging
- Updated automated testing framework to use TestNG
- Added package for caching images produced by Bio-Formats

3.1.34 2007 June 6

- Fixed OME upload/download bugs
- Fixed issues with ND2, EPS, Leica LIF, and OIF
- Added support for Khoros XV
- Minor improvements to the importer

3.1.35 2007 May 24

- Better Slidebook support
- Added support for Quicktime RPZA
- Better Leica LIF metadata parsing
- Added support for BioRad PIC companion files
- Added support for bzip2-compressed files
- Improved ImageJ plugins
- Native support for FITS and PGM

3.1.36 2007 May 2

- Added support for NRRD
- Added support for Evotec Flex (requires LuraWave Java SDK with license code)
- Added support for gzip-compressed files
- Added support for compressed QuickTime headers
- Fixed QuickTime Motion JPEG-B support
• Fixed some memory issues (repeated small array allocations)
• Fixed issues reading large (> 2 GB) files
• Removed “ignore color table” logic, and replaced with Leica-specific solution
• Added status event reporting to readers
• Added API to toggle metadata collection
• Support for multiple dimensions rasterized into channels
• Deprecated reader and writer methods that accept the ‘id’ parameter
• Deprecated IFormatWriter.save in favor of saveImage and saveBytes
• Moved dimension swapping and min/max calculation logic to delegates
• Separate GUI logic into isolated lociformats.gui package
• Miscellaneous bugfixes and tweaks in most readers and writers
• Many other bugfixes and improvements

3.1.37 2007 Mar 16

• Fixed calibration bugs in importer plugin
• Enhanced metadata support for additional formats
• Fixed LSM bug

3.1.38 2007 Mar 7

• Added support for Micro-Manager file format
• Fixed several bugs – Leica LIF, Leica LEI, ICS, ND2, and others
• Enhanced metadata support for several formats
• Load series preview thumbnails in the background
• Better implementation of openBytes(String, int, byte[]) for most readers
• Expanded unit testing framework

3.1.39 2007 Feb 28

• Better series preview thumbnails
• Fixed bugs with multi-channel Leica LEI
• Fixed bugs with “ignore color tables” option in ImageJ plugin

3.1.40 2007 Feb 26

• Many bugfixes: Leica LEI, ICS, FV1000 OIB, OME-XML and others
• Better metadata parsing for BioRad PIC files
• Enhanced API for calculating channel minimum and maximum values

3.1. Version history
• Expanded MetadataStore API to include more semantic types
• Added thumbnails to series chooser in ImageJ plugin
• Fixed plugins that upload and download from an OME server

3.1.41 2007 Feb 7
• Added plugin for downloading images from OME server
• Improved HTTP import functionality
• Added metadata filtering – unreadable metadata is no longer shown
• Better metadata table for multi-series datasets
• Added support for calibration information in Gatan DM3
• Eliminated need to install JAI Image I/O Tools to read ND2 files
• Fixed ZVI bugs: metadata truncation, and other problems
• Fixed bugs in Leica LIF: incorrect calibration, first series labeling
• Fixed memory bug in Zeiss LSM
• Many bugfixes: PerkinElmer, Deltavision, Leica LEI, LSM, ND2, and others
• IFormatReader.close(boolean) method to close files temporarily
• Replaced Compression utility class with extensible Compressor interface
• Improved testing framework to use .bioformats configuration files

3.1.42 2007 Jan 5
• Added support for Prairie TIFF
• Fixed bugs in Zeiss LSM, OIB, OIF; and ND2
• Improved API for writing files
• Added feature to read files over HTTP
• Fixed bugs in automated testing framework
• Miscellaneous bugfixes

3.1.43 2006 Dec 22
• Expanded ImageJ plugin to optionally use Image5D or View5D
• Improved support for ND2 and JPEG-2000 files
• Added automated testing framework
• Fixed bugs in Zeiss ZVI reader
• Miscellaneous bugfixes
3.1.44 2006 Nov 30

- Added support for ND2/JPEG-2000
- Added support for MRC
- Added support for MNG
- Improved support for floating-point images
- Fixed problem with 2-channel Leica LIF data
- Minor tweaks and bugfixes in many readers
- Improved file stitching logic
- Allow ImageJ plugin to be called from a macro

3.1.45 2006 Nov 2

- Bugfixes and improvements for Leica LIF, Zeiss LSM, OIF and OIB
- Colorize channels when they are split into separate windows
- Fixed a bug with 4-channel datasets

3.1.46 2006 Oct 31

- Added support for Imaris 5 files
- Added support for RGB ICS images

3.1.47 2006 Oct 30

- Added support for tiled TIFFs
- Fixed bugs in ICS reader
- Fixed importer plugin deadlock on some systems

3.1.48 2006 Oct 27

- Multi-series support for Slidebook
- Added support for Alicona AL3D
- Fixed plane ordering issue with FV1000 OIF
- Enhanced dimension detection in FV1000 OIF
- Added preliminary support for reading NEF images
- Added option to ignore color tables
- Fixed ImageJ GUI problems
- Fixed spatial calibration problem in ImageJ
- Fixed some lingering bugs in Zeiss ZVI support
- Fixed bugs in OME-XML reader
- Tweaked ICS floating-point logic
- Fixed memory leaks in all readers
- Better file stitching logic

3.1.49 2006 Oct 6

- Support for 3i SlideBook format (single series only for now)
- Support for 16-bit RGB palette TIFF
- Fixed bug preventing import of certain Metamorph STK files
- Fixed some bugs in PerkinElmer UltraView support
- Fixed some bugs in Leica LEI support
- Fixed a bug in Zeiss ZVI support
- Fixed bugs in Zeiss LSM support
- Fixed a bug causing slow identification of Leica datasets
- Fixed bugs in the channel merging logic
- Fixed memory leak for OIB format
- Better scaling of 48-bit RGB data to 24-bit RGB
- Fixed duplicate channels bug in “open each channel in a separate window”
- Fixed a bug preventing PICT import into ImageJ
- Better integration with HandleExtraFileTypes
- Better virtual stack support in Data Browser plugin
- Fixed bug in native QuickTime random access
- Keep aspect ratio for computed thumbnails
- Much faster file stitching logic

3.1.50 2006 Sep 27

- PerkinElmer: support for PE UltraView
- Openlab LIFF: support for Openlab v5
- Leica LEI: bugfixes, and support for multiple series
- ZVI, OIB, IPW: more robust handling of these formats (eliminated custom OLE parsing logic in favor of Apache POI)
- OIB: better metadata parsing (but maybe still not perfect?)
- LSM: fixed a bug preventing import of certain LSMs
- Metamorph STK: fixed a bug resulting in duplicate image planes
- User interface: use of system look & feel for file chooser dialog when available
- Better notification when JAR libraries are missing
3.1.51 2006 Sep 6

- Leica LIF: multiple distinct image series within a single file
- Zeiss ZVI: fixes and improvements contributed by Michel Boudinot
- Zeiss LSM: fixed bugs preventing the import of certain LSM files
- TIFF: fixed a bug preventing import of TIFFs created with Bio-Rad software

3.1.52 2006 Mar 31

- First release
Part II

User Information
The following sections explain the features of Bio-Formats and how to use it within *ImageJ* and *Fiji*:

4.1 ImageJ

ImageJ\(^1\) is an image processing and analysis application written in Java, widely used in the life sciences fields, with an extensible plugin infrastructure. You can use Bio-Formats as a plugin for ImageJ to read and write images in the formats it supports.

4.1.1 Installation

Download loci_tools.jar\(^2\) and drop it into your *ImageJ/plugins* folder. Next time you run ImageJ, a new LOCI submenu with several plugins will appear in the Plugins menu, including the Bio-Formats Importer and Bio-Formats Exporter.

4.1.2 Usage

The Bio-Formats Importer plugin can display image stacks in several ways:

- In a standard ImageJ window (including as a hyperstack)
- Using the LOCI Data Browser\(^3\) plugin (included)
- With Joachim Walter’s *Image5D*\(^4\) plugin (if installed)
- With Rainer Heintzmann’s *View5D*\(^5\) plugin (if installed)

ImageJ v1.37 and later automatically (via HandleExtraFileTypes) calls the Bio-Formats logic, if installed, as needed when a file is opened within ImageJ—e.g., when using File/Open instead of explicitly choosing “Bio-Formats Importer” from the Plugins/LOCI menu.

For a more detailed description of each plugin, see the Bio-Formats page\(^6\) of the Fiji wiki.

\(^1\)http://rsb.info.nih.gov/ij/
\(^2\)http://www.openmicroscopy.org/site/products/bio-formats/downloads/
\(^3\)http://loci.wisc.edu/software/data-browser
\(^4\)http://rsb.info.nih.gov/ij/plugins/image5d.html
\(^5\)http://www.nanoimaging.de/View5D
\(^6\)http://fiji.sc/wiki/index.php/Bio-Formats
4.1.3 Upgrading

To upgrade, just overwrite the old loci_tools.jar with the latest one\(^7\). Step-by-step upgrade instructions for Windows are available here\(^8\).

You may want to download the latest version of ImageJ first, to take advantage of new features and bug-fixes.

As of the 4.0.0 release, you can also upgrade the Bio-Formats plugin directly from ImageJ. Select “Plugins>LOCI>Update LOCI Plugins” from the ImageJ menu, then select which release you would like to use. You will then need to restart ImageJ to complete the upgrade process.

4.1.4 Macros and plugins

Bio-Formats is fully scriptable in a macro, and callable from a plugin. To use in a macro, use the Macro Recorder to record a call to the Bio-Formats Importer with the desired options. You can also perform more targeted metadata queries using the Bio-Formats macro extensions.

Here are some example ImageJ macros and plugins that use Bio-Formats to get you started:

- basicMetadata.txt\(^8\) - A macro that uses the Bio-Formats macro extensions to print the chosen file’s basic dimensional parameters to the Log.
- planeTimings.txt\(^9\) - A macro that uses the Bio-Formats macro extensions to print the chosen file’s plane timings to the Log.
- recursiveTiffConvert.txt\(^10\) - A macro for recursively converting files to TIFF using Bio-Formats.
- bfOpenAsHyperstack.txt\(^11\) - This macro from Wayne Rasband opens a file as a hyperstack using only the Bio-Formats macro extensions (without calling the Bio-Formats Importer plugin).
- zvi2HyperStack.txt\(^12\) - This macro from Sebastien Huart reads in a ZVI file using Bio-Formats, synthesizes the LUT using emission wavelength metadata, and displays the result as a hyperstack.
- dvSplitTimePoints.txt\(^13\) - This macro from Sebastien Huart splits timepoints/channels on all DV files in a folder.
- batchTiffConvert.txt\(^14\) - This macro converts all files in a directory to TIFF using the Bio-Formats macro extensions.
- Read_Image\(^15\) - A simple plugin that demonstrates how to use Bio-Formats to read files into ImageJ.
- Mass_Importer\(^16\) - A simple plugin that demonstrates how to open all image files in a directory using Bio-Formats, grouping files with similar names to avoiding opening the same dataset more than once.

4.2 Fiji

Fiji\(^17\) is an image processing package. It can be described as a distribution of ImageJ together with Java, Java 3D and a lot of plugins organized into a coherent menu structure\(^18\). Fiji compares to ImageJ as Ubuntu compares to Linux.
Fiji works with Bio-Formats out of the box, because it comes bundled with the *Bio-Formats ImageJ plugins*.

4.2.1 Upgrading

Upgrading Bio-Formats within Fiji is as simple as invoking the “Update Fiji” command from the Help menu. By default, Fiji even automatically checks for updates every time it is launched, so you will always be notified when new versions of Bio-Formats (or any other bundled plugin) are available.

Updates in the Fiji updater are not always Bio-Formats’ most recent trunk build or stable release; they are versions that are known to remain compatible with other plugins that depend upon Bio-Formats. You should use the Fiji updater if you use other plugins that might use Bio-Formats. However, if you encounter a bug within Bio-Formats, use Bio-Formats’ own updater to see if the latest trunk build fixes it.

4.3 Bio-Formats features in ImageJ and Fiji

When you select Bio-Formats under the Plugin menu, you will see the following features:

- **The Bio-Formats Importer** is a plugin for loading images into ImageJ or Fiji. It can read over 100 proprietary life sciences formats and standardizes their acquisition metadata into the common OME data model. It will also extract and set basic metadata values such as spatial calibration\(^{19}\) if they are available in the file.

- **The Bio-Formats Exporter** is a plugin for exporting data to disk. It can save to the open OME-TIFF\(^{20}\) file format, as well as several movie formats (e.g. QuickTime, AVI) and graphics formats (e.g. PNG, JPEG).

- **The Bio-Formats Remote Importer** is a plugin for importing data from a remote URL. It is likely to be less robust than working with files on disk, so we recommend downloading your data to disk and using the regular Bio-Formats Importer whenever possible.

- **The Bio-Formats Windowless Importer** is a version of the Bio-Formats Importer plugin that runs with the last used settings to avoid any additional dialogs beyond the file chooser. If you always use the same import settings, you may wish to use the windowless importer to save time (Learn more [here](http://fiji.sc/wiki/index.php/SpatialCalibration)).

- **The Bio-Formats Macro Extensions** plugin prints out the set of commands that can be used to create macro extensions. The commands and the instructions for using them are printed to the ImageJ log window.

- **The Stack Slicer** plugin is a helper plugin used by the Bio-Formats Importer. It can also be used to split a stack across channels, focal planes or time points.

- **The LOCI Plugins Configuration** dialog is a useful way to configure the behavior of each file format. The Formats tab lists supported file formats and toggles each format on or off, which is useful if your file is detected as the wrong format. It also toggles whether each format bypasses the importer options dialog through the “Windowless” checkbox. You can also configure any specific option for each format. The Libraries tab provides a list of available helper libraries used by Bio-Formats.

- **The LOCI Plugins Shortcut Window** opens a small window with a quick-launch button for each LOCI plugin. Dragging and dropping files onto the shortcut window opens them quickly using the Bio-Formats Importer plugin.

- **The Update LOCI Plugins** command will check for LOCI Plugins updates. We recommend you update to the newest Trunk build as soon as you think you may have discovered a bug.

\(^{19}\)[http://fiji.sc/wiki/index.php/SpatialCalibration]

\(^{20}\)[http://www.openmicroscopy.org/site/support/ome-model/ome-tiff]
4.4 Installing Bio-Formats in ImageJ

(Since FIJI is essentially ImageJ with plugins like Bio-Formats already built in, people who install Fiji can skip this section.)

Once you download and install ImageJ, you can install the Bio-Formats plugin by going to the Bio-Formats download page. For most end-users, we recommend downloading the loci_tools.jar complete bundle. However, you must decide which version of it you want to install. There are three primary versions of Bio-Formats: the trunk build, the daily builds, and the Stable Release. Which version you should download depends on your needs:

- The **trunk build** is automatically updated every time any change is made to the source code on the main “trunk” branch in Git, LOCI’s software version control system. This build has the latest bug fixes, but it is not well tested and may have also introduced new bugs.

- The **daily build** is a compilation of that day’s changes that occurs daily around midnight. It is not any better tested than the trunk build; but if you download it multiple times in a day, you can be sure you’ll get the same version each time.

- The **stable release** is thoroughly tested and has documentation to match. The list of supported formats on the Bio-Formats site corresponds to the most recent stable release. We do not add new formats to the list until a release containing support for that format has been completed. The stable release is less likely to contain bugs.

The stable release is also more useful to programmers because they can link their software to a known, fixed version of Bio-Formats. Bio-Formats’ behavior won’t be changing “out from under them” as they continue developing their own programs.

We often recommend that most people simply use the trunk build for two reasons. First, trunk may contain bug-fixes or new features you want anyway; secondly, you will have to reproduce any bug you encounter in Bio-Formats against the latest trunk build before submitting a bug report. Rather than using the stable release until you find a bug that requires you to upgrade and reproduce it, why not just use the trunk build to begin with?

Once you decide which version you need, go to the Bio-Formats download page and save the appropriate loci_tools.jar to the Plugins directory within ImageJ.

You may have to quit and restart ImageJ. Once you restart it, you will find Bio-Formats in the LOCI option under the Plugins menu:

22 http://www.openmicroscopy.org/site/products/bio-formats/downloads/
23 http://www.openmicroscopy.org/site/products/bio-formats/downloads/
Figure 4.1: Plugin Directory for ImageJ: Where in ImageJ’s file structure you should place the file once you downloaded it.
You are now ready to start using Bio-Formats.

4.5 Using Bio-Formats to load images into ImageJ

This section will explain how to use Bio-Formats to import files into ImageJ and how to use the settings on the Bio-Formats Import Options screen.

4.5.1 Opening files

There are three ways you can open a file using Bio-Formats:

1. Select the Bio-Formats Importer under the LOCI plugins menu.
2. Drag and drop it onto the LOCI Plugins Shortcut window.
3. Use the Open command in the File menu.

Unless you used the LOCI Plugins Configuration dialog to open the file type windowlessly, you know you used Bio-Formats to open a file when you see a screen like this:
If you used the File > Open command and did not see the Bio-Formats Import Options screen, ImageJ/Fiji probably used another plugin instead of Bio-Formats to open the file. If this happens and you want to open a file using Bio-Formats, use one of the other two methods instead.

4.5.2 Opening files windowlessly

When you open a file with Bio-Formats, the Import Options Screen automatically recalls the settings you last used to open a file with that specific format (e.g. JPG, TIF, LSM, etc.). If you always choose the same options whenever you open files in a specific file format, you can save yourself time by bypassing the Bio-Formats Import Options screen. You can accomplish this two ways:

1. You can select the **Bio-Formats Windowless Importer**, located in the LOCI menu under ImageJ’s Plugin menu. When you select this option, Bio-Formats will import the file using the same settings you used the last time you imported a file with the same format.

2. If you invariably use the same settings when you open files in a specific format, you can always bypass the Import Options Screen by changing the settings in the **LOCI Plugins Configuration** option, which is also located in the LOCI menu under ImageJ’s Plugin menu.

Once you select this option, select the file format you are interested in from the list on the left side of the screen. Check both the **Enabled** and **Windowless** boxes. Once you do this, whenever you open a file using the **Bio-Formats Windowless Importer**, the **Bio-Formats Importer**, or the drag-and-drop method described in the previous section, the file will always open the same way using the last setting used.

Please note that if you want to change any of the import settings once you enable this windowless option, you will have to go back to the **LOCI Plugins Configuration** screen, unselect the windowless option, open a file using the regular **Bio-Formats Importer**, select your settings, and re-select the windowless option.

4.5.3 Group files with similar names

One of the most important features of Bio-Formats is to combine multiple files from a data set into one coherent, multi-dimensional image.

4.5. Using Bio-Formats to load images into ImageJ
To demonstrate how to use the **Group files with similar names** feature, you can use the dub data set available under LOCI’s [Sample Data](http://www.loci.wisc.edu/sample-data/dub) page. You will notice that it is a large dataset: each of the 85 files shows the specimen at 33 optical sections along the z-plane at a specific time.

If you open just one file in ImageJ/Fiji using the **Bio-Formats Importer**, you will get an image incorporating three dimensions (x, y, z). However, if you select **Group files with similar names** from the Bio-Formats Import Options screen, you will be able to create a 4-D image (x, y, z, and t) incorporating the 85 files.

After clicking OK, you will see a screen like this:

![Bio-Formats File Stitching](http://www.loci.wisc.edu/software/sample-data)

This screen allows you to select which files within the 85-file cluster to use to create that 4-D image. Some information will be pre-populated in the fields. Unless you want to change the settings in that field, there is no need to change or delete it. If you click OK at this point, you will load all 85 files.

However, you can specify which files you want to open by adjusting the “axis information”, the file “name contains,” or the “pattern” sections. Even though there are three options, you only need to make changes to one of them. Since Bio-Format’s precedence for processing data is from top to bottom, only the uppermost section that you made changes to will be used. If you change multiple boxes, any information you enter into lower boxes will be ignored.

To return to the example involving the dub data set, suppose you want to open the first image and only every fifth image afterwards (i.e. dub01, dub06, dub11...dub81). This would give you 17 images. There are different ways to accomplish this:

You can use the **Axis Settings** only when your files are numbered in sequential order and you want to open only a subset of the files that have similar names. Since the dub data set is numbered sequentially, you can use this feature.

Axis 1 number of images refers to the total number of images you want to open. Since you want to view 17 images, enter 17. **Axis 1 axis first image** specifies which image in the set you want to be the first. Since you want to start with dub01, enter 1 in that box. You also want to view only every fifth image, so enter 5 in the **Axis 1 axis increment** box.

The **File name contains** box should be used if all of the files that you want to open have common text. This is especially useful when the files are not numbered. For example, if you have “Image_Red.tif”, “Image_Green.tif”, and “Image_Blue.tif” you could enter “Image_” in the box to group them all.

To continue the example involving the dub data set, you cannot use the **file name contains** box to open every fifth image. However, if you only wanted to open dub10 thorough dub19, you could enter “dub1” in the **file name contains** box.

The **pattern** box can be used to do either of the options listed above or much more. This box can accept a single file name like “dub01.pic.” It can also contain a pattern that use “<” and “>” to specify what numbers or text the file names contain.

There are three basic forms to the “< >” blocks:

1. **Axis Settings**
2. **File name contains**
3. **pattern**

4.5. Using Bio-Formats to load images into ImageJ
• Text enumeration - “Image_<Red,Green,Blue>.tif” is the pattern for Image_Red.tif, Image_Green.tif, Image_Blue.tif. (Note that the order you in which you enter the file names is the order in which they will be loaded.)

• Number range - “dub<1-85>.pic” is the pattern for “dub1.pic”, “dub2.pic”, “dub3.pic” . . . “dub85.pic”.

• Number range with step - “dub<1-85:5>.pic” is the pattern for “dub1.pic”, “dub6.pic”, “dub11.pic”, “dub11.pic” . . . “dub85.pic”.

It can also accept a Java regular expression\(^{26}\).

4.5.4 Autoscale

Autoscale helps increase the brightness and contrast of an image by adjusting the range of light intensity within an image to match the range of possible display values. Note that Autoscale does not change your data. It just changes how it is displayed.

Each pixel in an image has a numerical value ascribed to it to describe its intensity. The bit depth—the number of possible values—depends on the number of bits used in the image. Eight bits, for example, gives 256 values to express intensity where 0 is completely black, 255 is completely white, and 1 through 254 display increasingly lighter shades of grey.

ImageJ can collect the intensity information about each pixel from an image or stack and create a histogram. (You can see it by selecting Histogram under the Analyze menu.) Here is the histogram of a one particular image:

![Histogram of Image](image.png)

Notice that the histogram heavily skews right. Even though there are 256 possible values, only 0 through 125 are being used.

\(^{26}\)http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html
Autoscale adjusts the image so the smallest and largest number in that image or stack’s histogram become the darkest and brightest settings. For this image, pixels with the intensity of 125 will be displayed in pure white. The other values will be adjusted too to help show contrast between values that were too insignificant to see before.

Here is one image Bio-Formats imported with and without using Autoscale:

![Image with Autoscale](image1.png)
![Image without Autoscale](image2.png)

Autoscale readjusts the image based on the highest value in the entire data set. This means if the highest value in your dataset is close to maximum display value, Autoscale’s adjusting may be undetectable to the eye.

ImageJ/Fiji also has its own tools for adjusting the image, which are available by selecting Brightness/Contrast, which is under the Adjust option in the Image menu.
4.6 Managing memory in ImageJ/Fiji using Bio-Formats

When dealing with a large stack of images, you may receive a warning like this:

This means the allotted memory is less than what Bio-Formats needs to load all the images. If you have a very large data set, you may have to:

- View your stack with Data Browser
- Crop the view area
- Open only a subset of images
- Use Virtual Stack
- Increase ImageJ/Fiji’s memory.

If your files contain JPEG or JPEG-2000 images, you may see this memory warning even if your file size is smaller than the amount of allocated memory. This is because compressed images like JPEG need to be decompressed into memory before being displayed and require more memory than their file size suggests. If you are having this issue, try utilizing one of the memory management tools below.

4.6.1 View your stack with Data Browser

Data Browser is another part of Bio-Formats that enables users to view large 3, 4, or 5-D datasets by caching a subset of all the images available. This enables users to view a stack that is bigger than the computer’s memory.

You can select Data Browser as an option for View stack with, the leftmost, uppermost option in the Bio-Formats Import Options screen.
Note that when you use Data Browser, other features like cropping and specifying range are not available. You can, however, adjust the size of the image cache in the Data Browser after you open the files. You can read more about it on LOCI’s Data Browser page27.

4.6.2 Cropping the view area

Crop on Import is useful if your images are very large and you are only interested in one specific section of the stack you are importing. If you select this feature, you will see a screen where you can enter the height and width (in pixels) of the part of image you want to see. Note that these measurements are from the top left corner of the image.

4.6.3 Opening only a subset of images

The _Specify Range for Each Series_ option is useful for viewing a portion of a data set where all the plane images are encapsulated into one file (e.g. the Zeiss LSM format). If your file has a large quantity of images, you can specify which channels, Z-planes, and times you want to load.

4.6.4 Use Virtual Stack

Virtual Stack conserves memory by not loading specific images until necessary. Note that unlike Data Browser, Virtual Stack does not contain a buffer and may produce choppy animations.

4.6.5 Increasing ImageJ/Fiji’s memory

Finally, you can also increase the amount of the computer memory devoted to ImageJ/Fiji by selecting _Memory & Threads_ under the _Edit_ menu.

27http://www.loci.wisc.edu/software/data-browser
Generally, allocating more than 75% of the computer’s total memory will cause ImageJ/Fiji to become slow and unstable.

Please note that unlike the other three features, ImageJ/Fiji itself provides this feature and not Bio-Formats. You can find out more about this feature by looking at ImageJ’s documentation\(^\text{28}\).

4.7 Upgrading the Bio-Formats importer for ImageJ to the latest trunk build

1) Download the latest trunk build of *loci_tools.jar* from Bio-Formats downloads\(^\text{29}\)

\(^{28}\)http://rsbweb.nih.gov/ij/docs/menus/edit.html#options

\(^{29}\)http://www.openmicroscopy.org/site/products/bio-formats/downloads/
2) Internet Explorer will ask you where it should save `loci_tools.jar`. Select ‘Desktop’.

3. Start ImageJ.

4. Select “Plugins > Utilities > ImageJ Properties...”
5) Scroll through the **Properties** window until you find a line that starts with “Menus.getPlugInsPath” (highlighted).

6) Leaving ImageJ and the Properties window open, click the **Start** button, then **My Computer**.

4.7. Upgrading the Bio-Formats importer for ImageJ to the latest trunk build
7) Type the path from step 5 into the address bar in the My Computer window, then hit the Enter key. The path should look something like this: `C:\PROGRA~1\ImageJ\plugins\`
8) Click “loci_tools.jar” on your Desktop and drag it to the “plugins” window.

9. If you are asked to replace an existing file, click “Yes”.

4.7. Upgrading the Bio-Formats importer for ImageJ to the latest trunk build
10. Close ImageJ.

11. Open ImageJ.

12) ImageJ now recognizes the latest trunk build of the Bio-Formats importer.
OMERO.importer uses Bio-Formats to read image pixels and propagate metadata into the OMERO.server system. Please refer to the OMERO documentation1 for further information.

1http://www.openmicroscopy.org/site/support/omero4/
6.1 BISQUE

The BISQUE\(^1\) (Bio-Image Semantic Query User Environment) Database, developed at the Center for Bio-Image Informatics at UCSB, was developed for the exchange and exploration of biological images. The Bisque system supports several areas useful for imaging researchers from image capture to image analysis and querying. The bisque system is centered around a database of images and metadata. Search and comparison of datasets by image data and content is supported. Novel semantic analyses are integrated into the system allowing high level semantic queries and comparison of image content.

Bisque integrates with Bio-Formats by calling the `showinf` command line tool.

6.2 OME Server

OME\(^2\) is a set of software that interacts with a database to manage images, image metadata, image analysis and analysis results. The OME system is capable of leveraging Bio-Formats to import files.

Please note - the OME server is no longer maintained and has now been superseded by the OMERo server\(^3\).

6.2.1 Installation

For OME Perl v2.6.1\(^4\) and later, the command line installer automatically downloads the latest `loci_tools.jar` and places it in the proper location. This location is configurable, but is `/OME/java/loci_tools.jar` by default.

For a list of what was recognized for a particular import into the OME server, go to the Image details page in the web interface, and click the “Image import” link in the upper right hand box.

Bio-Formats is capable of parsing original metadata for supported formats, and standardizes what it can into the OME data model. For the rest, it expresses the metadata in OME terms as key/value pairs using an OriginalMetadata custom semantic type. However, this latter method of metadata representation is of limited utility, as it is not a full conversion into the OME data model.

Bio-Formats is enabled in OME v2.6.1 for all formats except:

- OME-TIFF
- Metamorph HTD

\(^1\)http://www.bioimage.ucsb.edu/bisque
\(^2\)http://openmicroscopy.org/site/support/legacy/ome-server
\(^3\)http://www.openmicroscopy.org/site/support/omero4/
\(^4\)http://cvs.openmicroscopy.org.uk/
Bio-Formats Documentation, Release 4.4.8-DEV

- Deltavision DV
- Metamorph STK
- Bio-Rad PIC
- Zeiss LSM
- TIFF
- BMP
- DICOM
- OME-XML

The above formats have their own Perl importers that override Bio-Formats, meaning that Bio-Formats is not used to process them by default. However, you can override this behavior (except for Metamorph HTD, which Bio-Formats does not support) by editing an OME database configuration value:

```
% psql ome
```

To see the current file format reader list:

```
ome=# select value from configuration where name='import_formats';
value
------------------------------------------------------------------------------
['OME::ImportEngine::OMETIFFreader', 'OME::ImportEngine::MetamorphHTDFormat',
 'OME::ImportEngine::DVreader', 'OME::ImportEngine::STKreader',
 'OME::ImportEngine::BioradReader', 'OME::ImportEngine::LSMreader',
 'OME::ImportEngine::TIFFreader', 'OME::ImportEngine::BMPreader',
 'OME::ImportEngine::DICOMreader', 'OME::ImportEngine::XMLreader',
 'OME::ImportEngine::BioFormats']
(1 row)
```

To remove extraneous readers from the list:

```
ome=# update configuration set value='[
OME::ImportEngine::MetamorphHTDFormat, 
OME::ImportEngine::XMLreader, 
OME::ImportEngine::BioFormats]'
where name='import_formats';
UPDATE 1
ome=# select value from configuration where name='import_formats';
value
------------------------------------------------------------------------------
['OME::ImportEngine::MetamorphHTDFormat', 'OME::ImportEngine::XMLreader',
 'OME::ImportEngine::BioFormats']
(1 row)
```

To reset things back to how they were:

```
ome=# update configuration set value='[
OME::ImportEngine::OMETIFFreader, 
OME::ImportEngine::MetamorphHTDFormat, 
OME::ImportEngine::DVreader, 
OME::ImportEngine::STKreader, 
OME::ImportEngine::BioradReader, 
OME::ImportEngine::LSMreader, 
OME::ImportEngine::TIFFreader, 
OME::ImportEngine::BMPreader, 
OME::ImportEngine::DICOMreader, 
OME::ImportEngine::XMLreader, 
OME::ImportEngine::BioFormats]'
where name='import_formats';
```

Lastly, please note that Li-Cor L2D files cannot be imported into an OME server (see this Trac ticket\(^5\) for details). Since the OME perl server has been discontinued, we have no plans to fix this limitation.

\(^5\)http://dev.loci.wisc.edu/trac/software/ticket/266

6.2. OME Server 45
6.2.2 Upgrading

You can upgrade your OME server installation to take advantage of a new Bio-Formats release\(^6\) by overwriting the old `loci_tools.jar` with the new one.

6.2.3 Source Code

The source code for the Bio-Formats integration with OME server spans three languages, using piped system calls in both directions to communicate, with imported pixels written to OMEIS pixels files. The relevant source files are:

- `OmeisImporter.java`\(^7\) – omebf Java command line tool
- `BioFormats.pm`\(^8\) – Perl module for OME Bio-Formats importer
- `omeis.c`\(^9\) – OMEIS C functions for Bio-Formats (search for “bioformats” case insensitively to find relevant sections)

\(^6\)[http://www.openmicroscopy.org/site/products/bio-formats/downloads/]
\(^7\)[https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/ome/OmeisImporter.java]
\(^8\)[http://svn.openmicroscopy.org.uk/svn/ome/trunk/src/perl2/OME/ImportEngine/BioFormats.pm]
\(^9\)[http://svn.openmicroscopy.org.uk/svn/ome/trunk/src/C/omeis/omeis.c]
7.1 Command line tools

There are several scripts for using Bio-Formats on the command line.

7.1.1 Installation

Download bftools.zip\(^1\), unzipped into a new folder, then download loci_tools.jar\(^2\) and place it in the same folder.

The zip file contains both Unix scripts and Windows batch files. Currently available tools include:

- **showinf** Prints information about a given image file to the console, and displays the image itself in the Bio-Formats image viewer.
- **bfview** Launches the Bio-Formats image viewer, displaying the given file (if any).
- **ijview** Displays the given image file in ImageJ using the Bio-Formats Importer plugin (requires ij.jar).
- **bfconvert** Converts an image file from one format to another. Bio-Formats must support writing to the output file (determined by extension; see the Supported Formats).
- **formatlist** Displays a list of supported file formats in HTML, plaintext or XML.
- **xmlindent** A simple XML prettifier similar to xmllint --format but more robust in that it attempts to produce output regardless of syntax errors in the XML.
- **xmlvalid** A command-line XML validation tool, useful for checking an OME-XML document for compliance with the OME-XML schema.
- **omeul** A command-line client-side import tool for OME.
- **tiffcomment** Dumps the comment from the given TIFF file’s first IFD entry; useful for examining the OME-XML block in an OME-TIFF file.

All scripts require loci_tools.jar in the same directory as the command line tools.

7.1.2 Tutorial

There is a Bio-Formats command line tools tutorial\(^3\) on the FARSIGHT web site.

\(^1\)http://www.openmicroscopy.org/site/products/bio-formats/downloads/
\(^2\)http://www.openmicroscopy.org/site/products/bio-formats/downloads/
\(^3\)http://www.farsight-toolkit.org/wiki/FARSIGHT_Tutorials/Bio-Formats
7.1.3 Using the tools directly from source

If you have *checked out the source from the Git repository* you already have the command line tools in the `tools` directory. You can configure the scripts to use your source tree instead of `loci_tools.jar` in the same directory by following these steps:

1. Point your `CLASSPATH` to the checked-out directory and the JAR files in the `jar` folder.
 - E.g. on Windows with Java 1.6 or later, if you have checked out the source at `C:\code\loci`, set your `CLASSPATH` environment variable to the value `C:\code\loci\jar*;C:\code\loci`. You can access the environment variable configuration area by right-clicking on My Computer, choosing Properties, Advanced tab, Environment Variables button.

2. Compile the source with `ant compile`.

3. Set the `LOCI_DEVEL` environment variable to any value (the variable just needs to be defined).

7.2 FARSIGHT

FARSIGHT[^4] is a collection of modules for image analysis created by LOCI's collaborators at the Rensselaer Polytechnic Institute[^5]. These open-source modules are built on the ITK libraries and thus can take advantage of LOCI's BF-ITK plugin for processing normally unsupported image types.

The principal FARSIGHT module that benefits from the BF-ITK plugin is the Nucleus Editor[^6]. The Nucleus Editor has been shown to work well with BF-ITK on Mac and Linux operating systems, but unfortunately not on Windows. Note that both FARSIGHT and BF-ITK can work independently on Windows.

Warning: you will find links for downloading pre-built versions of both FARSIGHT and the BF-ITK plugin below. However, currently these have not been shown to work together on any operating system.

In summary, to use the Bio-Formats plugin with a FARSIGHT module, you will need to build the FARSIGHT module from source and should be using a Linux or Mac-based computer.

To use FARSIGHT and BF-ITK together, there are several tutorials that will guide you through the process of downloading and building the source code for these projects:

- **This tutorial[^7]** will guide you through building FARSIGHT exclusively. Once FARSIGHT is built, you can follow the instructions on the ITK page to download and install a pre-built version of BFITK.

- **The tutorials on this page[^8]** provide platform-specific guides for building both FARSIGHT and the BF-ITK plugin from source.

If you are just interested in using FARSIGHT without going through the steps of compiling from source, you can visit this downloads page[^9] and download stable releases of FARSIGHT.

7.3 i3dcore

i3dcore[^10], also known as the CBIA 3D image representation library, is a 3D image processing library developed at

[^4]: http://www.farsight-toolkit.org/wiki/Main_Page
[^5]: http://www.rpi.edu/
[^6]: http://www.farsight-toolkit.org/wiki/NucleusEditor
[^7]: http://www.farsight-toolkit.org/wiki/FARSIGHT_HowToBuild
the Centre for Biomedical Image Analysis\(^\text{11}\). Together with i3dalgo\(^\text{12}\) and i4dcore\(^\text{13}\), i3dcore forms a continuously developed templated cross-platform C++ suite of libraries for multidimensional image processing and analysis.

i3dcore is capable of reading images with Bio-Formats using Java for C++\(^\text{14}\) (java4cpp).

See Also
Download i3dcore\(^\text{15}\)
CBIA Software Development\(^\text{16}\)

7.4 ImgLib

ImgLib\(^\text{17}\) (see also the ImgLib Fiji page\(^\text{18}\)) is a multidimensional image processing library. It provides a general mechanism for writing image analysis algorithms, without writing case logic for bit depth\(^\text{19}\), or worrying about the source of the pixel data (arrays in memory, files on disk, etc.).

ImgLib provides an ImgOpener\(^\text{20}\) utility class for reading data using Bio-Formats.

7.5 ITK

The Insight Toolkit\(^\text{21}\) (ITK) is an open-source, cross-platform system that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional data.

ITK provides an ImageIO plug-in structure that works via discovery through a dependency injection scheme. This allows a program built on ITK to load plug-ins for reading and writing different image types without actually linking to the ImageIO libraries required for those types. Such encapsulation automatically grants two major boons: firstly, programs can be easily extended just by virtue of using ITK (developers do not have to specifically accommodate or anticipate what plug-ins may be used). Secondly, the architecture provides a distribution method for open source software, like Bio-Formats, which have licenses that might otherwise exclude them from being used with other software suites.

The Bio-Formats ITK plug-in provides an ImageIO plug-in for ITK that uses Bio-Formats\(^\text{22}\) to read and write supported life sciences file formats. This plug-in allows any program built on ITK to read any of the image types supported by Bio-Formats.

7.5.1 Prerequisites

If you have not done so already, download\(^\text{23}\) and build ITK. Note that BF-ITK requires ITK 3.20.0 or newer. It should also work with the latest ITK source from git\(^\text{24}\). BF-ITK also requires ITK to be built with the following flags set:

\(^{11}\)http://cbia.fi.muni.cz/software-development.html
\(^{12}\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dalgo/index.html
\(^{13}\)http://cbia.fi.muni.cz/user_dirs/of_doc/libi4d.html
\(^{14}\)http://java4cpp.kapott.org/
\(^{15}\)http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html#download
\(^{16}\)http://cbia.fi.muni.cz/software-development.html
\(^{17}\)http://imglib2.net/
\(^{18}\)http://fiji.sc/wiki/index.php/Imglib
\(^{19}\)http://en.wikipedia.org/wiki/Color_depth
\(^{21}\)http://itk.org/
\(^{22}\)http://farsight-toolkit.org/wiki/Bio-Formats
\(^{23}\)http://itk.org/ITK/resources/software.html
\(^{24}\)http://www.itk.org/Wiki/ITK/Git
• ITK_USE_REVIEW = ON
• BUILD_SHARED_LIBS = ON

You will also need Git\(^{25}\), Ant\(^{26}\) and CMake\(^{27}\) for the installation tutorial.

7.5.2 Installation

1. Clone the Bio-Formats source code:

   ```bash
   git clone git://github.com/openmicroscopy/bioformats.git
   ```

2. Compile the Bio-Formats tools bundle:

   ```bash
   cd bioformats
   ant tools
   ```

3. Configure your BF-ITK build:

   ```bash
   mkdir ../bf-itk-build && cd ../bf-itk-build
   ccmake ../bioformats/components/native/bf-itk-pipe
   ```

 If you prefer, you can use cmake-gui rather than ccmake to configure the project. If you receive a configuration error stating that the location of ITK cannot be found, then set ITK_DIR to your binary build of ITK.

4. Compile BF-ITK:

 On Linux and OSX, simply run `make`, or on Windows start BioFormatsImageIO.sln.

 This will open the solution in Visual Studio. Select Debug or Release from the drop-down menu, as appropriate. Press F7 to compile, or select Build Solution from the Build menu.

5. Package BF-ITK build (optional):

 By default, all necessary libraries including loci_tools.jar will be copied to dist/bf-itk inside the BF-ITK build folder.

 If desired, everything can be packaged into a single archive by running:

 On Linux and OSX, make package or on Windows, click on the PACKAGE target in the Visual Studio interface. Then choose Build PACKAGE from the Build menu.

7.5.3 Usage

To use BF-ITK, you must set your ITK_AUTOLOAD_PATH to point to the folder containing the BF-ITK binaries (including the BioFormatsIO and BioFormatsIOPlugin shared libraries, and the loci_tools.jar Java library). For example:

```bash
export ITK_AUTOLOAD_PATH=~/bf-itk-build/dist/bf-itk
```

Once this variable is set, ITK’s ImageIO routines will automatically use Bio-Formats as needed to read and write supported file formats.

If you build ITK with examples, you can test using various programs:

```bash
cd ~/itk-build/bin
./ImageReadWrite ~/data/inputFile.ics ~/data/outputFile.mha
```

\(^{25}\)http://git-scm.com/

\(^{26}\)http://ant.apache.org/

\(^{27}\)http://www.cmake.org/
7.6 Qu for MATLAB

Qu for MATLAB28 is a MATLAB toolbox for the visualization and analysis of N-dimensional datasets targeted to the field of biomedical imaging, developed by Aaron Ponti.

- Uses Bio-Formats to read files
- Open source software available under the Mozilla Public License

See Also
Qu for MATLAB download page29

7.7 Subimager

Subimager30, the SUBprocess IMAGE servER, is an HTTP server that uses Bio-Formats as a back-end to serve .TIF images. Subimager is designed to be run as a subprocess of CellProfiler to provide CellProfiler with the capability to read and write a variety of image formats. It can be used as a stand-alone image server. It was developed by the Broad Institute31 to facilitate integration with their CellProfiler32 image analysis application.

28http://www.scs2.net/home/index.php?option=com_content&view=article&id=46%3Aqu-for-matlab&catid=34%3Aqu&Itemid=55
29http://www.scs2.net/home/index.php?option=com_content&view=article&id=46%3Aqu-for-matlab&catid=34%3Aqu&Itemid=55&limitstart=3
30https://github.com/CellProfiler/subimager
31http://www.broadinstitute.org/
32http://www.cellprofiler.org/
NUMERICAL DATA PROCESSING APPLICATIONS

8.1 IDL

IDL\(^1\) (Interactive Data Language) is a popular data visualization and analysis platform used for interactive processing of large amounts of data including images.

IDL possesses the ability to interact with Java applications via its IDL-Java bridge. Karsten Rodenacker has written a script that uses Bio-Formats to read in image files to IDL.

8.1.1 Installation

Download the \texttt{ij_read_bio_formats.pro}\(^2\) script from Karsten Rodenacker's IDL goodies (?)\(^3\) web site. See the comments at the top of the script for installation instructions and caveats.

8.1.2 Upgrading

To use a newer version of Bio-Formats, overwrite the requisite JAR files with the newer version\(^4\) and restart IDL.

8.2 KNIME

KNIME\(^5\) (Konstanz Information Miner) is a user-friendly and comprehensive open-source data integration, processing, analysis, and exploration platform. KNIME supports image import using Bio-Formats using the KNIME Image Processing\(^6\) (a.k.a. KNIP) plugin.

8.3 MATLAB

MATLAB\(^7\) is a high-level language and interactive environment that facilitates rapid development of algorithms for performing computationally intensive tasks.

\(^1\)http://www.exelisvis.com/ProductsServices/IDL.aspx
\(^2\)http://www.helmholtz-muenchen.de/ibb/homepage/karsten.rodenacker/IDL/_pro/ij_read_bio_formats.pro
\(^3\)http://www.helmholtz-muenchen.de/ibb/homepage/karsten.rodenacker/IDL/index.php
\(^4\)http://www.openmicroscopy.org/site/products/bio-formats/downloads/
\(^5\)http://knime.org/
\(^6\)http://tech.knime.org/community/image-processing
\(^7\)http://www.mathworks.com/products/matlab/
Calling Bio-Formats from MATLAB is fairly straightforward, since MATLAB has built-in interoperability with Java. We have created a simple script for reading image files: bfopen.m⁸.

We are not MATLAB experts—any comments on improving the script are welcome.

8.3.1 Performance

In our tests (MATLAB R14 vs. java 1.6.0_20), the script executes at approximately half the speed of our showinf command line tool, due to overhead from copying arrays.

8.3.2 Installation

To use the script, download bfopen.m⁹ and loci_tools.jar¹⁰ and place them in your MATLAB work directory.

8.3.3 Upgrading

To use a newer version of Bio-Formats, overwrite loci_tools.jar with the newer version¹¹ and restart MATLAB.

8.3.4 More information

For further instructions on working with Bio-Formats from MATLAB, see the *Bio-Formats MATLAB Guide*.

8.4 VisAD

The VisAD¹² visualization toolkit is a Java component library for interactive and collaborative visualization and analysis of numerical data. VisAD uses Bio-Formats to read many image formats, notably TIFF.

8.4.1 Installation

The visad.jar file has Bio-Formats bundled inside, so no further installation is necessary.

8.4.2 Upgrading

It should be possible to use a newer version of Bio-Formats by putting the latest loci_tools.jar¹³ or bio-formats.jar¹⁴ before visad.jar in the class path. Alternately, you can create a “VisAD Lite” using the make lite command from VisAD source, and use the resultant visad-lite.jar, which is a stripped down version of VisAD without sample applications or Bio-Formats bundled in.

⁸https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab/bfopen.m
⁹https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab/bfopen.m
¹⁰http://www.openmicroscopy.org/site/products/bio-formats/downloads/
¹¹http://www.openmicroscopy.org/site/products/bio-formats/downloads/
¹²http://www.ssec.wisc.edu/~billh/visad.html
¹³http://www.openmicroscopy.org/site/products/bio-formats/downloads/
¹⁴http://www.openmicroscopy.org/site/products/bio-formats/downloads/
VISUALIZATION AND ANALYSIS APPLICATIONS

9.1 Bitplane Imaris

Imaris\(^1\) is Bitplane’s core scientific software module that delivers all the necessary functionality for data visualization, analysis, segmentation and interpretation of 3D and 4D microscopy datasets. Combining speed, precision and ease-of-use, Imaris provides a complete set of features for working with three- and four-dimensional multi-channel images of any size, from a few megabytes to multiple gigabytes in size.

As of version 7.2\(^2\), Imaris integrates with Fiji, which includes Bio-Formats. See this page\(^3\) for a detailed list of Imaris’ features.

9.2 CellProfiler

CellProfiler\(^4\)—developed by the Broad Institute\(^5\)’s Imaging Platform\(^6\)—is free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automatically. CellProfiler uses Bio-Formats to read images from disk, as well as write movies.

9.2.1 Installation

The CellProfiler distribution comes with Bio-Formats included, so no further installation is necessary.

9.2.2 Upgrading

It should be possible to use a newer version of Bio-Formats by replacing the bundled loci_tools.jar with a newer version.

- For example, on Mac OS X, Ctrl+click the CellProfiler icon, choose Show Package Contents, and replace the following files:
 - Contents/Resources/bioformats/loci_tools.jar
 - Contents/Resources/lib/python2.5/bioformats/loci_tools.jar

\(^1\)http://www.bitplane.com/
\(^2\)http://www.bitplane.com/go/releasenotes?product=Imaris&version=7.2&patch=0
\(^3\)http://www.bitplane.com/index.cfm?objectid=0D8067BB-B4BA-B42D-00D7454EF75DB9A8
\(^4\)http://www.cellprofiler.org/
\(^5\)http://www.broadinstitute.org/
\(^6\)http://www.broadinstitute.org/science/platforms/imaging/imaging-platform
9.3 Comstat2

Comstat2 is a Java-based computer program for the analysis and treatment of biofilm images in 3D. It is the Master's project of Martin Vorregaard8.

Comstat2 uses the Bio-Formats Importer plugin for ImageJ to read files in TIFF and Leica LIF formats.

See also:
Comstat2 - a modern 3D image analysis environment for biofilms9

9.4 Endrov

Endrov10 (or http://www.endrov.net) (EV) is a multi-purpose image analysis program developed by the Thomas Burglin group11 at Karolinska Institute12, Department of Biosciences and Nutrition.

9.4.1 Installation

The EV distribution comes bundled with the core Bio-Formats library (bio-formats.jar), so no further installation is necessary.

9.4.2 Upgrading

It should be possible to use a newer version of Bio-Formats by downloading the latest bio-formats.jar13 and putting it into the libs folder of the EV distribution, overwriting the old file.

You could also include some optional libraries, to add support for additional formats, if desired.

9.5 FocalPoint

FocalPoint14 is an image browser, similar to Windows Explorer15 or other file manager16 application, specifically designed to work with more complex image types. FocalPoint uses Bio-Formats to generate thumbnails for some formats.

7http://www.cellprofiler.org/
8http://www.comstat.dk/
9http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=5628
10https://github.com/mahogny/Endrov
11http://www.biosci.ki.se/groups/tbu
12http://www.ki.se/
13http://www.openmicroscopy.org/site/products/bio-formats/downloads/
14http://www.bioinformatics.bbsrc.ac.uk/projects/focalpoint/
16http://en.wikipedia.org/wiki/File_manager
9.5.1 Installation

FocalPoint is bundled with Bio-Formats, so no further installation is necessary.

9.5.2 Upgrading

It should be possible to use a newer version of Bio-Formats by overwriting the old *loci_tools.jar* within the FocalPoint distribution. For Mac OS X, you will have to control click the FocalPoint program icon, choose “Show Package Contents” and navigate into Contents/Resources/Java to find the *loci_tools.jar* file.

9.6 Graphic Converter

Graphic Converter is a Mac OS application for opening, editing, and organizing photos. Versions 6.4.1 and later use Bio-Formats to open all file formats supported by Bio-Formats.

9.7 Icy

Icy is an open-source image analysis and visualization software package that combines a user-friendly graphical interface with the ability to write scripts and plugins that can be uploaded to a centralized website. It uses Bio-Formats internally to read images and acquisition metadata, so no further installation is necessary.

9.8 imago

Mayachitra imago is an advanced desktop image management package that enables scientists to easily store, manage, search, and analyze 5D biological images and their analysis results. imago integrates flexible annotation and metadata management with advanced image analysis tools.

imago uses Bio-Formats to read files in some formats, including Bio-Rad PIC, Image-Pro Workspace, Metamorph TIFF, Leica LCS LEI, Olympus FluoView FV1000, Nikon NIS-Elements ND2, and Zeiss LSM.

A free 30-day trial version of imago is available [here](http://mayachitra.com/imago/download-trial.php).

9.9 Iqm

Iqm is an image processing application written in Java. It is mainly constructed around the Java JAI library and furthermore it incorporates the functionality of the popular ImageJ image processing software.

Because iqm integrates with ImageJ, it can take advantage of the *Bio-Formats ImageJ plugin* to read image data.

17 http://www.openmicroscopy.org/site/products/bio-formats/downloads/
18 http://www.lemkesoft.com
19 http://icy.bioimageanalysis.org/
22 http://code.google.com/p/iqm/
9.10 Macnification

Macnification23 is a Mac OS X application for organizing, editing, analyzing and annotating microscopic images, designed for ease of use. It is being developed by Orbicule24.

Macnification uses Bio-Formats to read files in some formats, including Gatan DM3, ICS, ImagePro SEQ, ImagePro IPW, Metamorph STK, OME-TIFF and Zeiss LSM.

\textbf{See also:}

Free trial download25

9.11 MIPAV

The MIPAV26 (Medical Image Processing, Analysis, and Visualization) application—developed at the Center for Information Technology27 at the National Institutes of Health28—enables quantitative analysis and visualization of medical images of numerous modalities such as PET, MRI, CT, or microscopy. You can use Bio-Formats as a plugin for MIPAV to read images in the formats it supports.

9.11.1 Installation

Follow these steps to install the Bio-Formats plugin for MIPAV:

1. Download \texttt{loci_tools.jar}29 and drop it into your MIPAV folder.

2. Download the plugin source code30 into your user \texttt{mipav/plugins} folder.

3. From the command line, compile the plugin with:

 \begin{verbatim}
 cd mipav/plugins
 javac -cp $MIPAV:$MIPAV/loci_tools.jar \ PlugInBioFormatsImporter.java
 \end{verbatim}

4. where $MIPAV is the location of your MIPAV installation.

5. Add \texttt{loci_tools.jar} to MIPAV’s class path:

 \begin{itemize}
 \item How to do so depends on your platform.
 \item E.g., in Mac OS X, edit the \texttt{mipav.app/Contents/Info.plist} file.
 \end{itemize}

See the \texttt{readme file}31 for more information.

To upgrade, just overwrite the old \texttt{loci_tools.jar} with the latest one32. You may want to download the latest version of MIPAV first, to take advantage of new features and bug-fixes.

23\url{http://www.orbicule.com/macnification/}
24\url{http://www.orbicule.com}
25\url{http://www.orbicule.com/macnification/download}
26\url{http://mipav.cit.nih.gov/}
27\url{http://cit.nih.gov/}
28\url{http://nih.gov/}
29\url{http://www.openmicroscopy.org/site/products/bio-formats/downloads/}
30\url{https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/utils/mipav/PlugInBioFormatsImporter.java}
31\url{https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/utils/mipav/readme.txt}
32\url{http://www.openmicroscopy.org/site/products/bio-formats/downloads/}
9.12 Vaa3D

Vaa3D[^33], developed by the Peng Lab[^34] at the HHMI Janelia Farm Research Campus[^35], is a handy, fast, and versatile 3D/4D/5D Image Visualization & Analysis System for Bioimages & Surface Objects.

Vaa3D can use Bio-Formats via the Bio-Formats C++ bindings[^36] to read images.

9.13 VisBio

VisBio[^37] is a biological visualization tool designed for easy visualization and analysis of multidimensional image data. VisBio uses Bio-Formats to import files as the Bio-Formats library originally grew out of our efforts to continually expand the file format support within VisBio.

9.13.1 Installation

VisBio is bundled with Bio-Formats, so no further installation is necessary.

9.13.2 Upgrading

It should be possible to use a newer version of Bio-Formats[^38] by overwriting the old bio-formats.jar and optional libraries within the VisBio distribution. For Mac OS X, you’ll have to control click the VisBio program icon, choose “Show Package Contents” and navigate into Contents/Resources/Java to find the JAR files.

9.14 XuvTools

XuvTools[^39] is automated 3D stitching software for biomedical image data. As of release 1.8.0, XuvTools uses Bio-Formats to read image data.

[^33]: http://vaa3d.org
[^34]: http://penglab.janelia.org/
[^35]: http://www.hhmi.org/janelia/
[^37]: http://www.loci.wisc.edu/visbio/
[^38]: http://www.openmicroscopy.org/site/products/bio-formats/downloads/
[^39]: http://www.xuvtools.org
Part III

Developer Documentation
10.1 An in-depth guide to using Bio-Formats

10.1.1 Overview

This document describes various things that are useful to know when working with Bio-Formats. It is recommended that you obtain the Bio-Formats source by following the directions on the source code page, rather than using an official release. It is also recommended that you have a copy of the Javadocs nearby - the notes that follow will make more sense when you see the API.

For a complete list of supported formats, see the Bio-Formats supported formats table.

For a few working examples of how to use Bio-Formats, see these Github pages.

10.1.2 Basic file reading

Bio-Formats provides several methods for retrieving data from files in an arbitrary (supported) format. These methods fall into three categories: raw pixels, core metadata, and format-specific metadata. All methods described here are present and documented in loci.formats.IFormatReader - it is advised that you take a look at the source and/or the Javadocs. In general, it is recommended that you read files using an instance of ImageReader. While it is possible to work with readers for a specific format, ImageReader contains additional logic to automatically detect the format of a file and delegate subsequent calls to the appropriate reader.

Prior to retrieving pixels or metadata, it is necessary to call setId(String) on the reader instance, passing in the name of the file to read. Some formats allow multiple series (5D image stacks) per file; in this case you may wish to call setSeries(int) to change which series is being read.

Raw pixels are always retrieved one plane at a time. Planes are returned as raw byte arrays, using one of the openBytes methods.

Core metadata is the general term for anything that might be needed to work with the planes in a file. A list of core metadata fields is given below, with the appropriate accessor method in parentheses:

- image width (getSizeX())
- image height (getSizeY())

Bio-Formats Documentation, Release 4.4.8-DEV

- number of series per file (`getSeriesCount()`)
- total number of images per series (`getImageCount()`)
- number of slices in the current series (`getSizeZ()`)
- number of timepoints in the current series (`getSizeT()`)
- number of actual channels in the current series (`getSizeC()`)
- number of channels per image (`getRGBChannelCount()`)
- the ordering of the images within the current series (`getDimensionOrder()`)
- whether each image is RGB (`isRGB()`)
- whether the pixel bytes are in little-endian order (`isLittleEndian()`)
- whether the channels in an image are interleaved (`isInterleaved()`)
- the type of pixel data in this file (`getPixelType()`)

All file formats are guaranteed to accurately report core metadata.

Format-specific metadata refers to any other data specified in the file - this includes acquisition and hardware parameters, among other things. This data is stored internally in a `java.util.Hashtable`, and can be accessed in one of two ways: individual values can be retrieved by calling `getMetadataValue(String)`20, which gets the value of the specified key. Alternatively, `getMetadata()`21 will return the entire Hashtable. Note that the keys in this Hashtable are different for each format, hence the name “format-specific metadata”.

See `Bio-Formats metadata processing` for more information on the metadata capabilities that Bio-Formats provides.

10.1.3 File reading extras

The previous section described how to read pixels as they are stored in the file. However, the native format is not necessarily convenient, so Bio-Formats provides a few extras to make file reading more flexible.

- There are a few “wrapper” readers (that implement `IFormatReader`) that take a reader in the constructor, and manipulate the results somehow, for convenience. Using them is similar to the `java.io` InputStream/OutputStream model: just layer whichever functionality you need by nesting the wrappers.

 - `BufferedImageReader`22 extends `IFormatReader`, and allows pixel data to be returned as `BufferedImage` instead of raw byte arrays.

 - `FileStitcher`23 extends `IFormatReader`, and uses advanced pattern matching heuristics to group files that belong to the same dataset.

16 http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-stable/javadoc/loci/formats/IFormatReader.html#isRGB()
17 http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-stable/javadoc/loci/formats/IFormatReader.html#isLittleEndian()
18 http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-stable/javadoc/loci/formats/IFormatReader.html#isInterleaved()
19 http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-stable/javadoc/loci/formats/IFormatReader.html#getPixelType()
23 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/FileStitcher.java

10.1. An in-depth guide to using Bio-Formats 61
– **ChannelSeparator** extends IFormatReader, and makes sure that all planes are grayscale - RGB images are split into 3 separate grayscale images.

– **ChannelMerger** extends IFormatReader, and merges grayscale images to RGB if the number of channels is greater than 1.

– **ChannelFiller** extends IFormatReader, and converts indexed color images to RGB images.

– **MinMaxCalculator** extends IFormatReader, and provides an API for retrieving the minimum and maximum pixel values for each channel.

– **DimensionSwapper** extends IFormatReader, and provides an API for changing the dimension order of a file.

• **ImageTools** and **loci.formats.gui.AWTImageTools** provide a number of methods for manipulating BufferedImage and primitive type arrays. In particular, there are methods to split and merge channels in a BufferedImage/array, as well as converting to a specific data type (e.g. convert short data to byte data).

10.1.4 Writing files

The following file formats can be written using Bio-Formats:

- TIFF (uncompressed, LZW, JPEG, or JPEG-2000)
- OME-TIFF (uncompressed, LZW, JPEG, or JPEG-2000)
- JPEG
- PNG
- AVI (uncompressed)
- QuickTime (uncompressed is supported natively; additional codecs use QTJava)
- Encapsulated PostScript (EPS)
- OME-XML (not recommended)

The writer API (see **loci.formats.IFormatWriter**) is very similar to the reader API, in that files are written one plane at a time (rather than all at once).

All writers allow the output file to be changed before the last plane has been written. This allows you to write to any number of output files using the same writer and output settings (compression, frames per second, etc.), and is especially useful for formats that do not support multiple images per file.

Please see **loci.formats.tools.ImageConverter** and this guide to exporting to OME-TIFF files for examples of how to write files.

10.1.5 Arcane notes and implementation details

Known oddities:

27. https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/MinMaxCalculator.java
• Importing multi-file formats (Leica LEI, PerkinElmer, FV1000 OIF, ICS, and Prairie TIFF, to name a few) can fail if any of the files are renamed. There are “best guess” heuristics in these readers, but they are not guaranteed to work in general. So please do not rename files in these formats.

• If you are working on a Macintosh, make sure that the data and resource forks of your image files are stored together. Bio-Formats does not handle separated forks (the native QuickTime reader tries, but usually fails).

10.2 Generating test images

Sometimes it is nice to have a file of a specific size or pixel type for testing. To generate a file (that contains gradient images):

touch "my-special-test-file\pixelType=uint8&sizeX=8192&sizeY=8192.fake"

Whatever is before the & is the image name; remaining key value pairs should be pretty self-explanatory. Just replace the values with whatever you need for testing.

There are a few other keys that can be added as well:

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sizeZ</td>
<td>number of Z sections</td>
</tr>
<tr>
<td>sizeC</td>
<td>number of channels</td>
</tr>
<tr>
<td>sizeT</td>
<td>number of timepoints</td>
</tr>
<tr>
<td>bitsPerPixel</td>
<td>number of valid bits (<= number of bits implied by pixel type)</td>
</tr>
<tr>
<td>rgb</td>
<td>number of channels that are merged together</td>
</tr>
<tr>
<td>dimOrder</td>
<td>dimension order (e.g. XYZCT)</td>
</tr>
<tr>
<td>little</td>
<td>whether or not the pixel data should be little-endian</td>
</tr>
<tr>
<td>interleaved</td>
<td>whether or not merged channels are interleaved</td>
</tr>
<tr>
<td>indexed</td>
<td>whether or not a color lookup table is present</td>
</tr>
<tr>
<td>falseColor</td>
<td>whether or not the color lookup table is just for making the image look pretty</td>
</tr>
<tr>
<td>series</td>
<td>number of series (Images)</td>
</tr>
<tr>
<td>lutLength</td>
<td>number of entries in the color lookup table</td>
</tr>
</tbody>
</table>

You can often work with the .fake file directly, but in some cases support for those files is disabled and so you will need to convert the file to something else. Make sure that you have Bio-Formats built and the JARs in your CLASSPATH (individual JARs or just loci_tools.jar):

`bfconvert test\pixelType=uint8&sizeX=8192&sizeY=8192.fake test.tiff`

If you do not have the command line tools installed, substitute `lociformats.tools.ImageConverter` for `bfconvert`.

CHAPTER
ELEVEN

BIO-FORMATS AS A JAVA LIBRARY

11.1 API documentation

11.1.1 Using Bio-Formats as a Java library

If you wish to make use of Bio-Formats within your own software, you can download bio-formats.jar to use it as a library. Just add bio-formats.jar to your CLASSPATH or build path. You will also need loci-common.jar for common I/O functions, one-xml.jar for metadata standardization, and SLF4J for logging.

Beyond bio-formats.jar, loci-common.jar, one-xml.jar, and SLF4J, no additional libraries are required. However, there are certain packages that if present will be utilized to provide additional functionality. To include one, just place it in the same folder.

<table>
<thead>
<tr>
<th>Package</th>
<th>Filename</th>
<th>License</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache Jakarta POI library, LOCI fork</td>
<td>poi-loci.jar</td>
<td>Apache</td>
<td>For OLE-based formats (zvi, oib, ipw, cxd)</td>
</tr>
<tr>
<td>MDB Tools project Java port, LOCI fork</td>
<td>mdbtools-java.jar</td>
<td>LGPL</td>
<td>For Olympus CellR and Zeiss LSM metadata (mdb)</td>
</tr>
<tr>
<td>JAI Image I/O Tools pure Java implementation, LOCI fork</td>
<td>jai_imageio.jar</td>
<td>BSD</td>
<td>For JPEG2000-based formats (nd2, jp2)</td>
</tr>
<tr>
<td>NetCDF Java library</td>
<td>netcdf-4.0.jar</td>
<td>LGPL</td>
<td>For HDF5-based formats (Imaris 5.5, MINC MRI)</td>
</tr>
<tr>
<td>QuickTime for Java</td>
<td>QTJava.zip</td>
<td>Commercial</td>
<td>For additional QuickTime codecs</td>
</tr>
</tbody>
</table>

See the list in the Bio-Formats toplevel build file for a complete and up-to-date list of all optional libraries, which can all be found in our Git repository:

2. http://slf4j.org/
5. http://sourceforge.net/projects/mdbtools
7. http://java.net/projects/jai-imageio
12. https://github.com/openmicroscopy/bioformats/blob/develop/build.xml
13. https://github.com/openmicroscopy/bioformats/blob/develop/jar
Examples of usage

ImageConverter\(^{15}\) - A simple command line tool for converting between formats.

ImageInfo\(^{16}\) - A more involved command line utility for thoroughly reading an input file, printing some information about it, and displaying the pixels onscreen using the Bio-Formats viewer.

MinimumWriter\(^{17}\) - A command line utility demonstrating the minimum amount of metadata needed to write a file.

PrintTimestamps\(^{18}\) - A command line example demonstrating how to extract timestamps from a file.

Simple_Read\(^{19}\) - A simple ImageJ plugin demonstrating how to use Bio-Formats to read files into ImageJ (see ImageJ).

Read_Image\(^{20}\) - An ImageJ plugin that uses Bio-Formats to build up an image stack, reading image planes one by one (see ImageJ).

Mass_Importer\(^{21}\) - A simple plugin for ImageJ that demonstrates how to open all image files in a directory using Bio-Formats, grouping files with similar names to avoid opening the same dataset more than once (see ImageJ).

A Note on Java Web Start (loci_tools.jar vs. bio-formats.jar)

To use Bio-Formats with your Java Web Start application, we recommend using bio-formats.jar rather than loci_tools.jar—the latter is merely a bundle of bio-formats.jar plus all its optional dependencies.

The loci_tools.jar bundle is intended as a convenience (e.g. to simplify installation as an ImageJ plugin), but is by no means the only solution for developers. We recommend using bio-formats.jar as a separate entity depending on your needs as a developer.

The bundle is quite large because we have added support for several formats that need large helper libraries (e.g. Imaris’ HDF-based format). However, these additional libraries are optional; Bio-Formats has been coded using reflection so that it can both compile and run without them.

When deploying a JNLP-based application, using loci_tools.jar directly is not the best approach, since every time Bio-Formats is updated, the server would need to feed another 8+ MB JAR file to the client. Rather, Web Start is a case where you should keep the JARs separate, since JNLP was designed to make management of JAR dependencies trivial for the end user. By keeping bio-formats.jar and the optional dependencies separate, only a <1 MB JAR needs to be updated when bio-formats.jar changes.

As a developer, you have the option of packaging bio-formats.jar with as many or as few optional libraries as you wish, to cut down on file size as needed. You are free to make whatever kind of “stripped down” version you require. You could even build a custom bio-formats.jar that excludes certain classes, if you like.

For an explicit enumeration of all the optional libraries included in loci_tools.jar, see the loci-tools.libraries variable of the ant/toplevel.properties\(^{22}\) file of the distribution. You can also read our notes about each in the source distribution’s Ant build.xml\(^{23}\) script.

Also see Bio-Formats Javadocs\(^{24}\)

\(^{15}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-tools/src/loci/formats/tools/ImageConverter.java

\(^{16}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-tools/src/loci/formats/tools/ImageInfo.java

\(^{17}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/utils/MinimumWriter.java

\(^{18}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/utils/PrintTimestamps.java

\(^{19}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/Simple_Read.java

\(^{20}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/Read_Image.java

\(^{21}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/loci-plugins/utils/Mass_Importer.java

\(^{22}\)https://github.com/openmicroscopy/bioformats/blob/develop/ant/toplevel.properties

\(^{23}\)https://github.com/openmicroscopy/bioformats/blob/develop/build.xml#L240

\(^{24}\)http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-stable/javadoc/
11.2 Examples

11.2.1 Exporting files using Bio-Formats

This guide pertains to version 4.2 and later.

Basic conversion

The first thing we need to do is set up a reader:

```java
// create a reader that will automatically handle any supported format
IFormatReader reader = new ImageReader();
// tell the reader where to store the metadata from the dataset
reader.setMetadataStore(MetadataTools.createOMEXMLMetadata());
// initialize the dataset
reader.setId("/path/to/file");
```

Now, we set up our writer:

```java
// create a writer that will automatically handle any supported output format
IFormatWriter writer = new ImageWriter();
// give the writer a MetadataRetrieve object, which encapsulates all of the
// dimension information for the dataset (among many other things)
writer.setMetadataRetrieve(MetadataTools.asRetrieve(reader.getMetadataStore()));
// initialize the writer
writer.setId("/path/to/output/file");
```

Note that the extension of the file name passed to `writer.setId(...)` determines the file format of the exported file.

Now that everything is set up, we can start writing planes:

```java
for (int series=0; series<reader.getSeriesCount(); series++) {
    reader.setSeries(series);
    writer.setSeries(series);
    for (int image=0; image<reader.getImageCount(); image++) {
        writer.saveBytes(image, reader.openBytes(image));
    }
}
```

Finally, make sure to close both the reader and the writer. Failure to do so can cause:

- file handle leaks
- memory leaks
- truncated output files

Fortunately, closing the files is very easy:

```java
reader.close();
writer.close();
```

Converting large images

The flaw in the previous example is that it requires an image plane to be fully read into memory before it can be saved. In many cases this is fine, but if you are working with very large images (especially > 4 GB) this is problematic.
The solution is to break each image plane into a set of reasonably-sized tiles and save each tile separately - thus substantially reducing the amount of memory required for conversion.

For now, we’ll assume that your tile size is 1024 x 1024, though in practice you will likely want to adjust this. Assuming you have an IFormatReader and IFormatWriter set up as in the previous example, let’s start writing planes:

```java
int tileWidth = 1024;
int tileHeight = 1024;

for (int series = 0; series < reader.getSeriesCount(); series++) {
    reader.setSeries(series);
    writer.setSeries(series);

    // determine how many tiles are in each image plane
    // for simplicity, we’ll assume that the image width and height are
    // multiples of 1024
    int tileRows = reader.getSizeY() / tileHeight;
    int tileColumns = reader.getSizeX() / tileWidth;

    for (int image = 0; image < reader.getImageCount(); image++) {
        for (int row = 0; row < tileRows; row++) {
            for (int col = 0; col < tileColumns; col++) {
                // open a tile - in addition to the image index, we need to specify
                // the (x, y) coordinate of the upper left corner of the tile,
                // along with the width and height of the tile
                int xCoordinate = col * tileWidth;
                int yCoordinate = row * tileHeight;
                byte[] tile =
                    reader.openBytes(image, xCoordinate, yCoordinate, tileWidth, tileHeight);
                writer.saveBytes(image, tile, xCoordinate, yCoordinate, tileWidth, tileHeight);
            }
        }
    }
}
```

As noted, the example assumes that the width and height of the image are multiples of the tile dimensions. Be careful, as this is not always the case; the last column and/or row may be smaller than preceding columns/rows. An exception will be thrown if you attempt to read or write a tile that is not completely contained by the original image plane. Most writers perform best if the tile width is equal to the image width, although specifying any valid width should work.

As before, you need to close the reader and writer.

Converting to multiple files

The recommended method of converting to multiple files is to use a single IFormatWriter, like so:

```java
// you should have set up a reader as in the first example
ImageWriter writer = new ImageWriter();
writer.setMetadataRetrieve(MetadataTools.asRetrieve(reader.getMetadataStore()));
// replace this with your own filename definitions
// in this example, we’re going to write half of the planes to one file
// and half of the planes to another file
String[] outputFiles =
    new String[] {"/path/to/file/1.tiff", "/path/to/file/2.tiff"};
writer.setId(outputFiles[0]);
```
The advantage here is that the relationship between the files is preserved when converting to formats that support multi-file datasets internally (namely OME-TIFF). If you are only converting to graphics formats (e.g. JPEG, AVI, MOV), then you could also use a separate IFormatWriter for each file, like this:

// again, you should have set up a reader already
String[] outputFiles = new String[] {"/path/to/file/1.avi", "/path/to/file/2.avi"};
int planesPerFile = reader.getImageCount() / outputFiles.length;
for (int file=0; file<outputFiles.length; file++) {
 ImageWriter writer = new ImageWriter();
 writer.setMetadataRetrieve(MetadataTools.asRetrieve(reader.getMetadataStore()));
 writer.setId(outputFiles[file]);
 for (int image=0; image<planesPerFile; image++) {
 int index = file * planesPerFile + image;
 writer.saveBytes(image, reader.openBytes(index));
 }
 writer.close();
}

The advantage here is that the relationship between the files is preserved when converting to formats that support multi-file datasets internally (namely OME-TIFF). If you are only converting to graphics formats (e.g. JPEG, AVI, MOV), then you could also use a separate IFormatWriter for each file, like this:

11.2.2 Further details on exporting raw pixel data to OME-TIFF files

This document explains how to export pixel data to OME-TIFF using Bio-Formats version 4.2 and later.

The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows:

ServiceFactory factory = new ServiceFactory();
OMEXMLService service = factory.getInstance(OMEXMLService.class);
IMetadata omexml = service.createOMEXMLMetadata();

The ‘omexml’ object can now be used in our code to store OME-XML metadata, and by the file format writer to retrieve OME-XML metadata.

Now that we have somewhere to put metadata, we need to populate as much metadata as we can. The minimum amount of metadata required is:

- endianness of the pixel data
- the order in which dimensions are stored
- the bit depth of the pixel data

Known issues

List of Trac tickets

11.2. Examples
• the number of channels
• the number of timepoints
• the number of Z sections
• the width (in pixels) of an image
• the height (in pixels) of an image
• the number of samples per channel (3 for RGB images, 1 otherwise)

We populate that metadata as follows:

```java
omexml.setImageID("Image:0", 0);
omexml.setPixelsID("Pixels:0", 0);

// specify that the pixel data is stored in big-endian order
// replace 'TRUE' with 'FALSE' to specify little-endian order
omexml.setPixelsBinDataBigEndian(Boolean.TRUE, 0, 0);

omexml.setPixelsDimensionOrder(DimensionOrder.XYCZT, 0);
omexml.setPixelsType(PixelType.UINT16, 0);
omexml.setPixelsSizeX(new PositiveInteger(width), 0);
omexml.setPixelsSizeY(new PositiveInteger(height), 0);
omexml.setPixelsSizeZ(new PositiveInteger(zSectionCount), 0);
omexml.setPixelsSizeC(new PositiveInteger(channelCount * samplesPerChannel), 0);
omexml.setPixelsSizeT(new PositiveInteger(timepointCount), 0);

for (int channel=0; channel<channelCount; channel++) {
    omexml.setChannelID("Channel:0:" + channel, 0, channel);
    omexml.setChannelSamplesPerPixel(new PositiveInteger(samplesPerChannel), 0, channel);
}
```

There is much more metadata that can be stored; please see the Javadoc for loci.formats.meta.MetadataStore for a complete list.

Now that we have defined all of the metadata, we need to create a file writer:

```java
ImageWriter writer = new ImageWriter();

Now we must associate the 'omexml' object with the file writer:

writer.setMetadataRetrieve(omexml);

The writer now knows to retrieve any metadata that it needs from 'omexml'.

We now tell the writer which file it should write to:

writer.setId("output-file.ome.tiff");
```

It is critical that the file name given to the writer ends with ".ome.tiff" or ".ome.tif", as it is the file name extension that determines which format will be written.

Now that everything is set up, we can save the image data. This is done plane by plane, and we assume that the pixel data is stored in a 2D byte array ‘pixelData’:

```java
int sizeC = omexml.getPixelsSizeC(0).getValue();
int sizeZ = omexml.getPixelsSizeZ(0).getValue();
int sizeT = omexml.getPixelsSizeT(0).getValue();
int samplesPerChannel = omexml.getChannelSamplesPerPixel(0).getValue();
```
sizeC /= samplesPerChannel;

int imageCount = sizeC * sizeZ * sizeT;

for (int image=0; image<imageCount; image++) {
 writer.saveBytes(image, pixelData[image]);
}

Finally, we must tell the writer that we are finished, so that the output file can be properly closed:

writer.close();

There should now be a complete OME-TIFF file at whichever path was specified above.

11.2.3 Converting files from FV1000 OIB/OIF to OME-TIFF

This document explains how to convert a file from FV1000 OIB/OIF to OME-TIFF using Bio-Formats version 4.2 and later.

The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows:

ServiceFactory factory = new ServiceFactory();
OMEXMLService service = factory.getInstance(OMEXMLService.class);
IMetadata omexml = service.createOMEXMLMetadata();

The ‘omexml’ object can now be used by both a file format reader and a file format writer for storing and retrieving OME-XML metadata.

Now that have somewhere to put metadata, we need to create a file reader and writer:

ImageReader reader = new ImageReader();
ImageWriter writer = new ImageWriter();

Now we must associate the ‘omexml’ object with the file reader and writer:

reader.setMetadataStore(omexml);
writer.setMetadataRetrieve(omexml);

The reader now knows to store all of the metadata that it parses into ‘omexml’, and the writer knows to retrieve any metadata that it needs from ‘omexml’.

We now tell the reader and writer which files will be read from and written to, respectively:

reader.setId("input-file.oib");
writer.setId("output-file.ome.tif");

It is critical that the file name given to the writer ends with ".ome.tif" or ".ome.tiff", as it is the file name extension that determines which format will be written.

Now that everything is set up, we can convert the image data. This is done plane by plane:

for (int series=0; series<reader.getSeriesCount(); series++) {
 reader.setSeries(series);
 writer.setSeries(series);
 byte[] plane = new byte[FormatTools.getPlaneSize(reader)];
 for (int image=0; image<reader.getImageCount(); image++) {
 reader.openBytes(image, plane);
 writer.saveBytes(image, plane);
 }
}
The body of the outer ‘for’ loop may also be replaced with the following:

```java
reader.setSeries(series);
writer.setSeries(series);
for (int image=0; image<reader.getImageCount(); image++) {
    byte[] plane = reader.openBytes(image);
    writer.saveBytes(image, plane);
}
```

But note that this will be a little slower.

Finally, we must tell the reader and writer that we are finished, so that the input and output files can be properly closed:

```java
reader.close();
writer.close();
```

There should now be a complete OME-TIFF file at whichever path was specified above.

11.2.4 Using Bio-Formats in Matlab

This section assumes that you have installed the `bfopen.m` script and `loci_tools.jar`, as instructed here.

The first thing to do is initialize a file:

```matlab
data = bfopen('/path/to/data/file');
```

‘data’ is an array whose structure is a bit complicated. It is an n-by-4 array, where n is the number of series in the dataset:

- The `{s, 1}` element (if s is the series index between 1 and n) is an m-by-2 array, where m is the number of planes in the series:
 - The `{s, 1, t, 1}` element (where t is the image index between 1 and m) contains the pixel data for the t-th image in the s-th series.
 - The `{s, 1, t, 2}` element contains the label for said image.
- The `{s, 2}` element of ‘data’ contains original metadata key/value pairs that apply to the s-th series.
- The `{s, 3}` element of ‘data’ contains color lookup tables for each image in the series.
- The `{s, 4}` element of ‘data’ contains a standardized OME metadata structure, which is the same regardless of the input file format, and contains common metadata values such as physical pixel sizes—see “Accessing OME metadata” below for examples.

Accessing planes

Here is an example of how to unwrap specific image planes for easy access:

```matlab
data = bfopen('/path/to/data/file');
seriesCount = size(data, 1);
series1 = data(1, 1);
series2 = data(2, 1);
series3 = data(3, 1);
metadataList = data(1, 2);
```
Displaying images

If you want to display one of the images, you can do so as follows:

```matlab
data = bfopen('/path/to/data/file');
% plot the 1st series's 1st image plane in a new figure
series1 = data{1, 1};
series1_plane1 = series1{1, 1};
series1_label1 = series1{1, 2};
series1_colorMaps = data{1, 3};
figure('Name', series1_label1);
if (isempty(series1_colorMaps{1}))
    colorMap(gray);
else
    colorMap(series1_colorMaps{1});
end
imagesc(series1_plane1);
```

This will display the first image of the first series with its associated color map (if present). If you would prefer not to apply the color maps associated with each image, simply comment out the calls to `colorMap`.

Using the image processing toolbox

If you have the image processing toolbox, you could instead use:

```matlab
imshow(series1_plane1, []);
```

Displaying an animation

Here is an example that animates as a movie (assumes 8-bit unsigned data):

```matlab
v = linspace(0, 1, 256)';
cmap = [v v v];
for p = 1:series1_numPlanes
    M(p) = im2frame(uint8(series1{p, 1}), cmap);
end
movie(M);
```

Retrieving metadata

There are two kinds of metadata:

- **Original metadata** is a set of key/value pairs specific to the input format of the data. It is stored in the \[s, 2\] element of the data structure returned by `bfopen`.

11.2. Examples
• **OME metadata** is a standardized metadata structure, which is the same regardless of input file format. It is stored in the [s, 4] element of the data structure returned by `bfopen`, and contains common metadata values such as physical pixel sizes, instrument settings, and much more. See the [OME Model and Formats](http://www.openmicroscopy.org/site/support/ome-model/) pages for full details.

Accessing original metadata

To retrieve the metadata value for specific keys:

```matlab
data = bfopen('/path/to/data/file');
% Query some metadata fields (keys are format-dependent)
metadata = data{1, 2};
subject = metadata.get('Subject');
title = metadata.get('Title');
```

To print out all of the metadata key/value pairs for the first series:

```matlab
data = bfopen('/path/to/data/file');
metadata = data{1, 2};
metadataKeys = metadata.keySet().iterator();
for i=1:metadata.size()
  key = metadataKeys.nextElement();
  value = metadata.get(key);
  fprintf('%s = %s\n', key, value)
end
```

Accessing OME metadata

Conversion of metadata to the OME standard is one of Bio-Formats’ primary features. The OME metadata is always stored the same way, regardless of input file format.

To access physical voxel and stack sizes of the data:

```matlab
data = bfopen('/path/to/data/file');
omeMeta = data{1, 4};
stackSizeX = omeMeta.getPixelsSizeX(0).getValue(); % image width, pixels
stackSizeY = omeMeta.getPixelsSizeY(0).getValue(); % image height, pixels
stackSizeZ = omeMeta.getPixelsSizeZ(0).getValue(); % number of Z slices
voxelSizeX = omeMeta.getPixelsPhysicalSizeX(0).getValue(); % in µm
voxelSizeY = omeMeta.getPixelsPhysicalSizeY(0).getValue(); % in µm
voxelSizeZ = omeMeta.getPixelsPhysicalSizeZ(0).getValue(); % in µm
```

Saving files

First, make sure that you have `loci_tools.jar` installed in your MATLAB work folder.

Now, here is the basic code for saving planes (2 channels x 2 timepoints) to a file:

```matlab
javaaddpath(fullfile(fileparts(mfilename('fullpath')), 'loci_tools.jar'));
writer = loci.formats.ImageWriter();
metadata = loci.formats.MetadataTools.createOMEXMLMetadata();
metadata.createRoot();
metadata.setImageID('Image:0', 0);
metadata.setPixelsID('Pixels:0', 0);
```
This example will write a single plane to an OME-TIFF file. It assumes that there are 8 unsigned bits per pixel, and that the image is 64 pixels x 64 pixels. In your own code, you will need to adjust the dimensions and pixel type accordingly. Also, ‘plane’ is an array constructed like so:

```plaintext
plane = zeros(1, 64 * 64, 'uint8');
```

There is also a script that can save MATLAB arrays to supported formats:

```plaintext
bfsave.m
```

11.2.5 Source code

If you are interested in the latest Bio-Formats source code from our Git repository, you can access it using the repository path:

```plaintext
git@github.com:openmicroscopy/bioformats.git
```

You can also browse the Bio-Formats source on GitHub.

To build the code, you can use our Ant build script—try “`ant -p`” for a list of targets. In general, “ant jars” or “ant tools” is the correct command.

Lastly, you can browse the Bio-Formats Javadocs online, or generate them yourself using the “docs” Ant target.

27https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/matlab/bfsave.m
28http://git-scm.com/
29https://github.com/openmicroscopy/bioformats
30http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-stable/javadoc/
INTERFACING FROM NON-JAVA CODE

12.1 Solutions for interfacing from non-Java code

Bio-Formats is written in Java, and is easiest to use with other Java code. However, it is possible to call Bio-Formats from a program written in another language. But how to do so depends on your program’s needs.

Technologically, there are two broad categories of solutions: in-process approaches, and inter-process communication. See below for discussion and examples of each. For further reading, check out Codemesh’s technology comparison1.

Recommended in-process solution: Bio-Formats C++ bindings
Recommended inter-process solution: Subimager

12.1.1 In-process approaches

With an in-process approach, your application directly invokes Java code, either by spawning its own internal Java Virtual Machine (JVM) and passing data across a bridge, or otherwise executing the Java code within a single environment.

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tight (API-level) integration</td>
<td>No shared state between processes</td>
</tr>
<tr>
<td>Minimal performance overhead</td>
<td>Limited portability</td>
</tr>
<tr>
<td>Few security considerations</td>
<td></td>
</tr>
</tbody>
</table>

Paradigms:

• JNI – The most common paradigm is the Java Native Interface2, an API for interfacing Java programs with native3 C/C++ code. Functionality exists to 1) call C/C++ methods from Java, and 2) spawn a Java Virtual Machine and execute Java instructions from C/C++. The latter direction, known as Java Invocation4, is the relevant one for calling Bio-Formats from C++. Because using the JNI directly involves writing a lot of tedious glue code, several projects have emerged for autogenerating such code. See below: raw JNI, Jace, JunC++ion, JuggerNET
• Compilers – The dominant paradigm in Java is to compile Java source to Java bytecode, then execute the bytecode in a Java interpreter. However, an alternative is to compile the Java source directly to native code so that it can link with other native programs. Such an approach requires that the compiler provide correct support for all necessary Java standard library features. It may also exhibit much different performance (for better or for worse) than Sun’s Java implementation does. See below: GCJ

1http://codemesh.com/technology.html
2http://en.wikipedia.org/wiki/Java_Native_Interface
3http://en.wikipedia.org/wiki/Native_mode
4http://java.sun.com/javase/6/docs/technotes/guides/jni/spec/invocation.html
• **Runtimes** – The safest way to guarantee correct program behavior is to execute Java bytecode using the Java interpreter(s) with which it has been tested (which in the case of Bio-Formats is Sun’s implementation). However, a Java runtime written using a specific framework (e.g., .NET) could enable seamless integration with other (non-Java) programs within the same framework. Like the compiler-based paradigm above, though, it is reliant on the correctness, completeness and performance of the Java implementation in question. *See below: IKVM.NET*

12.1.2 Inter-process communication

The other approach is **inter-process communication**\(^5\), a broad collection of techniques for exchanging data between multiple running programs. Such techniques take many forms in computing; one ubiquitous example is web browsers and web servers. Most solutions in this category are some form of **middleware**\(^6\).

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share state between multiple processes on multiple machines</td>
<td>Object marshalling(^7) incurs significant overhead</td>
</tr>
<tr>
<td>Broad portability and language support</td>
<td>Potentially vulnerable to security exploits</td>
</tr>
</tbody>
</table>

Paradigms:

- **Local communication** – Modern operating systems provide several ways to share information between processes, including shared memory, file system access, and passing data back and forth with **standard input and output streams**\(^8\). *See below: pipes, files*

- **Messaging** – Networking technology allows a process on one computer to send and receive messages from another process on a different machine. The **client-server**\(^9\) model is probably most applicable for Java/native integration, with the Java portion acting as a server that can be queried from the native code. *See below: sockets, XML-RPC*

- **ORB** – An **object request broker**\(^10\) (ORB) is a high-level form of middleware for transferring objects between multiple running programs. ORBs provide an abstraction that can reduce and simplify code written by providing access to a wealth of higher-level messaging features. *See below: Ice, CORBA, Codemesh Shared JVM*

12.1.3 List of solutions

It is a significant challenge to access a complex Java API from code written in another language, especially in a cross-platform and high performance way. The table below provides an overview of viable approaches, further details are provided below it with links to source code and instructions where appropriate. Which approach to use depends on your application’s target platforms and languages, and the interaction model between your application and the Java code—see the discussion of in-process solutions versus inter-process communication above for details.

A note about SWIG. The **Simplified Wrapper and Interface Generator**\(^11\) (SWIG) is an excellent tool for exposing C++ functionality to higher level languages such as Java. Unfortunately, calling native code from Java is the wrong direction for our purposes. However, when combined with an integration solution specific to C++, SWIG could be used to extend that solution into other languages (see SWIG’s list of supported languages\(^12\) for a complete list).

\(^5\)http://en.wikipedia.org/wiki/Inter-process_communication

\(^6\)http://en.wikipedia.org/wiki/Middleware

\(^7\)http://en.wikipedia.org/wiki/Marshalling_%28computer_science%29

\(^12\)http://www.swig.org/compat.html#SupportedLanguages
Summary table

<table>
<thead>
<tr>
<th>Solution</th>
<th>Type</th>
<th>Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw JNI</td>
<td>In-process (JNI)</td>
<td>C/C++</td>
</tr>
<tr>
<td>Jace</td>
<td>In-process (JNI)</td>
<td>C/C++</td>
</tr>
<tr>
<td>JunC++ion</td>
<td>In-process (JNI)</td>
<td>C/C++</td>
</tr>
<tr>
<td>JuggerNET</td>
<td>In-process (JNI)</td>
<td>.NET</td>
</tr>
<tr>
<td>GCJ</td>
<td>In-process (compiler)</td>
<td>C/C++ (GCC only)</td>
</tr>
<tr>
<td>IKVM.NET</td>
<td>In-process (runtime)</td>
<td>.NET/Mono</td>
</tr>
<tr>
<td>Pipes</td>
<td>Inter-process (local)</td>
<td>Any</td>
</tr>
<tr>
<td>Files</td>
<td>Inter-process (local)</td>
<td>Any</td>
</tr>
<tr>
<td>Sockets</td>
<td>Inter-process (messaging)</td>
<td>Any</td>
</tr>
<tr>
<td>XML-RPC</td>
<td>Inter-process (messaging)</td>
<td>Many[^13]</td>
</tr>
<tr>
<td>Ice</td>
<td>Inter-process (ORB)</td>
<td>Several</td>
</tr>
<tr>
<td>CORBA</td>
<td>Inter-process (ORB)</td>
<td>Many</td>
</tr>
<tr>
<td>Codemesh Shared JVM</td>
<td>Inter-process (ORB)</td>
<td>C++/.NET</td>
</tr>
</tbody>
</table>

Further details

Raw JNI[^14]

- You can code your integration layer using pure JNI calls (but we don’t recommend it).
- Low-level JNI offers full control over the interface between Java and native code.
- Raw JNI solutions are time-consuming and error-prone[^15] to implement.
- We have coded a simple example[^16] for calling Bio-Formats this way.
- We recommend a higher level integration solution such as Jace instead.

Jace[^17]

- Jace generates C++ proxy classes, one per Java class, mirroring the original functionality as much as possible.
- The C++ proxy classes use JNI under the hood but handle most of the usual JNI pitfalls.
- We provide a set of Bio-Formats C++ bindings using Jace.

JunC++ion[^18]

- JunC++ion is a commercial in-process integration solution for C/C++ available from Codemesh, Inc.[^19]

JuggerNET[^20]

- JuggerNET is a commercial in-process integration solution for .NET available from Codemesh, Inc.[^21]

GCJ[^22]

- GCJ can compile Java code into machine code.

[^15]: http://codemesh.com/technology.html#jni
[^16]: https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/utils/showinfJNI.cpp
[^17]: http://sourceforge.net/projects/jace/
[^18]: http://codemesh.com/products/junction/
[^19]: http://www.codemesh.com/
[^20]: http://codemesh.com/products/juggernet/
[^21]: http://www.codemesh.com/
[^22]: http://gcc.gnu.org/java/
• Instead of JNI, GCI uses its Compiler Native Interface\(^{23}\) (CNI) to enable access to Java code from C++.
• Works with GCC only (i.e., not with Microsoft Visual C++ or other compilers).
• Correctness and performance is dependent on the compiler implementation.

IKVM.NET\(^{24}\)
• IKVM.NET interprets Java byte code on the fly into the .NET/Mono framework.
• Interoperability is limited to applications in the .NET/Mono framework.
• Correctness and performance is dependent on the runtime implementation.

Pipes\(^{25}\)
• Pipes can work well when quantity of data being transferred is limited.
• Be careful about blocking operations causing deadlock.
• The OME Perl server\(^{26}\) uses a combination of pipes and files to interface with Bio-Formats.

Files\(^{27}\)
• Communication via files is slower than pipes, since messages go through disk.
• The size of the communication buffer is limited only by available disk space.
• The OME Perl server\(^{28}\) uses a combination of pipes and files to interface with Bio-Formats.

Sockets\(^{29}\)
• You can use a sockets API directly to create a custom solution (but we don’t recommend it).
• JVMLink\(^{30}\) was our first cut at such a solution, before we realized that we were essentially inventing our own middleware.
• We recommend using Ice or CORBA instead.

XML-RPC\(^{31}\)
• XML-RPC is a cross-platform remote procedure call\(^{32}\) (RPC) technology using XML.
• XML-RPC is a human readable, but inefficient, means of transporting information.
• See also: SOAP\(^{33}\)

Ice\(^{34}\)
• Ice is high-performance middleware for cross-platform client/server communication.
• ZeroC\(^{35}\) argues that Ice is superior to CORBA\(^{36}\).

CORBA\(^{37}\)

\(^{23}\)http://gcc.gnu.org/java/papers/cni/t1.html
\(^{24}\)http://www.ikvm.net/
\(^{25}\)http://en.wikipedia.org/wiki/Pipeline_%28Unix%29
\(^{26}\)http://www.openmicroscopy.org/site/products/legacy/ome-server
\(^{27}\)http://en.wikipedia.org/wiki/Computer_file
\(^{28}\)http://www.openmicroscopy.org/site/products/legacy/ome-server
\(^{29}\)http://en.wikipedia.org/wiki/Unix_domain_socket
\(^{30}\)http://www.loci.wisc.edu/software/jvmlink
\(^{32}\)http://en.wikipedia.org/wiki/Remote_procedure_call
\(^{33}\)http://en.wikipedia.org/wiki/SOAP_%28protocol%29
\(^{34}\)http://www.zeroc.com
\(^{35}\)http://www.zeroc.com
\(^{36}\)http://www.zeroc.com/iceVsCorba.html
\(^{37}\)http://java.sun.com/j2ee/corba/
• Java RMI over IIOP38 enables communication between Java and other CORBA-supported languages.
• CORBA is a mature technology with widespread use in the enterprise community.
• Support for CORBA is built in to the Java 2 platform.
• Nonetheless, where possible we suggest you use Ice instead.

Codemesh Shared JVM39
• The Codemesh Shared JVM is a commercial inter-process integration solution available from Codemesh, Inc.40

Know a great integration solution that we missed? Let us know41!

12.2 Bio-Formats C++ bindings

To make Bio-Formats accessible to software written in C++, we have created a Bio-Formats C++ interface (BF-CPP for short). It uses LOCI's \texttt{jar2lib}42 program to generate a C++ proxy class for each equivalent Bio-Formats Java class. The resulting proxies are then compiled into a library, which represents the actual interface from C++ to Bio-Formats. Using this library in your projects gives you access to the image support of Bio-Formats.

BF-CPP comes with some standalone examples which you can use as a starting point in your own project:
• \texttt{showinf}43
• \texttt{minimum_writer}44

Other projects using BF-CPP include:
• \texttt{WiscScan}45 which uses BF-CPP to write OME-TIFF46 files.
• \texttt{XuvTools} which uses an adapted version of BF-CPP called \texttt{BlitzBioFormats}47.

See the build instructions (Windows, Mac OS X, Linux) for details on compiling BF-CPP from source. Once this is done, simply include it in your project as you would any other external library.

12.3 Build instructions for C++ bindings

This package provides language bindings for calling into the Bio-Formats Java library from C++ in a cross-platform manner. As of this writing the bindings are functional with GCC on Linux and Mac OS X systems, as well as with Visual C++ 2005 and Visual C++ 2008 on Windows.

12.3.1 Compile-time dependencies

To build the Bio-Formats C++ bindings from source, the following modules are required:

38http://java.sun.com/products/rmi-iiop/
39http://codemesh.com/shared_jvm.html
40http://www.codemesh.com/
41http://www.openmicroscopy.org/site/community/mailing-lists
42http://loci.wisc.edu/software/jar2lib
43https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/cppwrap/showinf.cpp
44https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/cppwrap/minimum_writer.cpp
45http://loci.wisc.edu/software/wiscscan
46http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
47http://www.xuvtools.org/devel/libblitzbioformats
- **Apache Maven**\(^48\) Maven is a software project management and comprehension tool. Along with Ant, it is one of the supported build systems for the Bio-Formats Java library, and is used to generate the Bio-Formats C++ bindings.

- **CMake**\(^49\) CMake is a cross-platform, open source build system generator, commonly used to build C++ projects in a platform-independent manner. CMake supports GNU make as well as Microsoft Visual Studio, allowing the Bio-Formats C++ bindings to be compiled on Windows, Mac OS X, Linux and potentially other platforms.

- **Boost Thread**\(^50\) Boost is a project providing open source portable C++ source libraries. It has become a suite of de facto standard libraries for C++. The Bio-Formats C++ bindings require the Boost Thread module in order to handle C++ threads in a platform independent way.

- **Java Development Kit**\(^51\) At runtime, only the Java Runtime Environment (JRE) is necessary to execute the Bio-Formats code. However, the full J2SE development kit is required at compile time on some platforms (Windows in particular), since it comes bundled with the JVM shared library (jvm.lib) necessary to link with Java.

For information on installing these dependencies, refer to the page for your specific platform: *Windows*, *Mac OS X*, *Linux*.

12.3.2 How to build

The process of building the Bio-Formats C++ bindings is divided into two steps:

1. Generate a C++ project consisting of “proxies” which wrap the Java code. This step utilizes the Maven project management tool, specifically a Maven plugin called cppwrap.

2. Compile this generated C++ project. This step utilizes the cross-platform CMake build system.

For details on executing these build steps, refer to the page for your specific platform: *Windows*, *Mac OS X*, *Linux*.

12.3.3 Build results

If all goes well, the build system will:

1. Generate the Bio-Formats C++ proxy classes;

2. Build the Jace C++ library;

3. Build the Java Tools C++ library;

4. Build the Bio-Formats C++ shared library;

5. Build the showinf and minimum_writer command line tools, for testing the functionality.

Please be patient, as the build may require several minutes to complete.

Afterwards, the `dist/scifio` subdirectory will contain the following files:

1. `libjace.so / libjace.jnilib / jace.dll`: Jace shared library

2. `libscifio.so / libscifio.dylib / scifio.dll`: SCIFIO C++ shared library

3. `jace-runtime.jar`: Jace Java classes needed at runtime

4. `loci_tools.jar`: Bio-Formats Java library needed at runtime

5. `libjtools.so / libjtools.jnilib / jtools.dll`: Java Tools shared library

6. `showinf / showinf.exe`: Example command line application

7. `minimum_writer / minimum_writer.exe`: Example command line application
Items 1-4 are necessary and required to deploy Bio-Formats with your C++ application. Item 5 (jtools) is a useful helper library for managing the Java virtual machine from C++, but is not strictly necessary to use Bio-Formats. All other files, including the example programs and various build files generated by CMake, are not needed.

If you prefer, instead of using the loci_tools.jar bundle, you can provide individual JAR files as appropriate for your application. For details, see using Bio-Formats as a Java library.

Please direct any questions to the OME team on the forums or mailing lists.

12.4 Building C++ bindings in Windows

12.4.1 Compile-time dependencies – Windows

Windows users will need to visit the appropriate web sites and download and install the relevant binaries for all the dependencies.

To configure the tools, you will need to edit or create several environment variables on your system. Access them by clicking the “Environment Variables” button from Control Panel, System, Advanced tab. Use semicolons to separate multiple directories in the PATH variable.

12.4.2 Compile-time dependencies – Windows – Maven

Download Maven.

Unpack the Maven archive into your Program Files, then add the folder’s bin subdirectory to your PATH environment variable; e.g.:

C:\Program Files\apache-maven-3.0.4\bin

Once set, new Command Prompts will recognize “mvn” as a valid command.

12.4.3 Compile-time dependencies – Windows – CMake

Download and run the CMake installer.

During installation, select the “Add CMake to the system PATH for all users” option to ensure that Bio-Formats build system can find your CMake executable.

Once installed, new Command Prompts will recognize “cmake” and “cmake-gui” as valid commands.

12.4.4 Compile-time dependencies – Windows – Boost

The easiest way to install the Boost Thread library on Windows is to use the free installer from BoostPro.

When running the installer:

• Under “Compilers,” check the version of Visual C++ matching your system.

• Under “Variants,” check all eight boxes.

52 http://www.openmicroscopy.org/community/
53 http://lists.openmicroscopy.org.uk/mailman/listinfo/
54 http://maven.apache.org/
55 http://cmake.org/
56 http://www.boostpro.com/download/
• When choosing components, check “Boost DateTime” and “Boost Thread.”

12.4.5 Compile-time dependencies – Windows – Java Development Kit

Download and install the JDK\(^{57}\).

After the installation is complete, create a new environment variable called JAVA_HOME pointing to your Java installation; e.g.:

C:\Program Files\Java\jdk1.6.0_25

Setting JAVA_HOME is the easiest way to ensure that Maven can locate Java.

You will also need to append your JDK’s client or server VM folder to the PATH; e.g.:

%JAVA_HOME%\jre\bin\client

This step ensures that a directory containing jvm.dll is present in the PATH. If you do not perform this step, you will receive a runtime error when attempting to initialize a JVM from native code.

Optionally, you can add the bin subdirectory to the PATH; e.g.:

%JAVA_HOME%\bin

Once set, new Command Prompts will recognize (e.g.) “javac” as a valid command.

12.4.6 Compile-time dependencies – Windows – Visual C++

In addition to the other prerequisites, you will also need a working copy of Visual C++. We have tested compilation with Visual C++ 2005 Professional and Visual C++ 2008 Express; other versions may or may not work.

You can download Visual C++ Express for free\(^{58}\).

You must launch the environment at least once before you will be able to compile the Bio-Formats C++ bindings.

12.4.7 How to build - Windows

Run Command Prompt and change to your Bio-Formats working copy. Then run:

```
# generate the Bio-Formats C++ bindings
cd components\scifio
mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap
```

```
# build the Bio-Formats C++ bindings
cd target\cppwrap
mkdir build
cd build
cmake-gui ..
```

The CMake GUI will open. Click the Configure button, and a dialog will appear. Select your installed version of Visual Studio, and click Finish.

When configuring, you can use the J2L_WIN_BUILD_DEBUG flag to indicate if this will be a Debug or Release build. If the flag is checked it will build as Debug, unchecked will build as Release.

Once configuration is complete, click Configure again, repeating as necessary until the Generate button becomes available. Then click Generate. Once generation is complete, close the CMake window.

\(^{57}\)http://www.oracle.com/technetwork/java/javase/downloads/

\(^{58}\)http://www.microsoft.com/express/

12.4. Building C++ bindings in Windows
Back at the Command Prompt, type:

```
start jace.sln
```

The solution will then open in Visual Studio. Select Release or Debug as appropriate from the drop-down menu. Press F7 to compile (or select Build Solution from the Build menu).

12.5 Building C++ bindings in Mac OS X

12.5.1 Compile-time dependencies – Mac OS X

To install dependencies on Mac OS X, we advise using Homebrew:

```
brew install maven cmake boost
```

Unless otherwise configured, this will install binaries into `/usr/local/`.

12.5.2 How to build – Mac OS X

The following commands will generate and build the Bio-Formats C++ bindings:

```
# generate the C++ bindings
cd components/scifio
mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap

# compile the C++ bindings
cd target/cppwrap
mkdir build
cd build
cmake ..
make
```

12.6 Building C++ bindings in Linux

12.6.1 Compile-time dependencies – Linux

The following directions are specific to Ubuntu Linux. Other Linux distributions may have similar packages available; check your package manager.

To install dependencies on Ubuntu Linux, execute:

```
# install code generation prerequisites
sudo aptitude install maven2

# install build prerequisites
sudo aptitude install build-essential cmake libboost-thread-dev

# install Java Development Kit
sudo aptitude install sun-java6-jdk
sudo update-alternatives --config java
```

[^59]: http://mxcl.github.com/homebrew/
Then select Sun’s Java implementation as the system default.

It may be possible to use a different Java compiler (i.e., omit the sun-java6-jdk package and update-alternatives step), but we have only tested the compilation process with Sun’s Java compiler.

12.6.2 How to build – Linux

The following commands will generate and build the Bio-Formats C++ bindings:

```bash
# generate the Bio-Formats C++ bindings
cd components/scifio
mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap

# build the Bio-Formats C++ bindings
cd target/cppwrap
mkdir build
cd build
cmake ..
make
```
SCIFIO provides the core architecture of the Bio-Formats library and also includes reader and writer implementations for open file formats. The more permissive BSD license enables non-GPL third party software to read and write OME-TIFF using SCIFIO alone.

13.1 SCientific Imaging Formats Input and Output

13.1.1 Motivation

SCIFIO is a refactoring of Bio-Formats. Classic Bio-Formats uses OME-XML1 to model the metadata for a given image, standardizing all supported formats to this schema. This tight integration, along with the naming itself of Bio-Formats, discourages potential users from outside the life sciences (if their imaging requirements include metadata outside the OME-XML specification). Furthermore, the steps of processing image formats are obfuscated by their consolidation into a single Reader class; this increases the entry barrier for 3rd party developers to add support for additional formats. Finally, the GPL licensing of Bio-Formats precludes its inclusion in non-GPL software packages such as ImageJ, ITK, VCell and VisAD.

SCIFIO aims to resolve these issues by reversing the OME-XML dependency and teasing apart the stages of image format conversion and processing. SCIFIO will define the core components of flexible image format support. OME-XML will become one type of metadata, which Bio-Formats will still use to standardize the metadata of a wide variety of image formats. Thus Bio-Formats will become an extension to SCIFIO, but the underlying structure will allow any number of such extensions to coexist. Dynamic discovery mechanisms will allow these modules to be used as needed, as long as the underlying program incorporates the SCIFIO core. Further, the SCIFIO core will include support only for the open source formats currently supported by Bio-Formats, allowing distribution under the BSD license (though individual modules can fall under any licensing framework, and Bio-Formats will continue to have a dual GPL + commercial license).

For further information, see the SCIFIOGrant.pdf2.

13.1.2 Components

Metadata

Metadata is the currency of SCIFIO. Practically every component will either create a Metadata object, take one as input, or both. It is the tangible representation of how a particular format structures its image metadata. One immediate improvement in this representation of the metadata is the opportunity for a dramatic speedup in performance: by serializing and writing a Metadata object to disk, we can eliminate the need to parse an image more than once. Come

1http://www.openmicroscopy.org/site/support/ome-model/ome-xml
2http://loci.wisc.edu/files/loci/software/SCIFIOGrant.pdf
back after a week or a month to reanalyze a dataset and one of the most significant performance bottlenecks in Bio-Formats will be gone.

Checker

The Checker series of classes will encapsulate the functionality represented in the current Bio-Formats Reader classes by the isThisType method. A Checker for a given image format takes as input a file name and tests whether or not it is recognized, and thus supported, returning the result of the test. This separation lightens the process of finding an appropriate Parser for the image and helps to elucidate the flow of image I/O.

Parser

The first step of actually interacting with an image file will be determining its metadata. A Parser must be created for each supported image format. If its corresponding Checker indicates the current image file matches a Parser’s type, the Parser examines the image’s header and returns a Metadata object with information specific to its type. This Metadata object can then be passed to a Translator for continued analysis, written to disk for future use, and/or passed directly to a Reader.

Translator

Once the Metadata is isolated, a Translator can be used to convert the original Metadata format to a new format. Each Translator encodes a 1:1 conversion between formats of Metadata objects. In general, the goal of each Translator is to convert from a specific Metadata format to something more general, allowing format-agnostic components to accept the Metadata object even if it originated from a PFF image.

Reader

A Reader takes in an appropriate format-specific Metadata object and uses it to interpret the raw pixels of the original image. The final output is a set of byte arrays, which can be interpreted by a Writer and/or the parent software.

Writer

Writers will likely be very similar to their current form in Bio-Formats. Each Writer will take a Metadata object (often, but not necessarily, format-agnostic) and byte array as input, and write to a random access output stream (e.g. a file on disk).

13.1.3 Additional Improvements

LOCI Common

With a tighter integration of the random access streams from the loci.common library, it made sense to migrate these parts to SCIFIO. As this removed some significant functionality from loci.common, the entire library was incorporated into sub-packages of SCIFIO.

Multi-dimensionality

As classic Bio-Formats was bound to the OME-XML schema, any image processed by Bio-Formats was forced to a five-dimensional format. However, there is nothing inherently tied to dimensionality in SCIFIO. Thus, SCIFIO will support full N-dimensionality in data and leave any restrictions to the dictation of individual modules.
WRITING NEW BIO-FORMATS FILE FORMAT READERS

14.1 Bio-Formats file format reader guide

This document is a brief guide to writing new Bio-Formats file format readers.

All format readers should extend either `loci.formats.FormatReader`¹ or a reader in `loci.formats.in²`.

14.1.1 Methods to override

- **boolean isSingleFile(String id)**³ Whether or not the named file is expected to be the only file in the dataset. This only needs to be overridden for formats whose datasets can contain more than one file.

- **boolean isThisType(RandomAccessInputStream)**⁴ Check the first few bytes of a file to determine if the file can be read by this reader. You can assume that index 0 in the stream corresponds to the index 0 in the file. Return true if the file can be read; false if not (or if there is no way of checking).

- **int fileGroupOption(String id)**⁵ Returns an indication of whether or not the files in a multi-file dataset can be handled individually. The return value should be one of the following:
 - `FormatTools.MUST_GROUP`: the files cannot be handled separately
 - `FormatTools.CAN_GROUP`: the files may be handled separately or as a single unit
 - `FormatTools.CANNOT_GROUP`: the files must be handled separately

 This method only needs to be overridden for formats whose datasets can contain more than one file.

- **String[] getSeriesUsedFiles(boolean noPixels)**⁶ You only need to override this if your format uses multiple files in a single dataset. This method should return a list of all files associated with the given file name and the current series (i.e. every file needed to display the current series). If the `noPixels` flag is set, then none of the files returned should contain pixel data. For an example of how this works, see `loci.formats.in.PerkinElmerReader⁷`. It is recommended that the first line of this method be `FormatTools.assertId(currentId, true, 1)` - this ensures that the file name is non-null.

- **byte[] openBytes(int, byte[], int, int, int)**⁸ Returns a byte array containing the pixel data for a subimage specified image from the given file. The dimensions of the subimage (upper left X coordinate, upper left Y coordinate, width, and height) are specified in the final four int parameters. This should throw a

¹https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/FormatReader.java
⁴http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-stable/javadoc/loci/formats/IFormatReader.html#isThisType(loci.common.RandomAccessInputStream)
⁶http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-stable/javadoc/loci/formats/IFormatReader.html#getSeriesUsedFiles(boolean)
⁷https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PerkinElmerReader.java
⁸http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-stable/javadoc/loci/formats/IFormatReader.html#openBytes(int, byte[], int, int, int)
FormatException if the image number is invalid (less than 0 or >= the number of images). The ordering of the array returned by openBytes should correspond to the values returned by isLittleEndian() and isInterleaved(). Also, the length of the byte array should be [image width * image height * bytes per pixel]. Extra bytes will generally be truncated. It is recommended that the first line of this method be FormatTools.checkPlaneParameters(this, no, buf.length, x, y, w, h) - this ensures that all of the parameters are valid.

• protected void initFile(String) The majority of the file parsing logic should be placed in this method. The idea is to call this method once (and only once!) when the file is first opened. Generally, you will want to start by calling super.initFile(String). You will also need to set up the stream for reading the file, as well as initializing any dimension information and metadata. Most of this logic is up to you; however, you should populate the ‘core’ variable (see loci.formats.CoreMetadata).

Note that each variable is initialized to 0 or null when super.initFile(String) is called. Also, super.initFile(String) constructs a Hashtable called “metadata” where you should store any relevant metadata.

• public void close(boolean fileOnly) Cleans up any resources used by the reader. Global variables should be reset to their initial state, and any open files or delegate readers should be closed.

Note that if the new format is a variant of a format currently supported by Bio-Formats, it is more efficient to make the new reader a subclass of the existing reader (rather than subclassing FormatReader). In this case, it is usually sufficient to override initFile(String) and isThisType(byte[]).

Every reader also has an instance of loci.formats.CoreMetadata. All readers should populate the fields in CoreMetadata, which are essential to reading image planes.

If you read from a file using something other than RandomAccessInputStream or Location, you must use the file name returned by Location.getMappedId(String), not the file name passed to the reader. Thus, a stub for initFile(String) might look like this:

protected void initFile(String id) throws FormatException, IOException {
 super.initFile(id);
 RandomAccessInputStream in = new RandomAccessInputStream(id);
 // Alternatively,
 // FileInputStream in = new FileInputStream(Location.getMappedId(id));
 // read basic file structure and metadata from stream
}

For more details, see the Bio-Formats Javadocs for Location.mapId(String, String) and Location.getMappedId(String).

14.1.2 Variables to populate

There are a number of global variables defined in loci.formats.FormatReader that should be populated in the constructor of any implemented reader.

These variables are:

10https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/CoreMetadata.java
11http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-stable/javadoc/loci/formats/IFormatReader.html#close(boolean)
12https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/FormatReader.java
13https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/FormatReader.java
15https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/Location.java
16http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-stable/javadoc/
17https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/FormatReader.java
• boolean **suffixNecessary** Indicates whether or not a file name suffix is required; true by default

• boolean **suffixSufficient** Indicates whether or not a specific file name suffix guarantees that this reader can open a particular file; true by default

• boolean **hasCompanionFiles** Indicates whether or not there is at least one file in a dataset of this format that contains only metadata (no images); false by default

• String **datasetDescription** A brief description of the layout of files in datasets of this format; only necessary for multi-file datasets

• String[] **domains** An array of imaging domains for which this format is used. Domains are defined in `loci.formats.FormatTools`.

14.1.3 Other useful things

- `loci.common.RandomAccessInputStream`[^19] is a hybrid RandomAccessFile/InputStream class that is generally more efficient than either RandomAccessFile or InputStream, and implements the DataInput interface. It is recommended that you use this for reading files.

- `loci.formats.Location`[^20] provides an API similar to java.io.File, and supports File-like operations on URLs. It is highly recommended that you use this instead of File. See the Javadoc for additional information.

- `loci.common.DataTools`[^22] provides a number of methods for converting bytes to shorts, ints, longs, etc. It also supports reading most primitive types directly from a RandomAccessInputStream (or other DataInput implementation).

- `loci.formats.ImageTools`[^23] provides several methods for manipulating primitive type arrays that represent images. Consult the source or Javadoc for more information.

- If your reader relies on third-party code which may not be available to all users, it is strongly suggested that you make a corresponding service class that interfaces with the third-party code. Please see `Bio-Formats service and dependency infrastructure` for a description of the service infrastructure, as well as the `loci.formats.services` package[^24].

- Several common image compression types are supported through subclasses of `loci.formats.codec.BaseCodec`. These include JPEG, LZW, LZO, Base64, ZIP and RLE (PackBits).

- If you wish to convert a file’s metadata to OME-XML (strongly encouraged), please see `Bio-Formats metadata processing` for further information.

- Utility methods for reading and writing individual bits from a byte array can be found in `loci.formats.codec.BitBuffer`[^26] and `loci.formats.codec.BitWriter`[^27].

- Once you have written your file format reader, add a line to the `readers.txt` file with the fully qualified name of the reader, followed by a ‘#’ and the file extensions associated with the file format. Note that ImageReader[^29], the master file format reader, tries to identify which format reader to use according to the order given in `readers.txt`[^30], so be sure to place your reader in an appropriate position within the list.

[^20]: https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/Location.java
[^22]: https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/DataTools.java
[^26]: https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/codec/BitBuffer.java
[^27]: https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/codec/BitWriter.java
• The easiest way to test your new reader is by calling “java loci.formats.tools.ImageInfo <file name>”. If all goes well, you should see all of the metadata and dimension information, along with a window showing the images in the file. ImageReader31 can take additional parameters; a brief listing is provided below for reference, but it is recommended that you take a look at the contents of loci.formats.tools.ImageInfo32 to see exactly what each one does.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>-version</td>
<td>print the library version and exit</td>
</tr>
<tr>
<td>file</td>
<td>the image file to read</td>
</tr>
<tr>
<td>-nopix</td>
<td>read metadata only, not pixels</td>
</tr>
<tr>
<td>-nocore</td>
<td>do not output core metadata</td>
</tr>
<tr>
<td>-nometa</td>
<td>do not parse format-specific metadata table</td>
</tr>
<tr>
<td>-nofilter</td>
<td>do not filter metadata fields</td>
</tr>
<tr>
<td>-thumbs</td>
<td>read thumbnails instead of normal pixels</td>
</tr>
<tr>
<td>-minmax</td>
<td>compute min/max statistics</td>
</tr>
<tr>
<td>-merge</td>
<td>combine separate channels into RGB image</td>
</tr>
<tr>
<td>-nogroup</td>
<td>force multi-file datasets to be read as individual files</td>
</tr>
<tr>
<td>-stitch</td>
<td>stitch files with similar names</td>
</tr>
<tr>
<td>-separate</td>
<td>split RGB image into separate channels</td>
</tr>
<tr>
<td>-expand</td>
<td>expand indexed color to RGB</td>
</tr>
<tr>
<td>-omexml</td>
<td>populate OME-XML metadata</td>
</tr>
<tr>
<td>-normalize</td>
<td>normalize floating point images*</td>
</tr>
<tr>
<td>-fast</td>
<td>paint RGB images as quickly as possible*</td>
</tr>
<tr>
<td>-debug</td>
<td>turn on debugging output</td>
</tr>
<tr>
<td>-range</td>
<td>specify range of planes to read (inclusive)</td>
</tr>
<tr>
<td>-series</td>
<td>specify which image series to read</td>
</tr>
<tr>
<td>-swap</td>
<td>override the default input dimension order</td>
</tr>
<tr>
<td>-shuffle</td>
<td>override the default output dimension order</td>
</tr>
<tr>
<td>-map</td>
<td>specify file on disk to which name should be mapped</td>
</tr>
<tr>
<td>-preload</td>
<td>pre-read entire file into a buuffer; significantly reduces the time required to read the images, but requires more memory</td>
</tr>
<tr>
<td>-crop</td>
<td>crop images before displaying; argument is ‘x,y,w,h’</td>
</tr>
<tr>
<td>-autoscale</td>
<td>used in combination with ‘-fast’ to automatically adjust brightness and contrast</td>
</tr>
<tr>
<td>-novalid</td>
<td>do not perform validation of OME-XML</td>
</tr>
<tr>
<td>-omexml-only</td>
<td>only output the generated OME-XML</td>
</tr>
<tr>
<td>-format</td>
<td>read file with a particular reader (e.g., ZeissZVI)</td>
</tr>
</tbody>
</table>

- = may result in loss of precision

• If you wish to test using TestNG, loci.tests.testng.FormatReaderTest33 provides several basic tests that work with all Bio-Formats readers. See the FormatReaderTest source code for additional information.

• For more details, please look at the source code and Javadocs34. Studying existing readers is probably the best way to get a feel for the API; we would recommend first looking at loci.formats.in.ImarisReader35 (this is the most straightforward one). loci.formats.in.LIFReader36 and InCellReader37 are also good references that show off some of the nicer features of Bio-Formats.

If you have questions about Bio-Formats, please contact the OME team38.

31https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/ImageReader.java
32https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio-tools/src/loci/formats/tools/ImageInfo.java
33https://github.com/openmicroscopy/bioformats/blob/develop/components/test-suite/src/loci/tests/testng/FormatReaderTest.java
34http://hudson.openmicroscopy.org.uk/job/BIOFORMATS-stable/javadoc/
35https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImarisReader.java
36https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LIFReader.java
37https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/InCellReader.java
38http://www.openmicroscopy.org/site/community
15.1 Developing Bio-Formats

If you are interested in working on the Bio-Formats source code itself, you can load it into your favorite IDE, or develop with your favorite text editor.

The Bio-Formats code is divided into several projects. Core components are located in subfolders of the components\(^1\) folder, with some components further classified into components/forks\(^2\), components/legacy\(^3\), components/native\(^4\) or components/stubs\(^5\), depending on the nature of the project.

Each project has a corresponding Maven POM file, which can be used to work with the project in your favorite IDE, or from the command line, once you have cloned the source. Instructions for several popular options follow.

15.1.1 NetBeans

NetBeans comes with Maven support built in. To import the Bio-Formats source, perform the following steps:

1. Choose File > Open Project from the menu
2. Select the top-level folder of your Bio-Formats working copy
3. Expand the Modules folder and double-click desired project(s) to work with them

Alternately, you can clone the source directly from NetBeans into a project by selecting “Team > Git > Clone Other...” from the menu.

15.1.2 Eclipse

Eclipse uses the M2E plugin to work with Maven projects. It is more flexible than Eclipse’s built-in project management because M2E transparently converts between project dependencies and JAR dependencies (stored in the Maven repository in ~/.m2/repository) on the build path, depending which projects are currently open.

To import the Bio-Formats source into Eclipse 3.7 (Indigo), you must first install the M2E plugin:

1. From the Eclipse menu, choose Help > Install New Software...
2. In the “Work with:” dropdown, choose “All Available Sites—”
3. In the filter box, type “m2e”

\(^1\)https://github.com/openmicroscopy/bioformats/blob/develop/components/
\(^2\)https://github.com/openmicroscopy/bioformats/blob/develop/components/forks/
\(^3\)https://github.com/openmicroscopy/bioformats/blob/develop/components/legacy/
\(^4\)https://github.com/openmicroscopy/bioformats/blob/develop/components/native/
\(^5\)https://github.com/openmicroscopy/bioformats/blob/develop/components/stubs/
4. Check the box next to “m2e - Maven Integration for Eclipse” under “Collaboration”

5. Click Next, then Finish

You can then import the Bio-Formats source by choosing “File > Import > Existing Maven Projects” from the menu and browsing to the top-level folder of your Bio-Formats working copy.

15.1.3 Command line

If you prefer developing code with a text editor such as vim or emacs, you can use the Ant or Maven command line tools to compile Bio-Formats. The Bio-Formats source tree provides parallel build systems for both Ant and Maven, so you can use either one to build the code.

For a list of Ant targets, run:

```bash
ant -p
```

When using Maven, Bio-Formats is configured to run the “install” target by default, so all JARs will be copied into your local Maven repository in `~/.m2/repository`. Simply run:

```bash
mvn
```

With either Ant or Maven, you can use similar commands in any subproject folder to build just that component.

15.2 Testing individual commits (internal developers)

At the bottom of many commit messages in https://github.com/openmicroscopy/bioformats, you will find a few lines similar to this:

To test, please run:

```bash
ant -Dtestng.directory=$DATA/metamorph test-automated
```

This shows the command(s) necessary to run automated tests against the files likely to be affected by that commit. If you want to run these tests, you will need to do the following:

Clone bioformats.git and checkout the appropriate branch (by following the directions on the [Git usage](http://www.openmicroscopy.org/site/support/omero4/developers/using-git.html) page). Run this command to build all of the JAR files:

```bash
$ ant clean jars
```

Switch to the test-suite component:

```bash
$ cd components/test-suite
```

Run the tests, where $DATA is the path to the full data repository:

```bash
$ ant -Dtestng.directory=$DATA/metamorph test-automated
```

By default, 512 MB of memory are allocated to the JVM. You can increase this by adding the ‘-Dtestng.memory=XXXm’ option. You should now see output similar to this:

```
Buildfile: build.xml
init-title:
 [echo] ---------------------- loci-testing-framework ----------------------
```

15.3 Public test data

Most of the data-driven tests would benefit from having a comprehensive set of public sample data (see also #4086). Formats for which we already have public sample data:

A ‘*’ indicates that we could generate more public data in this format.

- ICS (*)
- Leica LEI
- IPLab
- BMP (*)

7http://trac.openmicroscopy.org.uk/ome/ticket/4086
• Image-Pro SEQ
• QuickTime (*)
• Bio-Rad PIC
• Image-Pro Workspace
• Fluoview/ABD TIFF (*)
• Perkin Elmer Ultraview
• Gatan DM3
• Zeiss LSM
• Openlab LIFF (*)
• Leica LIF (*)
• TIFF (*)
• Khoros (http://netghost.narod.ru/gffi/sample/images/viff/index.htm)
• MNG (Download8) (*)

Formats for which we can definitely generate public sample data:

• PNG/APNG
• JPEG
• PGM
• FITS
• PCX
• GIF
• Openlab Raw
• OME-XML
• OME-TIFF
• AVI
• PICT
• LIM
• PSD
• Targa
• Bio-Rad Gel
• Fake
• ECAT-7 (minctoecat)
• NRRD
• JPEG-2000
• Micromanager
• Text

Formats for which I need to check whether or not we can generate public sample data:

- IPLab Mac (Ivision)
- Deltavision
- MRC
- Gatan DM2
- Imaris (HDF)
- EPS
- Alicona AL3D
- Visitech
- InCell
- L2D
- FEI
- NAF
- MRW
- ARF
- LI-FLIM
- Oxford Instruments
- VG-SAM
- Hamamatsu HIS
- WA-TOP
- Seiko
- TopoMetrix
- UBM
- Quesant
- RHK
- Molecular Imaging
• JEOL
• Amira
• Unisoku
• Perkin Elmer Densitometer
• Nikon ND2
• SimplePCI .cxd
• Imaris (TIFF)
• Molecular Devices Gel
• Imacon .fff
• LEO
• JPK
• Nikon NEF
• Nikon TIFF
• Prairie
• Metamorph TIFF/STK/ND
• Improvision TIFF
• Photoshop TIFF
• FEI TIFF
• SimplePCI TIFF
• Burleigh
• SM-Camera
• SBIG

Formats for which we definitely cannot generate public sample data:
• TillVision
• Olympus CellR/APL
• Slidebook
• Cellomics
• CellWorX
• Olympus ScanR
• BD Pathway
• Opera Flex
• MIAS
15.4 Bio-Formats service and dependency infrastructure

15.4.1 Description

The Bio-Formats service infrastructure is an interface driven pattern for dealing with external and internal dependencies. The design goal was mainly to avoid the cumbersome usage of `ReflectedUniverse` where possible and to clearly define both service dependency and interface between components. This is generally referred to as dependency injection\(^9\), dependency inversion\(^10\) or component based design\(^11\).

It was decided, at this point, to forgo the usage of potentially more powerful but also more complicated solutions such as:

- Spring (http://www.springsource.org/)
- Guice (http://code.google.com/p/google-guice/)
- ...

The Wikipedia page for dependency injection\(^12\) contains many other implementations in many languages.

An added benefit is the potential code reuse possibilities as a result of decoupling of dependency and usage in Bio-Formats readers. Implementations of the initial Bio-Formats services were completed as part of BioFormatsCleanup and tickets #463\(^13\) and #464\(^14\).

15.4.2 Writing a service

- **Interface** – The basic form of a service is an interface which inherits from `loci.common.services.Service`\(^15\). Here is the very basic `OMENotesService`\(^16\) from the initial implementation in r5894:

```java
public interface OMENotesService extends Service {

    /**
     * Creates a new OME Notes instance.
     * @param filename Path to the file to create a Notes instance for.
     */
    public void newNotes(String filename);
}
```

- **Implementation** – This service then has an implementation, which is usually located in the Bio-Formats component or package which imports classes from an external, dynamic or other dependency. Again looking at the `OMENotesService`, the implementation is this time in the legacy ome-notes component as `OMENotesServiceImpl`\(^17\):

```java
public class OMENotesServiceImpl extends AbstractService
    implements OMENotesService {

    /**
     * Default constructor.
     */
}
```

\(^9\)http://en.wikipedia.org/wiki/Dependency_injection
\(^11\)http://en.wikipedia.org/wiki/Component-based_software_engineering
\(^12\)http://en.wikipedia.org/wiki/Dependency_injection
\(^13\)http://trac.openmicroscopy.org.uk/ome/ticket/463
\(^14\)http://trac.openmicroscopy.org.uk/ome/ticket/464
\(^15\)https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/services/Service.java
\(^16\)https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/services/OMENotesService.java
\(^17\)https://github.com/openmicroscopy/bioformats/blob/develop/components/legacy/ome-notes/src/loci/ome/notes/services/OMENotesServiceImpl.java
 */
public OMENotesServiceImpl() {
 checkClassDependency(Notes.class);
}
/* (non-Javadoc)
 * @see loci.formats.dependency.OMENotesService#newNotes()
 */
public void newNotes(String filename) {
 new Notes(null, filename);
}

• Style

 – Extension of AbstractService to enable uniform runtime dependency checking is recommended. Java
 does not check class dependencies until classes are first instantiated so if you do not do this, you may
 end up with ClassNotFound or the like exceptions being emitted from your service methods. This is
to be strongly discouraged. If a service has unresolvable classes on its CLASSPATH instantiation should
fail, not service method invocation.

 – Service methods should not burden the implementer with numerous checked exceptions. Also external
dependency exception instances should not be allowed to directly leak from a service interface. Please
wrap these using a ServiceException.

 – By convention both the interface and implementation are expected to be in a package named
loci.*.services. This is not a hard requirement but should be followed where possible.

• Registration – A service’s interface and implementation must finally be registered with the
loci.common.services.ServiceFactory\(^{18}\) via the services.properties\(^{19}\) file. Following the OMENotesService
again, here is an example registration:
...
 # OME notes service (implementation in legacy ome-notes component)
 loci.common.services.OMENotesService=loci.ome.notes.services.OMENotesServiceImpl
...

15.4.3 Using a service

OMENotesService service = null;
try {
 ServiceFactory factory = new ServiceFactory();
 service = factory.getInstance(OMENotesService.class);
} catch (DependencyException de) {
 LOGGER.info("", de);
}
...

See open Trac tickets for Bio-Formats\(^{20}\) for information on work currently planned or in progress.

\(^{18}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/services/ServiceFactory.java
\(^{19}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/common/src/loci/common/services/Service.java
\(^{20}\)https://trac.openmicroscopy.org.uk/ome/report/44
Part IV

Formats
Bio-Formats supports over 120 different file formats. The Dataset Structure Table explains the file extension you should choose to open/import a dataset in any of these formats, while the Supported Formats table lists all of the formats and gives an indication of how well they are supported and whether Bio-Formats can write, as well as read, each format. The Summary of supported metadata fields table shows an overview of the OME data model fields populated for each format.

We are always looking for examples of files to help us provide better support for different formats. If you would like to help, you can upload files using our QA system uploader\(^1\). If you have any questions, or would prefer not to use QA, please email the ome-users mailing list\(^2\). If your format is already supported, please refer to the ‘we would like to have’ section on the individual page for that format, to see if your dataset would be useful to us.

\(^1\)http://qa.openmicroscopy.org.uk/qa/upload/
\(^2\)http://www.openmicroscopy.org/site/community/mailing-lists
This table shows the extension of the file that you should choose if you want to open/import a dataset in a particular format.

<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM</td>
<td>.aim</td>
<td>Single file</td>
</tr>
<tr>
<td>ARF</td>
<td>.arf</td>
<td>Single file</td>
</tr>
<tr>
<td>Adobe Photoshop</td>
<td>.psd</td>
<td>Single file</td>
</tr>
<tr>
<td>Adobe Photoshop TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Alicona AL3D</td>
<td>.al3d</td>
<td>Single file</td>
</tr>
<tr>
<td>Amersham Biosciences GEL</td>
<td>.gel</td>
<td>Single file</td>
</tr>
<tr>
<td>Amira</td>
<td>.am, .amiramesh, .grey, .hx, .labels</td>
<td>Single file</td>
</tr>
<tr>
<td>Analyze 7.5</td>
<td>.img, .hdr</td>
<td>One .img file and one similarly-named .hdr file</td>
</tr>
<tr>
<td>Andor SIF</td>
<td>.sif</td>
<td>Single file</td>
</tr>
<tr>
<td>Animated PNG</td>
<td>.png</td>
<td>Single file</td>
</tr>
<tr>
<td>Aperio SVS</td>
<td>.svs</td>
<td>Single file</td>
</tr>
<tr>
<td>Audio Video Interleave</td>
<td>.avi</td>
<td>Single file</td>
</tr>
<tr>
<td>BD Pathway</td>
<td>.exp, .tif</td>
<td>Multiple files (.exp, .dye, .htp, ...) plus one or more directories containing .tif and .bmp files</td>
</tr>
<tr>
<td>Bio-Rad GEL</td>
<td>.1sc</td>
<td>Single file</td>
</tr>
<tr>
<td>Bio-Rad PIC</td>
<td>.pic, .xml, .raw</td>
<td>One or more .pic files and an optional lse.xml file</td>
</tr>
<tr>
<td>Bitplane Imaris</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bitplane Imaris 3 (TIFF)</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bitplane Imaris 5.5 (HDF)</td>
<td>.ims</td>
<td>Single file</td>
</tr>
<tr>
<td>Bruker</td>
<td>(no extension)</td>
<td>One ‘hdr’ and one ‘acqp’ plus several other metadata files and a ‘pdata’ directory</td>
</tr>
<tr>
<td>Burleigh</td>
<td>.img</td>
<td>Single file</td>
</tr>
<tr>
<td>Canon RAW</td>
<td>.cr2, .crw, .jpg, .thm, .wav</td>
<td>Single file</td>
</tr>
<tr>
<td>CellSens VSI</td>
<td>.vsi, .ets</td>
<td>One .vsi file and an optional directory with a similar name that contains at least one subdirectory with .ets files</td>
</tr>
<tr>
<td>CellWorx</td>
<td>.pnl, .htd, .log</td>
<td>One .htd file plus one or more .pnl or .tif files and optionally one or more .log files</td>
</tr>
<tr>
<td>Cellomics C01</td>
<td>.c01, .dib</td>
<td>One or more .c01 files</td>
</tr>
<tr>
<td>Compix Simple-PCI</td>
<td>.cxd</td>
<td>Single file</td>
</tr>
<tr>
<td>DICOM</td>
<td>.dic, .dcm, .dicom, .jp2, .j2ki, .j2kr, .raw, .ima</td>
<td>One or more .dcm or .dicom files</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNG</td>
<td>.cr2, .crw, .jpg, .thm, .wav, .tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Deltavision</td>
<td>.dv, .r3d, .r3d_d3d, .dv.log, .r3d.log</td>
<td>One .dv, .r3d, or .d3d file and up to two optional .log files</td>
</tr>
<tr>
<td>ECAT7</td>
<td>.v</td>
<td>Single file</td>
</tr>
<tr>
<td>Encapsulated PostScript</td>
<td>.eps, .epsi, .ps</td>
<td>Single file</td>
</tr>
<tr>
<td>Evotec Flex</td>
<td>.flex, .mea, .res</td>
<td>One directory containing one or more .flex files, and an optional directory containing an .mea and .res file. The .mea and .res files may also be in the same directory as the .flex file(s).</td>
</tr>
<tr>
<td>FEI TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>FEI/Philips</td>
<td>.img</td>
<td>Single file</td>
</tr>
<tr>
<td>Flexible Image Transport System</td>
<td>.fits, .fts</td>
<td>Single file</td>
</tr>
<tr>
<td>Fuji LAS 3000</td>
<td>.img, .inf</td>
<td>Single file</td>
</tr>
<tr>
<td>Gatan DM2</td>
<td>.dm2</td>
<td>Single file</td>
</tr>
<tr>
<td>Gatan Digital Micrograph</td>
<td>.dm3</td>
<td>Single file</td>
</tr>
<tr>
<td>Graphics Interchange Format</td>
<td>.gif</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu Aquacosmos</td>
<td>.naf</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu HIS</td>
<td>.his</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu NDPI</td>
<td>.ndpi</td>
<td>Single file</td>
</tr>
<tr>
<td>Hamamatsu NDPI5</td>
<td>.ndpis</td>
<td>One .ndpis file and at least one .ndpi file</td>
</tr>
<tr>
<td>Hamamatsu VMS</td>
<td>.vms</td>
<td>One .vms file plus several .jpg files</td>
</tr>
<tr>
<td>Hitachi</td>
<td>.txt</td>
<td>One .txt file plus one similarly-named .tif, .bmp, or .jpg file</td>
</tr>
<tr>
<td>IMAGIC</td>
<td>.hed, .img</td>
<td>One .hed file plus one similarly-named .img file</td>
</tr>
<tr>
<td>IMOD</td>
<td>.mod</td>
<td>Single file</td>
</tr>
<tr>
<td>INR</td>
<td>.irr</td>
<td>Single file</td>
</tr>
<tr>
<td>IPLab</td>
<td>.ipl</td>
<td>Single file</td>
</tr>
<tr>
<td>TVision</td>
<td>.rpm</td>
<td>Single file</td>
</tr>
<tr>
<td>Imacon</td>
<td>.iff</td>
<td>Single file</td>
</tr>
<tr>
<td>Image Cytometry Standard</td>
<td>.ics, .ids</td>
<td>One .ics and possibly one .ids with a similar name</td>
</tr>
<tr>
<td>Image-Pro Sequence</td>
<td>.seq</td>
<td>Single file</td>
</tr>
<tr>
<td>Image-Pro Workspace</td>
<td>.ipw</td>
<td>Single file</td>
</tr>
<tr>
<td>Improvision TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>InCell 1000/2000</td>
<td>.xdce, .xml, .tiff, .tif, .xlog</td>
<td>One .xdce file with at least one .tiff/.tiff or .im file</td>
</tr>
<tr>
<td>InCell 3000</td>
<td>.frm</td>
<td>Single file</td>
</tr>
<tr>
<td>JEOL</td>
<td>.dat, .img, .par</td>
<td>A single .dat file or an .img file with a similarly-named .par file</td>
</tr>
<tr>
<td>JPEG</td>
<td>.jpg, .jpeg, .jpe</td>
<td>Single file</td>
</tr>
<tr>
<td>JPEG-2000</td>
<td>.jp2, .j2k, .jpf</td>
<td>Single file</td>
</tr>
<tr>
<td>JPK Instruments</td>
<td>.jpk</td>
<td>Single file</td>
</tr>
<tr>
<td>JPX</td>
<td>.jpx</td>
<td>Single file</td>
</tr>
<tr>
<td>Khoros XV</td>
<td>.xv</td>
<td>Single file</td>
</tr>
<tr>
<td>Kodak Molecular Imaging</td>
<td>.bip</td>
<td>Single file</td>
</tr>
<tr>
<td>LEO</td>
<td>.sxm, .tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>LI-FLIM</td>
<td>.flf</td>
<td>Single file</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Imaging</td>
<td>.lim</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica</td>
<td>.lei, .tif, .tiff, .raw</td>
<td>One .lei file with at least one .tif/.tiff file and an optional .txt file</td>
</tr>
<tr>
<td>Leica Image File Format</td>
<td>.tif</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica SCN</td>
<td>.scn</td>
<td>Single file</td>
</tr>
<tr>
<td>Leica TCS TIFF</td>
<td>.tiff, .tif, .xml</td>
<td>Single file</td>
</tr>
<tr>
<td>Li-Cor L2D</td>
<td>.l2d, . scn, .tiff</td>
<td>One .l2d file with one or more directories containing .tif/.tiff files</td>
</tr>
<tr>
<td>MIAS</td>
<td>.tiff, .tif, .txt</td>
<td>One directory per plate containing one directory per well, each with one or more .tif/.tiff files</td>
</tr>
<tr>
<td>MINC MRI</td>
<td>.mnc</td>
<td>Single file</td>
</tr>
<tr>
<td>Medical Research Council</td>
<td>.mrc, .st, .ali, .map, .rec</td>
<td>Single file</td>
</tr>
<tr>
<td>Metamorph STK</td>
<td>.stk, . nd, .tif, .tiff</td>
<td>One or more .stk or .tif/.tiff files plus an optional .nd file</td>
</tr>
<tr>
<td>Metamorph TIFF</td>
<td>.tif, .tiff</td>
<td>One or more .tif/.tiff files</td>
</tr>
<tr>
<td>Micro-Manager</td>
<td>.tiff, .tif, .txt, .xml</td>
<td>A ‘metadata.txt’ file plus or more .tif files</td>
</tr>
<tr>
<td>Minolta MRW</td>
<td>.mrw</td>
<td>Single file</td>
</tr>
<tr>
<td>Molecular Imaging</td>
<td>.stp</td>
<td>Single file</td>
</tr>
<tr>
<td>Multiple Network Graphics</td>
<td>.mng</td>
<td>Single file</td>
</tr>
<tr>
<td>NIfTI</td>
<td>.nii, .img, .hdr</td>
<td>A single .nii file or one .img file and a similarly-named .hdr file</td>
</tr>
<tr>
<td>NOAA-HRD Gridded Data Format</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>NRRD</td>
<td>.nrrd, .nhdr</td>
<td>A single .nrrd file or one .nhdr file and one other file containing the pixels</td>
</tr>
<tr>
<td>Nikon Elements TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon ND2</td>
<td>.nd2</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon NEF</td>
<td>. nef, .tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Nikon TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>OME-TIFF</td>
<td>.ome.tiff, .ome.tiff</td>
<td>One or more .ome.tiff files</td>
</tr>
<tr>
<td>OME-XML</td>
<td>.ome</td>
<td>Single file</td>
</tr>
<tr>
<td>Olympus APL</td>
<td>.apl, .tnb, .mtb, .tif</td>
<td>One .apl file, one .mtb file, one .tnb file, and a directory containing one or more .tif files</td>
</tr>
<tr>
<td>Olympus FV1000</td>
<td>.oib, .oif, .pty, .lut</td>
<td>Single .oib file or one .oif file and a similarly-named directory containing .tif/.tiff files</td>
</tr>
<tr>
<td>Olympus Fluoview/ABD TIFF</td>
<td>.tif, .tiff</td>
<td>One or more .tif/.tiff files, and an optional .txt file</td>
</tr>
<tr>
<td>Olympus SIS TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Olympus ScanR</td>
<td>.dat, .xml, .tif</td>
<td>One .xml file, one ‘data’ directory containing .tif/.tiff files, and optionally two .dat files</td>
</tr>
<tr>
<td>Olympus Slidebook</td>
<td>.sld, .spl</td>
<td>Single file</td>
</tr>
<tr>
<td>Openlab LIFF</td>
<td>.liff</td>
<td>Single file</td>
</tr>
<tr>
<td>Openlab RAW</td>
<td>.raw</td>
<td>Single file</td>
</tr>
<tr>
<td>Oxford Instruments</td>
<td>.top</td>
<td>Single file</td>
</tr>
<tr>
<td>PCX</td>
<td>.pcx</td>
<td>Single file</td>
</tr>
<tr>
<td>PICT</td>
<td>.pict, .pct</td>
<td>Single file</td>
</tr>
<tr>
<td>POV-Ray</td>
<td>.df3</td>
<td>Single file</td>
</tr>
<tr>
<td>Perkin Elmer Densitometer</td>
<td>.hdr, .img</td>
<td>One .hdr file and a similarly-named .img file</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format name</th>
<th>File to choose</th>
<th>Structure of files</th>
</tr>
</thead>
<tbody>
<tr>
<td>PerkinElmer</td>
<td>.ano, .cfg, .csv, .htm, .rec, .tim, .zpo, .tif</td>
<td>One .htm file, several other metadata files (.tim, .ano, .csv, ...) and either .tif files or .2, .3, .4, etc. files</td>
</tr>
<tr>
<td>PerkinElmer Operetta</td>
<td>.tif, .tiff, .xml</td>
<td>Directory with XML file and one .tif/tiff file per plane</td>
</tr>
<tr>
<td>Portable Gray Map</td>
<td>.pgm</td>
<td>Single file</td>
</tr>
<tr>
<td>Prairie TIFF</td>
<td>.tif, .tiff, .cfg, .xml</td>
<td>One .xml file, one .cfg file, and one or more .tif/tiff files</td>
</tr>
<tr>
<td>Pyramid TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Quesant AFM</td>
<td>.afm</td>
<td>Single file</td>
</tr>
<tr>
<td>QuickTime</td>
<td>.mov</td>
<td>Single file</td>
</tr>
<tr>
<td>RHK Technologies</td>
<td>.sm2, .sm3</td>
<td>Single file</td>
</tr>
<tr>
<td>SBIG</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>SM Camera</td>
<td>(no extension)</td>
<td>Single file</td>
</tr>
<tr>
<td>SPCI mage Data</td>
<td>.sdt</td>
<td>Single file</td>
</tr>
<tr>
<td>SPIDER</td>
<td>.spi</td>
<td>Single file</td>
</tr>
<tr>
<td>Seiko</td>
<td>.xqd, .xqf</td>
<td>Single file</td>
</tr>
<tr>
<td>SimplePCI TIFF</td>
<td>.tif, .tiff</td>
<td>Single file</td>
</tr>
<tr>
<td>Simulated data</td>
<td>.fake</td>
<td>Single file</td>
</tr>
<tr>
<td>Tagged Image File Format</td>
<td>.tif, .tiff, .tif2, .tif8, .btf</td>
<td>Single file</td>
</tr>
<tr>
<td>Text</td>
<td>.txt, .csv</td>
<td>Single file</td>
</tr>
<tr>
<td>TillVision</td>
<td>.vws, .pst, .inf</td>
<td>One .vws file and possibly one similarly-named directory</td>
</tr>
<tr>
<td>TopoMetrix</td>
<td>.tfr, .ftr, .zfr, .zfp, .2fl</td>
<td>Single file</td>
</tr>
<tr>
<td>Trestle</td>
<td>.tif</td>
<td>One .tif file plus several other similarly-named files (e.g. .FocalPlane-, .sld, .slx, .ROI)</td>
</tr>
<tr>
<td>Truevision Targa</td>
<td>.tga</td>
<td>Single file</td>
</tr>
<tr>
<td>UBM</td>
<td>.pr3</td>
<td>Single file</td>
</tr>
<tr>
<td>Unisoku STM</td>
<td>.hdr, .dat</td>
<td>One .HDR file plus one similarly-named .DAT file</td>
</tr>
<tr>
<td>VG SAM</td>
<td>.dti</td>
<td>Single file</td>
</tr>
<tr>
<td>Varian FDF</td>
<td>.df</td>
<td>Single file</td>
</tr>
<tr>
<td>Visitech XYS</td>
<td>.xys, .html</td>
<td>One .html file plus one or more .xys files</td>
</tr>
<tr>
<td>Volocity Library</td>
<td>.mvd2, .aisf, .aiix, .dat, .atsf</td>
<td>One .mvd2 file plus a ‘Data’ directory</td>
</tr>
<tr>
<td>Volocity Library Clipping</td>
<td>.acff</td>
<td>Single file</td>
</tr>
<tr>
<td>WA Technology TOP</td>
<td>.wat</td>
<td>Single file</td>
</tr>
<tr>
<td>Windows Bitmap</td>
<td>.bmp</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss AxioVision TIFF</td>
<td>.tif, .xml</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss CFI</td>
<td>.czi</td>
<td>Single file</td>
</tr>
<tr>
<td>Zeiss Laser-Scanning Microscopy</td>
<td>.lsm, .mdb</td>
<td>One or more .lsm files; if multiple .lsm files are present, an .mdb file should also be present</td>
</tr>
<tr>
<td>Zeiss Vision Image (ZVI)</td>
<td>.zvi</td>
<td>Single file</td>
</tr>
<tr>
<td>Zip</td>
<td>.zip</td>
<td>Single file</td>
</tr>
</tbody>
</table>

16.1 Flex Support

OMERO.importer supports importing analyzed Flex files from an Opera system.

Basic configuration is done via the `importer.ini`. Once the user has run the Importer once, this file will be in the following location:

- **C:\Documents and Settings\<username>\omero\importer.ini**

The user will need to modify or add the `[FlexReaderServerMaps]` section of the INI file as follows:
...

[FlexReaderServerMaps]
CIA-1 = \hostname1\mount;\archivehost1\mount
CIA-2 = \hostname2\mount;\archivehost2\mount

where the key of the INI file line is the value of the “Host” tag in the .mea measurement XML file (here: <Host
name="CIA-1">) and the value is a semicolon-separated list of escaped UNC path names to the Opera workstations where the Flex files reside.

Once this resolution has been encoded in the configuration file and you have restarted the importer, you will be able to select the .mea measurement XML file from the Importer user interface as the import target.
SUPPORTED FORMATS

Ratings legend and definitions

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3i SlideBook</td>
<td>.sld</td>
</tr>
<tr>
<td>Andor Bio-Imaging Division (ABD) TIFF</td>
<td>.tif</td>
</tr>
<tr>
<td>AIM</td>
<td>.aim</td>
</tr>
<tr>
<td>Alicona 3D</td>
<td>.al3d</td>
</tr>
<tr>
<td>Amersham Biosciences Gel</td>
<td>.gel</td>
</tr>
<tr>
<td>Amira Mesh</td>
<td>.am, .ami-ramesh, .grey, .hx, .labels</td>
</tr>
<tr>
<td>Analyze 7.5</td>
<td>.img, .hdr</td>
</tr>
<tr>
<td>Animated PNG</td>
<td>.png</td>
</tr>
<tr>
<td>Aperio SVS TIFF</td>
<td>.svs</td>
</tr>
<tr>
<td>Applied Precision CellWorX</td>
<td>.htd, .pnl</td>
</tr>
<tr>
<td>AVI (Audio Video Interleave)</td>
<td>.avi</td>
</tr>
<tr>
<td>Axon Raw Format</td>
<td>.arf</td>
</tr>
<tr>
<td>BD Pathway</td>
<td>.exp, .tif</td>
</tr>
<tr>
<td>Becker & Hickl SPCImage</td>
<td>.sdt</td>
</tr>
<tr>
<td>Bio-Rad Gel</td>
<td>.lsc</td>
</tr>
<tr>
<td>Bio-Rad PIC</td>
<td>.pic, .raw, .xml</td>
</tr>
<tr>
<td>Bitplane Imaris</td>
<td>.ims</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruker MRI</td>
<td>.ims</td>
</tr>
<tr>
<td>Burleigh</td>
<td>.img</td>
</tr>
<tr>
<td>Canon DNG</td>
<td>.cr2, .crw</td>
</tr>
<tr>
<td>Cellomics</td>
<td>.c01</td>
</tr>
<tr>
<td>cellSens VSI</td>
<td>.vsi</td>
</tr>
<tr>
<td>DeltaVision</td>
<td>.dv, .r3d</td>
</tr>
<tr>
<td>DICOM</td>
<td>.dcm, .dicom</td>
</tr>
<tr>
<td>ECAT7</td>
<td>.v</td>
</tr>
<tr>
<td>EPS (Encapsulated PostScript)</td>
<td>.eps, .epsi, .ps</td>
</tr>
<tr>
<td>Evotec/PerkinElmer Opera Flex</td>
<td>.flex, .mea, .res</td>
</tr>
<tr>
<td>FEI</td>
<td>.jpg</td>
</tr>
<tr>
<td>FEI TIFF</td>
<td>.tiff</td>
</tr>
<tr>
<td>FITS (Flexible Image Transport System)</td>
<td>.fits</td>
</tr>
<tr>
<td>Gatan Digital Micrograph</td>
<td>.dm3</td>
</tr>
<tr>
<td>Gatan Digital Micrograph 2</td>
<td>.dm2</td>
</tr>
<tr>
<td>GIF (Graphics Interchange Format)</td>
<td>.gif</td>
</tr>
<tr>
<td>Hamamatsu Aqua-cosmos NAF</td>
<td>.naf</td>
</tr>
<tr>
<td>Hamamatsu HIS</td>
<td>.his</td>
</tr>
<tr>
<td>Hamamatsu ndpi</td>
<td>.ndpi</td>
</tr>
<tr>
<td>Hamamatsu VMS</td>
<td>.vms</td>
</tr>
<tr>
<td>Hitachi S-4800</td>
<td>.txt, .tif, .bmp, .jpg</td>
</tr>
<tr>
<td>ICS (Image Cytometry Standard)</td>
<td>.ics, .ids</td>
</tr>
<tr>
<td>Imacon</td>
<td>.fff</td>
</tr>
<tr>
<td>ImagePro Sequence</td>
<td>.seq</td>
</tr>
<tr>
<td>ImagePro Workspace</td>
<td>.ipw</td>
</tr>
<tr>
<td>IMAGIC</td>
<td>.hed, .img</td>
</tr>
<tr>
<td>IMOD</td>
<td>.mod</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvision Openlab LIFF</td>
<td>.liff</td>
</tr>
<tr>
<td>Improvision Openlab Raw</td>
<td>.raw</td>
</tr>
<tr>
<td>Improvision TIFF</td>
<td>.tif</td>
</tr>
<tr>
<td>InCell 1000</td>
<td>.xdce, .tif</td>
</tr>
<tr>
<td>InCell 3000</td>
<td>.frm</td>
</tr>
<tr>
<td>INR</td>
<td>.inr</td>
</tr>
<tr>
<td>IPLab</td>
<td>.ipl</td>
</tr>
<tr>
<td>IPLab-Mac</td>
<td>.ipm</td>
</tr>
<tr>
<td>JEOL</td>
<td>.dat, .img, .par</td>
</tr>
<tr>
<td>JPEG</td>
<td>.jpg</td>
</tr>
<tr>
<td>JPEG 2000</td>
<td>.jp2</td>
</tr>
<tr>
<td>JPK</td>
<td>.jpk</td>
</tr>
<tr>
<td>JPX</td>
<td>.jpX</td>
</tr>
<tr>
<td>Khoros VIFF (Visualization Image File Format) Bitmap</td>
<td>.xv</td>
</tr>
<tr>
<td>Kodak BIP</td>
<td>.bip</td>
</tr>
<tr>
<td>Lambert Instruments FLIM</td>
<td>.fli</td>
</tr>
<tr>
<td>Leica LCS LEI</td>
<td>.lei, .tif</td>
</tr>
<tr>
<td>Leica LAS AF LIF (Leica Image File Format)</td>
<td>.lif</td>
</tr>
<tr>
<td>Leica SCN</td>
<td>.scn</td>
</tr>
<tr>
<td>LEO</td>
<td>.sxm</td>
</tr>
<tr>
<td>Li-Cor L2D</td>
<td>.l2d, .tif, .scn</td>
</tr>
<tr>
<td>LIM (Laboratory Imaging/Nikon)</td>
<td>.lim</td>
</tr>
<tr>
<td>MetaMorph 7.5 TIFF</td>
<td>.tiff</td>
</tr>
<tr>
<td>MetaMorph Stack (STK)</td>
<td>.stk, .nd</td>
</tr>
<tr>
<td>MIAS (Maia Scientific)</td>
<td>.tif</td>
</tr>
</tbody>
</table>

Continued on next page
Table 17.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-Manager</td>
<td>.tif, .txt, .xml</td>
</tr>
<tr>
<td>MINC MRI</td>
<td>.mnc</td>
</tr>
<tr>
<td>Minolta MRW</td>
<td>.mrw</td>
</tr>
<tr>
<td>MNG (Multiple-image Network Graphics)</td>
<td>.mng</td>
</tr>
<tr>
<td>Molecular Imaging</td>
<td>.stp</td>
</tr>
<tr>
<td>MRC (Medical Research Council)</td>
<td>.mrc</td>
</tr>
<tr>
<td>NEF (Nikon Electronic Format)</td>
<td>.nef, .tif</td>
</tr>
<tr>
<td>NIFTI</td>
<td>.img, .hdr</td>
</tr>
<tr>
<td>Nikon Elements TIFF</td>
<td>.tiff</td>
</tr>
<tr>
<td>Nikon EZ-C1 TIFF</td>
<td>.tiff</td>
</tr>
<tr>
<td>Nikon NIS-Elements ND2</td>
<td>.nd2</td>
</tr>
<tr>
<td>NRRD (Nearly Raw Raster Data)</td>
<td>.nrrd, .nhdr, .raw, .txt</td>
</tr>
<tr>
<td>Olympus CellR/APL</td>
<td>.apl, .mtb, .tnb, .tnb, .tif, .obsep</td>
</tr>
<tr>
<td>Olympus Fluoview FV1000</td>
<td>.oib, .oif</td>
</tr>
<tr>
<td>Olympus Fluoview TIFF</td>
<td>.tif</td>
</tr>
<tr>
<td>Olympus ScanR</td>
<td>.xml, .dat, .tif</td>
</tr>
<tr>
<td>Olympus SISTIFF</td>
<td>.tiff</td>
</tr>
<tr>
<td>OME-TIFF</td>
<td>.ome.tiff</td>
</tr>
<tr>
<td>OME-XML</td>
<td>.ome</td>
</tr>
<tr>
<td>Oxford Instruments</td>
<td>.top</td>
</tr>
<tr>
<td>PCX (PC Paintbrush)</td>
<td>.pcx</td>
</tr>
<tr>
<td>Perkin Elmer Densitometer</td>
<td>.pds</td>
</tr>
<tr>
<td>PerkinElmer Operaetta</td>
<td>.tiff, .xml</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PerkinElmer Ultra-View</td>
<td>.tif, .2, .3, .4</td>
</tr>
<tr>
<td>PGM (Portable Gray Map)</td>
<td>.pgm</td>
</tr>
<tr>
<td>Adobe Photoshop PSD</td>
<td>.psd</td>
</tr>
<tr>
<td>Photoshop TIFF</td>
<td>.tif, .tiff</td>
</tr>
<tr>
<td>PICT (Macintosh Picture)</td>
<td>.pict</td>
</tr>
<tr>
<td>PNG (Portable Network Graphics)</td>
<td>.png</td>
</tr>
<tr>
<td>Prairie Technologies TIFF</td>
<td>.tif, .xml, .cfg</td>
</tr>
<tr>
<td>Quesant</td>
<td>.afm</td>
</tr>
<tr>
<td>QuickTime Movie</td>
<td>.mov</td>
</tr>
<tr>
<td>RHK</td>
<td>.sm2, .sm3</td>
</tr>
<tr>
<td>SBIG</td>
<td>.sm2, .sm3</td>
</tr>
<tr>
<td>Seiko</td>
<td>.xqd, .xqf</td>
</tr>
<tr>
<td>SimplePCI & HCImage</td>
<td>.cxd</td>
</tr>
<tr>
<td>SimplePCI & HCImage TIFF</td>
<td>.tiff</td>
</tr>
<tr>
<td>SM Camera</td>
<td>.tiff</td>
</tr>
<tr>
<td>SPIDER</td>
<td>.spi, .stk</td>
</tr>
<tr>
<td>Targa</td>
<td>.tga</td>
</tr>
<tr>
<td>Text</td>
<td>.txt</td>
</tr>
<tr>
<td>TIFF (Tagged Image File Format)</td>
<td>.tif</td>
</tr>
<tr>
<td>TillPhotonics TillVision</td>
<td>.vws</td>
</tr>
<tr>
<td>Topometrix</td>
<td>.tfr, .ftr, .zfr, .zfp, .2fl</td>
</tr>
<tr>
<td>Trestle</td>
<td>.tif, .sld, .jpg</td>
</tr>
<tr>
<td>UBM</td>
<td>.pr3</td>
</tr>
<tr>
<td>Unisoku</td>
<td>.dat, .hdr</td>
</tr>
<tr>
<td>Varian FDF</td>
<td>.fdf</td>
</tr>
</tbody>
</table>

Continued on next page
Table 17.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VG SAM</td>
<td>.dti</td>
</tr>
<tr>
<td>VisiTech XYS</td>
<td>.xys, .html</td>
</tr>
<tr>
<td>Volocity Clipping</td>
<td>.mvd2</td>
</tr>
<tr>
<td>Volocity Library</td>
<td>.acff</td>
</tr>
<tr>
<td>WA-TOP</td>
<td>.wat</td>
</tr>
<tr>
<td>Windows Bitmap</td>
<td>.bmp</td>
</tr>
<tr>
<td>Zeiss AxioVision TIFF</td>
<td>.xml, .tiff</td>
</tr>
<tr>
<td>Zeiss AxioVision ZVI (Zeiss Vision Image)</td>
<td>.zvi</td>
</tr>
<tr>
<td>Zeiss CZI</td>
<td>.czi</td>
</tr>
<tr>
<td>Zeiss LSM (Laser Scanning Microscope) 510/710</td>
<td>.lsm, .mdb</td>
</tr>
</tbody>
</table>

Bio-Formats currently supports 127 formats

<table>
<thead>
<tr>
<th>Pixels</th>
<th>Metadata</th>
<th>Openness</th>
<th>Presence</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our estimation of Bio-Formats’ ability to reliably extract complete and accurate pixel values from files in that format. The better this score, the more confident we are that Bio-Formats will successfully read your file without displaying an error message or displaying an erroneous image.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Our certainty in the thoroughness and correctness of Bio-Formats’ metadata extraction and conversion from files of that format into standard OME-XML. The better this score, the more confident we are that all meaningful metadata will be parsed and populated as OME-XML.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This is not a direct expression of Bio-Formats’ performance, but rather indicates the level of cooperation the format’s controlling interest has demonstrated toward the scientific community with respect to the format. The better this score, the more tools (specification documents, source code, sample files, etc.) have been made available.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This is also not directly related to Bio-Formats, but instead represents our understanding of the format’s popularity, and is also as a measure of compatibility between applications. The better this score, the more common the format and the more software packages include support for it.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Our opinion of the format’s suitability for storing metadata-rich microscopy image data. The better this score, the wider the variety of information that can be effectively stored in the format.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Export This indicates whether Bio-Formats is capable of writing the format (Bio-Formats can read every format on this list).

SCIFIO This indicates whether format is supported by the SCIFIO core library (See the license section on the Bio-Formats documentation page for why this matters).

17.1 3i SlideBook

Extensions: .sld

Developer: Intelligent Imaging Innovations

Owner: Intelligent Imaging Innovations

Support

SCIFIO:

Export:

Officially Supported Versions: 4.1, 4.2

Supported Metadata Fields: 3i SlideBook

We currently have:

• Numerous SlideBook datasets

We would like to have:

• A SlideBook specification document

• More SlideBook datasets (preferably acquired with the most recent SlideBook software)

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: SlidebookReader.java

Notes:

We strongly encourage users to export their .sld files to OME-TIFF using the SlideBook software. Bio-Formats is not likely to support the full range of metadata that is included in .sld files, and so exporting to OME-TIFF from SlideBook is the best way to ensure that all metadata is preserved.

See also:

Slidebook software overview
17.2 Andor Bio-Imaging Division (ABD) TIFF

Extensions: .tiff
Developer: Andor Bioimaging Department
Owner: Andor Technology

Support

SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Andor Bio-Imaging Division (ABD) TIFF

We currently have:

• an ABD-TIFF specification document (from 2005 November, in PDF)
• a few ABD-TIFF datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: FluoviewReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

With a few minor exceptions, the ABD-TIFF format is identical to the Fluoview TIFF format.

17.3 AIM

Extensions: .aim
Developer: SCANCO Medical AG

Support

SCIFIO:
Export:

5 http://www.andor.com/
6 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/FluoviewReader.java
7 http://www.scanco.ch
Officially Supported Versions:
Supported Metadata Fields: AIM
We currently have:
 • one .aim file
We would like to have:
 • an .aim specification document
 • more .aim files

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: AIMReader.java
Notes:

17.4 Alicona 3D

Extensions: .al3d
Owner: Alicona Imaging

Support
SCIFIO:
Export:
Officially Supported Versions: 1.0
Supported Metadata Fields: Alicona 3D
We currently have:
 • an AL3D specification document (v1.0, from 2003, in PDF)
 • a few AL3D datasets
We would like to have:
 • more AL3D datasets (Z series, T series, 16-bit)

8 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/AIMReader.java
9 http://www.alicona.com/
Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: AliconaReader.java

Notes:

Known deficiencies:
- Support for 16-bit AL3D images is present, but has never been tested.
- Texture data is currently ignored.

17.5 Amersham Biosciences Gel

Extensions: .gel
Developer: Molecular Dynamics
Owner: GE Healthcare Life Sciences

Support

SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Amersham Biosciences Gel
We currently have:
- a GEL specification document (Revision 2, from 2001 Mar 15, in PDF)
- a few GEL datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

11 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/AliconaReader.java
12 http://www.gelifesciences.com/
Additional Information

Source Code: GelReader.java\(^1\)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:

GEL Technical Overview\(^2\)

17.6 Amira Mesh

Extensions: .am, .amiramesh, .grey, .hx, .labels

Developer: Visage Imaging\(^3\)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *Amira Mesh*

We currently have:

- a few Amira Mesh datasets

We would like to have:

- more Amira Mesh datasets

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: AmiraReader.java\(^4\)

Notes:

\(^1\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/GelReader.java

\(^2\)http://www.awaresystems.be/imaging/tiff/tifftags/docs/gel.html

\(^3\)http://www.amiravis.com/

\(^4\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/AmiraReader.java
17.7 Analyze 7.5

Extensions: .img, .hdr
Developer: Mayo Foundation Biomedical Imaging Resource

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: Analyze 7.5

We currently have:
 • an Analyze 7.5 specification document
 • several Analyze 7.5 datasets

We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: AnalyzeReader.java

Notes:

17.8 Animated PNG

Extensions: .png
Developer: The Animated PNG Project

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: Animated PNG

Freely Available Software:

17.7. Analyze 7.5

17 [http://www.mayo.edu/bir]
18 [http://analyzedirect.com/support/10.0Documents/Analyze_Resource_01.pdf]
19 [https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/AnalyzeReader.java]
20 [http://www.animatedpng.com/]

• Firefox 3+ \(^{21}\)
• Opera 9.5+ \(^{22}\)
• KSquirrel \(^{23}\)

We currently have:
• a specification document \(^{24}\)
• several APNG files

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: APNGReader.java \(^{25}\)

Notes:

17.9 Aperio SVS TIFF

Extensions: .svs
Owner: Aperio \(^{26}\)

Support

SCIFIO:
Export:

Officially Supported Versions: 8.0, 8.2, 9.0

Supported Metadata Fields: Aperio SVS TIFF

We currently have:
• many SVS datasets
• an SVS specification document
• the ability to generate additional SVS datasets

\(^{21}\)http://www.mozilla.com/firefox
\(^{22}\)http://www.opera.com/download
\(^{23}\)http://ksquirrel.sourceforge.net/download.php
\(^{24}\)http://wiki.mozilla.org/APNG_Specification
\(^{25}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/APNGReader.java
\(^{26}\)http://www.aperio.com/
We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: [SVSReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SVSReader.java)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:

Aperio ImageScope [28](http://www.aperio.com/#imagescope-request)

17.10 Applied Precision CellWorX

Extensions: .htd, .pnl

Developer: [Applied Precision](http://www.api.com)

Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: *Applied Precision CellWorX*

We currently have:

- a few CellWorX datasets

We would like to have:

- a CellWorX specification document
- more CellWorX datasets

Ratings

Pixels:
Metadata:
Openness:

28http://www.aperio.com/#imagescope-request

29http://www.api.com
17.11 AVI (Audio Video Interleave)

Extensions: .avi

Developer: Microsoft

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: AVI (Audio Video Interleave)

Freely Available Software:

- AVI Reader plugin for ImageJ
- AVI Writer plugin for ImageJ

We currently have:

- several AVI datasets

We would like to have:

- more AVI datasets, including:
 - files with audio tracks and/or multiple video tracks
 - files compressed with a common unsupported codec
 - 2+ GB files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

![Image 1](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/CellWorxReader.java)

http://www.microsoft.com/

Source Code: AVIReader.java34

Notes:

- Bio-Formats can save image stacks as AVI (uncompressed).
- The following codecs are supported for reading:
 - Microsoft Run-Length Encoding (MSRLE)
 - Microsoft Video (MSV1)
 - Raw (uncompressed)
 - JPEG

See also:
AVI RIFF File Reference35 AVI on Wikipedia36

\section{17.12 Axon Raw Format}

Extensions: .arf

Owner: INDEC BioSystems37

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: Axon Raw Format

We currently have:

- one ARF dataset
- a specification document38

We would like to have:

- more ARF datasets

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

34https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/AVIReader.java
35http://msdn2.microsoft.com/en-us/library/ms779636.aspx
36http://en.wikipedia.org/wiki/Audio_Video_Interleave
37http://www.indecbiosystems.com/
38http://www.indecbiosystems.com/imagingworkbench/ApplicationNotes/IWAppNote11-ARF_File_Format.pdf
Source Code: ARFReader.java

Notes:

17.13 BD Pathway

Extensions: .exp, .tif
Owner: BD Biosciences

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: BD Pathway
We currently have:
 • a few BD Pathway datasets
We would like to have:
 • more BD Pathway datasets

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: BDReader.java

Notes:

17.14 Becker & Hickl SPCLmage

Extensions: .sdt
Owner: Becker-Hickl

Support
SCIFIO:
Export:

https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ARFReader.java
http://wwwbdbiosciences.com
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/BDReader.java
http://www.becker-hickl.de/
Officially Supported Versions:

Supported Metadata Fields: *Becker & Hickl SPImage*

We currently have:

- an SDT specification document (from 2008 April, in PDF)
- an SDT specification document (from 2006 June, in PDF)
- Becker & Hickl’s *SPCImage*\(^{43}\) software
 - a large number of SDT datasets
 - the ability to produce new datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: *SDTReader.java*\(^{44}\)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

17.15 Bio-Rad Gel

Extensions: .1sc

Owner: Bio-Rad\(^{45}\)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *Bio-Rad Gel*

We currently have:

- software that can read Bio-Rad Gel files
- several Bio-Rad Gel files

We would like to have:

\(^{43}\)http://www.becker-hickl.de/software/tcspc/softwaretcpcpspecial.htm

\(^{44}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SDTReader.java

\(^{45}\)http://www.bio-rad.com
• a Bio-Rad Gel specification
• more Bio-Rad Gel files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: BioRadGelReader.java

Notes:

17.16 Bio-Rad PIC

Extensions: .pic, .raw, .xml
Developer: Bio-Rad
Owner: Carl Zeiss, Inc.

Support

SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: Bio-Rad PIC

Freely Available Software:
• Bio-Rad PIC reader plugin for ImageJ

We currently have:
• a PIC specification document (v4.5, in PDF)
• an older PIC specification document (v4.2, from 1996 December 16, in DOC)
• a large number of PIC datasets
• the ability to produce new datasets

We would like to have:

Ratings

Pixels:
Metadata:

47http://www.zeiss.com/
Openness:

Presence:

Utility:

Additional Information

Source Code: BioRadReader.java⁴⁹

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

- Commercial applications that support this format include:
 - Bitplane Imaris⁵⁰
 - SVI Huygens⁵¹

17.17 Bitplane Imaris

Extensions: .ims

Owner: Bitplane⁵²

Support

SCIFIO:

Export:

Officially Supported Versions: 2.7, 3.0, 5.5

Supported Metadata Fields: *Bitplane Imaris*

We currently have:

- an Imaris (RAW) specification document⁵³ (from no later than 1997 November 11, in HTML)
- an Imaris 5.5 (HDF) specification document
- Bitplane’s bfFileReaderImaris3N code (from no later than 2005, in C++)
- several older Imaris (RAW) datasets
- one Imaris 3 (TIFF) dataset
- several Imaris 5.5 (HDF) datasets

We would like to have:

- an Imaris 3 (TIFF) specification document
- more Imaris 3 (TIFF) datasets

⁵⁰http://www.bitplane.com/
⁵¹http://svi.nl/
⁵²http://www.bitplane.com/
⁵³http://flash.bitplane.com/support/faqs/faqsview.cfm?idCat=6&idQuestionID=104
Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: ImarisHDFReader.java, ImarisTiffReader.java, ImarisReader.java

Notes:

• There are three distinct Imaris formats:
 1. the old binary format (introduced in Imaris version 2.7)
 2. Imaris 3, a TIFF variant (introduced in Imaris version 3.0)
 3. Imaris 5.5, an HDF variant (introduced in Imaris version 5.5)

17.18 Bruker MRI

Developer: Bruker

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: Bruker MRI

Freely Available Software:

• Bruker plugin for ImageJ

We currently have:

• a few Bruker MRI datasets

We would like to have:

• an official specification document

Ratings

Pixels:
Metadata:
Openness:

54 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImarisHDFReader.java
56 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImarisReader.java
57 http://www.bruker.com/
Presence:
Utility:

Additional Information
Source Code: BrukerReader.java59
Notes:

17.19 Burleigh

Extensions: .img
Owner: Burleigh Instruments

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: \textit{Burleigh}

We currently have:
\begin{itemize}
\item Pascal code that can read Burleigh files (from ImageSXM)
\item a few Burleigh files
\end{itemize}

We would like to have:
\begin{itemize}
\item a Burleigh file format specification
\item more Burleigh files
\end{itemize}

Ratings

Pixels:
Metadata:
Openness:

Presence:
Utility:

Additional Information
Source Code: BurleighReader.java60
Notes:

\begin{itemize}
\item 59https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in BrukerReader.java
\item 60https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in BurleighReader.java
\end{itemize}
17.20 Canon DNG

Extensions: .cr2, .crw
Developer: Canon\(^\text{61}\)

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: Canon DNG
Freely Available Software:
 • IrfanView\(^\text{62}\)
We currently have:
 • a few example datasets
We would like to have:
 • an official specification document

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: DNGReader.java\(^\text{63}\)
Notes:

17.21 Cellomics

Extensions: .c01
Developer: Thermo Fisher Scientific\(^\text{64}\)

Support
SCIFIO:
Export:
Officially Supported Versions:

\(^{61}\)http://canon.com
\(^{62}\)http://www.irfanview.com/
\(^{63}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/DNGReader.java
\(^{64}\)http://www.thermofisher.com/
Supported Metadata Fields: *Cellomics*

We currently have:

- a few Cellomics .c01 datasets

We would like to have:

- a Cellomics .c01 specification document
- more Cellomics .c01 datasets

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: [CellomicsReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/CellomicsReader.java)

Notes:

17.22 cellSens VSI

Extensions: .vsi

Developer: [Olympus](http://www.olympus.com/)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *cellSens VSI*

We currently have:

- a few example datasets

We would like to have:

- an official specification document

Ratings

Pixels:

Metadata:

Openness:

Presence:

66 http://www.olympus.com/
Utility:

Additional Information

Source Code: CellSensReader.java

Notes:

17.23 DeltaVision

Extensions: .dv, .r3d

Owner: Applied Precision

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: DeltaVision

Freely Available Software:

• DeltaVision Opener plugin for ImageJ

Sample Datasets:

• Applied Precision Datasets

We currently have:

• a DV specification document (v2.10 or newer, in HTML)

• numerous DV datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: DeltavisionReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

68http://www.api.com/
70http://www.api.com/downloads/software/softworxexplorer2.0/SampleImages.zip
• The Deltavision format is based on the Medical Research Council (MRC) file format.

• Commercial applications that support DeltaVision include:
 – Bitplane Imaris
 – SVI Huygens
 – Image-Pro Plus

See also:
DeltaVision system description

17.24 DICOM

Extensions: .dcm, .dicom

Developer: National Electrical Manufacturers Association

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: DICOM

Freely Available Software:

• OsiriX Medical Imaging Software
• ezDICOM
• Wikipedia’s list of freeware health software

Sample Datasets:

• MRI Chest from FreeVol-3D web site
• Medical Image Samples from Sebastien Barre’s Medical Imaging page
• DICOM sample image sets from OsiriX web site

We currently have:

• DICOM specification documents (PS 3 - 2007, from 2006 December 28, in DOC and PDF)

• numerous DICOM datasets

References:

72http://www.bitplane.com/
73http://svi.nl/
74http://www.mediacy.com/
75http://api.com/deltavision.asp
76http://www.nema.org/
77http://www.osirix-viewer.com/
78http://www.sph.sc.edu/comd/rorden/ezdicom.html
79http://en.wikipedia.org/wiki/List_of_freeware_health_software#Imaging.2FVisualization
80http://members.tripod.com/%7Echanis_immensus/free3d/hk-40.zip
81http://www.barre.nom.fr/medical/samples/
82http://osirix-viewer.com/datasets/
83http://medical.nema.org/dicom/2007/
We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: [DicomReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/DicomReader.java)

Notes:
- DICOM stands for “Digital Imaging and Communication in Medicine”.
- Bio-Formats supports both compressed and uncompressed DICOM files.

See also:

[DICOM homepage](http://medical.nema.org/)

17.25 ECAT7

Extensions: .v

Developer: Siemens

Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: **ECAT7**

We currently have:
- a few ECAT7 files

We would like to have:
- an ECAT7 specification document
- more ECAT7 files

Ratings

Pixels:
Metadata:
Openness:

86 http://www.siemens.com
17.26 EPS (Encapsulated PostScript)

Extensions: .eps, .epsi, .ps
Developer: Adobe

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: EPS (Encapsulated PostScript)

Freely Available Software:
- EPS Writer plugin for ImageJ

We currently have:
- a few EPS datasets
- the ability to produce new datasets

We would like to have:

Ratings
Pixels:
Metadata:
Openness:

Presence:
Utility:

Additional Information
Source Code: EPSReader.java Source Code: EPSWriter.java

Notes:
- Bio-Formats can save individual planes as EPS.
- Certain types of compressed EPS files are not supported.

87 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/Ecat7Reader.java
88 http://www.adobe.com/
90 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/EPSReader.java
91 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/EPSWriter.java
17.27 Evotec/PerkinElmer Opera Flex

Extensions: .flex, .mea, .res
Developer: Evotec Technologies, now PerkinElmer

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: Evotec/PerkinElmer Opera Flex
We currently have:
 • many Flex datasets
We would like to have:
 • a freely redistributable LuraWave LWF decoder

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: FlexReader.java
Notes:
The LuraWave LWF decoder library (i.e. lwf_jsdk2.6.jar) with license code is required to decode wavelet-compressed Flex files.

See also:
LuraTech (developers of the proprietary LuraWave LWF compression used for Flex image planes)

17.28 FEI

Extensions: .img
Developer: FEI

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: **FEI**

We currently have:
- a few FEI files

We would like to have:
- a specification document
- more FEI files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: [FEIReader.java](http://www.fei.com)

Notes:

17.29 FEI TIFF

Extensions: .tiff

Developer: [FEI](http://www.fei.com)

Support

SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: **FEI TIFF**

We currently have:
- a few FEI TIFF datasets

We would like to have:

Ratings

Pixels:
Metadata:

Openness:

97 http://www.fei.com
Presence:
Utility:

Additional Information
Source Code: FEITiffReader.java98
Notes:

\section*{17.30 FITS (Flexible Image Transport System)}

Extensions: .fits
Developer: National Radio Astronomy Observatory99

Support
SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: \textit{FITS (Flexible Image Transport System)}

We currently have:
\begin{itemize}
\item a FITS specification document100 (NOST 100-2.0, from 1999 March 29, in HTML)
\item several FITS datasets
\end{itemize}

We would like to have:

Ratings

Pixels:
Metadata:
Openness:

Presence:
Utility:

Additional Information
Source Code: FitsReader.java101
Notes:

See also:

MAST:FITS homepage102 FITS Support Office103

98https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/FEITiffReader.java
99http://www.nrao.edu/
100http://archive.stsci.edu/fits/fits_standard/
101https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/FitsReader.java
102http://archive.stsci.edu/fits/
103http://fits.gsfc.nasa.gov/
17.31 Gatan Digital Micrograph

Extensions: .dm3
Owner: Gatan

Support
SCIFIO:
Export:
Officially Supported Versions: 3
Supported Metadata Fields: Gatan Digital Micrograph

Freely Available Software:
- DM3 Reader plugin for ImageJ
- EMAN

We currently have:
- Gatan’s ImageReader2003 code (from 2003, in C++)
- numerous DM3 datasets

We would like to have:
- a DM3 specification document

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: GatanReader.java

Notes:
Commercial applications that support .dm3 files include Datasqueeze.

17.32 Gatan Digital Micrograph 2

Extensions: .dm2
Developer: Gatan

Notes:
Commercial applications that support .dm2 files include Datasqueeze.
Support

SCIFIO:
Export:
Officially Supported Versions: 2
Supported Metadata Fields: Gatan Digital Micrograph 2

We currently have:

- Pascal code that can read DM2 files (from ImageSXM)
- a few DM2 files

We would like to have:

- an official DM2 specification document
- more DM2 files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: GatanDM2Reader.java110
Notes:

17.33 GIF (Graphics Interchange Format)

Extensions: .gif
Developer: CompuServe111
Owner: Unisys112

Support

SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: GIF (Graphics Interchange Format)
Freely Available Software:

- Animated GIF Reader plugin for ImageJ113

110https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/GatanDM2Reader.java
111http://www.compuserve.com/
112http://www.unisys.com/
113http://rsb.info.nih.gov/ij/plugins/agr.html
• GIF Stack Writer plugin for ImageJ114

We currently have:

• a GIF specification document115 (Version 89a, from 1990, in HTML)
• numerous GIF datasets
• the ability to produce new datasets

We would like to have:

\textbf{Ratings}

Pixels:
Metadata:
Openness:
Presence:
Utility:

\textbf{Additional Information}

Source Code: GIFReader.java116

Notes:

\section*{17.34 Hamamatsu Aquacosmos NAF}

Extensions: .naf

Developer: Hamamatsu117

\textbf{Support}

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: \textit{Hamamatsu Aquacosmos NAF}

We currently have:

• a few NAF files

We would like to have:

• a specification document
• more NAF files

\textbf{Ratings}

Pixels:

Metadata:

114http://rsb.info.nih.gov/ij/plugins/gif-stack-writer.html
115http://tronche.com/computer-graphics/gif/
116https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/GIFReader.java
117http://www.hamamatsu.com/
Openness:
Presence:
Utility:
Additional Information
Source Code: NAFReader.java\(^{118}\)
Notes:

17.35 Hamamatsu HIS

Extensions: .his
Owner: Hamamatsu\(^{119}\)
Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: *Hamamatsu HIS*
We currently have:
 * Pascal code that can read HIS files (from ImageSXM)
 * several HIS files
We would like to have:
 * an HIS specification
 * more HIS files

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:
Additional Information
Source Code: HISReader.java\(^{120}\)
Notes:

\(^{118}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NAFReader.java
\(^{119}\)http://www.hamamatsu.com
\(^{120}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/HISReader.java
17.36 Hamamatsu ndpi

Extensions: .ndpi
Developer: Hamamatsu

Support

SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Hamamatsu ndpi

Freely Available Software:

- NDP:view

Sample Datasets:

- OpenSlide

We currently have:

- many example datasets

We would like to have:

- an official specification document

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: NDPIReader.java

Notes:

17.37 Hamamatsu VMS

Extensions: .vms
Developer: Hamamatsu

Support

121 http://www.hamamatsu.com
122 http://www.olympusamerica.com/seg_section/seg_vrm_downloads.asp
123 http://openslide.cs.cmu.edu/download/openslide-testdata/Hamamatsu/
125 http://www.hamamatsu.com
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: Hamamatsu VMS

Sample Datasets:
 • OpenSlide126

We currently have:
 • a few example datasets
 • developer documentation from the OpenSlide project127

We would like to have:
 • an official specification document
 • more example datasets

\textbf{Ratings}

Pixels:
Metadata:
Openness:
Presence:
Utility:

\textbf{Additional Information}

Source Code: HamamatsuVMSReader.java128
Notes:

\section*{17.38 Hitachi S-4800}

Extensions: .txt, .tif, .bmp, .jpg
Developer: Hitachi129

\textbf{Support}

SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: Hitachi S-4800

We currently have:
 • several Hitachi S-4800 datasets

126http://openslide.cs.cmu.edu/download/openslide-testdata/Hamamatsu-vms/
127http://openslide.org/Hamamatsu%20format/
128https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/HamamatsuVMSReader.java
129http://www.hitachi-hta.com/sites/default/files/technotes/Hitachi_4800_STEM.pdf
We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: HitachiReader.java

Notes:

17.39 **ICS (Image Cytometry Standard)**

Extensions: .ics, .ids
Developer: P. Dean et al.

Support

SCIFIO:
Export:
Officially Supported Versions: 1.0, 2.0
Supported Metadata Fields: *ICS (Image Cytometry Standard)*

Freely Available Software:

- Libics (ICS reference library)
- ICS Opener plugin for ImageJ
- IrfanView

We currently have:

- numerous ICS datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:

[^130]: https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/HitachiReader.java
[^131]: http://libics.sourceforge.net/
[^132]: http://valelab.ucsf.edu/%7Enico/IJplugins/Ics_Opener.html
[^133]: http://www.irfanview.com/
Utility:

Additional Information

Source Code: ICSReader.java134 Source Code: ICSWriter.java135

Notes:

• ICS version 1.0 datasets have two files - an .ics file that contains all of the metadata in plain-text format, and an .ids file that contains all of the pixel data.
• ICS version 2.0 datasets are a single .ics file that contains both pixels and metadata.

Commercial applications that can support ICS include:

• Bitplane Imaris136
• SVI Huygens137

17.40 Imacon

Extensions: .fff

Owner: Hasselblad138

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: Imacon

We currently have:

• one Imacon file

We would like to have:

• more Imacon files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: ImaconReader.java139

134https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/ICSReader.java
135https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/ICSWriter.java
136http://www.bitplane.com/
137http://svi.nl/
138http://www.hasselbladusa.com/
139https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ImaconReader.java
Notes:

17.41 ImagePro Sequence

Extensions: .seq

Owner: Media Cybernetics

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *ImagePro Sequence*

We currently have:

- the Image-Pro Plus software
- a few SEQ datasets
- the ability to produce more datasets

We would like to have:

- an official SEQ specification document

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: SEQReader.java

Notes:

17.42 ImagePro Workspace

Extensions: .ipw

Owner: Media Cybernetics

Support

SCIFIO:

140 http://www.mediacy.com/

142 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SEQReader.java

143 http://www.mediacy.com/
Export:
Officially Supported Versions:
Supported Metadata Fields: *ImagePro Workspace*

We currently have:
- the Image-Pro Plus\(^{144}\) software
- a few IPW datasets
- the ability to produce more datasets

We would like to have:
- an official IPW specification document
- more IPW datasets:
 - multiple datasets in one file
 - 2+ GB files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: IPWReader.java\(^{145}\)

Notes:

Bio-Formats uses a modified version of the Apache Jakarta POI\(^{146}\) library to read IPW files.

17.43 IMAGIC

Extensions: .hed, .img

Developer: Image Science\(^{147}\)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *IMAGIC*

Freely Available Software:

\(^{145}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/IPWReader.java

\(^{146}\)http://jakarta.apache.org/poi/

\(^{147}\)http://www.imagescience.de
We currently have:

- one example dataset
- official file format documentation

We would like to have:

- more example datasets

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: ImagicReader.java

Notes:

See also:

IMAGIC specification

17.44 IMOD

Extensions: .mod

Developer: Boulder Laboratory for 3-Dimensional Electron Microscopy of Cells

Owner: Boulder Laboratory for 3-Dimensional Electron Microscopy of Cells

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: IMOD

Freely Available Software:

- IMOD

We currently have:

- a few sample datasets

151. http://bio3d.colorado.edu
152. http://bio3d.colorado.edu
153. http://bio3d.colorado.edu/imod/
• official documentation154

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: IMODReader.java155

Notes:

17.45 Improvision Openlab LIFF

Extensions: .liff

Developer: Improvision156

Owner: PerkinElmer157

Support

SCIFIO:

Export:

Officially Supported Versions: 2.0, 5.0

Supported Metadata Fields: *Improvision Openlab LIFF*

We currently have:

• an Openlab specification document (from 2000 February 8, in DOC)

• Improvision’s XLIFFFileImporter code for reading Openlab LIFF v5 files (from 2006, in C++)

• several Openlab datasets

We would like to have:

• more Openlab datasets (preferably with 32-bit integer data)

Ratings

Pixels:

Metadata:

Openness:

154http://bio3d.colorado.edu/imod/doc/binspec.html

155https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/IMODReader.java

156http://www.improvision.com/

157http://www.perkinelmer.com/
Presence:
Utility:

Additional Information
Source Code: OpenlabReader.java158

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.
See also:
Openlab software review159

\section*{17.46 Improvision Openlab Raw}

Extensions: .raw
Developer: Improvision160
Owner: PerkinElmer161

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Improvision Openlab Raw

We currently have:
• an Openlab Raw specification document162 (from 2004 November 09, in HTML)
• a few Openlab Raw datasets

We would like to have:

Ratings
Pixels:
Metadata:
Openness:

Presence:
Utility:

Additional Information
Source Code: OpenlabRawReader.java163

158https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/OpenlabReader.java
159http://www.improvision.com/products/openlab/
160http://www.improvision.com/
161http://www.perkinelmer.com/
162http://cellularimaging.perkinelmer.com/support/technical_notes/detail.php?id=344
163https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/OpenlabRawReader.java
Notes:

See also:

Openlab software review

17.47 Improvision TIFF

Extensions: .tif
Developer: Improvision
Owner: PerkinElmer

Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: Improvision TIFF

We currently have:

• an Improvision TIFF specification document
• a few Improvision TIFF datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: ImprovisionTiffReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:

Openlab software overview

164 http://www.improvision.com/products/openlab/
165 http://www.improvision.com/
166 http://www.perkinelmer.com/
168 http://www.improvision.com/products/openlab/
17.48 InCell 1000

Extensions: .xdce, .tif
Developer: GE

Support

SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: InCell 1000

We currently have:
- a few InCell 1000 datasets

We would like to have:
- an InCell 1000 specification document
- more InCell 1000 datasets

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: InCellReader.java

Notes:

17.49 InCell 3000

Extensions: .frm
Developer: GE

Support

SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: InCell 3000

Sample Datasets:

169http://gelifesciences.com/
171http://gelifesciences.com/
• Broad Bioimage Benchmark Collection172

We currently have:
 • a few example datasets

We would like to have:
 • an official specification document

\textbf{Ratings}

Pixels:
Metadata:
Openness:
Presence:
Utility:

\textbf{Additional Information}

Source Code: InCell3000Reader.java173

Notes:

\textbf{17.50 INR}

Extensions: .inr

\textbf{Support}

SCIFIO:
Export:

\textbf{Officially Supported Versions:}

\textbf{Supported Metadata Fields:} \textit{INR}

We currently have:
 • several sample .inr datasets

We would like to have:

\textbf{Ratings}

Pixels:
Metadata:
Openness:
Presence:
Utility:

\textbf{Additional Information}

172http://www.broadinstitute.org/bbbc/BBBC013/
173https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/InCell3000Reader.java
Source Code: INRReader.java174

Notes:

17.51 IPLab

Extensions: .ipl
Developer: Scanalytics
Owner: was BD Biosystems175, now BioVision Technologies176

Support

SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: IPLab

Freely Available Software:
\begin{itemize}
 \item IPLab Reader plugin for ImageJ177
\end{itemize}

We currently have:
\begin{itemize}
 \item an IPLab specification document (v3.6.5, from 2004 December 1, in PDF)
 \item several IPLab datasets
\end{itemize}

We would like to have:
\begin{itemize}
 \item more IPLab datasets (preferably with 32-bit integer or floating point data)
\end{itemize}

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: IPLabReader.java178

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Commercial applications that support IPLab include:

174https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/INRReader.java
175http://www.bdbiosciences.com/
176http://www.biovis.com/iplab.htm
177http://rsb.info.nih.gov/ij/plugins/iplab-reader.html
178https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/IPLabReader.java
• Bitplane Imaris179
• SVI Huygens180

See also:
IPLab software review181

\section*{17.52 IPLab-Mac}

Extensions: .ipm
Owner: BioVision Technologies182

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: \textit{IPLab-Mac}

We currently have:
 • a few IPLab-Mac datasets
 • a specification document

We would like to have:
 • more IPLab-Mac datasets

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: IvisionReader.java183

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

\begin{flushleft}
\footnotesize
179http://www.bitplane.com/
180http://svi.nl/
181http://www.biovis.com/iplab.htm
182http://biovis.com/
183https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/IvisionReader.java
\end{flushleft}
17.53 JEOL

Extensions: .dat, .img, .par
Owner: JEOL

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: JEOL
We currently have:
• Pascal code that reads JEOL files (from ImageSXM)
• a few JEOL files
We would like to have:
• an official specification document
• more JEOL files

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: JEOLReader.java

Notes:

17.54 JPEG

Extensions: .jpg
Developer: Independent JPEG Group

Support
SCIFIO:
Export:
Officially Supported Versions:

184 http://www.jeol.com
185 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/JEOLReader.java
186 http://www.ijg.org/
Supported Metadata Fields: JPEG

We currently have:

- a JPEG specification document (v1.04, from 1992 September 1, in PDF)
- numerous JPEG datasets
- the ability to produce more datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: JPEGReader.java
Source Code: JPEGWriter.java

Notes:

Bio-Formats can save individual planes as JPEG. Bio-Formats uses the Java Image I/O API to read and write JPEG files. JPEG stands for “Joint Photographic Experts Group”.

See also:

JPEG homepage

17.55 JPEG 2000

Extensions: .jp2

Developer: Independent JPEG Group

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: JPEG 2000

Freely Available Software:

- JJ2000 (JPEG 2000 library for Java)

We currently have:

188 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/JPEGReader.java
189 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/JPEGWriter.java
190 http://java.sun.com/j2se/1.4.2/docs/guide/imageio/index.html
191 http://www.jpeg.org/jpeg/index.html
192 http://www.iijg.org/
- a JPEG 2000 specification document194 (final draft, from 2000, in PDF)
- a few .jp2 files

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: JPEG2000Reader.java195 Source Code: JPEG2000Writer.java196

Notes:

Bio-Formats uses the JAI Image I/O Tools197 library to read JP2 files. JPEG stands for “Joint Photographic Experts Group”.

17.56 JPK

Extensions: .jpk

Developer: JPK Instruments198

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: \textit{JPK}

We currently have:

- Pascal code that can read JPK files (from ImageSXM)
- a few JPK files

We would like to have:

- an official specification document
- more JPK files

Ratings

Pixels:

194http://www.jpeg.org/jpeg2000/CDs15444.html
195https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/JPEG2000Reader.java
196https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/JPEG2000Writer.java
197https://java.net/projects/jai-imageio
198http://www.jpk.com
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: JPKReader.java

Notes:

17.57 JPX

Extensions: .jpx
Developer: JPEG Committee

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: JPX
We currently have:
• a few .jpx files
We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: JPXReader.java

Notes:

200 http://www.jpeg.org/jpeg200/
201 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/JPXReader.java
17.58 Khoros VIFF (Visualization Image File Format) Bitmap

Extensions: .xv
Developer: Khoral
Owner: AccuSoft

Support

SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Khoros VIFF (Visualization Image File Format) Bitmap
Sample Datasets:
 • VIFF Images

We currently have:
 • several VIFF datasets
We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: KhorosReader.java
Notes:

See also:
VisiQuest software overview (formerly known as KhorosPro)

17.59 Kodak BIP

Extensions: .bip
Developer: Kodak/Carestream

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: Kodak BIP
We currently have:
 • a few .bip datasets
We would like to have:
 • an official specification document

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: KodakReader.java208
Notes:
See also:
Information on Image Station systems209

17.60 Lambert Instruments FLIM

Extensions: .fli
Developer: Lambert Instruments210

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: Lambert Instruments FLIM
We currently have:
 • an LI-FLIM specification document
 • several example LI-FLIM datasets

208https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/KodakReader.java
209http://carestream.com/PublicContent.aspx?langType=1033&id=448953
210http://www.lambert-instruments.com
We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: LiFlimReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

17.61 Leica LCS LEI

Extensions: .lei, .tif

Developer: Leica Microsystems CMS GmbH

Owner: Leica

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: Leica LCS LEI

Freely Available Software:

- Leica LCS Lite

We currently have:

- an LEI specification document (beta 2.000, from no later than 2004 February 17, in PDF)
- many LEI datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

211https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LiFlimReader.java

Presence:
Utility:

Additional Information
Source Code: LeicaReader.java215

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

LCS stands for “Leica Confocal Software”. LEI presumably stands for “Leica Experimental Information”.

Commercial applications that support LEI include:

- Bitplane Imaris216
- SVI Huygens217
- Image-Pro Plus218

17.62 Leica LAS AF LIF (Leica Image File Format)

Extensions: .lif
Developer: Leica Microsystems CMS GmbH219
Owner: Leica220

Support
SCIFIO:
Export:

Officially Supported Versions: 1.0, 2.0

Supported Metadata Fields: *Leica LAS AF LIF (Leica Image File Format)*

Freely Available Software:

- Leica LAS AF Lite221 (links at bottom of page)

We currently have:

- a LIF specification document (version 2, from no later than 2007 July 26, in PDF)
- a LIF specification document (version 1, from no later than 2006 April 3, in PDF)
- numerous LIF datasets

We would like to have:

Ratings

Pixels:

215 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LeicaReader.java
216 http://www.bitplane.com/
217 http://svi.nl/
218 http://www.mediacy.com/
219 http://www.leica-microsystems.com/
220 http://www.leica.com/
221 http://www.leica-microsystems.com/products/microscope-imaging-software/life-sciences/las-af-advanced-fluorescence/
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: LIFReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

LAS stands for “Leica Application Suite”. AF stands for “Advanced Fluorescence”.

Commercial applications that support LIF include:

- Bitplane Imaris
- SVI Huygens
- Amira

17.63 Leica SCN

Extensions: .scn

Developer: Leica Microsystems

Support

SCIFIO:

Export:

Officially Supported Versions: 2012-03-10

Supported Metadata Fields: Leica SCN

We currently have:

- a few sample datasets

We would like to have:

- an official specification document
- sample datasets that cannot be opened

Ratings

Pixels:

Metadata:

Openness:

224 http://svi.nl/

17.64 LEO

Extensions: .sxm
Owner: Zeiss

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: LEO

We currently have:
- Pascal code that can read LEO files (from ImageSXM)
- a few LEO files

We would like to have:
- an official specification document
- more LEO files

Ratings
Pixels:
Metadata:
Openness:

Presence:
Utility:

Additional Information
Source Code: LEOReader.java

Notes:

227 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LeicaSCNReader.java
228 http://www.zeiss.de
229 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LEOReader.java
17.65 Li-Cor L2D

Extensions: .l2d, .tif, .scn
Owner: LiCor Biosciences\(^{230}\)

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: \textit{Li-Cor L2D}
We currently have:
\begin{itemize}
 \item a few L2D datasets
\end{itemize}
We would like to have:
\begin{itemize}
 \item an official specification document
 \item more L2D datasets
\end{itemize}

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: L2DReader.java\(^{231}\)
Notes:
L2D datasets cannot be imported into OME using server-side import. They can, however, be imported from ImageJ, or using the omeul utility.

17.66 LIM (Laboratory Imaging/Nikon)

Extensions: .lim
Owner: Laboratory Imaging\(^{232}\)

Support
SCIFIO:
Export:

Officially Supported Versions:
\(^{230}\)http://www.licor.com/
\(^{231}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/L2DReader.java
\(^{232}\)http://www.lim.cz/
Supported Metadata Fields: **LIM (Laboratory Imaging/Nikon)**

We currently have:

- several LIM files
- the ability to produce more LIM files

We would like to have:

- an official specification document

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: LIMReader.java

Notes:

Bio-Formats only supports uncompressed LIM files.

Commercial applications that support LIM include:

- NIS Elements

17.67 MetaMorph 7.5 TIFF

Extensions: .tiff

Owner: Molecular Devices

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: **MetaMorph 7.5 TIFF**

We currently have:

- a few Metamorph 7.5 TIFF datasets

We would like to have:

Ratings

Pixels:

233 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/LIMReader.java

234 http://www.nis-elements.com/

235 http://www.moleculardevices.com/
17.68 MetaMorph Stack (STK)

Extensions: .stk, .nd

Owner: Molecular Devices

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: MetaMorph Stack (STK)

We currently have:

- an STK specification document (from 2006 November 21, in DOC)
- an older STK specification document (from 2005 March 25, in DOC)
- an ND specification document (from 2002 January 24, in PDF)
- a large number of datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: MetamorphTiffReader.java

Notes:

https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MetamorphTiffReader.java

http://www.moleculardevices.com/

https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MetamorphReader.java
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Commercial applications that support STK include:

- Bitplane Imaris
- SVI Huygens
- DIMIN

See also:

Metamorph imaging system overview

17.69 MIAS (Maia Scientific)

Extensions: .tif

Developer: Maia Scientific

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *MIAS (Maia Scientific)*

We currently have:

- several MIAS datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: MIASReader.java

Notes:

[244]https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MIASReader.java
17.70 Micro-Manager

Extensions: .tif, .txt, .xml
Developer: Vale Lab

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Micro-Manager

Freely Available Software:
 • Micro-Manager

We currently have:
 • many Micro-manager datasets

We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: MicromanagerReader.java

Notes:

17.71 MINC MRI

Extensions: .mnc
Developer: McGill University

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: MINC MRI

Notes:

245 http://valelab.ucsf.edu/
246 http://micro-manager.org/
247 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/MicromanagerReader.java
248 http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
Freely Available Software:

- MINC

We currently have:

- a few MINC files

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: MINCReader.java

Notes:

17.72 Minolta MRW

Extensions: .mrw
Developer: Minolta

Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: Minolta MRW

Freely Available Software:

- dcraw

We currently have:

- several .mrw files

We would like to have:

Ratings

Pixels:
Metadata:
Openness:

249 http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
250 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MINCReader.java
251 http://www.konicaminolta.com/
252 http://www.cybercom.net/~Edcoffin/dcraw/
Presence:
Utility:

Additional Information
Source Code: MRWReader.java

Notes:
See also:
Description of MRW format

17.73 MNG (Multiple-image Network Graphics)

Extensions: .mng
Developer: MNG Development Group

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: MNG (Multiple-image Network Graphics)
Freely Available Software:
 • libmng (MNG reference library)
Sample Datasets:
 • MNG sample files
We currently have:
 • the libmng-testsuites package (from 2003 March 05, in C)
 • a large number of MNG datasets
We would like to have:

Ratings
Pixels:
Metadata:
Openness:

Presence:
Utility:

Additional Information

253 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MRWReader.java
254 http://www.dalibor.cz/files/MRW%20File%20Format.txt
255 http://www.libpng.org/pub/mng/mngnews.html
256 http://sourceforge.net/projects/libmng/
257 http://sourceforge.net/projects/libmng/files/libmng-testsuites/MNGsuite-1.0/MNGsuite-20030305.zip/download
258 http://downloads.sourceforge.net/libmng/MNGsuite-20030305.zip
Source Code: MNGReader.java259

Notes:

See also:
MNG homepage260 MNG specification261

17.74 Molecular Imaging

Extensions: .stp

Owner: Molecular Imaging262

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: Molecular Imaging

We currently have:
- Pascal code that reads Molecular Imaging files (from ImageSXM)
- a few Molecular Imaging files

We would like to have:
- an official specification document
- more Molecular Imaging files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: MolecularImagingReader.java263

Notes:

259https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/MNGReader.java
260http://www.libpng.org/pub/mng/
261http://www.libpng.org/pub/mng/spec
262http://www.molecularimagingcorp.com
263https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MolecularImagingReader.java
17.75 MRC (Medical Research Council)

Extensions: .mrc
Developer: MRC Laboratory of Molecular Biology

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: MRC (Medical Research Council)
Sample Datasets:
 • golgi.mrc

We currently have:
 • an MRC specification document (in HTML)
 • another MRC specification document (in TXT)
 • a few MRC datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: MRCReader.java
Notes:

Commercial applications that support MRC include:
 • Bitplane Imaris

See also:

MRC on Wikipedia

http://www2.mrc-lmb.cam.ac.uk/
http://bio3d.colorado.edu/imod/files/imod_data.tar.gz
http://ami.scripps.edu/software/mrctools/mrc_specification.php
http://bio3d.colorado.edu/imod/doc/mrc_format.txt
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/MRCReader.java
http://www.bitplane.com/
http://en.wikipedia.org/wiki/MRC_%28file_format%29
17.76 NEF (Nikon Electronic Format)

Extensions: .nef, .tif
Developer: Nikon

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: NEF (Nikon Electronic Format)
Sample Datasets:
 • neffile1.zip
 • Sample NEF images

We currently have:
 • a NEF specification document (v0.1, from 2003, in PDF)
 • several NEF datasets

We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: NikonReader.java
Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

See also:
NEF Conversion

271 http://www.nikon.com/
272 http://www.outbackphoto.com/workshop/NEF_conversion/neffile1.zip
273 http://www.nikondigital.org/articles/library/nikon_d2x_first_impressions.htm
274 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NikonReader.java
275 http://www.outbackphoto.com/workshop/NEF_conversion/netconversion.html
17.77 NIfTI

Extensions: .img, .hdr
Developer: National Institutes of Health

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: NIfTI
Sample Datasets:
 • Official test data
We currently have:
 • NIfTI specification documents
 • several NIfTI datasets
We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: NiftiReader.java
Notes:

17.78 Nikon Elements TIFF

Extensions: .tiff
Developer: Nikon

Support
SCIFIO:
Export:

Notes:

276 http://www.nih.gov/
277 http://nifti.nimh.nih.gov/nifti-1/data
278 http://nifti.nimh.nih.gov/nifti-1/
279 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NiftiReader.java
280 http://www.nikon.com
Officially Supported Versions:

Supported Metadata Fields: *Nikon Elements TIFF*

We currently have:

- a few Nikon Elements TIFF files

We would like to have:

- more Nikon Elements TIFF files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: [NikonElementsTiffReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NikonElementsTiffReader.java)

Notes:

17.79 Nikon EZ-C1 TIFF

Extensions: .tiff

Developer: [Nikon](http://www.nikon.com)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *Nikon EZ-C1 TIFF*

We currently have:

- a few Nikon EZ-C1 TIFF files

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

281 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NikonElementsTiffReader.java

282 http://www.nikon.com/
Utility:

Additional Information

Source Code: `NikonTiffReader.java`\(^{283}\)

Notes:

17.80 Nikon NIS-Elements ND2

Extensions: .nd2

Developer: Nikon USA\(^{284}\)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *Nikon NIS-Elements ND2*

Freely Available Software:

- NIS-Elements Viewer from Nikon\(^{285}\)

We currently have:

- many ND2 datasets

We would like to have:

- an official specification document

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: `NativeND2Reader.java`\(^{286}\)

Notes:

There are two distinct versions of ND2: an old version, which uses JPEG-2000 compression, and a new version which is either uncompressed or Zip-compressed. We are not aware of the version number or release date for either format.

Bio-Formats uses the JAI Image I/O Tools\(^{287}\) library to read ND2 files compressed with JPEG-2000.

\(^{281}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NikonTiffReader.java

\(^{284}\)http://www.nikonusa.com/

\(^{285}\)http://www.nis-elements.com/resources-downloads.html

\(^{286}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/NativeND2Reader.java

\(^{287}\)http://java.net/projects/jai-imageio
There is also an ND2 reader that uses Nikon’s native libraries. To use it, you must be using Windows and have Nikon’s ND2 reader plugin for ImageJ\(^{288}\) installed. Additionally, you will need to download LegacyND2Reader.dll\(^{289}\) and place it in your ImageJ plugin folder.

17.81 NRRD (Nearly Raw Raster Data)

Extensions: .nrrd, .nhdr, .raw, .txt

Developer: Teem developers\(^{290}\)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *NRRD (Nearly Raw Raster Data)*

Freely Available Software:

- nrrd (NRRD reference library)\(^{291}\)

Sample Datasets:

- Diffusion tensor MRI datasets\(^{292}\)

We currently have:

- an nrrd specification document\(^{293}\) (v1.9, from 2005 December 24, in HTML)
- a few nrrd datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: NRRDReader.java\(^{294}\)

Notes:

\(^{289}\)https://github.com/openmicroscopy/bioformats/blob/develop/lib/LegacyND2Reader.dll?raw=true

\(^{290}\)http://teem.sourceforge.net/

\(^{291}\)http://teem.sourceforge.net/nrrd/

\(^{292}\)http://www.sci.utah.edu/%7Egk/DTI-data/

\(^{293}\)http://teem.sourceforge.net/nrrd/format.html

\(^{294}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/NRRDReader.java
17.82 Olympus CellR/APL

Extensions: .apl, .mtb, .tnb, .tif, .obsep
Owner: Olympus

Support

SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: *Olympus CellR/APL*

We currently have:

- a few CellR datasets

We would like to have:

- more Cellr datasets
- an official specification document

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: APLReader.java

Notes:

17.83 Olympus FluoView FV1000

Extensions: .oib, .oif
Owner: Olympus

Support

SCIFIO:
Export:

Officially Supported Versions: 1.0, 2.0
Supported Metadata Fields: *Olympus FluoView FV1000*

Freely Available Software:

295http://www.olympus.com/
296https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/APLReader.java
297http://www.olympus.com/
• **FV-Viewer from Olympus**

We currently have:

• an OIF specification document (v2.0.0.0, from 2008, in PDF)
• an FV1000 specification document (v1.0.0.0, from 2004 June 22, in PDF)
• older FV1000 specification documents (draft, in DOC and XLS)
• many FV1000 datasets

We would like to have:

• more OIB datasets (especially 2+ GB files)
• more FV1000 version 2 datasets

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: [FV1000Reader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/FV1000Reader.java)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Bio-Formats uses a modified version of the [Apache Jakarta POI](http://jakarta.apache.org/poi/) library to read OIB files. OIF stands for “Original Imaging Format”. OIB stands for “Olympus Image Binary”. OIF is a multi-file format that includes an .oif file and a directory of .tif, .roi, .pty, .lut, and .bmp files. OIB is a single file format.

Commercial applications that support this format include:

• Bitplane Imaris
• SVI Huygens

See also:

Olympus FluoView Resource Center

17.84 Olympus FluoView TIFF

Extensions: .tif

Owner: Olympus

298 http://www.olympus.co.uk/microscopy/22_FluoView_FV1000__Confocal_Microscope.htm
300 http://jakarta.apache.org/poi/
301 http://www.bitplane.com/
302 http://svi.nl/
303 http://www.olympusfluoview.com
304 http://www.olympus.com/
Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *Olympus FluoView TIFF*

Freely Available Software:

- **DIMIN**\(^5\)

We currently have:

- a FluoView specification document (from 2002 November 14, in DOC)
- Olympus’ FluoView Image File Reference Suite (from 2002 March 1, in DOC)
- several FluoView datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: [FluoviewReader.java]({{http://www.dimin.net/}})\(^6\)

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Commercial applications that support this format include:

- Bitplane Imaris\(^7\)
- SVI Huygens\(^8\)

17.85 Olympus ScanR

Extensions: .xml, .dat, .tif

Developer: **Olympus**\(^9\)

Owner: **Olympus**\(^10\)

\(^5\)[http://www.dimin.net/]

\(^6\)[https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/FluoviewReader.java]

\(^7\)[http://www.bitplane.com/]

\(^8\)[http://svi.nl/]

\(^9\)[http://www.olympus.com/]

\(^10\)[http://www.olympus.com/]
Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *Olympus ScanR*

We currently have:
 - several ScanR datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: ScanReader.java

Notes:

17.86 Olympus SIS TIFF

Extensions: .tiff

Developer: Olympus

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *Olympus SIS TIFF*

We currently have:
 - a few example SIS TIFF files

We would like to have:

Ratings

Pixels:

Metadata:

312 http://www.olympus-sis.com/
Openness:
Presence:
Utility:

Additional Information
Source Code: SISReader.java

Notes:

17.87 OME-TIFF

Extensions: .ome.tiff

Developer: Open Microscopy Environment

SCIFIO:
Export:

Supported Metadata Fields: *OME-TIFF*

We currently have:

- an OME-TIFF specification document (from 2006 October 19, in HTML)
- many OME-TIFF datasets
- the ability to produce additional datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code:OMETiffReader.java
Source Code:OMETiffWriter.java

Notes:

Bio-Formats can save image stacks as OME-TIFF.

Commercial applications that support OME-TIFF include:

313https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SISReader.java
314http://www.openmicroscopy.org/
315http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/specification.html
316https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/OMETiffReader.java
• Bitplane Imaris

• SVI Huygens

See also:

OME-TIFF technical overview

17.88 OME-XML

Extensions: .ome

Developer: Open Microscopy Environment

Support

SCIFIO:

Export:

Supported Metadata Fields: OME-XML

We currently have:

• OME-XML specification documents

• many OME-XML datasets

• the ability to produce more datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: OMEXMLReader.java Source Code: OMEXMLWriter.java

Notes:

Bio-Formats uses the OME-XML Java library to read OME-XML files.

Commercial applications that support OME-XML include:

318 http://www.bitplane.com/

319 http://svi.nl/

320 http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/index.html

321 http://www.openmicroscopy.org/

322 http://www.openmicroscopy.org/Schemas/

323 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/OMEXMLReader.java

324 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/OMEXMLWriter.java

325 http://www.openmicroscopy.org/site/support/ome-model/ome-xml/java-library.html
17.89 Oxford Instruments

Extensions: .top
Owner: Oxford Instruments

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *Oxford Instruments*

We currently have:

- Pascal code that can read Oxford Instruments files (from ImageSXM)
- a few Oxford Instruments files

We would like to have:

- an official specification document
- more Oxford Instruments files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Notes:

17.90 PCX (PC Paintbrush)

Extensions: .pcx

Developer: ZSoft Corporation

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: PCX (PC Paintbrush)
We currently have:
 • several .pcx files
 • the ability to generate additional .pcx file
We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: PCXReader.java

Notes:
Commercial applications that support PCX include Zeiss LSM Image Browser.

17.91 Perkin Elmer Densitometer

Extensions: .pds
Developer: Perkin Elmer

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: Perkin Elmer Densitometer
We currently have:
 • a few PDS datasets
We would like to have:
 • an official specification document
 • more PDS datasets

330 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/PCXReader.java
331 http://www.zeiss.de/C12567BE00472A5C/EmbedTitelIntern/LSMImageBrowser/$File/INST_IB.EXE
332 http://www.perkinelmer.com
Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: PDSReader.java

Notes:

17.92 PerkinElmer Operetta

Extensions: .tiff, .xml
Developer: PerkinElmer

Support

SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: PerkinElmer Operetta

We currently have:
• a few sample datasets

We would like to have:
• an official specification document
 • more sample datasets

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: OperettaReader.java

Notes:

333 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PDSReader.java
334 http://www.perkinelmer.com/
335 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/OperettaReader.java
17.93 PerkinElmer UltraView

Extensions: .tif, .2, .3, .4, etc.

Owner: PerkinElmer

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *PerkinElmer UltraView*

We currently have:

- several UltraView datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: PerkinElmerReader.java

Notes:

Other associated extensions include: .tim, .zpo, .csv, .htm, .cfg, .ano, .rec

Commercial applications that support this format include:

- Bitplane Imaris
- Image-Pro Plus

See also:

PerkinElmer UltraView system overview

17.94 PGM (Portable Gray Map)

Extensions: .pgm

Developer: Netpbm developers

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: *PGM (Portable Gray Map)*

Freely Available Software:
- Netpbm graphics filter[^341]

We currently have:
- a PGM specification document[^342] (from 2003 October 3, in HTML)
- a few PGM files

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: PGMReader.java[^343]

Notes:

17.95 Adobe Photoshop PSD

Extensions: .psd
Developer: Adobe[^344]

Support

SCIFIO:
Export:
Officially Supported Versions: 1.0
Supported Metadata Fields: *Adobe Photoshop PSD*

We currently have:
- a PSD specification document (v3.0.4, 16 July 1995)
- a few PSD files

We would like to have:

[^341]: http://netpbm.sourceforge.net/
[^343]: https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/PGMReader.java
[^344]: http://www.adobe.com/
• more PSD files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: PSDReader.java

Notes:

17.96 Photoshop TIFF

Extensions: .tif, .tiff
Developer: Adobe

Support

SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: Photoshop TIFF

We currently have:
• a Photoshop TIFF specification document
• a few Photoshop TIFF files

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: PhotoshopTiffReader.java

Notes:

345 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PSDReader.java
346 http://www.adobe.com
347 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PhotoshopTiffReader.java
17.97 PICT (Macintosh Picture)

Extensions: .pict
Developer: Apple Computer

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: PICT (Macintosh Picture)

We currently have:
 • many PICT datasets

We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: PictReader.java
Notes:
QuickTime for Java is required for reading vector files and some compressed files.

See also:
PICT technical overview Another PICT technical overview

17.98 PNG (Portable Network Graphics)

Extensions: .png
Developer: PNG Development Group

Support
SCIFIO:
Export:

http://www.apple.com
https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/PictReader.java
http://www.prepressure.com/formats/pict/fileformat.htm
http://www.libpng.org/pub/png/pngnews.html

17.97. PICT (Macintosh Picture)
Officially Supported Versions:

Supported Metadata Fields: **PNG (Portable Network Graphics)**

Freely Available Software:

- **PNG Writer plugin for ImageJ**[^354]

We currently have:

- several PNG datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: **APNGReader.java**[^356]

Notes:

Bio-Formats uses the **Java Image I/O**[^357] API to read and write PNG files.

See also:

PNG technical overview[^358]

17.99 Prairie Technologies TIFF

Extensions: .tif, .xml, .cfg

Developer: **Prairie Technologies**[^359]

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: **Prairie Technologies TIFF**

We currently have:

- many Prairie datasets

[^355]: http://www.libpng.org/pub/png/spec/iso/
[^356]: https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/APNGReader.java
[^357]: http://java.sun.com/j2se/1.4.2/docs/guide/imageio/index.html
[^358]: http://www.libpng.org/pub/png/
[^359]: http://www.prairie-technologies.com/
We would like to have:

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: PrairieReader.java\(^{360}\)

Notes:

17.100 Quesant

Extensions: .afm

Developer: Quesant Instrument Corporation

Owner: KLA-Tencor Corporation\(^{361}\)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *Quesant*

We currently have:

- Pascal code that can read Quesant files (from ImageSXM)
- several Quesant files

We would like to have:

- an official specification document
- more Quesant files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

\(^{360}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PrairieReader.java

\(^{361}\)http://www.kla-tencor.com/surface-profiling-and-metrology.html
Additional Information

Source Code: *QuesantReader.java*[^362]

Notes:

17.101 QuickTime Movie

Extensions: .mov

Owner: Apple Computer[^363]

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *QuickTime Movie*

Freely Available Software:

- *QuickTime Player[^364]*

We currently have:

- a *QuickTime specification document[^365]* (from 2001 March 1, in HTML)
- several QuickTime datasets
- the ability to produce more datasets

We would like to have:

- more QuickTime datasets, including:
 - files compressed with a common, unsupported codec
 - files with audio tracks and/or multiple video tracks

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: *NativeQTRender.java[^366]* Source Code: *QTWriter.java[^367]*

Notes:

[^363]: http://www.apple.com/
[^366]: https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/NativeQTRender.java
[^367]: https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/QTWriter.java
Bio-Formats has two modes of operation for QuickTime:

- QTJava mode requires QuickTime368 to be installed.
- Native mode works on systems with no QuickTime (e.g. Linux).

Bio-Formats can save image stacks as QuickTime movies. The following table shows supported codecs:

<table>
<thead>
<tr>
<th>Codec</th>
<th>Description</th>
<th>Native</th>
<th>QTJava</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw</td>
<td>Full Frames (Uncompressed)</td>
<td>read & write</td>
<td>read & write</td>
</tr>
<tr>
<td>iraw</td>
<td>Intel YUV Uncompressed</td>
<td>read only</td>
<td>read & write</td>
</tr>
<tr>
<td>rle</td>
<td>Animation (run length encoded RGB)</td>
<td>read only</td>
<td>read & write</td>
</tr>
<tr>
<td>jpeg</td>
<td>Still Image JPEG DIB</td>
<td>read only</td>
<td>read only</td>
</tr>
<tr>
<td>rnpz</td>
<td>Apple Video 16 bit “road pizza”</td>
<td>read only (partial)</td>
<td>read only</td>
</tr>
<tr>
<td>mjpb</td>
<td>Motion JPEG codec</td>
<td>read only</td>
<td>read only</td>
</tr>
<tr>
<td>cvid</td>
<td>Cinepak</td>
<td></td>
<td>read & write</td>
</tr>
<tr>
<td>svq1</td>
<td>Sorenson Video</td>
<td></td>
<td>read & write</td>
</tr>
<tr>
<td>svq3</td>
<td>Sorenson Video 3</td>
<td></td>
<td>read & write</td>
</tr>
<tr>
<td>mp4v</td>
<td>MPEG-4</td>
<td></td>
<td>read & write</td>
</tr>
<tr>
<td>h263</td>
<td>H.263</td>
<td></td>
<td>read & write</td>
</tr>
</tbody>
</table>

See also:

QuickTime software overview369

17.102 RHK

Extensions: .sm2, .sm3

Owner: RHK Technologies370

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: RHK

We currently have:

- Pascal code that can read RHK files (from ImageSXM)
- a few RHK files

368\url{http://www.apple.com/quicktime/download/}
369\url{http://www.apple.com/quicktime/}
370\url{http://www.rhk-tech.com}
We would like to have:

- an official specification document
- more RHK files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: RHKReader.java

Notes:

17.103 SBIG

Owner: Santa Barbara Instrument Group (SBIG)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *SBIG*

We currently have:

- an official SBIG specification document
- a few SBIG files

We would like to have:

- more SBIG files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

372 http://www.sbig.com

373 http://sbig.impulse.net/pdffiles/file.format.pdf
Source Code: SBIGReader.java

Notes:

17.104 Seiko

Extensions: .xqd, .xqf
Owner: Seiko

Support

SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Seiko
We currently have:
 • Pascal code that can read Seiko files (from ImageSXM)
 • a few Seiko files
We would like to have:
 • an official specification document
 • more Seiko files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: SeikoReader.java
Notes:

17.105 SimplePCI & HCImage

Extensions: .cxd
Developer: Compix

Support

374 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SBIGReader.java
376 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SeikoReader.java
377 http://www.cimaging.net/
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: SimplePCI & HCImage
We currently have:
 • several SimplePCI files
We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: PCIReader.java
Notes:
Bio-Formats uses a modified version of the Apache Jakarta POI library to read CXD files.
See also:
SimplePCI software overview

17.106 SimplePCI & HCImage TIFF

Extensions: .tiff
Developer: Hamamatsu

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: SimplePCI & HCImage TIFF
We currently have:
 • a few SimplePCI TIFF datasets
We would like to have:
 • more SimplePCI TIFF datasets

378 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/PCIReader.java
379 http://jakarta.apache.org/poi/
380 http://www.cimaging.net/simplepci.htm
381 http://www.cimaging.net/simplepci.htm
17.107 SM Camera

Support

SCIFIO:
Export:

Officially Supported Versions:

Supported Metadata Fields: SM Camera

We currently have:
 • Pascal code that can read SM-Camera files (from ImageSXM)
 • a few SM-Camera files

We would like to have:
 • an official specification document
 • more SM-Camera files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: SimplePCITiffReader.java382

Notes:

382 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SimplePCITiffReader.java

383 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/SMCameraReader.java

17.107. SM Camera
17.108 SPIDER

Extensions: .spi, .stk
Developer: Wadsworth Center

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: SPIDER
Freely Available Software:
 • SPIDER

We currently have:
 • a few example datasets
 • official file format documentation

We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: SpiderReader.java
Notes:

17.109 Targa

Extensions: .tga
Developer: Truevision

Support
SCIFIO:
Export:

384 http://www.wadsworth.org/spider_doc/spider/docs/spider.html
385 http://www.wadsworth.org/spider_doc/spider/docs/spider.html
386 http://www.wadsworth.org/spider_doc/spider/docs/image_doc.html
388 http://www.truevision.com
Officially Supported Versions:

Supported Metadata Fields: *Targa*

We currently have:

- a Targa specification document
- a few Targa files

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: [TargaReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/TargaReader.java)

Notes:

17.110 Text

Extensions: .txt

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *Text*

We currently have:

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: [TextReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/TextReader.java)

17.110. Text

[389](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/TargaReader.java)

[390](https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/TextReader.java)
Notes:
Reads tabular pixel data produced by a variety of software.

17.111 TIFF (Tagged Image File Format)

Extensions: .tif
Developer: Aldus and Microsoft
Owner: Adobe

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: TIFF (Tagged Image File Format)
Sample Datasets:
• LZW TIFF data gallery
• Big TIFF
We currently have:
• a TIFF specification document (v6.0, from 1992 June 3, in PDF)
• many TIFF datasets
• a few BigTIFF datasets
We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: TiffReader.java Source Code: TiffWriter.java

Notes:
Bio-Formats can also read BigTIFF files (TIFF files larger than 4 GB). Bio-Formats can save image stacks as TIFF or BigTIFF.

391 http://www.adobe.com
392 http://marlin.life.utsa.edu/Data_Gallery.html
393 http://tiffcentral.com/
395 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/TiffReader.java
396 https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/out/TiffWriter.java
See also:
TIFF technical overview397 BigTIFF technical overview398

17.112 TillPhotonics TillVision

Extensions: .vws
Developer: Till Photonics399

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: TillPhotonics TillVision
We currently have:
\begin{itemize}
\item several TillVision datasets
\end{itemize}
We would like to have:
\begin{itemize}
\item an official specification document
\end{itemize}

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: TillVisionReader.java400
Notes:

17.113 Topometrix

Extensions: .tfr, .ffr, .zfr, .zf, .2fl
Owner: TopoMetrix (now Veeco)401

Support
SCIFIO:
397http://www.awaresystems.be/imaging/tiff/faq.html#q3
398http://www.awaresystems.be/imaging/tiff/bigtiff.html
399http://www.till-photonics.com/
400https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/TillVisionReader.java
401http://www.veeco.com/
Export:
Officially Supported Versions:
Supported Metadata Fields: *Topometrix*

We currently have:
- Pascal code that reads Topometrix files (from ImageSXM)
- a few Topometrix files

We would like to have:
- an official specification document
- more Topometrix files

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: [TopometrixReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/TopometrixReader.java)

Notes:

17.114 Trestle

Extensions: .tif, .sld, .jpg

Support

SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: *Trestle*

Sample Datasets:
- [OpenSlide](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/TopometrixReader.java)

We currently have:
- a few example datasets
- developer documentation from the OpenSlide project

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: TrestleReader.java\(^{405}\)

Notes:

17.115 UBM

Extensions: .pr3

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *UBM*

We currently have:

- Pascal code that can read UBM files (from ImageSXM)
- one UBM file

We would like to have:

- an official specification document
- more UBM files

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: UBMReader.java\(^{406}\)

Notes:

\(^{405}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/TrestleReader.java

\(^{406}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/UBMReader.java
17.116 Unisoku

Extensions: .dat, .hdr
Owner: Unisoku

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: Unisoku

We currently have:
 - Pascal code that can read Unisoku files (from ImageSXM)
 - a few Unisoku files

We would like to have:
 - an official specification document
 - more Unisoku files

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: UnisokuReader.java

Notes:

17.117 Varian FDF

Extensions: .fdf
Developer: Varian, Inc.

Support
SCIFIO:
Export:

Officially Supported Versions:
Supported Metadata Fields: *Varian FDF*

We currently have:

- a few Varian FDF datasets

We would like to have:

- an official specification document
- more Varian FDF datasets

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: [VarianFDFReader.java](https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/VarianFDFReader.java)

17.118 VG SAM

Extensions: .dti

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *VG SAM*

We currently have:

- a few VG-SAM files

We would like to have:

- an official specification document
- more VG-SAM files

Ratings

Pixels:

Metadata:

Openness:

Presence:
Utility:

Additional Information

Source Code: VGSAMReader.java\(^{411}\)

Notes:

\section*{17.119 VisiTech XYS}

Extensions: .xys, .html

Developer: VisiTech International\(^{412}\)

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: VisiTech XYS

We currently have:

- several VisiTech datasets

We would like to have:

- an official specification document

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: VisitechReader.java\(^{413}\)

Notes:

\section*{17.120 Volocity}

Extensions: .mvd2

Developer: PerkinElmer\(^{414}\)

Support

\(^{411}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/VGSAMReader.java

\(^{412}\)http://www.visitech.co.uk/

\(^{413}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/VisitechReader.java

\(^{414}\)http://www.perkinelmer.com/pages/020/cellularimaging/products/volocity.xhtml
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: *Volocity*
Sample Datasets:
 - *Volocity Demo*[^161]
We currently have:
 - many example Volocity datasets
We would like to have:
 - an official specification document
 - any Volocity datasets that do not open correctly

Ratings

Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information

Source Code: *VolocityReader.java*[^166]
Notes:
.mvd2 files are *Metakit database files*[^167].

17.121 Volocity Library Clipping

Extensions: .acff
Developer: *PerkinElmer*[^168]

Support

SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: *Volocity Library Clipping*
We currently have:
 - several Volocity library clipping datasets

[^166]: https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/VolocityReader.java
[^167]: http://equi4.com/metakit/
We would like to have:

- any datasets that do not open correctly
- an official specification document

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: VolocityClippingReader.java

Notes:

RGB .acff files are not yet supported. See #6413.

17.122 WA-TOP

Extensions: .wat

Developer: WA Technology

Owner: Oxford Instruments

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: **WA-TOP**

We currently have:

- Pascal code that can read WA-TOP files (from ImageSXM)
- a few WA-TOP files

We would like to have:

- an official specification document
- more WA-TOP files

Ratings

Pixels:

Metadata:

419 https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/VolocityClippingReader.java

420 http://trac.openmicroscopy.org.uk/ome/ticket/6413

421 http://www.oxinst.com
Openness:
Presence:
Utility:

Additional Information

Source Code: WATOPReader.java\(^{422}\)

Notes:

17.123 Windows Bitmap

Extensions: .bmp

Developer: Microsoft and IBM

Support

SCIFIO:

Export:

Officially Supported Versions:

Supported Metadata Fields: *Windows Bitmap*

Freely Available Software:

- BMP Writer plugin for ImageJ\(^{423}\)

We currently have:

- many BMP datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: BMPReader.java\(^{424}\)

Notes:

Compressed BMP files are currently not supported.

See also:

\(^{422}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/WATOPReader.java

\(^{423}\)http://rsb.info.nih.gov/ij/plugins/bmp-writer.html

\(^{424}\)https://github.com/openmicroscopy/bioformats/blob/develop/components/scifio/src/loci/formats/in/BMPReader.java
17.124 Zeiss AxioVision TIFF

Extensions: .xml, .tiff
Developer: Carl Zeiss MicroImaging GmbH
Owner: Carl Zeiss MicroImaging GmbH
Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: Zeiss AxioVision TIFF
Freely Available Software:
 • Zeiss ZEN Lite
We currently have:
 • many example datasets
We would like to have:
 • an official specification document

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: ZeissTIFFReader.java
Notes:

17.125 Zeiss AxioVision ZVI (Zeiss Vision Image)

Extensions: .zvi
Developer: Carl Zeiss MicroImaging GmbH (AxioVision)

http://people.sc.fsu.edu/~burkardt/data/bmp/bmp.html
http://www.zeiss.com/micro
http://www.zeiss.com/micro
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats/src/loci/formats/in/ZeissTIFFReader.java
http://www.zeiss.com/axiovision
Owner: Carl Zeiss MicroImaging GmbH

Support
SCIFIO:
Export:
Officially Supported Versions: 1.0, 2.0
Supported Metadata Fields: Zeiss AxioVision ZVI (Zeiss Vision Image)
Freely Available Software:
 • Zeiss Axiovision LE

We currently have:
 • a ZVI specification document (v2.0.5, from 2010 August, in PDF)
 • an older ZVI specification document (v2.0.2, from 2006 August 23, in PDF)
 • an older ZVI specification document (v2.0.1, from 2005 April 21, in PDF)
 • an older ZVI specification document (v1.0.26.01.01, from 2001 January 29, in DOC)
 • Zeiss’ ZVIImageReader code (v1.0, from 2001 January 25, in C++)
 • many ZVI datasets

We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: ZeissZVIReader.java

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Bio-Formats uses a modified version of the Apache Jakarta POI library to read ZVI files.

Commercial applications that support ZVI include Bitplane Imaris.

See also:
Axiovision software overview
17.126 Zeiss CZI

Extensions: .czi
Developer: Carl Zeiss MicroImaging GmbH

Support
SCIFIO:
Export:
Officially Supported Versions:
Supported Metadata Fields: Zeiss CZI
Freely Available Software:
 • Zeiss ZEN 2011

We currently have:
 • many example datasets
 • official specification documents

We would like to have:

Ratings
Pixels:
Metadata:
Openness:
Presence:
Utility:

Additional Information
Source Code: ZeissCZIReader.java

Notes:
Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

17.127 Zeiss LSM (Laser Scanning Microscope) 510/710

Extensions: .lsm, .mdb
Owner: Carl Zeiss MicroImaging GmbH

Support
SCIFIO:

438 http://www.zeiss.com/micro
439 http://www.zeiss.de/C12567BE0045ACF1/Contents-Frame/A57B6AE510CE8FF1C12578FE002A725D
441 http://www.zeiss.com/micro
Export:

Officially Supported Versions:

Supported Metadata Fields: Zeiss LSM (Laser Scanning Microscope) 510/710

Freely Available Software:

- Zeiss LSM Image Browser
- LSM Toolbox plugin for ImageJ
- LSM Reader plugin for ImageJ
- DIMIN

We currently have:

- LSM specification v3.2, from 2003 March 12, in PDF
- LSM specification v5.5, from 2009 November 23, in PDF
- LSM specification v6.0, from 2010 September 28, in PDF
- many LSM datasets

We would like to have:

Ratings

Pixels:

Metadata:

Openness:

Presence:

Utility:

Additional Information

Source Code: ZeissLSMReader.java

Notes:

Please note that while we have specification documents for this format, we are not able to distribute them to third parties.

Bio-Formats uses the MDB Tools Java port

Commercial applications that support this format include:

- SVI Huygens
- Bitplane Imaris
- Amira
- Image-Pro Plus[^51]

[^51]: http://www.mediacy.com/
CHAPTER EIGHTEEN

SUMMARY OF SUPPORTED METADATA FIELDS

18.1 Format readers

<table>
<thead>
<tr>
<th>Format</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIMReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>APLReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>APNGReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ARFReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>AVIReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>AliconaReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>AmiraReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>AnalyzeReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>BDReader</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>418</td>
</tr>
<tr>
<td>BIForamatReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>BMPReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>BaseTiffReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>448</td>
</tr>
<tr>
<td>BaseZeissReader</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>392</td>
</tr>
<tr>
<td>BioRadGelReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>BioRadReader</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>435</td>
</tr>
<tr>
<td>BrukerReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>BurleighReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>CanonRawReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>CellSensReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>CellWorxReader</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>CellomicsReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td>DNGReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>DeltavisionReader</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>423</td>
</tr>
<tr>
<td>DicomReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>EPSReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>Ecat7Reader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>FEIReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>FEITiffReader</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>436</td>
</tr>
<tr>
<td>FVI0000Reader</td>
<td>107</td>
<td>0</td>
<td>0</td>
<td>366</td>
</tr>
<tr>
<td>FakeReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>FitsReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>FlexReader</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>406</td>
</tr>
<tr>
<td>FluoviewReader</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>426</td>
</tr>
<tr>
<td>FujiReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
</tbody>
</table>

Continued on next page
Table 18.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIFReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>GatanDM2Reader</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>GatanReader</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>439</td>
</tr>
<tr>
<td>GelReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>HISReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>448</td>
</tr>
<tr>
<td>HRDGDReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>HamamatsuVMSReader</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>HitachiReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td>ICSReader</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>403</td>
</tr>
<tr>
<td>IMODReader</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>431</td>
</tr>
<tr>
<td>INRReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>IPLabReader</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td>IPWReader</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>ImaconReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>ImageIOReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ImageReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>ImaisHDFReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>ImaisReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>ImaisTiffReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>ImprovementTiffReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>InCell3000Reader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>InCellReader</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>408</td>
</tr>
<tr>
<td>IvisionReader</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>441</td>
</tr>
<tr>
<td>JEOLReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>JPEG2000Reader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>JPEGReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>JPKReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>JPXReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>KhromsReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>KodakReader</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>L2DReader</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>LEOReader</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>448</td>
</tr>
<tr>
<td>LIFReader</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>390</td>
</tr>
<tr>
<td>LIMReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>LegacyND2Reader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>LegacyQTRReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>LeicaReader</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>419</td>
</tr>
<tr>
<td>LeicaSCNReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>LiFlimReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>MIASReader</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>411</td>
</tr>
<tr>
<td>MINCReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>MNGReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>MRCReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>MRWReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>MetamorphReader</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>MetamorphTiffReader</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>438</td>
</tr>
<tr>
<td>MicromanagerReader</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>437</td>
</tr>
<tr>
<td>MinimalTiffReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>MolecularImagingReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Format</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAFReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ND2Reader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>NDPIReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>NDPISReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>NRKDReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>NativeND2Reader</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>423</td>
</tr>
<tr>
<td>NativeQTReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>NifiReader</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>451</td>
</tr>
<tr>
<td>NikonElementsTiffReader</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>425</td>
</tr>
<tr>
<td>NikonReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>NikonTiffReader</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>428</td>
</tr>
<tr>
<td>OME1tiffReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>OMEXMLReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>OpenlabRawReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>OpenlabReader</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>443</td>
</tr>
<tr>
<td>OperettaReader</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>OxfordInstrumentsReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>PCIReader</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>446</td>
</tr>
<tr>
<td>PCXReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PDSReader</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>452</td>
</tr>
<tr>
<td>PGMReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PSDReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PerkinElmerReader</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>PhotoshopTiffReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PictReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PovrayReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>PrairieReader</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>430</td>
</tr>
<tr>
<td>PyramidTiffReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>QTReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>QuesantReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>RHKReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>SBIGReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>SDTReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>SEQReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>SIFReader</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>SISReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>SMCameraReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>SVSReader</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>ScanrReader</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>ScreenReader</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>441</td>
</tr>
<tr>
<td>SeikoReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>SimplePCI1tiffReader</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>442</td>
</tr>
<tr>
<td>SlidebookReader</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>441</td>
</tr>
<tr>
<td>SlidebookTiffReader</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>445</td>
</tr>
<tr>
<td>SpiderReader</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>454</td>
</tr>
<tr>
<td>TCSReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>TargaReader</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>455</td>
</tr>
<tr>
<td>TextReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>TiffDelegateReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
</tbody>
</table>

Continued on next page
Table 18.1 – continued from previous page

<table>
<thead>
<tr>
<th>Format</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiffJAIReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>TiffReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>TileJPEGReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>TillVisionReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>TopometrixReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>TrestleReader</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>449</td>
</tr>
<tr>
<td>UBMReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>UnisokuReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>VGSAMReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>VarianFDFReader</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>VisittechReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>VolocityClippingReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>VolocityReader</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>438</td>
</tr>
<tr>
<td>WATOPReader</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>453</td>
</tr>
<tr>
<td>ZeissCZIReader</td>
<td>149</td>
<td>0</td>
<td>0</td>
<td>324</td>
</tr>
<tr>
<td>ZeissLSMReader</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>374</td>
</tr>
<tr>
<td>ZeissTIFFReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ZeissZVIReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>ZipReader</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>456</td>
</tr>
</tbody>
</table>

18.2 Metadata fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc - ID[^1]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Arc - LotNumber[^2]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Arc - Manufacturer[^3]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Arc - Model[^4]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Arc - Power[^5]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Arc - SerialNumber[^6]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Arc - Type[^7]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>BooleanAnnotation - AnnotationRef[^8]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>BooleanAnnotation - Description[^9]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>BooleanAnnotation - ID[^10]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>BooleanAnnotation - Namespace[^11]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

[^1]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_ID
[^2]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_LotNumber
[^3]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
[^4]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
[^6]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
[^7]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Arc_Type
[^8]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
[^9]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Description
[^10]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>BooleanAnnotation - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Channel - AcquisitionMode</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Channel - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Channel - Color</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Channel - ContrastMethod</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Channel - Emission-Wavelength</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>137</td>
</tr>
<tr>
<td>Channel - Excitation-Wavelength</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>136</td>
</tr>
<tr>
<td>Channel - FilterSetRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Channel - Fluor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Channel - ID</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Channel - IlluminationType</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsAttenuation</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Channel - LightSourceSettingsWavelength</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Channel - NDFilter</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Channel - Name</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>122</td>
</tr>
<tr>
<td>Channel - PinholeSize</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Channel - PockelCellSetting</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page

12 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#BooleanAnnotation_Value
13 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_AcquisitionMode
14 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
15 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Color
16 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ContrastMethod
17 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
18 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
19 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterSetRef_ID
20 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Fluor
21 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
22 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_IlluminationType
23 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_Attenuation
24 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_ID
25 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_Wavelength
26 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_NDFilter
27 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
28 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PinholeSize
29 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PockelCellSetting
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel - SamplesPerPixel</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CommentAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>CommentAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>CommentAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>CommentAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Dataset - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Dataset - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Dataset - ExperimenterGroupRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Dataset - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Dataset - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Dataset - ImageRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Dataset - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Detector - AmplificationGain</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Detector - Gain</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Detector - ID</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>119</td>
</tr>
<tr>
<td>Detector - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Detector - Manufacturer</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>Detector - Model</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>138</td>
</tr>
<tr>
<td>Detector - Offset</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
</tbody>
</table>

Continued on next page

30http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
31http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
32http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Description
33http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#CommentAnnotation_Value
34http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
35http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
36http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#CommentAnnotation_Value
37http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
38http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
39http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#CommentAnnotation_Value
40http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
41http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#CommentAnnotation_Value
42http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
43http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
44http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#CommentAnnotation_Value
45http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
46http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
47http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#CommentAnnotation_Value
48http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
49http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector - Serial-Number</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Detector - Type</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>124</td>
</tr>
<tr>
<td>Detector - Voltage</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Detector - Zoom</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>DetectorSettings - Binning</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>136</td>
</tr>
<tr>
<td>DetectorSettings - Gain</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>133</td>
</tr>
<tr>
<td>DetectorSettings - ID</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>121</td>
</tr>
<tr>
<td>DetectorSettings - Offset</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>DetectorSettings - ReadOutRate</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>DetectorSettings - Voltage</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>Dichroic - ID</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>Dichroic - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Dichroic - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Dichroic - Model</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>DoubleAnnotation - SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>DoubleAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>DoubleAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>DoubleAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>DoubleAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page

50http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
51http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
52http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Voltage
53http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Zoom
54http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
55http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
56http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
57http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Offset
58http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ReadOutRate
59http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Voltage
60http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Dichroic_ID
61http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_LotNumber
62http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
63http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
64http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
65http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
66http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Description
67http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
68http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace

18.2. Metadata fields 223
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleAnnotation Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Ellipse - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - ID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Ellipse - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - RadiusX</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Ellipse - RadiusY</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Ellipse - StrokeColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - StrokeDashArray</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - StrokeWidth</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Ellipse - Text</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Ellipse - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - TheT</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Ellipse - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Ellipse - Transform</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Ellipse - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Ellipse - X</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Ellipse - Y</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Experiment - Description</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment - ExperimenterRef<sup>92</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Experiment - ID<sup>93</sup></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Experiment - Type<sup>94</sup></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Experimenter - AnnotationRef<sup>95</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Experimenter - Email<sup>96</sup></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Experimenter - FirstName<sup>97</sup></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Experimenter - ID<sup>98</sup></td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Experimenter - Institution<sup>99</sup></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Experimenter - LastName<sup>100</sup></td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Experimenter - MiddleName<sup>101</sup></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Experimenter - Name<sup>102</sup></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>ExperimenterGroup - AnnotationRef<sup>103</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ExperimenterGroup - Description<sup>104</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ExperimenterGroup - ExperimentRef<sup>105</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ExperimenterGroup - ID<sup>106</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ExperimenterGroup - Leader<sup>107</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ExperimenterGroup - Name<sup>108</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Filament - ID<sup>109</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Filament - LotNumber<sup>110</sup></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
</tbody>
</table>

Continued on next page

⁹² [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterRef_ID]

⁹³ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_ID]

⁹⁴ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_Type]

⁹⁵ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID]

⁹⁶ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_Email]

⁹⁷ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_FirstName]

⁹⁸ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_ID]

⁹⁹ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_Institution]

¹⁰⁰ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_LastName]

¹⁰¹ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_MiddleName]

¹⁰² [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_UserName]

¹⁰³ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID]

¹⁰⁴ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterGroup_Description]

¹⁰⁵ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterGroup_ID]

¹⁰⁶ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterGroup_GroupRef]

¹⁰⁷ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Leader_ID]

¹⁰⁸ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterGroup_Name]

¹⁰⁹ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_ID]

¹¹⁰ [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufactureSpec_LotNumber]
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filament - Model</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filament - Power</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filament - Serial-Number</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filament - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>FileAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>FileAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>FileAnnotation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>FileAnnotation - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Filter - Filter-Wheel</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Filter - ID</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Filter - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filter - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filter - Model</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Filter - SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Filter - Type</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>FilterSet - DichroicRef</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>FilterSet - EmissionFilterRef</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>FilterSet - ExcitationFilterRef</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>FilterSet - ID</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
</tbody>
</table>

Continued on next page

111http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
112http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
113http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_Power
114http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
115http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filament_Type
116http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
117http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Description
118http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
119http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
120http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filter_FilterWheel
121http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filter_ID
122http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_LotNumber
123http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
124http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
125http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filament_Type
126http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DichroicRef_ID
127http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
128http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
129http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
130http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterSet_ID

18.2. Metadata fields
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>FilterSet - LotNumber<sup>131</sup></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>FilterSet - Manufacturer<sup>132</sup></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>FilterSet - Model<sup>133</sup></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>FilterSet - SerialNumber<sup>134</sup></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Image - AcquisitionDate<sup>135</sup></td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - AnnotationRef<sup>136</sup></td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>111</td>
</tr>
<tr>
<td>Image - Description<sup>137</sup></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Image - ExperimentRef<sup>138</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Image - ExperimenterGroupRef<sup>139</sup></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Image - ID<sup>141</sup></td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - InstrumentRef<sup>142</sup></td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>112</td>
</tr>
<tr>
<td>Image - MicrobeamManipulationRef<sup>143</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Image - Name<sup>144</sup></td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Image - ROIRef<sup>145</sup></td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>ImagingEnvironment - AirPressure<sup>146</sup></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>ImagingEnvironment - CO2Percent<sup>147</sup></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>ImagingEnvironment - Humidity<sup>148</sup></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>ImagingEnvironment - Temperature<sup>149</sup></td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
</tbody>
</table>

Continued on next page

¹³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_LotNumber
¹³² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
¹³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
¹³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
¹³⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
¹³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
¹³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
¹³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimentRef_ID
¹³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterGroupRef_ID
¹⁴⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterRef_ID
¹⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
¹⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
¹⁴³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#MicrobeamManipulationRef_ID
¹⁴⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
¹⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID
¹⁴⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_AirPressure
¹⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_CO2Percent
¹⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Humidity
¹⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument - ID150</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>108</td>
</tr>
<tr>
<td>Label - FillColor151</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - FillRule152</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - FontFamily153</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - FontSize154</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Label - FontStyle155</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - ID156</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Label - LineCap157</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - Locked158</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - StrokeColor159</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - StrokeDashArray160</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - StrokeWidth161</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Label - Text162</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Label - TheC163</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Label - TheT164</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Laser - Frequency-Multiplication170</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Laser - ID171</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Laser - Laser-Medium172</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Laser - Manufacturer</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Laser - Model</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>Laser - PockelCell</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Laser - Power</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Laser - Pump</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Laser - RepetitionRate</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Laser - SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Laser - Tuneable</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Laser - Type</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Laser - Wavelength</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>LightEmittingDiode - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>LightEmittingDiode - LotNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>LightEmittingDiode - Manufacturer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>LightEmittingDiode - Model</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>LightEmittingDiode - Power</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>LightEmittingDiode - SerialNumber</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>LightPath - DichroicRef</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>LightPath - EmissionFilterRef</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>LightPath - ExcitationFilterRef<sup>193</sup></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Line - FillColor<sup>194</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Line - FillRule<sup>195</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Line - FontFamily<sup>196</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Line - FontSize<sup>197</sup></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Line - FontStyle<sup>198</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Line - ID<sup>199</sup></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Line - LineCap<sup>201</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - Locked<sup>201</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - MarkerEnd<sup>202</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - MarkerStart<sup>203</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - StrokeColor<sup>204</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - StrokeDashArray<sup>205</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - StrokeWidth<sup>206</sup></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Line - Text<sup>207</sup></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Line - TheC<sup>208</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - TheT<sup>209</sup></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Line - TheZ<sup>210</sup></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Line - Transform<sup>211</sup></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Line - Visible<sup>212</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Line - X1<sup>213</sup></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Line - X2<sup>214</sup></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Line - Y1<sup>215</sup></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Line - Y2<sup>216</sup></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>ListAnnotation - AnnotationRef<sup>217</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page

¹⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
¹⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillColor
¹⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillRule
¹⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontFamily
¹⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
¹⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontStyle
¹⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
²⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_LineCap
²⁰¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Locked
²⁰²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_MarkerEnd
²⁰³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_MarkerStart
²⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeColor
²⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeDashArray
²⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
²⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Text
²⁰⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheC
²⁰⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheT
²¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ
²¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Transform
²¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Visible
²¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_X1
²¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_X2
²¹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_Y1
²¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_Y2
²¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID

18.2. Metadata fields

230
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>ListAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ListAnnotation ID</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ListAnnotation Namespace</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>LongAnnotation AnnotationRef</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>LongAnnotation Description</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>LongAnnotation ID</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>LongAnnotation Namespace</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>LongAnnotation Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - FillColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Mask - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - FontSize</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - Height</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Mask - ID</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Mask - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Mask - StrokeDashArray</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - StrokeWidth</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Mask - Text</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page

218 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Description
219 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
220 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
221 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
222 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Description
223 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
224 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
225 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#LongAnnotation_Value
226 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillColor
227 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillRule
228 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontFamily
229 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
230 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_Height
231 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
232 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_LineCap
233 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Locked
234 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeColor
235 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeDashArray
236 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
237 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Text

18.2. Metadata fields
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mask - TheT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mask - TheZ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mask - Transform</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mask - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mask - Width</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Mask - X</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Mask - Y</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>MicrobeamManipulation - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>MicrobeamManipulation - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>MicrobeamManipulation - ROIRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>MicrobeamManipulation - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>MicrobeamManipulation - Attenuation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Microscope - Lot-Number</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Microscope - Manufacturer</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Microscope - Model</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Microscope - Serial-Number</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Microscope - Type</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
</tbody>
</table>

Continued on next page

238 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheC
239 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheT
240 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ
241 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Transform
242 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Visible
243 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_Width
244 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_X
245 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_Y
246 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterRef_ID
247 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#MicrobeamManipulation_ID
248 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID
249 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#MicrobeamManipulation_Type
250 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_Attenuation
251 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_ID
252 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_Wavelength
253 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_LotNumber
254 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
255 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
256 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
257 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Microscope_Type
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective - Calibrated Magnification</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Objective - Correction</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>126</td>
</tr>
<tr>
<td>Objective - ID</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>Objective - Immersion</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>Objective - Iris</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Objective - Lens NA</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>132</td>
</tr>
<tr>
<td>Objective - Lot Number</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Objective - Manufacturer</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Objective - Model</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>139</td>
</tr>
<tr>
<td>Objective - Nominal Magnification</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>Objective - Serial Number</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Objective - Working Distance</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>ObjectiveSettings - Correction Collar</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>ObjectiveSettings - ID</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>ObjectiveSettings - Medium</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>ObjectiveSettings - Refractive Index</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Pixels - Annotation Ref</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Pixels - Bin Data Big Endian</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page

258 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification
259 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
260 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
261 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
262 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Iris
263 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
264 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_LotNumber
265 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
266 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
267 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
268 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
269 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_W orkingDistance
270 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_CorrectionCollar
271 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
272 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_Medium
273 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
274 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
275 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels - DimensionOrder</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - ID</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - PhysicalSizeX</td>
<td>79</td>
<td>0</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>Pixels - PhysicalSizeY</td>
<td>79</td>
<td>0</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>Pixels - PhysicalSizeZ</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>112</td>
</tr>
<tr>
<td>Pixels - SizeC</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeT</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeX</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pixels - SizeY</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TimeIncrement</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>135</td>
</tr>
<tr>
<td>Pixels - Type</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Plane - DeltaT</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>129</td>
</tr>
<tr>
<td>Plane - ExposureTime</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>126</td>
</tr>
<tr>
<td>Plane - HashSHA1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Plane - PositionX</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>Plane - PositionY</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>Plane - PositionZ</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>131</td>
</tr>
<tr>
<td>Plane - TheC</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane - TheT</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plane - TheZ</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page

276http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
277http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
278http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
279http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
280http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
281http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
282http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
283http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
284http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
285http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
286http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TimeIncrement
287http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
288http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#AnnotationRef_ID
289http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
290http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
291http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_HashSHA1
293http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
294http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
295http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
296http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
297http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate - Annotation-Ref</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Plate - ColumnNamingConvention</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Plate - Columns</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Plate - Description</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Plate - ExternalIdentifier</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Plate - ID</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Plate - Name</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
<tr>
<td>Plate - RowNamingConvention</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Plate - Rows</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Plate - Status</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Plate - WellOriginX</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Plate - WellOriginY</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>PlateAcquisition - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>PlateAcquisition - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>PlateAcquisition - EndTime</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>PlateAcquisition - ID</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>PlateAcquisition - MaximumFieldCount</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>PlateAcquisition - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>PlateAcquisition - StartTime</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
</tbody>
</table>

Continued on next page

298 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID]
299 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ColumnNamingConvention]
300 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Columns]
301 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Description]
302 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ExternalIdentifier]
303 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ID]
304 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Name]
305 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_RowNamingConvention]
306 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Rows]
307 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Status]
308 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_WellOriginX]
309 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_WellOriginY]
310 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID]
311 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_Description]
312 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_EndTime]
313 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_ID]
314 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount]
315 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_Name]
316 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_StartTime]
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlateAcquisition - WellSampleRef</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Point - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Point - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Point - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Point - FontSize</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Point - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Point - ID</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Point - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Point - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Point - StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Point - StrokeDashArray</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Point - StrokeWidth</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Point - Text</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Point - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Point - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Point - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Point - Transform</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Point - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Point - X</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Point - Y</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Polygon - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polygon - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polygon - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page

317 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSampleRef_ID
318 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillColor
319 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillRule
320 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontFamily
321 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
322 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontStyle
323 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
324 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_LineCap
325 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Locked
326 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Shape
327 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeColor
328 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeDashArray
329 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
330 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Text
331 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheC
332 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheT
333 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ
334 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Transform
335 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Visible
336 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Point_X
337 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Point_Y
338 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillColor
339 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillRule
340 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontFamily

18.2. Metadata fields 236
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygon - Font-Size</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Polygon FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polygon - ID</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Polygon LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polygon - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polygon - Points</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Polygon Stroke-Color</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polygon StrokeDashArray</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polygon StrokeWidth</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Polygon - Text</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Polygon - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polygon - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polygon - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Polygon Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polygon - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - Fill-Color</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - Font-Size</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Polyline FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - ID</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
</tbody>
</table>
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyline LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - MarkerEnd</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - MarkerStart</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - Points</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>Polyline - StrokeColor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polyline - StrokeDashArray</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polyline - StrokeWidth</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>Polyline - Text</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Polyline - TheC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Polyline - TheT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polyline - TheZ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Polyline - Transform</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Polyline - Visible</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Project - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Project - DatasetRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Project - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Project - ExperimenterGroupRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Project - ExperimenterRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Project - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ROI - Annotation-Ref</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>ROI - Description</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>ROI - ID</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>ROI - Name</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>148</td>
</tr>
<tr>
<td>ROI - Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Reagent - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Reagent - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Reagent - ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Reagent - Name</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Reagent - ReagentIdentifier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - FillColor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - FillRule</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - FontFamily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - FontSize</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Rectangle - FontStyle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - Height</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Rectangle - ID</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Rectangle - LineCap</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - Locked</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle - Stroke-Color(^{401})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - StrokeDashArray(^{402})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - StrokeWidth(^{403})</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Rectangle - Text(^{404})</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>Rectangle - TheC(^{405})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - TheT(^{406})</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Rectangle - TheZ(^{407})</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Rectangle - Transform(^{408})</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Rectangle - Visible(^{409})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Rectangle - Width(^{410})</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Rectangle - X(^{411})</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Rectangle - Y(^{412})</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>144</td>
</tr>
<tr>
<td>Screen - AnnotationRef(^{413})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Screen - Description(^{414})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Screen - ID(^{415})</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Screen - Name(^{416})</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Screen - PlateRef(^{417})</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Screen - ProtocolDescription(^{418})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Screen - ProtocolIdentifier(^{419})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Screen - ReagentSetDescription(^{420})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Screen - ReagentSetIdentifier(^{421})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page

\(^{401}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeColor

\(^{402}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeDashArray

\(^{403}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth

\(^{404}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Text

\(^{405}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheC

\(^{406}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheT

\(^{407}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ

\(^{408}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Transform

\(^{409}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Visible

\(^{410}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Width

\(^{411}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_X

\(^{412}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Y

\(^{413}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID

\(^{414}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Screen_Description

\(^{415}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Screen_ID

\(^{416}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Screen_Name

\(^{417}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Screen_Screen_PlateRef_ID

\(^{418}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Screen_Screen_PlateRef_ID

\(^{419}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Screen_ProtocolDescription

\(^{420}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Screen_ReagentSetDescription

\(^{421}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Screen_ReagentSetIdentifier
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen - Type</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>StageLabel Name</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>StageLabel - X</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>StageLabel - Y</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>StageLabel - Z</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>149</td>
</tr>
<tr>
<td>TagAnnotation - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TagAnnotation - Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TagAnnotation ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TagAnnotation Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TagAnnotation Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TermAnnotation AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TermAnnotation Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TermAnnotation ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TermAnnotation Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TermAnnotation Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TiffData - FirstC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TiffData - FirstT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TiffData - FirstZ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TiffData - IFD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TiffData - PlaneCount</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

Continued on next page
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimestampAnnotation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>- AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>- Description</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>- ID</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>- Namespace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>- Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>TransmittanceRange</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>- CutIn</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>- CutInTolerance</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>- CutOut</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>- CutOutTolerance</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>TransmittanceRange</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>- Transmittance</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>UUID - FileName</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>UUID - Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Well - AnnotationRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Well - Color</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Well - Column</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Well - ExternalDescription</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Well - ExternalIdentifier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Well - ID</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Well - ReagentRef</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>Well - Row</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
</tbody>
</table>

Continued on next page

442 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
443 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Description
444 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
445 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
446 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#TimestampAnnotation_Value
447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutIn
448 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutInTolerance
449 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutOut
450 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutOutTolerance
451 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_Transmittance
452 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TiffData_TiffData_UUID_FileName
453 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#UniversallyUniqueIdentifier
454 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
455 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#W ell_Color
456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#W ell_Column
457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#W ell_ExternalDescription
458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#W ell_ExternalIdentifier
459 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#W ell_ID
460 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#ReagentRef_ID
461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#W ell_Row

18.2. Metadata fields
Table 18.2 – continued from previous page

<table>
<thead>
<tr>
<th>Field</th>
<th>Supported</th>
<th>Unsupported</th>
<th>Partial</th>
<th>Unknown/Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well - Type 462</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>WellSample - AnnotationRef 463</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>WellSample - ID 464</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>WellSample - ImageRef 465</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>WellSample - Index 466</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>WellSample - PositionX 467</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>WellSample - PositionY 468</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>WellSample - Timepoint 469</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>XMLAnnotation - AnnotationRef 470</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>XMLAnnotation - ID 471</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>XMLAnnotation - Namespace 472</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>XMLAnnotation - Value 473</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
</tbody>
</table>

18.2.1 SlidebookReader

This page lists supported metadata fields for the Bio-Formats Olympus Slidebook format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 32 of them (6%).
- Of those, Bio-Formats fully or partially converts 32 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus Slidebook format reader:

462 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Type
463 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
464 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_ID
465 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImageRef_ID
466 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_Index
467 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_PositionX
468 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_PositionY
469 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_Timepoint
470 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#AnnotationRef_ID
471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_ID
472 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#Annotation_Namespace
473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SA_xsd.html#XMLAnnotation_Value
474 http://www.openmicroscopy.org/site/support/ome-model/
• Channel : ID
• Channel : NDFilter
• Channel : Name
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : Model
• Objective : NominalMagnification
• ObjectiveSettings : ID
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC

18.2. Metadata fields
Bio-Formats Documentation, Release 4.4.8-DEV

18.2. AIMReader

This page lists supported metadata fields for the Bio-Formats AIM format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats AIM format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name

Total supported: 32
Total unknown or missing: 441

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 20
Total unknown or missing: 453

18.2.3 AliconaReader

This page lists supported metadata fields for the Bio-Formats Alicona AL3D format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 31 of them (6%).
• Of those, Bio-Formats fully or partially converts 31 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Alicona AL3D format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Type
- DetectorSettings : ID
- DetectorSettings : Voltage
- Image : AcquisitionDate
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Objective : CalibratedMagnification
- Objective : Correction
- Objective : ID
- Objective : Immersion
- Objective : WorkingDistance
- ObjectiveSettings : ID
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX

529 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
530 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
531 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
532 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
533 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
534 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Voltage
535 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
536 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
537 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
538 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
539 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
540 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification
541 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
542 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
543 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
544 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_WorkingDistance
545 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
546 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_Data_BigEndian
547 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_DimensionOrder
548 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_ID
549 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_PhysicalSizeX
18.2.4 GelReader

This page lists supported metadata fields for the Bio-Formats Amersham Biosciences GEL format reader. These fields are from the OME data model\[^{560}\]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Amersham Biosciences GEL format reader:

- Channel : ID\[^{561}\]
- Channel : SamplesPerPixel\[^{562}\]
- Image : AcquisitionDate\[^{563}\]
- Image : ID\[^{564}\]

\[^{550}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
\[^{551}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\[^{552}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\[^{553}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\[^{554}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\[^{555}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\[^{556}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\[^{557}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\[^{558}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
\[^{559}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\[^{560}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\[^{561}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\[^{562}\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 19
Total unknown or missing: 454

18.2.5 AmiraReader

This page lists supported metadata fields for the Bio-Formats Amira format reader.

These fields are from the [OME data model](http://www.openmicroscopy.org/site/support/ome-model/). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

565 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html# Image_Name
566 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ BinaryFile_xsd.html#BinData_BigEndian
567 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html#Pixels_DimensionOrder
568 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html#Pixels_ID
569 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html#Pixels_PhysicalSizeX
570 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html#Pixels_PhysicalSizeY
571 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html#Pixels_SizeC
572 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html#Pixels_SizeT
573 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html#Pixels_SizeX
574 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html#Pixels_SizeY
575 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html#Pixels_SizeZ
576 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html#Pixels_Type
577 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html#Plane_TheC
578 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html#Plane_TheT
579 http://www.openmicroscopy.org/Schemas/Documentation/ Generated/ OME-2012-06/ ome_xsd.html#Plane_TheZ
580 http://www.openmicroscopy.org/Site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Amira format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 20

Total unknown or missing: 453
18.2.6 AnalyzeReader

This page lists supported metadata fields for the Bio-Formats Analyze 7.5 format reader.

These fields are from the OME data model[601]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Analyze 7.5 format reader:

- Channel : ID[602]
- Channel : SamplesPerPixel[603]
- Image : AcquisitionDate[604]
- Image : Description[605]
- Image : ID[606]
- Image : Name[607]
- Pixels : BinDataBigEndian[608]
- Pixels : DimensionOrder[609]
- Pixels : ID[610]
- Pixels : PhysicalSizeX[611]
- Pixels : PhysicalSizeY[612]
- Pixels : PhysicalSizeZ[613]
- Pixels : SizeC[614]
- Pixels : SizeT[615]
- Pixels : SizeX[616]
- Pixels : SizeY[617]

[603] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
[604] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
Supported fields

These fields are fully supported by the Bio-Formats Aperio SVS format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder

Total supported: 22

Total unknown or missing: 451

18.2.7 SVSReader

This page lists supported metadata fields for the Bio-Formats Aperio SVS format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 18 of them (3%).
- Of those, Bio-Formats fully or partially converts 18 (100%).

620 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
626 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
627 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
630 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
631 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 18
Total unknown or missing: 455

18.2.8 CellWorxReader

This page lists supported metadata fields for the Bio-Formats CellWorx format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 41 of them (8%).
• Of those, Bio-Formats fully or partially converts 41 (100%).

Supported fields

These fields are fully supported by the Bio-Formats CellWorx format reader:

• Channel : EmissionWavelength
• Channel : ExcitationWavelength
• Channel : ID
• Channel : Name
- Channel: SamplesPerPixel
- Detector: ID
- DetectorSettings: Gain
- DetectorSettings: ID
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Microscope: SerialNumber
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT

648 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
649 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
650 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
651 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
652 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
653 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
654 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
655 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
656 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
657 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
658 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
659 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
660 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
661 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
662 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
663 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
664 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
665 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
666 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
667 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
668 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
Bio-Formats Documentation, Release 4.4.8-DEV

• Plane : TheZ
• Plate : ID
• Plate : Name
• PlateAcquisition : ID
• PlateAcquisition : MaximumFieldCount
• PlateAcquisition : WellSampleRef
• Well : Column
• Well : ID
• Well : Row
• WellSample : ID
• WellSample : ImageRef
• WellSample : Index
• WellSample : PositionX
• WellSample : PositionY

Total supported: 41
Total unknown or missing: 432

18.2.9 AVIReader

This page lists supported metadata fields for the Bio-Formats Audio Video Interleave format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

671 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
672 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ID
673 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Name
674 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_ID
675 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount
676 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSampleRef_ID
677 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Column
678 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_ID
679 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Row
680 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_ID
681 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImageRef_ID
682 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_Index
683 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_PositionX
684 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_PositionY
685 http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Audio Video Interleave format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.10 ARFReader

This page lists supported metadata fields for the Bio-Formats ARF format reader.

686 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
687 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
688 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
689 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
690 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
691 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
692 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
693 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
694 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
695 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
696 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
697 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
698 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
699 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
700 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
701 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
702 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats ARF format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

[705] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
[706] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
Total supported: 17
Total unknown or missing: 456

18.2.11 BDReader

This page lists supported metadata fields for the Bio-Formats BD Pathway format reader.

These fields are from the OME data model\(^721\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 55 of them (11%).
- Of those, Bio-Formats fully or partially converts 55 (100%).

Supported fields

These fields are fully supported by the Bio-Formats BD Pathway format reader:

- Channel : EmissionWavelength\(^722\)
- Channel : ExcitationWavelength\(^723\)
- Channel : ID\(^724\)
- Channel : Name\(^725\)
- Channel : SamplesPerPixel\(^726\)
- Detector : ID\(^727\)
- DetectorSettings : Binning\(^728\)
- DetectorSettings : Gain\(^729\)
- DetectorSettings : ID\(^730\)
- DetectorSettings : Offset\(^731\)
- Image : AcquisitionDate\(^732\)
- Image : ID\(^733\)
- Image : InstrumentRef\(^734\)
- Image : Name\(^735\)

\(^721\)\url{http://www.openmicroscopy.org/site/support/ome-model/}
\(^722\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength}
\(^723\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength}
\(^724\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID}
\(^725\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name}
\(^726\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel}
\(^727\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID}
\(^728\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning}
\(^729\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain}
\(^730\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID}
\(^731\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Offset}
\(^732\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate}
\(^733\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID}
\(^734\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID}
\(^735\)\url{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name}
• Image: ROIRef
• Instrument: ID
• Objective: ID
• Objective: LensNA
• Objective: Manufacturer
• Objective: NominalMagnification
• ObjectiveSettings: ID
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: DeltaT
• Plane: ExposureTime
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• Plate: ColumnNamingConvention
• Plate: Description

18.2. Metadata fields

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ColumnNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Description
18.2.12 SDTReader

This page lists supported metadata fields for the Bio-Formats SPImage Data format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Total supported: 55
Total unknown or missing: 418

18.2. Metadata fields
Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SPCImage Data format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 17

Total unknown or missing: 456
18.2.13 BioRadGelReader

This page lists supported metadata fields for the Bio-Formats Bio-Rad GEL format reader.

These fields are from the OME data model\(^795\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bio-Rad GEL format reader:

- Channel : ID\(^796\)
- Channel : SamplesPerPixel\(^797\)
- Image : AcquisitionDate\(^798\)
- Image : ID\(^799\)
- Image : Name\(^800\)
- Pixels : BinDataBigEndian\(^801\)
- Pixels : DimensionOrder\(^802\)
- Pixels : ID\(^803\)
- Pixels : PhysicalSizeX\(^804\)
- Pixels : PhysicalSizeY\(^805\)
- Pixels : SizeC\(^806\)
- Pixels : SizeT\(^807\)
- Pixels : SizeX\(^808\)
- Pixels : SizeY\(^809\)
- Pixels : SizeZ\(^810\)
- Pixels : Type\(^811\)

\(^795\) http://www.openmicroscopy.org/site/support/ome-model/
\(^796\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^797\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^798\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^800\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^801\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^802\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^803\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^804\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^806\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^807\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^808\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^809\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^810\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^811\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
Total supported: 19
Total unknown or missing: 454

18.2.14 BioRadReader

This page lists supported metadata fields for the Bio-Formats Bio-Rad PIC format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 38 of them (8%).
- Of those, Bio-Formats fully or partially converts 38 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bio-Rad PIC format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Detector : Gain
- Detector : ID
- Detector : Offset
- Detector : Type
- DetectorSettings : Gain
- DetectorSettings : ID
- DetectorSettings : Offset
- Experiment : ID
- Experiment : Type

812http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
813http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
814http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
815http://www.openmicroscopy.org/site/support/ome-model/
816http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
817http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
818http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Gain
819http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
820http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Offset
821http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
822http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
823http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
824http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Offset
825http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_ID
826http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_Type

18.2. Metadata fields

263
- Image : AcquisitionDate
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Objective : Correction
- Objective : ID
- Objective : Immersion
- Objective : LensNA
- Objective : Model
- Objective : NominalMagnification
- ObjectiveSettings : ID
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ

18.2. Metadata fields
Total supported: 38
Total unknown or missing: 435

18.2.15 ImarisHDFReader

This page lists supported metadata fields for the Bio-Formats Bitplane Imaris 5.5 (HDF) format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bitplane Imaris 5.5 (HDF) format reader:

- Channel : Color
- Channel : ID
- Channel : SamplesPerPixel
- DetectorSettings : Gain
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID

850 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
851 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
852 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
853 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
854 http://www.openmicroscopy.org/site/support/ome-model/
855 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Color
856 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
857 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
858 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
859 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
860 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
861 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
862 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
863 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html# Pixels_DimensionOrder
864 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 22
Total unknown or missing: 451

18.2.16 BrukerReader

This page lists supported metadata fields for the Bio-Formats Bruker format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Bruker format reader:

• Channel : ID
• Channel : SamplesPerPixel

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
• Experimenter : ID
• Experimenter : Institution
• Experimenter : LastName
• Image : AcquisitionDate
• Image : ExperimenterRef
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 21
Total unknown or missing: 452

18.2.17 BurleighReader

This page lists supported metadata fields for the Bio-Formats Burleigh format reader.
These fields are from the OME data model899. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Burleigh format reader:

- Channel : ID900
- Channel : SamplesPerPixel901
- Image : AcquisitionDate902
- Image : ID903
- Image : Name904
- Pixels : BinDataBigEndian905
- Pixels : DimensionOrder906
- Pixels : ID907
- Pixels : PhysicalSizeX908
- Pixels : PhysicalSizeY909
- Pixels : PhysicalSizeZ910
- Pixels : SizeC911
- Pixels : SizeT912
- Pixels : SizeX913
- Pixels : SizeY914
- Pixels : SizeZ915
- Pixels : Type916

899http://www.openmicroscopy.org/site/support/ome-model/
900http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
901http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
902http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
903http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
904http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
905http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
906http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
907http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
908http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
909http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
910http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
911http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
912http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
913http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
914http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
915http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
916http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type

18.2. Metadata fields
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 20
Total unknown or missing: 453

18.2.18 DNGReader

This page lists supported metadata fields for the Bio-Formats DNG format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats DNG format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX

917 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
918 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
919 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
920 http://www.openmicroscopy.org/site/support/ome-model/
921 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
922 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
923 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
924 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
925 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
926 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
927 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
928 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
929 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
930 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
931 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.19 CellomicsReader

This page lists supported metadata fields for the Bio-Formats Cellomics C01 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 29 of them (6%).
- Of those, Bio-Formats fully or partially converts 29 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Cellomics C01 format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID

932 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
933 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
934 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
935 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
936 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
937 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
938 http://www.openmicroscopy.org/site/support/ome-model/
939 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
940 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
941 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
942 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
943 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
944 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_xsd.html#BinData_BigEndian
945 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
946 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• Plate : ColumnNamingConvention
• Plate : ID
• Plate : Name
• Plate : RowNamingConvention
• Well : Column
• Well : ID
• Well : Row
• WellSample : ID
• WellSample : ImageRef
• WellSample : Index

Total supported: 29

Total unknown or missing: 444

18.2. Metadata fields
18.2.20 CellSensReader

This page lists supported metadata fields for the Bio-Formats CellSens VSI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats CellSens VSI format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT

http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
Total supported: 17
Total unknown or missing: 456

18.2.21 DeltavisionReader

This page lists supported metadata fields for the Bio-Formats Deltavision format reader. These fields are from the OME data model[^986]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 50 of them (10%).
- Of those, Bio-Formats fully or partially converts 50 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Deltavision format reader:

- Channel : EmissionWavelength[^987]
- Channel : ExcitationWavelength[^988]
- Channel : ID[^989]
- Channel : NDFilter[^990]
- Channel : Name[^991]
- Channel : SamplesPerPixel[^992]
- Detector : ID[^993]
- Detector : Model[^994]
- Detector : Type[^995]
- DetectorSettings : Binning[^996]
- DetectorSettings : Gain[^997]
- DetectorSettings : ID[^998]
- DetectorSettings : ReadOutRate[^999]

[^985]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
[^986]: http://www.openmicroscopy.org/site/support/ome-model/
[^987]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
[^988]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
[^989]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
[^990]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_NDFilter
[^991]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
[^992]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
[^993]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
[^994]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
[^995]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
[^996]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
[^997]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_GAIN
[^998]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
[^999]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ReadOutRate

18.2. Metadata fields
• Image : AcquisitionDate\(^{1000}\)
• Image : Description\(^{1001}\)
• Image : ID\(^{1002}\)
• Image : InstrumentRef\(^{1003}\)
• Image : Name\(^{1004}\)
• ImagingEnvironment : Temperature\(^{1005}\)
• Instrument : ID\(^{1006}\)
• Objective : CalibratedMagnification\(^{1007}\)
• Objective : Correction\(^{1008}\)
• Objective : ID\(^{1009}\)
• Objective : Immersion\(^{1010}\)
• Objective : LensNA\(^{1011}\)
• Objective : Manufacturer\(^{1012}\)
• Objective : Model\(^{1013}\)
• Objective : NominalMagnification\(^{1014}\)
• Objective : WorkingDistance\(^{1015}\)
• ObjectiveSettings : ID\(^{1016}\)
• Pixels : BinDataBigEndian\(^{1017}\)
• Pixels : DimensionOrder\(^{1018}\)
• Pixels : ID\(^{1019}\)
• Pixels : PhysicalSizeX\(^{1020}\)
• Pixels : PhysicalSizeY\(^{1021}\)
• Pixels : PhysicalSizeZ\(^{1022}\)

\(^{1000}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{1001}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
\(^{1002}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{1003}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
\(^{1004}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{1005}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature
\(^{1006}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
\(^{1007}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification
\(^{1008}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
\(^{1009}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
\(^{1010}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
\(^{1011}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
\(^{1012}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSpec_Manufacturer
\(^{1013}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
\(^{1014}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
\(^{1015}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_WorldingDistance
\(^{1016}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
\(^{1017}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^{1018}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^{1019}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^{1020}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^{1021}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
\(^{1022}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ

18.2. Metadata fields
18.2.22 DicomReader

This page lists supported metadata fields for the Bio-Formats DICOM format reader.

These fields are from the OME data model\(^\text{1037}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

\(^\text{1023}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^\text{1024}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^\text{1025}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^\text{1026}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^\text{1027}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^\text{1029}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
\(^\text{1030}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
\(^\text{1031}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionX
\(^\text{1032}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
\(^\text{1033}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
\(^\text{1034}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^\text{1035}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^\text{1036}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
\(^\text{1037}\)http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats DICOM format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

1038 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1039 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1040 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1041 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
1042 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1043 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1044 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1045 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1046 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1047 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1048 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1049 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
1050 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1051 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1052 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1053 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1054 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1055 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1056 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1057 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1058 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
Total supported: 21
Total unknown or missing: 452

18.2.23 Ecat7Reader

This page lists supported metadata fields for the Bio-Formats ECA T7 format reader.

These fields are from the OME data model\(^{1059}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats ECA T7 format reader:

- Channel : ID\(^{1060}\)
- Channel : SamplesPerPixel\(^{1061}\)
- Image : AcquisitionDate\(^{1062}\)
- Image : Description\(^{1063}\)
- Image : ID\(^{1064}\)
- Image : Name\(^{1065}\)
- Pixels : BinDataBigEndian\(^{1066}\)
- Pixels : DimensionOrder\(^{1067}\)
- Pixels : ID\(^{1068}\)
- Pixels : PhysicalSizeX\(^{1069}\)
- Pixels : PhysicalSizeY\(^{1070}\)
- Pixels : PhysicalSizeZ\(^{1071}\)
- Pixels : SizeC\(^{1072}\)
- Pixels : SizeT\(^{1073}\)

\(^{1059}\) http://www.openmicroscopy.org/site/support/ome-model/

\(^{1061}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{1062}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

\(^{1063}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description

\(^{1065}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name

\(^{1066}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian

\(^{1067}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder

\(^{1069}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX

\(^{1072}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC

\(^{1073}\) http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
Total supported: 21
Total unknown or missing: 452

18.2.24 EPSReader

This page lists supported metadata fields for the Bio-Formats Encapsulated PostScript format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Encapsulated PostScript format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder

1074 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1075 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1076 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1077 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1078 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1079 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1080 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1081 http://www.openmicroscopy.org/site/support/ome-model/
1082 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1083 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1084 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1085 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1086 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1087 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1088 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
Bio-Formats Documentation, Release 4.4.8-DEV

18.2.25 FlexReader

This page lists supported metadata fields for the Bio-Formats Evotec Flex format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 67 of them (14%).
- Of those, Bio-Formats fully or partially converts 67 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Evotec Flex format reader:

- Channel : ID
- Channel : LightSourceSettingsID
- Channel : Name
- Channel : SamplesPerPixel

1089 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1090 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1091 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1092 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1093 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1094 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1095 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1096 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1097 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1098 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1099 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1100 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1101 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_ID
1102 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
1103 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

18.2. Metadata fields
Bio-Formats Documentation, Release 4.4.8-DEV

- Detector : ID104
- Detector : Type105
- DetectorSettings : Binning106
- DetectorSettings : ID107
- Dichroic : ID108
- Dichroic : Model109
- Filter : FilterWheel110
- Filter : ID111
- Filter : Model112
- Image : AcquisitionDate113
- Image : ID114
- Image : InstrumentRef115
- Image : Name116
- Instrument : ID117
- Laser : ID118
- Laser : LaserMedium119
- Laser : Type120
- Laser : Wavelength121
- LightPath : DichroicRef122
- LightPath : EmissionFilterRef123
- LightPath : ExcitationFilterRef124
- Objective : CalibratedMagnification125
- Objective : Correction126

104http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
105http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
106http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
107http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
108http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Dichroic_ID
109http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
110http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterFilterWheel
111http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filter_ID
112http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
113http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
114http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
115http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
116http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
117http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
118http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_ID
119http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_LaserMedium
120http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Type
121http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Wavelength
122http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DichroicRef_ID
123http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
124http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
125http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification
126http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction

18.2. Metadata fields
18.2. Metadata fields

- Objective : ID
- Objective : Immersion
- Objective : LensNA
- ObjectiveSettings : ID
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : DeltaT
- Plane : ExposureTime
- Plane : PositionX
- Plane : PositionY
- Plane : PositionZ
- Plane : TheC
- Plane : TheT
- Plane : TheZ
• Plate : ColumnNamingConvention
• Plate : ExternalIdentifier
• Plate : ID
• Plate : Name
• Plate : RowNamingConvention
• PlateAcquisition : ID
• PlateAcquisition : MaximumFieldCount
• PlateAcquisition : StartTime
• PlateAcquisition : WellSampleRef
• Well : Column
• Well : ID
• Well : Row
• WellSample : ID
• WellSample : ImageRef
• WellSample : Index
• WellSample : PositionX
• WellSample : PositionY

Total supported: 67
Total unknown or missing: 406

18.2.26 FEIReader

This page lists supported metadata fields for the Bio-Formats FEI/Philips format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

1150 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ColumnNamingConvention
1151 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ExternalIdentifier
1152 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ID
1153 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Name
1154 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_RowNamingConvention
1155 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_ID
1156 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount
1157 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_StartTime
1158 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSampleRef_ID
1159 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Column
1160 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_ID
1161 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Row
1162 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_Index
1163 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_PositionX
1164 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_PositionY
1165 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_ref
1166 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_ref

18.2. Metadata fields
• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats FEI/Philips format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 17

Total unknown or missing: 456

1168 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1169 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1170 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1171 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1172 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1173 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1174 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1175 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1176 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1177 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1178 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1179 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1180 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1181 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1182 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1183 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1184 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ

18.2. Metadata fields
18.2.27 FEITiffReader

This page lists supported metadata fields for the Bio-Formats FEI TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 37 of them (7%).
- Of those, Bio-Formats fully or partially converts 37 (100%).

Supported fields

These fields are fully supported by the Bio-Formats FEI TIFF format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Model
- Detector : Type
- Experimenter : ID
- Experimenter : LastName
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Microscope : Model
- Objective : Correction
- Objective : ID

1185 http://www.openmicroscopy.org/site/support/ome-model/
1186 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1187 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1188 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
1189 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1190 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
1191 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_ID
1192 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_LastName
1193 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1194 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
1195 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1196 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_InstrumentRef
1197 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1198 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1199 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_InstrumentRef
1200 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Objective_Correction
1201 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Objective_ID
• Objective: Immersion
• Objective: NominalMagnification
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• StageLabel: Name
• StageLabel: X
• StageLabel: Y
• StageLabel: Z

Total supported: 37

Total unknown or missing: 436

1202 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
1203 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
1204 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1205 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1206 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1207 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1208 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1209 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1210 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1211 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1212 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1213 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1214 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
1215 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1216 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1217 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1218 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1219 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#StageLabel_Name
1220 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#StageLabel_X
1221 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#StageLabel_Y
1222 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#StageLabel_Z
18.2.28 FitsReader

This page lists supported metadata fields for the Bio-Formats Flexible Image Transport System format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Flexible Image Transport System format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT

1223 http://www.openmicroscopy.org/site/support/ome-model/
1224 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1225 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1226 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1227 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1228 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1229 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1230 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1231 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1232 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1233 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1234 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1235 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1236 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1237 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1238 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1239 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
18.2.29 GatanDM2Reader

This page lists supported metadata fields for the Bio-Formats Gatan DM2 format reader. These fields are from the OME data model1241. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 28 of them (5%).
- Of those, Bio-Formats fully or partially converts 28 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Gatan DM2 format reader:

- Channel : ID1242
- Channel : SamplesPerPixel1243
- Detector : ID1244
- DetectorSettings : Binning1245
- DetectorSettings : ID1246
- Experimenter : FirstName1247
- Experimenter : ID1248
- Experimenter : LastName1249
- Image : AcquisitionDate1250
- Image : ExperimenterRef1251
- Image : ID1252
- Image : InstrumentRef1253
- Image : Name1254

1240http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1241http://www.openmicroscopy.org/site/support/ome-model/
1242http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1243http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1244http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
1245http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
1246http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
1247http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_FirstName
1248http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_ID
1249http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_LastName
1250http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1251http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ExperimenterRef
1252http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1253http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_InstrumentRef
1254http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
Bio-Formats Documentation, Release 4.4.8-DEV

- Instrument: ID
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ

Total supported: 28
Total unknown or missing: 445

18.2.30 GatanReader

This page lists supported metadata fields for the Bio-Formats Gatan Digital Micrograph format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 34 of them (7%).
- Of those, Bio-Formats fully or partially converts 34 (100%).

1255 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
1256 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1257 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1258 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1260 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1261 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1262 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1263 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1264 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1265 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1266 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1267 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1268 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1269 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1270 http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Gatan Digital Micrograph format reader:

- Channel : AcquisitionMode
- Channel : ID
- Channel : SamplesPerPixel
- Detector : ID
- DetectorSettings : ID
- DetectorSettings : Voltage
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Instrument : ID
- Objective : Correction
- Objective : ID
- Objective : Immersion
- Objective : NominalMagnification
- ObjectiveSettings : ID
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ

1271 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_AcquisitionMode
1272 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1273 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1274 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
1275 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
1276 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Voltage
1277 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1278 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1279 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1280 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
1281 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
1282 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
1283 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
1284 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
1285 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
1286 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
1287 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1288 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1289 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1290 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1291 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
18.2.31 GIFReader

This page lists supported metadata fields for the Bio-Formats Graphics Interchange Format format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Graphics Interchange Format format reader:

- Channel : ID

1292 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1293 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1294 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1295 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1296 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1297 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1298 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
1299 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionX
1300 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
1301 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
1302 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1303 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1304 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1305 http://www.openmicroscopy.org/site/support/ome-model/
1306 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
18.2.32 NAFReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu Aquacosmos format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Total supported: 17

Total unknown or missing: 456
Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu Aquacosmos format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 17

Total unknown or missing: 456

18.2.33 HISReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu HIS format reader.
These fields are from the OME data model\(^{1341}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 25 of them (5%).
- Of those, Bio-Formats fully or partially converts 25 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu HIS format reader:

- Channel : ID\(^{1342}\)
- Channel : SamplesPerPixel\(^{1343}\)
- Detector : ID\(^{1344}\)
- Detector : Offset\(^{1345}\)
- Detector : Type\(^{1346}\)
- DetectorSettings : Binning\(^{1347}\)
- DetectorSettings : ID\(^{1348}\)
- Image : AcquisitionDate\(^{1349}\)
- Image : ID\(^{1350}\)
- Image : InstrumentRef\(^{1351}\)
- Image : Name\(^{1352}\)
- Instrument : ID\(^{1353}\)
- Pixels : BinDataBigEndian\(^{1354}\)
- Pixels : DimensionOrder\(^{1355}\)
- Pixels : ID\(^{1356}\)
- Pixels : SizeC\(^{1357}\)
- Pixels : SizeT\(^{1358}\)

\(^{1341}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{1342}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID

\(^{1343}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{1344}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID

\(^{1345}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Offset

\(^{1346}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type

\(^{1347}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning

\(^{1348}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID

\(^{1349}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

\(^{1350}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID

\(^{1351}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID

\(^{1352}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name

\(^{1353}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID

\(^{1354}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian

\(^{1355}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder

\(^{1356}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID

\(^{1357}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC

\(^{1358}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
18.2.34 NDPIReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu NDPI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu NDPI format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian

Total supported: 25
Total unknown or missing: 448

[1369]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
18.2.35 HamamatsuVMSReader

This page lists supported metadata fields for the Bio-Formats Hamamatsu VMS format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 24 of them (5%).
- Of those, Bio-Formats fully or partially converts 24 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hamamatsu VMS format reader:

- Channel : ID

1374 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1375 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1376 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1377 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1378 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1379 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1380 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1381 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1382 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1383 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1384 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1385 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1386 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1387 http://www.openmicroscopy.org/site/support/ome-model/
1388 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
- Channel: SamplesPerPixel
- Image: AcquisitionDate
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: ID
- Objective: NominalMagnification
- ObjectiveSettings: ID
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type
- Plane: TheC
- Plane: TheT
- Plane: TheZ
Total supported: 24
Total unknown or missing: 449

18.2.36 HitachiReader

This page lists supported metadata fields for the Bio-Formats Hitachi format reader.

These fields are from the OME data model\[1412\]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 29 of them (6%).
- Of those, Bio-Formats fully or partially converts 29 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Hitachi format reader:

- Channel : ID\[1413\]
- Channel : SamplesPerPixel\[1414\]
- Image : AcquisitionDate\[1415\]
- Image : ID\[1416\]
- Image : InstrumentRef\[1417\]
- Image : Name\[1418\]
- Instrument : ID\[1419\]
- Microscope : Model\[1420\]
- Microscope : SerialNumber\[1421\]
- Objective : ID\[1422\]
- Objective : WorkingDistance\[1423\]
- ObjectiveSettings : ID\[1424\]
- Pixels : BinDataBigEndian\[1425\]
- Pixels : DimensionOrder\[1426\]

\[1412\]http://www.openmicroscopy.org/site/support/ome-model/
\[1413\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\[1414\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\[1415\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\[1416\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\[1417\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
\[1418\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_Name
\[1419\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
\[1420\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
\[1421\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
\[1422\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
\[1423\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_WorkingDistance
\[1424\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
\[1425\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\[1426\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder

18.2. Metadata fields
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : SizeX
• Pixels : Type
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 29
Total unknown or missing: 444

18.2.37 ICSReader

This page lists supported metadata fields for the Bio-Formats Image Cytometry Standard format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 70 of them (14%).
• Of those, Bio-Formats fully or partially converts 70 (100%).

1427 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1428 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1429 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1430 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1431 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1432 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1433 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1434 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1435 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1437 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
1438 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
1439 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1440 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1441 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1442 http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Image Cytometry Standard format reader:

- Channel : EmissionWavelength
- Channel : ExcitationWavelength
- Channel : ID
- Channel : Name
- Channel : PinholeSize
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Manufacturer
- Detector : Model
- Detector : Type
- DetectorSettings : Gain
- DetectorSettings : ID
- Dichroic : ID
- Dichroic : Model
- Experiment : ID
- Experiment : Type
- Experimenter : ID
- Experimenter : LastName
- Filter : ID
- Filter : Model
- FilterSet : DichroicRef

1443 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
1444 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
1445 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1446 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
1447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PinholeSize
1448 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1449 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
1450 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorManufacturerSpec_Manufacturer
1451 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorManufacturerSpec_Model
1452 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
1453 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
1454 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSpec_Dichroic_ID
1455 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSpec_Model
1456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSpec_Type
1457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_ID
1458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_Type
1459 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_ID
1460 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_LastName
1461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filter_ID
1462 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterSpec_Model
1463 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DichroicRef_ID
Bio-Formats Documentation, Release 4.4.8-DEV

- FilterSet : EmissionFilterRef
- FilterSet : ExcitationFilterRef
- FilterSet : ID
- FilterSet : Model
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Laser : ID
- Laser : LaserMedium
- Laser : Manufacturer
- Laser : Model
- Laser : Power
- Laser : RepetitionRate
- Laser : Type
- Laser : Wavelength
- Microscope : Manufacturer
- Microscope : Model
- Objective : CalibratedMagnification
- Objective : Correction
- Objective : ID

1464 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
1465 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
1466 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterSet_ID
1467 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1468 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1469 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
1470 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
1472 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
1474 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_ID
1475 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_Laser_LaserMedium
1476 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
1477 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification
1478 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_RepetitionRate
1479 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Type
1480 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Wavelength
1481 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
1482 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1483 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
1484 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID

18.2. Metadata fields
• Objective : Immersion
• Objective : LensNA
• Objective : Model
• Objective : WorkingDistance
• ObjectiveSettings : ID
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 70
Total unknown or missing: 403

18.2.38 ImaconReader

This page lists supported metadata fields for the Bio-Formats Imacon format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Imacon format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Experimenter : FirstName
• Experimenter : ID
• Experimenter : LastName
• Image : AcquisitionDate
• Image : ExperimenterRef
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder

1510 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1511 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1512 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1513 http://www.openmicroscopy.org/site/support/ome-model/
1514 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1515 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1516 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_FirstName
1517 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_ID
1518 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_LastName
1519 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1520 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterRef_ID
1521 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1522 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1523 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1524 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder

18.2. Metadata fields
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 21
Total unknown or missing: 452

18.2.39 SEQReader

This page lists supported metadata fields for the Bio-Formats Image-Pro Sequence format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Image-Pro Sequence format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID

18.2. Metadata fields
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

18.2.40 IPWReader

This page lists supported metadata fields for the Bio-Formats Image-Pro Workspace format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 18 of them (3%).
• Of those, Bio-Formats fully or partially converts 18 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Image-Pro Workspace format reader:

• Channel: ID

1540 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1541 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1542 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1543 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1544 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1545 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1546 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1547 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1548 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1549 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1550 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1551 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1552 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1553 http://www.openmicroscopy.org/site/support/ome-model/
1554 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 18
Total unknown or missing: 455

18.2.41 ImagicReader

This page lists supported metadata fields for the Bio-Formats IMAGIC format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

1555 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1556 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1557 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
1558 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1559 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1560 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1561 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1562 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1563 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1564 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1565 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1566 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1567 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1568 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1569 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1570 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1571 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ

1572 http://www.openmicroscopy.org/site/support/ome-model/
• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IMAGIC format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

1573 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1574 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1575 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1576 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1577 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1578 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1579 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1580 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1581 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1582 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1583 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
1584 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1585 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1586 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1587 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1588 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1589 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1590 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1591 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1592 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
18.2.42 IMODReader

This page lists supported metadata fields for the Bio-Formats IMOD format reader.

These fields are from the OME data model\(^{1593}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 42 of them (8%).
- Of those, Bio-Formats fully or partially converts 42 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IMOD format reader:

- Channel : ID\(^ {1594}\)
- Channel : SamplesPerPixel\(^ {1595}\)
- Image : AcquisitionDate\(^ {1596}\)
- Image : ID\(^ {1597}\)
- Image : Name\(^ {1598}\)
- Image : ROIRef\(^ {1599}\)
- Pixels : BinDataBigEndian\(^ {1600}\)
- Pixels : DimensionOrder\(^ {1601}\)
- Pixels : ID\(^ {1602}\)
- Pixels : PhysicalSizeX\(^ {1603}\)
- Pixels : PhysicalSizeY\(^ {1604}\)
- Pixels : PhysicalSizeZ\(^ {1605}\)
- Pixels : SizeC\(^ {1606}\)
- Pixels : SizeT\(^ {1607}\)

\(^{1593}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{1594}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID

\(^{1595}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{1596}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

\(^{1597}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID

\(^{1598}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name

\(^{1599}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID

\(^{1600}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian

\(^{1601}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder

\(^{1602}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID

\(^{1603}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX

\(^{1604}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY

\(^{1605}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ

\(^{1606}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC

\(^{1607}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ
- Point : ID
- Point : StrokeColor
- Point : StrokeDashArray
- Point : StrokeWidth
- Point : TheZ
- Point : X
- Point : Y
- Polygon : ID
- Polygon : Points
- Polygon : StrokeColor
- Polygon : StrokeDashArray
- Polygon : StrokeWidth
- Polygon : TheZ
- Polyline : ID
- Polyline : Points
- Polyline : StrokeColor
Total supported: 42
Total unknown or missing: 431

18.2.43 OpenlabReader

This page lists supported metadata fields for the Bio-Formats Openlab LIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 30 of them (6%).
- Of those, Bio-Formats fully or partially converts 30 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Openlab LIFF format reader:

- Channel : ID
- Channel : Name
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Type
- DetectorSettings : Gain
- DetectorSettings : ID
- DetectorSettings : Offset
- Image : AcquisitionDate

1631 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeDashArray
1632 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
1633 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ
1634 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROI_ID
1635 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROI_Name
1636 http://www.openmicroscopy.org/site/support/ome-model/
1637 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1638 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
1639 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1640 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
1641 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
1642 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
1643 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
1644 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Offset
1645 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
• Image: ID
• Image: InstrumentRef
• Image: Name
• Instrument: ID
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: PhysicalSizeX
• Pixels: PhysicalSizeY
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ
• Pixels: Type
• Plane: PositionX
• Plane: PositionY
• Plane: PositionZ
• Plane: TheC
• Plane: TheT
• Plane: TheZ

Total supported: 30

Total unknown or missing: 443
18.2.44 OpenlabRawReader

This page lists supported metadata fields for the Bio-Formats Openlab RAW format reader.

These fields are from the OME data model\(^\text{1667}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Openlab RAW format reader:

- Channel : ID\(^\text{1668}\)
- Channel : SamplesPerPixel\(^\text{1669}\)
- Image : AcquisitionDate\(^\text{1670}\)
- Image : ID\(^\text{1671}\)
- Image : Name\(^\text{1672}\)
- Pixels : BinDataBigEndian\(^\text{1673}\)
- Pixels : DimensionOrder\(^\text{1674}\)
- Pixels : ID\(^\text{1675}\)
- Pixels : SizeC\(^\text{1676}\)
- Pixels : SizeT\(^\text{1677}\)
- Pixels : SizeX\(^\text{1678}\)
- Pixels : SizeY\(^\text{1679}\)
- Pixels : SizeZ\(^\text{1680}\)
- Pixels : Type\(^\text{1681}\)
- Plane : TheC\(^\text{1682}\)
- Plane : TheT\(^\text{1683}\)

\(^{1667}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{1668}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID

\(^{1669}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{1670}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

\(^{1671}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID

\(^{1672}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name

\(^{1673}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian

\(^{1674}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_DimensionOrder

\(^{1675}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_ID

\(^{1676}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_SizeC

\(^{1677}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_SizeT

\(^{1678}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_SizeX

\(^{1679}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_SizeY

\(^{1680}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_SizeZ

\(^{1681}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixel_Type

\(^{1682}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC

\(^{1683}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.45 ImprovisionTiffReader

This page lists supported metadata fields for the Bio-Formats Improvision TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Improvision TIFF format reader:
- Channel : ID
- Channel : Name
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ

1684 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1685 http://www.openmicroscopy.org/site/support/ome-model/
1686 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1687 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
1688 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1689 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1690 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
1691 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1692 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1693 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1694 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1695 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1696 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
1697 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
1698 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
18.2.46 InCellReader

This page lists supported metadata fields for the Bio-Formats InCell 1000/2000 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 65 of them (13%).
- Of those, Bio-Formats fully or partially converts 65 (100%).

Supported fields

These fields are fully supported by the Bio-Formats InCell 1000/2000 format reader:

- Channel : EmissionWavelength
- Channel : ExcitationWavelength
- Channel : ID
- Channel : Name

[^169]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
[^170]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
[^171]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
[^172]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
[^173]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
[^174]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
[^175]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
[^176]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
[^177]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
[^178]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
[^179]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
[^180]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
[^181]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
[^182]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Model
• Detector : Type
• DetectorSettings : Binning
• DetectorSettings : Gain
• DetectorSettings : ID
• Experiment : ID
• Experiment : Type
• Image : AcquisitionDate
• Image : Description
• Image : ExperimentRef
• Image : ID
• Image : InstrumentRef
• Image : Name
• ImagingEnvironment : Temperature
• Instrument : ID
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Manufacturer
• Objective : NominalMagnification

1714 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1715 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
1716 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
1717 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
1718 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
1719 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
1720 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
1721 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
1722 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_ID
1723 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_Type
1724 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1725 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
1726 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1727 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
1728 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1729 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature
1730 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
1731 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
1732 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
1733 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
1734 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
1735 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
1736 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification

18.2. Metadata fields

314
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• Plate : ColumnNamingConvention
• Plate : ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ColumnNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ID
• Plate : Name
• Plate : RowNamingConvention
• Plate : WellOriginX
• Plate : WellOriginY
• PlateAcquisition : ID
• PlateAcquisition : MaximumFieldCount
• PlateAcquisition : WellSampleRef
• Well : Column
• Well : ID
• Well : Row
• WellSample : ID
• WellSample : ImageRef
• WellSample : Index
• WellSample : PositionX
• WellSample : PositionY

Total supported: 65
Total unknown or missing: 408

18.2.47 InCell3000Reader

This page lists supported metadata fields for the Bio-Formats InCell 3000 format reader.
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

1760 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Name
1761 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_RowNamingConvention
1762 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_WellOriginX
1763 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_WellOriginY
1764 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_ID
1765 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount
1766 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSampleRef_ID
1767 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Column
1768 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_ID
1769 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Row
1770 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_ID
1771 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImageRef_ID
1772 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_Index
1773 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_PositionX
1774 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_PositionY
1775 http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats InCell 3000 format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 17

Total unknown or missing: 456

18.2.48 INRReader

This page lists supported metadata fields for the Bio-Formats INR format reader.

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats INR format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type

1795. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1796. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1810. http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 20
Total unknown or missing: 453

18.2.49 IvisionReader

This page lists supported metadata fields for the Bio-Formats IVision format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 32 of them (6%).
• Of those, Bio-Formats fully or partially converts 32 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IVision format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Type
• DetectorSettings : Binning
• DetectorSettings : Gain
• DetectorSettings : ID
• Image : AcquisitionDate
• Image : ID
• Image : InstrumentRef
• Image : Name

18.2. Metadata fields
Bio-Formats Documentation, Release 4.4.8-DEV

- Instrument : ID
- Objective : Correction
- Objective : ID
- Objective : Immersion
- Objective : LensNA
- Objective : NominalMagnification
- ObjectiveSettings : ID
- ObjectiveSettings : RefractiveIndex
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : TimeIncrement
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 32

Total unknown or missing: 441

1827 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction]
1828 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID]
1829 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion]
1830 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA]
1831 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification]
1832 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID]
1833 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex]
1834 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian]
1835 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder]
1836 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID]
1837 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC]
1838 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT]
1839 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX]
1840 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY]
1841 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ]
1842 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement]
1843 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type]
1845 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT]
1846 [http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ]

18.2. Metadata fields
18.2.50 IPLabReader

This page lists supported metadata fields for the Bio-Formats IPLab format reader.

These fields are from the OME data model1847. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 29 of them (6%).
- Of those, Bio-Formats fully or partially converts 29 (100%).

Supported fields

These fields are fully supported by the Bio-Formats IPLab format reader:

- Channel : ID1848
- Channel : SamplesPerPixel1849
- Image : AcquisitionDate1850
- Image : Description1851
- Image : ID1852
- Image : Name1853
- Image : ROIRef1854
- Pixels : BinDataBigEndian1855
- Pixels : DimensionOrder1856
- Pixels : ID1857
- Pixels : PhysicalSizeX1858
- Pixels : PhysicalSizeY1859
- Pixels : SizeC1860
- Pixels : SizeT1861
- Pixels : SizeX1862
- Pixels : SizeY1863

1847http://www.openmicroscopy.org/site/support/ome-model/

1848http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Channel_ID

1849http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Channel_SamplesPerPixel

1850http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Image_AcquisitionDate

1851http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Image_Description

1852http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Image_ID

1853http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Image_Name

1854http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI-xsd.html#ROIRef_ID

1855http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile-xsd.html#BinData_BigEndian

1856http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Pixels_DimensionOrder

1857http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Pixels_ID

1858http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Pixels_PhysicalSizeX

1859http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Pixels_PhysicalSizeY

1860http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Pixels_SizeC

1861http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Pixels_SizeT

1862http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Pixels_SizeX

1863http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome-xsd.html#Pixels_SizeY
• Pixels: SizeZ
• Pixels: TimeIncrement
• Pixels: Type
• Plane: DeltaT
• Plane: TheC
• Plane: TheT
• Plane: TheZ
• ROI: ID
• Rectangle: Height
• Rectangle: ID
• Rectangle: Width
• Rectangle: X
• Rectangle: Y

Total supported: 29
Total unknown or missing: 444

18.2.51 JEOLReader

This page lists supported metadata fields for the Bio-Formats JEOL format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JEOL format reader:

• Channel: ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME-2012-06-06-ROI_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME-2012-06-06-ROI_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME-2012-06-06-ROI_xsd.html#Rectangular_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME-2012-06-06-ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME-2012-06-06-ROI_xsd.html#Rectangular_Width
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME-2012-06-06-ROI_xsd.html#Rectangular_Y
http://www.openmicroscopy.org/Site/support/ome-model/
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.52 JPEG2000Reader

This page lists supported metadata fields for the Bio-Formats JPEG-2000 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).
Supported fields

These fields are fully supported by the Bio-Formats JPEG-2000 format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.53 JPEGReader

This page lists supported metadata fields for the Bio-Formats JPEG format reader.

1896 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1897 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1898 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1899 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1900 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1901 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1902 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1903 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1904 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1905 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1906 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1907 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1908 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1909 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1910 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1911 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1912 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
These fields are from the OME data model1913. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPEG format reader:

- Channel : ID1914
- Channel : SamplesPerPixel1915
- Image : AcquisitionDate1916
- Image : ID1917
- Image : Name1918
- Pixels : BinDataBigEndian1919
- Pixels : DimensionOrder1920
- Pixels : ID1921
- Pixels : SizeC1922
- Pixels : SizeT1923
- Pixels : SizeX1924
- Pixels : SizeY1925
- Pixels : SizeZ1926
- Pixels : Type1927
- Plane : TheC1928
- Plane : TheT1929
- Plane : TheZ1930

1913http://www.openmicroscopy.org/site/support/ome-model/
1914http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1915http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1916http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
1917http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
1918http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
1919http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
1920http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
1921http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
1922http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1923http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1924http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
1925http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1926http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1927http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1928http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
1929http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
1930http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
Total supported: 17
Total unknown or missing: 456

18.2.54 JPKReader

This page lists supported metadata fields for the Bio-Formats JPK Instruments format reader.

These fields are from the OME data model\(^\text{1931}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPK Instruments format reader:

- Channel : ID\(^\text{1932}\)
- Channel : SamplesPerPixel\(^\text{1933}\)
- Image : AcquisitionDate\(^\text{1934}\)
- Image : ID\(^\text{1935}\)
- Image : Name\(^\text{1936}\)
- Pixels : BinDataBigEndian\(^\text{1937}\)
- Pixels : DimensionOrder\(^\text{1938}\)
- Pixels : ID\(^\text{1939}\)
- Pixels : SizeC\(^\text{1940}\)
- Pixels : SizeT\(^\text{1941}\)
- Pixels : SizeX\(^\text{1942}\)
- Pixels : SizeY\(^\text{1943}\)
- Pixels : SizeZ\(^\text{1944}\)
- Pixels : Type\(^\text{1945}\)

\(^{1931}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{1932}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{1933}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{1934}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{1935}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{1936}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{1937}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^{1938}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^{1939}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^{1940}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^{1941}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^{1942}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^{1943}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^{1944}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^{1945}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.55 JPXReader

This page lists supported metadata fields for the Bio-Formats JPX format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats JPX format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX

18.2. Metadata fields

[Links to OME data model and metadata fields]

327
Total supported: 17
Total unknown or missing: 456

18.2.56 KhorosReader

This page lists supported metadata fields for the Bio-Formats Khoros XV format reader.

These fields are from the OME data model\(^{1967}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Khoros XV format reader:

- Channel : ID\(^{1968}\)
- Channel : SamplesPerPixel\(^{1969}\)
- Image : AcquisitionDate\(^{1970}\)
- Image : ID\(^{1971}\)
- Image : Name\(^{1972}\)
- Pixels : BinDataBigEndian\(^{1973}\)
- Pixels : DimensionOrder\(^{1974}\)
- Pixels : ID\(^{1975}\)

\(^{1961}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^{1963}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^{1964}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^{1965}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^{1966}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
\(^{1967}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{1968}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{1969}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{1970}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{1971}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{1972}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{1973}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
\(^{1974}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^{1975}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID

18.2. Metadata fields
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.57 KodakReader

This page lists supported metadata fields for the Bio-Formats Kodak Molecular Imaging format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 24 of them (5%).
• Of those, Bio-Formats fully or partially converts 24 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Kodak Molecular Imaging format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : InstrumentRef

1976 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
1977 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
1979 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
1980 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
1981 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
1984 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
1985 http://www.openmicroscopy.org/site/support/ome-model/
1986 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
1987 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
1988 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
• Image : Name
• ImagingEnvironment : Temperature
• Instrument : ID
• Microscope : Model
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : ExposureTime
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 24
Total unknown or missing: 449

18.2.58 LiFlimReader

This page lists supported metadata fields for the Bio-Formats LI-FLIM format reader.
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats LI-FLIM format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Image : ROIRef
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : DeltaT
- Plane : ExposureTime

18.2. Metadata fields
Total supported: 23
Total unknown or missing: 450

18.2.59 LeicaReader

This page lists supported metadata fields for the Bio-Formats Leica format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 54 of them (11%).
- Of those, Bio-Formats fully or partially converts 54 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Leica format reader:

- Channel : Color
- Channel : EmissionWavelength
- Channel : ExcitationWavelength
- Channel : ID
- Channel : Name
- Channel : PinholeSize
- Channel : SamplesPerPixel
- Detector : ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Polygon_Points
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROI_ID
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Color
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PinholeSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

18.2. Metadata fields
• Detector : Offset
• Detector : Type
• Detector : Voltage
• DetectorSettings : ID
• Filter : ID
• Filter : Model
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• LightPath : EmissionFilterRef
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Model
• Objective : NominalMagnification
• Objective : SerialNumber
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BinDataBigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Offset
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Voltage
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Filter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian

18.2. Metadata fields
18.2. Metadata fields

- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: PhysicalSizeZ
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: TimeIncrement
- Pixels: Type
- Plane: DeltaT
- Plane: ExposureTime
- Plane: PositionX
- Plane: PositionY
- Plane: TheC
- Plane: TheT
- Plane: TheZ
- StageLabel: Name
- StageLabel: Z
- TransmittanceRange: CutIn
- TransmittanceRange: CutOut

2066 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2067 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2068 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
2069 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
2070 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
2071 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2072 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2073 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2074 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2075 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2076 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
2077 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2078 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
2079 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
2081 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
2082 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2083 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2084 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2085 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#StageLabel_Name
2086 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#StageLabel_Z
2087 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutIn
2088 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutOut
Total supported: 54
Total unknown or missing: 419

18.2.60 LIFReader

This page lists supported metadata fields for the Bio-Formats Leica Image File Format format reader. These fields are from the OME data model\(^\text{2089}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 83 of them (17%).
- Of those, Bio-Formats fully or partially converts 83 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Leica Image File Format format reader:
- `Channel : Color`\(^\text{2090}\)
- `Channel : ExcitationWavelength`\(^\text{2091}\)
- `Channel : ID`\(^\text{2092}\)
- `Channel : LightSourceSettingsAttenuation`\(^\text{2093}\)
- `Channel : LightSourceSettingsID`\(^\text{2094}\)
- `Channel : Name`\(^\text{2095}\)
- `Channel : PinholeSize`\(^\text{2096}\)
- `Channel : SamplesPerPixel`\(^\text{2097}\)
- `Detector : ID`\(^\text{2098}\)
- `Detector : Model`\(^\text{2099}\)
- `Detector : Offset`\(^\text{2100}\)
- `Detector : Type`\(^\text{2101}\)
- `Detector : Zoom`\(^\text{2102}\)
- `DetectorSettings : Gain`\(^\text{2103}\)

\(^{2089}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{2090}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Color
\(^{2091}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
\(^{2092}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{2093}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_Attenuation
\(^{2094}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_ID
\(^{2095}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
\(^{2096}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PinholeSize
\(^{2097}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2098}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
\(^{2099}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSpec_Model
\(^{2100}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Offset
\(^{2101}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
\(^{2102}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Zoom
\(^{2103}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
- DetectorSettings : ID
- DetectorSettings : Offset
- Filter : ID
- Filter : Model
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : InstrumentRef
- Image : Name
- Image : ROIRef
- Instrument : ID
- Label : FontSize
- Label : ID
- Label : StrokeWidth
- Label : Text
- Label : X
- Label : Y
- Laser : ID
- Laser : LaserMedium
- Laser : Type
- Laser : Wavelength
- LightPath : EmissionFilterRef
- Line : ID

18.2. Metadata fields

[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Offset)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Text)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Label_X)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#LightSource_ID)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Laser_Type)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Laser_Wavelength)
[18.2. Metadata fields](http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#FilterRef_ID)
• Line : X1
• Line : X2
• Line : Y1
• Line : Y2
• Microscope : Model
• Microscope : Type
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Model
• Objective : NominalMagnification
• Objective : SerialNumber
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT

18.2. Metadata fields
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ
• Polygon : ID
• Polygon : Points
• ROI : ID
• Rectangle : Height
• Rectangle : ID
• Rectangle : Width
• Rectangle : X
• Rectangle : Y
• TransmittanceRange : CutIn
• TransmittanceRange : CutOut

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Polygon_Points
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Width
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutIn
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutOut

18.2. Metadata fields 338
Total supported: 83
Total unknown or missing: 390

18.2.61 LeicaSCNReader

This page lists supported metadata fields for the Bio-Formats Leica SCN format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 31 of them (6%).
- Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Leica SCN format reader:

- Channel : ID
- Channel : IlluminationType
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Objective : CalibratedMagnification
- Objective : ID
- Objective : LensNA
- Objective : NominalMagnification
- ObjectiveSettings : ID

http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_IlluminationType
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID

18.2. Metadata fields
18.2.62 LEOReader

This page lists supported metadata fields for the Bio-Formats LEO format reader.

These fields are from the OME data model2205. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

\begin{itemize}
 \item Pixels : BinDataBigEndian2188
 \item Pixels : DimensionOrder2189
 \item Pixels : ID2190
 \item Pixels : PhysicalSizeX2191
 \item Pixels : PhysicalSizeY2192
 \item Pixels : PhysicalSizeZ2193
 \item Pixels : SizeC2194
 \item Pixels : SizeT2195
 \item Pixels : SizeX2196
 \item Pixels : SizeY2197
 \item Pixels : SizeZ2198
 \item Pixels : Type2199
 \item Plane : PositionX2200
 \item Plane : PositionY2201
 \item Plane : TheC2202
 \item Plane : TheT2203
 \item Plane : TheZ2204
\end{itemize}

Total supported: 31

Total unknown or missing: 442
• The file format itself supports 25 of them (5%).
• Of those, Bio-Formats fully or partially converts 25 (100%).

Supported fields

These fields are fully supported by the Bio-Formats LEO format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Objective : Correction
- Objective : ID
- Objective : Immersion
- Objective : WorkingDistance
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY

^{2206}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
^{2207}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
^{2208}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
^{2209}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
^{2210}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
^{2211}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
^{2212}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
^{2213}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
^{2214}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
^{2215}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
^{2216}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_WorkingDistance
^{2217}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
^{2218}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
^{2219}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
^{2220}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
^{2221}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
^{2222}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
^{2223}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
^{2224}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
^{2225}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 25
Total unknown or missing: 448

18.2.63 L2DReader

This page lists supported metadata fields for the Bio-Formats Li-Cor L2D format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 27 of them (5%).
• Of those, Bio-Formats fully or partially converts 27 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Li-Cor L2D format reader:

• Channel : ID
• Channel : LightSourceSettingsID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID

Footnotes:
2226 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2227 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2228 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2229 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2230 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2231 http://www.openmicroscopy.org/site/support/ome-model/
2232 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
2233 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_ID
2234 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
2235 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
2236 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
2237 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
2238 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_InstrumentRef
2239 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
2240 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
18.2.64 LIMReader

This page lists supported metadata fields for the Bio-Formats Laboratory Imaging format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.
Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Laboratory Imaging format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 17
Total unknown or missing: 456

2260 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
2261 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
2262 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
2263 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
2264 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
2265 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_BinData_BigEndian
2266 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2267 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2268 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2269 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2270 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2271 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2272 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2273 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2274 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2275 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2276 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ

18.2. Metadata fields
18.2.65 MetamorphTiffReader

This page lists supported metadata fields for the Bio-Formats Metamorph TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 35 of them (7%).
- Of those, Bio-Formats fully or partially converts 35 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Metamorph TIFF format reader:

- Channel : ID
- Channel : Name
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- ImagingEnvironment : Temperature
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX

18.2. Metadata fields
18.2.66 MetamorphReader

This page lists supported metadata fields for the Bio-Formats Metamorph STK format reader.
These fields are from the OME data model\[2313\]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 41 of them (8%).
- Of those, Bio-Formats fully or partially converts 41 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Metamorph STK format reader:

- Channel : ID\[2314\]
- Channel : LightSourceSettingsID\[2315\]
- Channel : LightSourceSettingsWavelength\[2316\]
- Channel : Name\[2317\]
- Channel : SamplesPerPixel\[2318\]
- Detector : ID\[2319\]
- Detector : Type\[2320\]
- DetectorSettings : Binning\[2321\]
- DetectorSettings : Gain\[2322\]
- DetectorSettings : ID\[2323\]
- DetectorSettings : ReadOutRate\[2324\]
- Image : AcquisitionDate\[2325\]
- Image : Description\[2326\]
- Image : ID\[2327\]
- Image : InstrumentRef\[2328\]
- Image : Name\[2329\]
- ImagingEnvironment : Temperature\[2330\]

\[2313\]http://www.openmicroscopy.org/site/support/ome-model/
\[2314\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\[2315\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_ID
\[2316\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSourceSettings_Wavelength
\[2317\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
\[2318\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\[2319\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
\[2320\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
\[2321\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
\[2322\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
\[2323\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
\[2324\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ReadOutRate
\[2325\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\[2326\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
\[2327\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\[2328\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
\[2329\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\[2330\]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature
• Instrument : ID
• Laser : ID
• Laser : LaserMedium
• Laser : Type
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_LaserMedium
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
• Plane : TheZ

Total supported: 41
Total unknown or missing: 432

18.2.67 MIASReader

This page lists supported metadata fields for the Bio-Formats MIAS format reader.
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 62 of them (13%).
• Of those, Bio-Formats fully or partially converts 62 (100%).

Supported fields

These fields are fully supported by the Bio-Formats MIAS format reader:
• Channel : Color
• Channel : ID
• Channel : Name
• Channel : SamplesPerPixel
• Ellipse : ID
• Ellipse : RadiusX
• Ellipse : RadiusY
• Ellipse : Text
• Ellipse : TheT
• Ellipse : TheZ
• Ellipse : X
• Ellipse : Y
• Experiment : Description

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Color
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_RadiusX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_RadiusY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Text
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_Description

18.2. Metadata fields
- Experiment: ID
- Experiment: Type
- Image: AcquisitionDate
- Image: ExperimentRef
- Image: ID
- Image: InstrumentRef
- Image: Name
- Image: ROIRef
- Instrument: ID
- Mask: FillColor
- Mask: Height
- Mask: ID
- Mask: StrokeColor
- Mask: Width
- Mask: X
- Mask: Y
- Objective: ID
- Objective: Model
- Objective: NominalMagnification
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experiment_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FillColor
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeColor
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_Width
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX

18.2. Metadata fields
18.2. Metadata fields

- Pixels : PhysicalSizeY
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : ExposureTime
- Plane : TheC
- Plane : TheT
- Plane : TheZ
- Plate : ColumnNamingConvention
- Plate : ExternalIdentifier
- Plate : ID
- Plate : Name
- Plate : RowNamingConvention
- PlateAcquisition : ID
- PlateAcquisition : MaximumFieldCount
- PlateAcquisition : WellSampleRef
- ROI : ID
- Well : Column
- Well : ID
- Well : Row
• WellSample : ID
• WellSample : ImageRef
• WellSample : Index

Total supported: 62
Total unknown or missing: 411

18.2.68 MicromanagerReader

This page lists supported metadata fields for the Bio-Formats Micro-Manager format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in nanometers) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 36 of them (7%).
• Of those, Bio-Formats fully or partially converts 36 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Micro-Manager format reader:
• Channel : ID
• Channel : Name
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Manufacturer
• Detector : Model
• Detector : SerialNumber
• Detector : Type
• DetectorSettings : Binning
• DetectorSettings : Gain
• DetectorSettings : ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImageRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_Index
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
18.2. Metadata fields

- `DetectorSettings` : `Voltage`
- `Image` : `AcquisitionDate`
- `Image` : `Description`
- `Image` : `ID`
- `Image` : `InstrumentRef`
- `Image` : `Name`
- `ImagingEnvironment` : `Temperature`
- `Instrument` : `ID`
- `Pixels` : `BinDataBigEndian`
- `Pixels` : `DimensionOrder`
- `Pixels` : `ID`
- `Pixels` : `PhysicalSizeX`
- `Pixels` : `PhysicalSizeY`
- `Pixels` : `PhysicalSizeZ`
- `Pixels` : `SizeC`
- `Pixels` : `SizeT`
- `Pixels` : `SizeX`
- `Pixels` : `SizeY`
- `Pixels` : `SizeZ`
- `Pixels` : `Type`
- `Plane` : `DeltaT`
- `Plane` : `ExposureTime`
- `Plane` : `TheC`
18.2.69 MINCReader

This page lists supported metadata fields for the Bio-Formats MINC MRI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 21 of them (4%).
- Of those, Bio-Formats fully or partially converts 21 (100%).

Supported fields

These fields are fully supported by the Bio-Formats MINC MRI format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
Bio-Formats Documentation, Release 4.4.8-DEV

• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 21
Total unknown or missing: 452

18.2.70 MRWReader

This page lists supported metadata fields for the Bio-Formats Minolta MRW format reader.
These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
 • The file format itself supports 17 of them (3%).
 • Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Minolta MRW format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name

2468 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2469 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2470 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2472 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2474 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2475 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2476 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2477 http://www.openmicroscopy.org/site/support/ome-model/
2478 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
2479 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
2480 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
2481 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
2482 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.71 MNGReader

This page lists supported metadata fields for the Bio-Formats Multiple Network Graphics format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Multiple Network Graphics format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.72 MolecularImagingReader

This page lists supported metadata fields for the Bio-Formats Molecular Imaging format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 19 of them (4%).
• Of those, Bio-Formats fully or partially converts 19 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Molecular Imaging format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 19

Total unknown or missing: 454
18.2.73 MRCReader

This page lists supported metadata fields for the Bio-Formats Medical Research Council format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Medical Research Council format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
18.2.74 NikonReader

This page lists supported metadata fields for the Bio-Formats Nikon NEF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon NEF format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
18.2.75 NiftiReader

This page lists supported metadata fields for the Bio-Formats NIfTI format reader.

These fields are from the OME data model\(^{2572}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 22 of them (4%).
- Of those, Bio-Formats fully or partially converts 22 (100%).

Supported fields

These fields are fully supported by the Bio-Formats NIfTI format reader:

- Channel : ID\(^{2573}\)
- Channel : SamplesPerPixel\(^{2574}\)
- Image : AcquisitionDate\(^{2575}\)
- Image : Description\(^{2576}\)
- Image : ID\(^{2577}\)
- Image : Name\(^{2578}\)
- Pixels : BinDataBigEndian\(^{2579}\)

\(^{2565}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX

\(^{2566}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY

\(^{2567}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ

\(^{2568}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type

\(^{2569}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC

\(^{2570}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT

\(^{2571}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ

\(^{2572}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{2573}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID

\(^{2574}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{2575}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate

\(^{2576}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description

\(^{2577}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID

\(^{2578}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name

\(^{2579}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 22
Total unknown or missing: 451

18.2.76 NikonElementsTiffReader

This page lists supported metadata fields for the Bio-Formats Nikon Elements TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 48 of them (10%).
• Of those, Bio-Formats fully or partially converts 48 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Nikon Elements TIFF format reader:

- Channel : AcquisitionMode
- Channel : EmissionWavelength
- Channel : ExcitationWavelength
- Channel : ID
- Channel : Name
- Channel : PinholeSize
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Model
- Detector : Type
- DetectorSettings : Binning
- DetectorSettings : Gain
- DetectorSettings : ID
- DetectorSettings : ReadOutRate
- DetectorSettings : Voltage
- Image : AcquisitionDate
- Image : ID
- Image : InstrumentRef
- Image : Name
- ImagingEnvironment : Temperature
- Instrument : ID
• Objective : CalibratedMagnification
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Model
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
18.2.77 NikonTiffReader

This page lists supported metadata fields for the Bio-Formats Nikon TIFF format reader. These fields are from the OME data model\(^{2644}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 45 of them (9%).
- Of those, Bio-Formats fully or partially converts 45 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon TIFF format reader:

- Channel : EmissionWavelength\(^{2645}\)
- Channel : ExcitationWavelength\(^{2646}\)
- Channel : ID\(^{2647}\)
- Channel : PinholeSize\(^{2648}\)
- Channel : SamplesPerPixel\(^{2649}\)
- Detector : Gain\(^{2650}\)
- Detector : ID\(^{2651}\)
- Detector : Type\(^{2652}\)
- Dichroic : ID\(^{2653}\)
- Dichroic : Model\(^{2654}\)

\(^{2640}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
\(^{2641}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^{2642}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^{2643}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
\(^{2644}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
\(^{2645}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
\(^{2646}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{2647}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PinholeSize
\(^{2648}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{2649}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Gain
\(^{2650}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
\(^{2651}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
\(^{2652}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Dichroic_ID
\(^{2653}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
18.2. Metadata fields

- Filter : ID
- Filter : Model
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Laser : ID
- Laser : LaserMedium
- Laser : Model
- Laser : Type
- Laser : Wavelength
- Objective : Correction
- Objective : ID
- Objective : Immersion
- Objective : LensNA
- Objective : NominalMagnification
- Objective : WorkingDistance
- ObjectiveSettings : ID
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
18.2.78 NativeND2Reader

This page lists supported metadata fields for the Bio-Formats Nikon ND2 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 50 of them (10%).
- Of those, Bio-Formats fully or partially converts 50 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Nikon ND2 format reader:

- Channel : AcquisitionMode
- Channel : Color

References:

- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
- http://www.openmicroscopy.org/site/support/ome-model/

18.2. Metadata fields
• Channel : EmissionWavelength
• Channel : ExcitationWavelength
• Channel : ID
• Channel : Name
• Channel : PinholeSize
• Channel : SamplesPerPixel
• Detector : ID
• Detector : Model
• Detector : Type
• DetectorSettings : Binning
• DetectorSettings : Gain
• DetectorSettings : ID
• DetectorSettings : ReadOutRate
• DetectorSettings : Voltage
• Image : AcquisitionDate
• Image : ID
• Image : InstrumentRef
• Image : Name
• ImagingEnvironment : Temperature
• Instrument : ID
• Objective : CalibratedMagnification
• Objective : Correction
• Objective : ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PinholeSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ReadOutRate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Voltage
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
• Objective : Immersion
• Objective : LensNA
• Objective : Model
• ObjectiveSettings : ID
• ObjectiveSettings : RefractiveIndex
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC

2716 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
2717 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
2718 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
2719 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
2720 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex
2721 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
2722 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2723 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2724 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
2725 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
2726 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
2727 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2728 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2729 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2730 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2731 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2732 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2733 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
2734 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
2736 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
2737 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
2738 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC

18.2. Metadata fields
18.2.79 NRRDReader

This page lists supported metadata fields for the Bio-Formats NRRD format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats NRRD format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SizeC

2741 http://www.openmicroscopy.org/site/support/ome-model/
2743 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
2744 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
2746 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
2747 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
2753 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
18.2.80 APLReader

This page lists supported metadata fields for the Bio-Formats Olympus APL format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus APL format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian

Total supported: 20
Total unknown or missing: 453
Bio-Formats Documentation, Release 4.4.8-DEV

18.2.81 FV1000Reader

This page lists supported metadata fields for the Bio-Formats Olympus FV1000 format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 107 of them (22%).
- Of those, Bio-Formats fully or partially converts 107 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus FV1000 format reader:

- Channel : EmissionWavelength

2769 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2770 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2771 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
2772 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
2773 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2774 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2775 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2776 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2777 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2778 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
2779 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
2780 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
2781 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
2782 http://www.openmicroscopy.org/site/support/ome-model/
2783 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
- Channel : ExcitationWavelength
- Channel : ID
- Channel : IlluminationType
- Channel : LightSourceSettingsID
- Channel : LightSourceSettingsWavelength
- Channel : Name
- Channel : SamplesPerPixel
- Detector : Gain
- Detector : ID
- Detector : Type
- Detector : Voltage
- DetectorSettings : ID
- Dichroic : ID
- Dichroic : Model
- Ellipse : FontSize
- Ellipse : ID
- Ellipse : RadiusX
- Ellipse : RadiusY
- Ellipse : StrokeWidth
- Ellipse : TheT
- Ellipse : TheZ
- Ellipse : Transform
- Ellipse : X

18.2. Metadata fields
18.2. Metadata fields

- Ellipse : Y
- Filter : ID
- Filter : Model
- Image : AcquisitionDate
- Image : ID
- Image : InstrumentRef
- Image : Name
- Image : ROIRef
- Instrument : ID
- Laser : ID
- Laser : LaserMedium
- Laser : Type
- Laser : Wavelength
- LightPath : DichroicRef
- LightPath : EmissionFilterRef
- Line : FontSize
- Line : ID
- Line : StrokeWidth
- Line : TheT
- Line : TheZ
- Line : Transform
- Line : X1
- Line : X2
• Line : Y
• Line : Y
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Model
• Objective : NominalMagnification
• Objective : WorkingDistance
• ObjectiveSettings : ID
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type

2830 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_Y1
2831 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_Y2
2832 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
2833 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
2834 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
2835 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
2836 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
2837 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
2838 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveWorkingDistance
2839 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
2840 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
2841 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
2842 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
2843 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
2844 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
2845 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
2846 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
2847 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
2848 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
2849 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
2850 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
2851 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
2852 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type

18.2. Metadata fields
18.2. Metadata fields

- Plane: TheC
- Plane: TheT
- Plane: TheZ
- Point: FontSize
- Point: ID
- Point: StrokeWidth
- Point: TheT
- Point: TheZ
- Point: X
- Point: Y
- Polygon: FontSize
- Polygon: ID
- Polygon: Points
- Polygon: StrokeWidth
- Polygon: TheT
- Polygon: TheZ
- Polygon: Transform
- Polyline: FontSize
- Polyline: ID
- Polyline: Points
- Polyline: StrokeWidth
- Polyline: TheT
- Polyline: TheZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Point_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Point_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Polygon_Points
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Transform
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Polyline_Points
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ
Bio-Formats Documentation, Release 4.4.8-DEV

18.2.82 FluoviewReader

This page lists supported metadata fields for the Bio-Formats Olympus Fluoview/ABD TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 47 of them (9%).
- Of those, Bio-Formats fully or partially converts 47 (100%).

Total supported: 107
Total unknown or missing: 366

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Transform
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROI_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Transform
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Width
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Rectangle_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutIn
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#TransmittanceRange_CutOut
http://www.openmicroscopy.org/site/support/ome-model/

18.2. Metadata fields
Supported fields

These fields are fully supported by the Bio-Formats Olympus Fluoview/ABD TIFF format reader:

- Channel : ID
- Channel : Name
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Manufacturer
- Detector : Model
- Detector : Type
- DetectorSettings : Gain
- DetectorSettings : ID
- DetectorSettings : Offset
- DetectorSettings : ReadOutRate
- DetectorSettings : Voltage
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : InstrumentRef
- Image : Name
- ImagingEnvironment : Temperature
- Instrument : ID
- Objective : CalibratedMagnification
- Objective : Correction

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Gain
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Offset
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ReadOutRate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Voltage
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_CalibratedMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
• Objective : ID
• Objective : Immersion
• Objective : LensNA
• Objective : Model
• ObjectiveSettings : ID
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 47
Total unknown or missing: 426

18.2.83 ScanrReader

This page lists supported metadata fields for the Bio-Formats Olympus ScanR format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 41 of them (8%).
• Of those, Bio-Formats fully or partially converts 41 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus ScanR format reader:

• Channel : ID
• Channel : Name
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY

[2941] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
[2942] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
[2945] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
18.2. Metadata fields

- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : DeltaT
- Plane : ExposureTime
- Plane : PositionX
- Plane : PositionY
- Plane : TheC
- Plane : TheT
- Plane : TheZ
- Plate : ColumnNamingConvention
- Plate : Columns
- Plate : ID
- Plate : Name
- Plate : RowNamingConvention
- Plate : Rows
- PlateAcquisition : ID
- PlateAcquisition : MaximumFieldCount
- PlateAcquisition : WellSampleRef
- Well : Column

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plate_ColumnNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plate_Columns
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plate_RowNamingConvention
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plate_Rows
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#PlateAcquisition_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#PlateAcquisition_MaximumFieldCount
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#WellSampleRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Column
Bio-Formats Documentation, Release 4.4.8-DEV

18.2.84 SISReader

This page lists supported metadata fields for the Bio-Formats Olympus SIS TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 31 of them (6%).
- Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Olympus SIS TIFF format reader:

- Channel : ID
- Channel : Name
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Model
- Detector : Type
- DetectorSettings : ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Row
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#WellSample_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImageRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#WellSample_Index
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#WellSample_PositionX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#WellSample_PositionY
http://www.openmicroscopy.org/site/support/ome-model/

18.2. Metadata fields
• Image : AcquisitionDate
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Objective : ID
• Objective : Correction
• Objective : Immersion
• Objective : NominalMagnification
• ObjectiveSettings : ID
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT

2988 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
2989 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
2990 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
2991 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
2992 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
2993 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
2994 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
2995 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
2996 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
2997 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
2998 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
2999 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3000 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3001 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
3002 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
3003 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3004 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3005 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3006 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3007 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3008 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3009 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3010 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT

18.2. Metadata fields
• Plane : TheZ

Total supported: 31
Total unknown or missing: 442

18.2.85 OMETiffReader

This page lists supported metadata fields for the Bio-Formats OME-TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats OME-TIFF format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ

3011 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
3012 http://www.openmicroscopy.org/site/support/ome-model/
3013 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3014 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3015 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3016 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3017 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3018 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3019 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3020 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3021 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3022 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3023 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3024 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3025 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ

18.2. Metadata fields
18.2.86 OMEXMLReader

This page lists supported metadata fields for the Bio-Formats OME-XML format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats OME-XML format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT

Total supported: 17
Total unknown or missing: 456
Bio-Formats Documentation, Release 4.4.8-DEV

- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.87 OxfordInstrumentsReader

This page lists supported metadata fields for the Bio-Formats Oxford Instruments format reader.
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Oxford Instruments format reader:
- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
18.2.88 PCXReader

This page lists supported metadata fields for the Bio-Formats PCX format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PCX format reader:

- Channel : ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.89 PDSReader

This page lists supported metadata fields for the Bio-Formats Perkin Elmer Densitometer format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 21 of them (4%).
• Of those, Bio-Formats fully or partially converts 21 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Perkin Elmer Densitometer format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : PositionX
- Plane : PositionY
- Plane : TheC
- Plane : TheT
- Plane : TheZ
18.2.90 OperettaReader

This page lists supported metadata fields for the Bio-Formats PerkinElmer Operetta format reader.

These fields are from the OME data model\(^\text{3109}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 41 of them (8%).
- Of those, Bio-Formats fully or partially converts 41 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PerkinElmer Operetta format reader:

- Channel : ID\(^\text{3110}\)
- Channel : Name\(^\text{3111}\)
- Channel : SamplesPerPixel\(^\text{3112}\)
- Experimenter : ID\(^\text{3113}\)
- Experimenter : LastName\(^\text{3114}\)
- Image : AcquisitionDate\(^\text{3115}\)
- Image : ExperimenterRef\(^\text{3116}\)
- Image : ID\(^\text{3117}\)
- Image : Name\(^\text{3118}\)
- Pixels : BinDataBigEndian\(^\text{3119}\)
- Pixels : DimensionOrder\(^\text{3120}\)
- Pixels : ID\(^\text{3121}\)
- Pixels : PhysicalSizeX\(^\text{3122}\)
- Pixels : PhysicalSizeY\(^\text{3123}\)

\(^\text{3109}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^\text{3110}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^\text{3111}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
\(^\text{3112}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^\text{3113}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_ID
\(^\text{3114}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Experimenter_LastName
\(^\text{3115}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^\text{3116}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterRef_ID
\(^\text{3117}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^\text{3118}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^\text{3119}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^\text{3120}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^\text{3121}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^\text{3122}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
\(^\text{3123}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
18.2. Metadata fields

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Columns
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ExternalIdentifier
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Plate_Rows
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_Column
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#Well_ID
• Well : Row
• WellSample : ID
• WellSample : ImageRef
• WellSample : Index

Total supported: 41
Total unknown or missing: 432

18.2.91 PerkinElmerReader

This page lists supported metadata fields for the Bio-Formats PerkinElmer format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
• The file format itself supports 28 of them (5%).
• Of those, Bio-Formats fully or partially converts 28 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PerkinElmer format reader:
• Channel : EmissionWavelength
• Channel : ExcitationWavelength
• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Pixels : BinDataBigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#W ell_Row
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#W ellSample_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImageRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/SPW_xsd.html#W ellSample_Index
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_EmissionWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ExcitationWavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : DeltaT
• Plane : ExposureTime
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 28
Total unknown or missing: 445

18.2.92 PGMReader

This page lists supported metadata fields for the Bio-Formats Portable Gray Map format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.
Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Portable Gray Map format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 17

Total unknown or missing: 456

18.2. Metadata fields
18.2.93 PSDReader

This page lists supported metadata fields for the Bio-Formats Adobe Photoshop format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Adobe Photoshop format reader:

- `Channel : ID`
- `Channel : SamplesPerPixel`
- `Image : AcquisitionDate`
- `Image : ID`
- `Image : Name`
- `Pixels : BinDataBigEndian`
- `Pixels : DimensionOrder`
- `Pixels : ID`
- `Pixels : SizeC`
- `Pixels : SizeT`
- `Pixels : SizeX`
- `Pixels : SizeY`
- `Pixels : SizeZ`
- `Pixels : Type`
- `Plane : TheC`
- `Plane : TheT`

[3201] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
[3212] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/Pixels_Type
• Plane : TheZ

Total supported: 17

Total unknown or missing: 456

18.2.94 PhotoshopTiffReader

This page lists supported metadata fields for the Bio-Formats Adobe Photoshop TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Adobe Photoshop TIFF format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ

3215 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
3216 http://www.openmicroscopy.org/site/support/ome-model/
3217 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3218 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3219 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3220 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3221 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3222 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
3223 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3224 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3225 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3226 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3227 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3228 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3229 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.95 PictReader

This page lists supported metadata fields for the Bio-Formats PICT format reader.

These fields are from the [OME data model](http://www.openmicroscopy.org/site/support/ome-model/). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats PICT format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT

320http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
321http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
322http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
323http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
324http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
325http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
326http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
327http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
328http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
329http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
330http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
331http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
332http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
333http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
334http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
18.2.96 APNGReader

This page lists supported metadata fields for the Bio-Formats Animated PNG format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Animated PNG format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder

References

3245 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3248 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3254 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3255 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3258 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.97 PrairieReader

This page lists supported metadata fields for the Bio-Formats Prairie TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 43 of them (9%).
- Of those, Bio-Formats fully or partially converts 43 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Prairie TIFF format reader:

• Channel : ID
• Channel : Name
• Channel : SamplesPerPixel
• Detector : ID
18.2. Metadata fields

- Detector : Type
- Detector : Zoom
- DetectorSettings : Gain
- DetectorSettings : ID
- DetectorSettings : Offset
- Image : AcquisitionDate
- Image : ID
- Image : InstrumentRef
- Image : Name
- Instrument : ID
- Laser : ID
- Laser : Power
- Microscope : Model
- Objective : Correction
- Objective : ID
- Objective : Immersion
- Objective : LensNA
- Objective : Manufacturer
- Objective : Nominal Magnification
- ObjectiveSettings : ID
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : TimeIncrement
• Pixels : Type
• Plane : DeltaT
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 43
Total unknown or missing: 430

18.2.98 QuesantReader

This page lists supported metadata fields for the Bio-Formats Quesant AFM format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Quesant AFM format reader:

- `Channel : ID`
- `Channel : SamplesPerPixel`
- `Image : AcquisitionDate`
- `Image : Description`
- `Image : ID`
- `Image : Name`
- `Pixels : BinDataBigEndian`
- `Pixels : DimensionOrder`
- `Pixels : ID`
- `Pixels : PhysicalSizeX`
- `Pixels : PhysicalSizeY`
- `Pixels : SizeC`
- `Pixels : SizeT`
- `Pixels : SizeX`
- `Pixels : SizeY`
- `Pixels : SizeZ`
- `Pixels : Type`
- `Plane : TheC`
- `Plane : TheT`
- `Plane : TheZ`

Total supported: 20

Total unknown or missing: 453
18.2.99 NativeQTReader

This page lists supported metadata fields for the Bio-Formats QuickTime format reader.

These fields are from the OME data model\(^\text{3335}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats QuickTime format reader:

- Channel : ID\(^\text{3336}\)
- Channel : SamplesPerPixel\(^\text{3337}\)
- Image : AcquisitionDate\(^\text{3338}\)
- Image : ID\(^\text{3339}\)
- Image : Name\(^\text{3340}\)
- Pixels : BinDataBigEndian\(^\text{3341}\)
- Pixels : DimensionOrder\(^\text{3342}\)
- Pixels : ID\(^\text{3343}\)
- Pixels : SizeC\(^\text{3344}\)
- Pixels : SizeT\(^\text{3345}\)
- Pixels : SizeX\(^\text{3346}\)
- Pixels : SizeY\(^\text{3347}\)
- Pixels : SizeZ\(^\text{3348}\)
- Pixels : Type\(^\text{3349}\)
- Plane : TheC\(^\text{3350}\)
- Plane : TheT\(^\text{3351}\)

\(^\text{3335}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^\text{3336}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^\text{3337}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^\text{3338}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^\text{3339}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^\text{3340}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^\text{3341}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^\text{3342}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
\(^\text{3343}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
\(^\text{3344}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
\(^\text{3345}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
\(^\text{3346}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
\(^\text{3347}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^\text{3348}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^\text{3349}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^\text{3350}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^\text{3351}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT

18.2. Metadata fields
Total supported: 17
Total unknown or missing: 456

18.2.100 RHKReader

This page lists supported metadata fields for the Bio-Formats RHK Technologies format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats RHK Technologies format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : SizeC
- Pixels : SizeT

3352 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
3353 http://www.openmicroscopy.org/site/support/ome-model/
3354 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3355 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3356 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3357 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
3358 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3359 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3360 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3361 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3362 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3363 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
3364 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
3365 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3366 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
Supported fields

These fields are fully supported by the Bio-Formats SBIG format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Seiko format reader:

- **Channel : ID**

References:

3382 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3383 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3384 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
3385 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
3386 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3387 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3388 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3389 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3390 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3391 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3392 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3393 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
3394 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
3395 http://www.openmicroscopy.org/site/support/ome-model/
18.2. Metadata fields

18.2.103 PCIReader

This page lists supported metadata fields for the Bio-Formats Compix Simple-PCI format reader.
These fields are from the OME data model[^3416]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 27 of them (5%).
- Of those, Bio-Formats fully or partially converts 27 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Compix Simple-PCI format reader:

- Channel : ID[^3417]
- Channel : SamplesPerPixel[^3418]
- Detector : ID[^3419]
- Detector : Type[^3420]
- DetectorSettings : Binning[^3421]
- DetectorSettings : ID[^3422]
- Image : AcquisitionDate[^3423]
- Image : ID[^3424]
- Image : InstrumentRef[^3425]
- Image : Name[^3426]
- Instrument : ID[^3427]
- Pixels : BinDataBigEndian[^3428]
- Pixels : DimensionOrder[^3429]
- Pixels : ID[^3430]
- Pixels : PhysicalSizeX[^3431]
- Pixels : PhysicalSizeY[^3432]
- Pixels : SizeC[^3433]

[^3416]: http://www.openmicroscopy.org/site/support/ome-model/
[^3417]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
[^3418]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
[^3419]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
[^3420]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
[^3421]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
[^3422]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
[^3423]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
[^3424]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
[^3425]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
[^3426]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
[^3427]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
[^3428]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
[^3429]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
[^3430]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
[^3431]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
[^3432]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
[^3433]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
18.2.104 SimplePCTiffReader

This page lists supported metadata fields for the Bio-Formats SimplePCI TIFF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 31 of them (6%).
- Of those, Bio-Formats fully or partially converts 31 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SimplePCI TIFF format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Detector : ID
- Detector : Model

Total supported: 27
Total unknown or missing: 446
18.2. Metadata fields

- Detector: Type
- DetectorSettings: Binning
- DetectorSettings: ID
- Image: AcquisitionDate
- Image: Description
- Image: ID
- Image: InstrumentRef
- Image: Name
- Instrument: ID
- Objective: ID
- Objective: Immersion
- Objective: NominalMagnification
- Pixels: BinDataBigEndian
- Pixels: DimensionOrder
- Pixels: ID
- Pixels: PhysicalSizeX
- Pixels: PhysicalSizeY
- Pixels: SizeC
- Pixels: SizeT
- Pixels: SizeX
- Pixels: SizeY
- Pixels: SizeZ
- Pixels: Type

3449 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type
3450 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning
3451 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
3452 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3453 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
3454 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3455 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
3456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
3458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
3459 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
3460 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
3461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3462 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3463 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3464 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
3465 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
3466 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3467 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3468 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3469 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3470 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
• Plane : ExposureTime
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 31
Total unknown or missing: 442

18.2.105 SMCameraReader

This page lists supported metadata fields for the Bio-Formats SM Camera format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SM Camera format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : SizeC
• Pixels : SizeT

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT

18.2. Metadata fields
18.2.106 SpiderReader

This page lists supported metadata fields for the Bio-Formats SPIDER format reader.

These fields are from the OME data model[^1]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats SPIDER format reader:

- Channel : ID[^2]
- Channel : SamplesPerPixel[^3]
- Image : AcquisitionDate[^4]
- Image : ID[^5]
- Image : Name[^6]
- Pixels : BinDataBigEndian[^7]
- Pixels : DimensionOrder[^8]

[^1]: http://www.openmicroscopy.org/site/support/ome-model/
[^2]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
[^3]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
[^4]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
[^5]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
[^6]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
[^7]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
[^8]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
18.2.107 TargaReader

This page lists supported metadata fields for the Bio-Formats Truevision Targa format reader.

These fields are from the OME data model[^14]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 18 of them (3%).
- Of those, Bio-Formats fully or partially converts 18 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Truevision Targa format reader:

- Channel : ID[^15]
- Channel : SamplesPerPixel[^16]
18.2.108 TextReader

This page lists supported metadata fields for the Bio-Formats Text format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).
Supported fields

These fields are fully supported by the Bio-Formats Text format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.109 TiffReader

This page lists supported metadata fields for the Bio-Formats Tagged Image File Format format reader.

- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
- http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
These fields are from the OME data model[3551]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Tagged Image File Format format reader:

- Channel : ID[3552]
- Channel : SamplesPerPixel[3553]
- Image : AcquisitionDate[3554]
- Image : Description[3555]
- Image : ID[3556]
- Image : Name[3557]
- Pixels : BinaryDataBigEndian[3558]
- Pixels : DimensionOrder[3559]
- Pixels : ID[3560]
- Pixels : PhysicalSizeZ[3561]
- Pixels : Size[3562]
- Pixels : SizeC[3563]
- Pixels : SizeT[3564]
- Pixels : SizeX[3565]
- Pixels : SizeY[3566]
- Pixels : TimeIncrement[3567]
- Pixels : Type[3568]

[3554]http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
18.2.110 TillVisionReader

This page lists supported metadata fields for the Bio-Formats TillVision format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats TillVision format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Experiment : ID
- Experiment : Type
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC

18.2. Metadata fields
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : ExposureTime
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 20
Total unknown or missing: 453

18.2.111 TopometrixReader

This page lists supported metadata fields for the Bio-Formats TopoMetrix format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats TopoMetrix format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : Description
- Image : ID

3584 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3585 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
3586 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
3587 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
3588 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
3589 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_ExposureTime
3590 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
3591 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
3592 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
3593 http://www.openmicroscopy.org/site/support/ome-model/
3594 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3595 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3596 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3597 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
3598 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
18.2.112 TrestleReader

This page lists supported metadata fields for the Bio-Formats Trestle format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 24 of them (5%).
- Of those, Bio-Formats fully or partially converts 24 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Trestle format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Image : ROIRef
- Mask : Height
- Mask : ID
- Mask : Width
- Mask : X
- Mask : Y
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_Height
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_Width
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_X
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Mask_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
• Plane : TheT
• Plane : TheZ
• ROI : ID

Total supported: 24
Total unknown or missing: 449

18.2.113 UBMReader

This page lists supported metadata fields for the Bio-Formats UBM format reader.

These fields are from the OME data model\cite{OME}. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats UBM format reader:

• Channel : ID\cite{Channel_ID}
• Channel : SamplesPerPixel\cite{Channel_SamplesPerPixel}
• Image : AcquisitionDate\cite{Image_AcquisitionDate}
• Image : ID\cite{Image_ID}
• Image : Name\cite{Image_Name}
• Pixels : BinDataBigEndian\cite{Pixels_BinDataBigEndian}
• Pixels : DimensionOrder\cite{Pixels_DimensionOrder}
• Pixels : ID\cite{Pixels_ID}
• Pixels : SizeC\cite{Pixels_SizeC}
• Pixels : SizeT\cite{Pixels_SizeT}
• Pixels : SizeX\cite{Pixels_SizeX}

366http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
367http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
368http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROI_ID
369http://www.openmicroscopy.org/site/support/ome-model/
3640http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
3641http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
3642http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
3643http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3644http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3645http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3646http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
3647http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
3648http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
3649http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
3650http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX

18.2. Metadata fields
18.2.114 UnisokuReader

This page lists supported metadata fields for the Bio-Formats Unisoku STM format reader. These fields are from the OME data model\(^{3657}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 20 of them (4%).
- Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Unisoku STM format reader:

- Channel : ID\(^{3658}\)
- Channel : SamplesPerPixel\(^{3659}\)
- Image : AcquisitionDate\(^{3660}\)
- Image : Description\(^{3661}\)
- Image : ID\(^{3662}\)
- Image : Name\(^{3663}\)
- Pixels : BinDataBigEndian\(^{3664}\)
- Pixels : DimensionOrder\(^{3665}\)

\(^{3651}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
\(^{3652}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
\(^{3653}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
\(^{3654}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
\(^{3655}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
\(^{3656}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
\(^{3657}\)http://www.openmicroscopy.org/site/support/ome-model/
\(^{3658}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
\(^{3659}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
\(^{3660}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
\(^{3661}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
\(^{3662}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
\(^{3663}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
\(^{3664}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
\(^{3665}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
18.2.115 VarianFDFReader

This page lists supported metadata fields for the Bio-Formats Varian FDF format reader. These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 23 of them (4%).
- Of those, Bio-Formats fully or partially converts 23 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Varian FDF format reader:

- Channel : ID
- Channel : SamplesPerPixel

[^366]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
[^368]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
[^369]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
[^370]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
[^371]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
[^372]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
[^373]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
[^374]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
[^375]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
[^376]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
[^377]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
[^378]: http://www.openmicroscopy.org/site/support/ome-model/
[^3679]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
[^3680]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
• Image : AcquisitionDate
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : PositionX
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 23
Total unknown or missing: 450
18.2.116 VGSAMReader

This page lists supported metadata fields for the Bio-Formats VG SAM format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

 • The file format itself supports 17 of them (3%).
 • Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats VG SAM format reader:

 • Channel : ID
 • Channel : SamplesPerPixel
 • Image : AcquisitionDate
 • Image : ID
 • Image : Name
 • Pixels : BinDataBigEndian
 • Pixels : DimensionOrder
 • Pixels : ID
 • Pixels : SizeC
 • Pixels : SizeT
 • Pixels : SizeX
 • Pixels : SizeY
 • Pixels : SizeZ
 • Pixels : Type
 • Plane : TheC
 • Plane : TheT

18.2. Metadata fields

• Plane: TheZ

Total supported: 17
Total unknown or missing: 456

18.2.117 VisitechReader

This page lists supported metadata fields for the Bio-Formats Visitech XYS format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Visitech XYS format reader:

• Channel: ID
• Channel: SamplesPerPixel
• Image: AcquisitionDate
• Image: ID
• Image: Name
• Pixels: BinDataBigEndian
• Pixels: DimensionOrder
• Pixels: ID
• Pixels: SizeC
• Pixels: SizeT
• Pixels: SizeX
• Pixels: SizeY
• Pixels: SizeZ

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
18.2.118 VolocityClippingReader

This page lists supported metadata fields for the Bio-Formats Volocity Library Clipping format reader.

These fields are from the OME data model. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Volocity Library Clipping format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
• Pixels : SizeX[^3749]
• Pixels : SizeY[^3750]
• Pixels : SizeZ[^3751]
• Pixels : Type[^3752]
• Plane : TheC[^3753]
• Plane : TheT[^3754]
• Plane : TheZ[^3755]

Total supported: 17
Total unknown or missing: 456

18.2.119 VolocityReader

This page lists supported metadata fields for the Bio-Formats Volocity Library format reader. These fields are from the OME data model[^3756]. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 35 of them (7%).
- Of those, Bio-Formats fully or partially converts 35 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Volocity Library format reader:

- Channel : ID[^3757]
- Channel : Name[^3758]
- Channel : SamplesPerPixel[^3759]
- Detector : ID[^3760]
- Detector : Model[^3761]
- DetectorSettings : ID[^3762]
- Image : AcquisitionDate[^3763]

[^3749]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
[^3750]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
[^3751]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
[^3752]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
[^3753]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
[^3754]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
[^3755]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
[^3756]: http://www.openmicroscopy.org/site/support/ome-model/
[^3757]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
[^3758]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name
[^3759]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
[^3760]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID
[^3761]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
[^3762]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID
[^3763]: http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
• Image : Description
• Image : ID
• Image : InstrumentRef
• Image : Name
• Instrument : ID
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : NominalMagnification
• ObjectiveSettings : ID
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : PhysicalSizeZ
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : PositionX

3764http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
3765http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
3766http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#InstrumentRef_ID
3767http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
3768http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
3769http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
3770http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
3771http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
3772http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
3773http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
3774http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_TotalPhysicalSize
3775http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_TotalSize
3776http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_Type
3777http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_XSize
3778http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_XStart
3779http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_YSize
3780http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_YStart
3781http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_ZSize
3782http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_ZStart
3783http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_Type
3784http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_XYZStart
3785http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_XYZSize
3786http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_XYZType

18.2. Metadata fields
• Plane : PositionY
• Plane : PositionZ
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 35
Total unknown or missing: 438

18.2.120 WATOPReader

This page lists supported metadata fields for the Bio-Formats WA Technology TOP format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 20 of them (4%).
• Of those, Bio-Formats fully or partially converts 20 (100%).

Supported fields

These fields are fully supported by the Bio-Formats WA Technology TOP format reader:

• Channel : ID
• Channel : SamplesPerPixel
• Image : AcquisitionDate
• Image : Description
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
18.2.121 BMPReader

This page lists supported metadata fields for the Bio-Formats Windows Bitmap format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:
- The file format itself supports 19 of them (4%).
- Of those, Bio-Formats fully or partially converts 19 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Windows Bitmap format reader:
- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate

Total supported: 20
Total unknown or missing: 453
• Image : ID
• Image : Name
• Pixels : BinDataBigEndian
• Pixels : DimensionOrder
• Pixels : ID
• Pixels : PhysicalSizeX
• Pixels : PhysicalSizeY
• Pixels : SizeC
• Pixels : SizeT
• Pixels : SizeX
• Pixels : SizeY
• Pixels : SizeZ
• Pixels : Type
• Plane : TheC
• Plane : TheT
• Plane : TheZ

Total supported: 19
Total unknown or missing: 454

18.2.122 ZeissTIFFReader

This page lists supported metadata fields for the Bio-Formats Zeiss AxioVision TIFF format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

• The file format itself supports 17 of them (3%).
• Of those, Bio-Formats fully or partially converts 17 (100%).

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/site/support/ome-model/
Supported fields

These fields are fully supported by the Bio-Formats Zeiss AxioVision TIFF format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ

Total supported: 17
Total unknown or missing: 456

18.2.123 ZeissZVIReader

This page lists supported metadata fields for the Bio-Formats Zeiss Vision Image (ZVI) format reader.
These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 17 of them (3%).
- Of those, Bio-Formats fully or partially converts 17 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss Vision Image (ZVI) format reader:

- Channel : ID
- Channel : SamplesPerPixel
- Image : AcquisitionDate
- Image : ID
- Image : Name
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : TheC
- Plane : TheT
- Plane : TheZ
Total supported: 17
Total unknown or missing: 456

18.2.124 ZeissCZIReader

This page lists supported metadata fields for the Bio-Formats Zeiss CZI format reader.

These fields are from the OME data model. Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 149 of them (31%).
- Of those, Bio-Formats fully or partially converts 149 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss CZI format reader:

- Arc : LotNumber
- Arc : Manufacturer
- Arc : Model
- Arc : Power
- Arc : SerialNumber
- Channel : Color
- Channel : EmissionWavelength
- Channel : ExcitationWavelength
- Channel : ID
- Channel : Name
- Channel : PinholeSize
- Channel : SamplesPerPixel
- Detector : AmplificationGain
- Detector : Gain

[3881] http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel
• Detector : ID
• Detector : LotNumber
• Detector : Manufacturer
• Detector : Model
• Detector : Offset
• Detector : SerialNumber
• Detector : Type
• Detector : Zoom
• DetectorSettings : Binning
• DetectorSettings : ID
• Dichroic : ID
• Dichroic : LotNumber
• Dichroic : Manufacturer
• Dichroic : Model
• Dichroic : SerialNumber
• Ellipse : ID
• Ellipse : RadiusX
• Ellipse : RadiusY
• Ellipse : Text
• Ellipse : X
• Ellipse : Y
• Experimenter : Email
• Experimenter : FirstName
18.2. Metadata fields
• FilterSet : Model
• FilterSet : SerialNumber
• Image : AcquisitionDate
• Image : ExperimenterRef
• Image : ID
• Image : Name
• Image : ROIRef
• ImagingEnvironment : AirPressure
• ImagingEnvironment : CO2Percent
• ImagingEnvironment : Humidity
• ImagingEnvironment : Temperature
• Instrument : ID
• Laser : LotNumber
• Laser : Manufacturer
• Laser : Model
• Laser : Power
• Laser : SerialNumber
• LightEmittingDiode : LotNumber
• LightEmittingDiode : Manufacturer
• LightEmittingDiode : Model
• LightEmittingDiode : Power
• LightEmittingDiode : SerialNumber
• Line : ID

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ExperimenterRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Image_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#ROIRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_AirPressure
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_CO2Percent
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Humidity
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ImagingEnvironment_Temperature
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Instrument_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_LotNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Manufacturer
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#manufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#manufacturerSpec_SerialNumber
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#manufacturerSpec_LotNumber

18.2. Metadata fields
• Line : Text
• Line : X
• Line : X
• Line : Y
• Line : Y
• Microscope : LotNumber
• Microscope : Manufacturer
• Microscope : Model
• Microscope : SerialNumber
• Microscope : Type
• Objective : CalibratedMagnification
• Objective : Correction
• Objective : ID
• Objective : Immersion
• Objective : Iris
• Objective : LensNA
• Objective : LotNumber
• Objective : Manufacturer
• Objective : Model
• Objective : NominalMagnification
• Objective : SerialNumber
• Objective : WorkingDistance
• ObjectiveSettings : CorrectionCollar

18.2. Metadata fields
- ObjectiveSettings : ID
- ObjectiveSettings : Medium
- ObjectiveSettings : RefractiveIndex
- Pixels : BinDataBigEndian
- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : Type
- Plane : DeltaT
- Plane : ExposureTime
- Plane : PositionX
- Plane : PositionY
- Plane : PositionZ
- Plane : TheC
- Plane : TheT
- Plane : TheZ
• Polygon : ID
• Polygon : Points
• Polygon : Text
• Polyline : ID
• Polyline : Points
• Polyline : Text
• ROI : Description
• ROI : ID
• ROI : Name
• Rectangle : Height
• Rectangle : ID
• Rectangle : Text
• Rectangle : Width
• Rectangle : X
• Rectangle : Y
• TransmittanceRange : CutIn
• TransmittanceRange : CutInTolerance
• TransmittanceRange : CutOut
• TransmittanceRange : CutOutTolerance
• TransmittanceRange : Transmittance

Total supported: 149

Total unknown or missing: 324
18.2.125 ZeissLSMReader

This page lists supported metadata fields for the Bio-Formats Zeiss Laser-Scanning Microscopy format reader. These fields are from the OME data model\(^{4019}\). Bio-Formats standardizes each format’s original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way.

Of the 473 fields documented in the metadata summary table:

- The file format itself supports 99 of them (20%).
- Of those, Bio-Formats fully or partially converts 99 (100%).

Supported fields

These fields are fully supported by the Bio-Formats Zeiss Laser-Scanning Microscopy format reader:

- Channel : Color\(^{4020}\)
- Channel : ID\(^{4021}\)
- Channel : Name\(^{4022}\)
- Channel : PinholeSize\(^{4023}\)
- Channel : SamplesPerPixel\(^{4024}\)
- Detector : AmplificationGain\(^{4025}\)
- Detector : Gain\(^{4026}\)
- Detector : ID\(^{4027}\)
- Detector : Type\(^{4028}\)
- Detector : Zoom\(^{4029}\)
- DetectorSettings : Binning\(^{4030}\)
- DetectorSettings : ID\(^{4031}\)
- Dichroic : ID\(^{4032}\)
- Dichroic : Model\(^{4033}\)
- Ellipse : FontSize\(^{4034}\)
- Ellipse : ID\(^{4035}\)

\(^{4019}\)http://www.openmicroscopy.org/site/support/ome-model/

\(^{4020}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Color

\(^{4021}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_ID

\(^{4022}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_Name

\(^{4023}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_PinholeSize

\(^{4024}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Channel_SamplesPerPixel

\(^{4025}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_AmplificationGain

\(^{4026}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Gain

\(^{4027}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_ID

\(^{4028}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Type

\(^{4029}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Detector_Zoom

\(^{4030}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_Binning

\(^{4031}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DetectorSettings_ID

\(^{4032}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Dichroic_ID

\(^{4033}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model

\(^{4034}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#shape_FontSize

\(^{4035}\)http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#shape_ID
18.2. Metadata fields

- Ellipse : RadiusX
- Ellipse : RadiusY
- Ellipse : StrokeWidth
- Ellipse : Transform
- Ellipse : X
- Ellipse : Y
- Experimenter : ID
- Experimenter : UserName
- Filter : ID
- Filter : Model
- Filter : Type
- Image : AcquisitionDate
- Image : Description
- Image : ID
- Image : InstrumentRef
- Image : Name
- Image : ROIRef
- Instrument : ID
- Label : FontSize
- Label : ID
- Label : StrokeWidth
- Label : Text
- Label : X

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_RadiusX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Ellipse_RadiusY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Transform
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#Experimenter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#Experimenter_UserName
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#Filter_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#Filter_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#Image_AcquisitionDate
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#Image_Description
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#InstrumentRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#Instrument_Name
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#ROIRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/OME_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_Text
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Label_X
- Label : Y
- Laser : ID
- Laser : LaserMedium
- Laser : Model
- Laser : Type
- Laser : Wavelength
- LightPath : DichroicRef
- LightPath : EmissionFilterRef
- Line : FontSize
- Line : ID
- Line : StrokeWidth
- Line : X1
- Line : X2
- Line : Y1
- Line : Y2
- Objective : Correction
- Objective : ID
- Objective : Immersion
- Objective : Iris
- Objective : LensNA
- Objective : NominalMagnification
- ObjectiveSettings : ID
- Pixels : BinDataBigEndian

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Label_Y
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#LightSource_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_LaserMedium
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ManufacturerSpec_Model
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Laser_Wavelength
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#DichroicRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#FilterRef_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Shape_StrokeWidth
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_X1
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_X2
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_Y1
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ROI_xsd.html#Line_Y2
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Correction
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Immersion
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_Iris
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_LensNA
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Objective_NominalMagnification
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#ObjectiveSettings_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/BinaryFile_xsd.html#BinData_BigEndian

18.2. Metadata fields
18.2. Metadata fields

- Pixels : DimensionOrder
- Pixels : ID
- Pixels : PhysicalSizeX
- Pixels : PhysicalSizeY
- Pixels : PhysicalSizeZ
- Pixels : SizeC
- Pixels : SizeT
- Pixels : SizeX
- Pixels : SizeY
- Pixels : SizeZ
- Pixels : TimeIncrement
- Pixels : Type
- Plane : DeltaT
- Plane : PositionX
- Plane : PositionY
- Plane : PositionZ
- Plane : TheC
- Plane : TheT
- Plane : TheZ
- Polygon : FontSize
- Polygon : ID
- Polygon : Points
- Polygon : StrokeWidth

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_DimensionOrder
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_PhysicalSizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeX
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_SizeZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_TimeIncrement
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Pixels_Type
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_DeltaT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionY
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_PositionZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheC
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheT
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Plane_TheZ
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Polygon_FontSize
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Polygon_ID
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Polygon_Points
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2012-06/ome_xsd.html#Polygon_StrokeWidth
- Polyline : FontSize
- Polyline : ID
- Polyline : Points
- Polyline : StrokeWidth
- ROI : ID
- Rectangle : FontSize
- Rectangle : Height
- Rectangle : ID
- Rectangle : StrokeWidth
- Rectangle : Width
- Rectangle : X
- Rectangle : Y
- TransmittanceRange : CutIn
- TransmittanceRange : CutOut

Total supported: 99

Total unknown or missing: 374
Symbols

..lsc, 123
..2, 187
..2fl, 203
..3, 187
..4, 187
..acff, 209
..afm, 193
..aim, 113
..al3d, 114
..am, 116
..amiramesh, 116
..apl, 178
..arf, 121
..avi, 120
..bip, 159
..bmp, 142, 211
..c01, 128
..cfg, 192
..cr2, 127
..crw, 127
..cxd, 197
..czi, 213
..dat, 154, 181, 205
..dcm, 131
..dicom, 131
..dm2, 137
..dm3, 136
..dti, 207
..dv, 130
..eps, 133
..epsi, 133
..exp, 122
..fdf, 206
..fff, 144
..frr, 203
..fits, 136
..flex, 133
..fli, 160
..frm, 151
..gel, 115
..gif, 138
..grey, 116
..hdr, 116, 174, 205
..hed, 146
..his, 140
..htd, 119
..html, 208
..hx, 116
..ics, 143
..ids, 143
..img, 116, 127, 134, 146, 154, 174
..ims, 125
..inr, 152
..ipl, 153
..ipm, 154
..ipw, 145
..jp2, 156
..jpg, 142, 155, 204
..jp2k, 157
..jp, 158
..l2d, 164
..labels, 116
..lei, 161
..lif, 162
..liff, 148
..lim, 165
..lsm, 214
..mdb, 214
..mea, 133
..mnc, 169
..mng, 171
..mod, 147
..mov, 194
..mrc, 172
..mrw, 170
..mtb, 178
..mv2d, 208
..naf, 139
..nd, 167
..nd2, 177
..ndpi, 140
..nep, 173
..nhdr, 178
<table>
<thead>
<tr>
<th>File Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.nrrd</td>
<td>AIM, 113</td>
</tr>
<tr>
<td>.obsep</td>
<td>Amino, 115</td>
</tr>
<tr>
<td>.oib</td>
<td>Amira Mesh, 116</td>
</tr>
<tr>
<td>.oif</td>
<td>Analyze 7.5, 116</td>
</tr>
<tr>
<td>.ome</td>
<td>Andor Bio-Imaging Division (ABD) TIFF, 112</td>
</tr>
<tr>
<td>.ome.tiff</td>
<td>Applied Precision CellWorX, 119</td>
</tr>
<tr>
<td>.par</td>
<td>AVI (Audio Video Interleave), 120</td>
</tr>
<tr>
<td>.pcx</td>
<td>Axon Raw Format, 121</td>
</tr>
<tr>
<td>.pds</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.pgm</td>
<td>Adobe Photoshop PSD, 189</td>
</tr>
<tr>
<td>.png</td>
<td>AIM, 113</td>
</tr>
<tr>
<td>.pn1</td>
<td>Aperio SVS TIFF, 118</td>
</tr>
<tr>
<td>.pr3</td>
<td>Bio-Rad Gel, 123</td>
</tr>
<tr>
<td>.ps</td>
<td>Bio-Rad PIC, 124</td>
</tr>
<tr>
<td>.psd</td>
<td>Bruker MRI, 126</td>
</tr>
<tr>
<td>.r3d</td>
<td>Burleigh, 127</td>
</tr>
<tr>
<td>.raw</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.res</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.scn</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.seq</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.sld</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.sm2</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.sm3</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.spi</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.stk</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.stp</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.svs</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.sxy</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.tfr</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.tga</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.tif, .tiff</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.tnb</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.top</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.txt, .svg</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.v</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.vms</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.vsi</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.vws</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.wat</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.xdce</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.xml</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.xqd</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.xqf</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.xyx</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.zfp</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.zfr</td>
<td>3i SlideBook, 112</td>
</tr>
<tr>
<td>.zvi</td>
<td>3i SlideBook, 112</td>
</tr>
</tbody>
</table>

B

- BD Pathway, 122
- Becker & Hickl SPCImage, 122
- bfconvert, 47
- bfview, 47
- Bio-Rad Gel, 123
- Bio-Rad PIC, 124
- Bitplane Imaris, 125
- Bruker MRI, 126
- Burleigh, 127

C

- Canon DNG, 127
- Cellomics, 128
- cellSens VSI, 129
- CLASSPATH, 63

D

- DeltaVision, 130
- DICOM, 131

E

- ECAT7, 132
- environment variable CLASSPATH, 63
- EPS (Encapsulated PostScript), 133
- Evotec/PerkinElmer Opera Flex, 133
- Export, 112

F

- FEI, 134
- FEI TIFF, 135
- FITS (Flexible Image Transport System), 136
- formatlist, 47

G

- Gatan Digital Micrograph, 136
- Gatan Digital Micrograph 2, 137
- GIF (Graphics Interchange Format), 138
H
Hamamatsu Aquacosmos NAF, 139
Hamamatsu HIS, 140
Hamamatsu ndpi, 140
Hamamatsu VMS, 141
Hitachi S-4800, 142
MNG (Multiple-image Network Graphics), 171
Molecular Imaging, 172
MRC (Medical Research Council), 172

N
NEF (Nikon Electronic Format), 173
NIfTI, 174
Nikon Elements TIFF, 175
Nikon EZ-C1 TIFF, 176
Nikon NIS-Elements ND2, 177
NRRD (Nearly Raw Raster Data), 178

O
Olympus CellR/APL, 178
Olympus Fluoview FV1000, 179
Olympus Fluoview TIFF, 180
Olympus ScanR, 181
Olympus SIS TIFF, 182
OME-TIFF, 183
OME-XML, 184
Openness, 111
Oxford Instruments, 185

P
PCX (PC Paintbrush), 185
Perkin Elmer Densitometer, 186
PerkinElmer Operetta, 187
PerkinElmer UltraView, 187
PGM (Portable Gray Map), 188
Photoshop TIFF, 190
PICT (Macintosh Picture), 190
Pixels, 111
PNG (Portable Network Graphics), 191
Prairie Technologies TIFF, 192
Presence, 111

Q
Quesant, 193
QuickTime Movie, 194

R
Ratings legend and definitions, 111
RHK, 195

S
SBIG, 196
SCIFIO, 112
Seiko, 197
showinf, 47
SimplePCI & HCImage, 197
SimplePCI & HCImage TIFF, 198
SM Camera, 199
SPIDER, 199

T
Targa, 200
Text, 201
TIFF (Tagged Image File Format), 202
tiffcomment, 47
TillPhotonics TillVision, 203
Topometrix, 203
Trestle, 204

U
UBM, 205
Unisoku, 205
Utility, 111

V
Varian FDF, 206
VG SAM, 207
VisiTech XYS, 208
Volocity, 208
Volocity Library Clipping, 209

W
WA-TOP, 210
Windows Bitmap, 211

X
xmlindent, 47
xmlvalid, 47

Z
Zeiss AxioVision TIFF, 212
Zeiss AxioVision ZVI (Zeiss Vision Image), 212
Zeiss CZI, 213
Zeiss LSM (Laser Scanning Microscope) 510/710, 214