€ BIO-FORMATS

Bio-Formats Documentation
Release 5.1.3

The Open Microscopy Environment

July 17, 2015

CONTENTS

I About Bio-Formats 2
1 Help 4
2 Bio-Formats versions 5
3 Why Java? 6
4 Bio-Formats metadata processing 7
4.1 Reportingabug e 7
4.2 Version hiStory o L e e e 9
IT User Information 30
5 Using Bio-Formats with ImageJ and Fiji 31
5.1 ImageJoverview L e e 31
52 Fijioverview e 33
5.3 Bio-Formats features in ImageJ and Fiji e 34
5.4 Installing Bio-Formats in ImageJ e e e e 35
5.5 Using Bio-Formats to load images into ImageJ L 37
5.6 Managing memory in ImageJ/Fiji using Bio-Formats o o oo 41
6 Command line tools 44
6.1 Command line tools introduction L e e e e e e 44
6.2 Displaying images and metadata L L oL e 46
6.3 Converting a file to different format 48
6.4 Validating XML inan OME-TIFF e e s e e e 49
6.5 Editing XML inan OME-TIFF e e e 50
6.6 Listformats by domain L L e e e e e e e e e e e 51
6.7 Listsupported file formats L e 52
6.8 Display fileinImageJ L e 52
6.9 Format XML data e e e e 53
6.10 Create a high-content screen for testing L e e e e e e e e e e 53
7 OMERO 55
8 Image server applications 56
8.1 BISQUE 56
8.2 OME Server i i e e 56
9 Libraries and scripting applications 59
9.1 FARSIGHT e 59
0.2 13dcore e e 59
0.3 ImgLib . . . e e e e e e e e 60
0.4 ITK . . o o e 60
9.5 Qufor MATLAB e e e e e e 60
0.6 Subimager e 61

10 Numerical data processing applications

10.1
10.2
10.3
10.4

IDLo

VisAD

11 Visualization and analysis applications

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

Bitplane Imaris
CellProfiler
Comstat2
Endrov

Ieyo L.

Iqm o000

11.10 Macnification
11.11 MIPAV
11.12 Vaa3D
11.13 VisBio
11.14 XuvTools

III Developer Documentation

12 Introduction to Bio-Formats

12.1
12.2
12.3
12.4
12.5

Overview for developers
Obtaining and building Bio-Formats
Component overview
Readingfiles
Writing files

13 Using Bio-Formats as a Java library

13.1
13.2
13.3
13.4
13.5
13.6
13.7

Using Bio-Formats as a Java library
Exporting files using Bio-Formats .

Further details on exporting raw pixel data to OME-TIFF files
Converting files from FV1000 OIB/OIF to OME-TIFF e

Using Bio-Formats in MATLAB . .
Using Bio-Formats in Python . . .

Interfacing with Bio-Formats from non-Javacode L

14 Using Bio-Formats as a native C++ library

14.1
14.2
14.3
14.4
14.5
14.6
14.7

C++overview
C++ conversion details
Tutorial

15 Contributing to Bio-Formats

15.1
15.2
15.3
15.4
15.5
15.6
15.7

Testing code changes
Public testdata
Generating test images
Writing a new file format reader . .

Bio-Formats service and dependency infrastructure e

Code generation with xsd-fu

Scripts for performing development taskso oL L

62
62
62
63
64

65
65
65
66
66
67
67
67
67
68
68
68
69
69
70

71

73
73
74
76
79
82

83
83
84
87
89
90
96
96

102
102
114
125
139
141
141
143

145
145
147
150
151
156
157
161

IV Formats

16 Dataset Structure Table

16.1 Flex Support .

17 Supported Formats
17.1 3i SlideBook .
17.2 3i SlideBook6

17.3 Andor Bio-Imaging Division (ABD) TIFF e

174 AIM
17.5 Alicona3D . .

17.6 Amersham Biosciences Gel e e e e

17.7 Amira Mesh .

17.8 Amnis FlowSight e e e e e e e

17.9 Analyze 7.5 . .
17.10 Animated PNG
17.11 Aperio AFI . .

17.12 Aperio SVS TIFF o e e e e e e e e e e
17.13 Applied Precision CellWorX o o e e e e e e e e e e
17.14 AVI (Audio Video Interleave) e e e e e e e
17.15 Axon Raw Format e e

17.16 BD Pathway .

17.17 Becker & Hickl SPCImage e e e

17.18 Bio-Rad Gel .
17.19 Bio-Rad PIC .
17.20 Bio-Rad SCN .
17.21 Bitplane Imaris
17.22 Bruker MRI .
17.23 Burleigh . . .
17.24 Canon DNG .
17.25 CellH5
17.26 Cellomics . . .
17.27 cellSens VSI .
17.28 CellVoyager .
17.29 DeltaVision . .
17.30 DICOM
17.31 ECAT7

17.32 EPS (Encapsulated PostScript) o e e e e e e e e
17.33 Evotec/PerkinElmer Opera Flex o . . L e

1734 FEI
17.35 FEITIFF . . .

17.36 FITS (Flexible Image Transport System) o ittt e ettt
17.37 Gatan Digital Micrograph L e e e e
17.38 Gatan Digital Micrograph 2 e e e e
17.39 GIF (Graphics Interchange Format) e e e e
17.40 Hamamatsu Aquacosmos NAF o o e e e e e

17.41 Hamamatsu HIS

17.42 Hamamatsu ndpi L L e e e e e e
17.43 Hamamatsu VMS o L L e e e e

17.44 Hitachi S-4800
1745121

17.46 ICS (Image Cytometry Standard) o o . 0 0 e e e e e e e e e e

17.47 Imacon

17.48 ImagePro Sequence L e e e e e
17.49 ImagePro Workspace o L L e e e e e

17.50 IMAGIC . . .
17.51 IMOD

17.52 Improvision Openlab LIFF 0 0 e
17.53 Improvision Openlab Raw 0 o e e
17.54 Improvision TIFF 0 0 e e

17.55 Imspector OBF

163

165
168

169
174
175
176
177
178
179
179
180
181
182
182
183
184
185
186
187
187
188
189
190
191
192
192
193
194
195
195
196
197
198
199
200
200
201
202
203
203
204
205
206
207
207
208
209
210
211
212
212
213
214
215
216
217
217
218

17.56 InCell 1000 L o L 219

17.57 InCell 3000 o e e e e e e e e e e e e e 220
1758 INR . . o o 221
17.59 Inveon o L e e e e e e e e 221
17.60 TPLab o o e e e e e e e e e e e e e e e 222
17.61 TPLab-Mac e e e e e e e e e e e e e 223
17.62 JEOL . . . o e e e e e e e e e 224
17.63 JPEG e e e e e e e 224
17.64 JPEG 2000 o . e e e e e e e e e e e e 225
17.65 JPK . . e e e e e e e e e 226
17.66 JPX . . o e e e e e e e e e e e e e 227
17.67 Khoros VIFF (Visualization Image File Format) Bitmap 227
17.68 Kodak BIP o o e e e e 228
17.69 Lambert Instruments FLIM e 229
17.70 LaVision ImSPector o L o e e e e e e e e e 230
17.71 Leica LCS LEL e e e e e e e e e e e e e e e e e 230
17.72 Leica LAS AF LIF (Leica Image File Format) it 231
1773 Leica SCN . o . o o e e e e e e e e e e e e e e 232
1774 LEO . . o e 233
1775 Li-Cor L2D o e e e e e e e e e e e e e 234
17.76 LIM (Laboratory Imaging/Nikon) L . i e e e 235
17.77 MetaMorph 7.5 TIFF o o e e e e e e e e e e e e e e e 236
17.78 MetaMorph Stack (STK) o e e e e e e 236
17.79 MIAS (Maia Scientific) e e e e e 237
17.80 Micro-Manager e e e 238
17.81 MINC MRI e e e e e e e e e e e 239
17.82 Minolta MRW e e e e e e e e e e e 239
17.83 MNG (Multiple-image Network Graphics) 0 0 i e e e e e e e e e 240
17.84 Molecular Imaging e e e e e e e e e e 241
17.85 MRC (Medical Research Council) e e e e 242
17.86 NEF (Nikon Electronic Format) e e e e e e e 243
17.87 NIFTT . . . o o e e e e e e e e e e e e e e e e e e e 244
17.88 Nikon Elements TIFF o e e e e e e e e e 244
17.89 Nikon EZ-C1TIFF e e e e e e e e e e e e e e e e s e 245
17.90 Nikon NIS-Elements ND2 L . 0 e e e e e e e 246
17.91 NRRD (Nearly Raw Raster Data) e e e e e e e 247
17.92 Olympus CellR/APL o o e e e 248
17.93 Olympus FluoView FVI1000 o e e e e e e e e e e e e e e 248
17.94 Olympus FluoView TIFF 0 . e e e e e e e e e e e 249
17.95 Olympus ScanR o L L e e e e e e e 250
17.96 Olympus SIS TIFF e e e 251
17.97 OME-TIFF e e e e e e e e e e e e e 252
1798 OME-XML o e e e e e e e e e e e 253
17.99 Oxford InStruments o i o e 254
I7.100PCORAW . o e e e e e 254
17.10IPCX (PC Paintbrush) e e e e e e e e e e e e 255
17.102Perkin Elmer Densitometer i i e e e e e e e e e e e e e e e e e e 256
17.103PerkinElmer Nuance o i e e e e e e e e e e e e e e 257
17.104PerkinEImer Operetta o o i e 257
17.105PerkinElmer UltraView o 0 0 e e e e e e e e e e e e e 258
17.106PGM (Portable Gray Map) e e e e 259
17.107Adobe Photoshop PSD L e 260
17.108Photoshop TIFF e e e 260
17.10%PicoQuant Bin e e 261
17.110PICT (Macintosh Picture) e e e e e e e e e e e e e e e e 262
17.111PNG (Portable Network Graphics) o e e e e e e e e 263
17.112Prairie Technologies TIFF e 263
I7.113QUeSant o oL e e e e e e 264
17.114QuickTime MovVie L e e e e e e e e e e e s 265
I7.11RHK . o e e e e e e e e 266
I7.116SBIG . . . o e e e e e e e 267

I7.017Seiko . . o o e e e e e e e
17.1188implePCT & HCImage o o e e e e e e e e e e e e e e e e e e e
17.118implePCI & HCImage TIFF e e e
I70208M Camera v v v e
17.121SPIDER . . . e
TTUA2ZTArga . o v v v o e
TTA23TXE . o o v v e e e e e e e e e e e e e e e e e
17.124TTFF (Tagged Image File Format) e e e
17.128TillPhotonics TillVision 0 . e e e e e e e e e e e
17.026T0POMELIiX . .« o o v v v e e e e e e e e e e e e e e e
I7027Trestle o e e e e e e e e e
I7028UBM . . o e e e e e e
I7.1290nNiS0KU oL e e e e e
17.130Varian FDF e e e e e e e e e e e
17.131Veeco AFM L o L e e e e
I7.032VG SAM . . o o e e e e
17.133VisiTech XYS . . . o o o e e
I7.134V0I0CItYy . . o o o o e e e e e e e e e e e e e e e
17.135Volocity Library Clipping o . o e e e
I7136WA-TOP . . o e e e
17.137Windows Bitmap oL e e e e e e
I7.0138W00lZ e e e e e e
17.13Heiss AXIo CSM L . o o e e e
17.140eiss AxioVision TIFF o L o e e
17.141Zeiss AxioVision ZVI (Zeiss Vision Image)« . o e
17.1427eiss CZL o o o e e e e e e
17.1437Zeiss LSM (Laser Scanning Microscope) S10/710 o 0 i e e s e e e e e

18 Summary of supported metadata fields
18.1 Formatreaders v v i i i et e

18.2 Metadata fields e e e e e e e

19 Grouping files using a pattern file

Index

Index

290
290
293

543

544

545

Vi

Bio-Formats Documentation, Release 5.1.3

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version! or the previous
versions” page to find documentation for the version you are using.

The following documentation is split into four parts. About Bio-Formats explains the goal of the software, discusses how it
processes metadata, and provides other useful information such as version history and how to report bugs. User Information
focuses on how to use Bio-Formats as a plugin for ImageJ and Fiji, and also gives details of other software packages which can
use Bio-Formats to read and write microscopy formats. Developer Documentation covers more indepth information on using Bio-
Formats as a Java library and how to interface from non-Java codes. Finally, Formats is a guide to all the file formats currently
supported by Bio-Formats.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions* page to find documentation for the version you are using.

Thttp://www.openmicroscopy.org/site/support/bio-formats5.0/
Zhttp://www.openmicroscopy.org/site/support/legacy/
3http://www.openmicroscopy.org/site/support/bio-formats5.0/
“http://www.openmicroscopy.org/site/support/legacy/

CONTENTS 1

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Part I

About Bio-Formats

Bio-Formats Documentation, Release 5.1.3

Bio-Formats is a standalone Java library for reading and writing life sciences image file formats. It is capable of parsing both
pixels and metadata for a large number of formats, as well as writing to several formats.

The primary goal of Bio-Formats is to facilitate the exchange of microscopy data between different software packages and organi-
zations. It achieves this by converting proprietary microscopy data into an open standard called the OME data model®, particularly
into the OME-TIFF® file format.

We believe the standardization of microscopy metadata to a common structure is of vital importance to the community. You may
find LOCTI’s article on open source software in science’ of interest.

Shttp://genomebiology.com/2005/6/5/R47
Shttp://www.openmicroscopy.org/site/support/ome-model/ome-tiff
"http://loci.wisc.edu/software/oss

http://genomebiology.com/2005/6/5/R47
http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
http://loci.wisc.edu/software/oss

CHAPTER
ONE

HELP

There is a guide for reporting bugs here.

For help relating to opening images in ImageJ or FIJI or when using the command line tools, refer to the users documentation.
You can also find tips on common issues with specific formats on the pages linked from the supported formats table.

Please contact us' if you have any questions or problems with Bio-Formats not addressed by referring to the documentation.

Other places where questions are commonly asked and/or bugs are reported include:

OME Trac?

ome-devel mailing list® (searchable using google with ‘site:lists.openmicroscopy.org.uk’)
ome-users mailing list* (searchable using google with ‘site:lists.openmicroscopy.org.uk’)
Image] mailing list (for ImageJ/Fiji issues) forum archive® and mailing list®

Image] developer mailing list’

Fiji Bugzilla (for Imagel/Fiji issues)®

Fiji developer google group’

Confocal microscopy mailing list'

Thttp://www.openmicroscopy.org/site/community/mailing-lists
2http://trac.openmicroscopy.org.uk/ome
3http://lists.openmicroscopy.org.uk/pipermail/ome-devel
“http://lists.openmicroscopy.org.uk/pipermail/ome-users
Shttp://imagej.1557.n6.nabble.com/
Ohttp://imagej.nih.gov/ij/list html
7http://imagej.net/mailman/listinfo/imagej-devel
8http://fiji.sc/cgi-bin/bugzilla/index.cgi
9https://groups.google.com/forum/#! forum/fiji-devel
10http://lists.umn.edu/cgi-bin/wa? AO=confocalmicroscopy

http://www.openmicroscopy.org/site/community/mailing-lists
http://trac.openmicroscopy.org.uk/ome
http://lists.openmicroscopy.org.uk/pipermail/ome-devel
http://lists.openmicroscopy.org.uk/pipermail/ome-users
http://imagej.1557.n6.nabble.com/
http://imagej.nih.gov/ij/list.html
http://imagej.net/mailman/listinfo/imagej-devel
http://fiji.sc/cgi-bin/bugzilla/index.cgi
https://groups.google.com/forum/#!forum/fiji-devel
http://lists.umn.edu/cgi-bin/wa?A0=confocalmicroscopy

CHAPTER
TWO

BIO-FORMATS VERSIONS

Bio-Formats is now decoupled from OMERO with its own release schedule rather than being updated whenever a new version of
OMERO! is released. We expect this to result in more frequent releases to get fixes out to the community faster.

The version number is three numbers separated by dots e.g. 4.0.0. See the version history for a list of major changes in each
release.

Thttp://www.openmicroscopy.org/site/support/omero5.1/

http://www.openmicroscopy.org/site/support/omero5.1/

CHAPTER
THREE

WHY JAVA?

From a practical perspective, Bio-Formats is written in Java because it is cross-platform and widely used, with a vast array of
libraries for handling common programming tasks. Java is one of the easiest languages from which to deploy cross-platform
software. In contrast to C++, which has a large number of complex platform issues to consider, and Python, which leans heavily
on C and C++ for many of its components (e.g., NumPy and SciPy), Java code is compiled one time into platform-independent
byte code, which can be deployed as is to all supported platforms. And despite this enormous flexibility, Java manages to provide
time performance nearly equal to C++, often better in the case of I/O operations (see further discussion on the comparative speed
of Java on the LOCI site!).

There are also historical reasons associated with the fact that the project grew out of work on the VisAD Java component library?.
You can read more about the origins of Bio-Formats on the LOCI Bio-Formats homepage?.

Thttp://loci.wisc.edu/fag/isnt-java-too-slow
Zhttp://visad.ssec.wisc.edu
3http://loci.wisc.edu/software/bio-formats

http://loci.wisc.edu/faq/isnt-java-too-slow
http://loci.wisc.edu/faq/isnt-java-too-slow
http://visad.ssec.wisc.edu
http://loci.wisc.edu/software/bio-formats

CHAPTER
FOUR

BIO-FORMATS METADATA PROCESSING

Pixels in microscopy are almost always very straightforward, stored on evenly spaced rectangular grids. It is the metadata (de-
tails about the acquisition, experiment, user, and other information) that can be complex. Using the OME data model enables
applications to support a single metadata format, rather than the multitude of proprietary formats available today.

Every file format has a distinct set of metadata, stored differently. Bio-Formats processes and converts each format’s metadata
structures into a standard form called the OME data model', according to the OME-XML? specification. We have defined an
open exchange format called OME-TIFF? that stores its metadata as OME-XML. Any software package that supports OME-TIFF
is also compatible with the dozens of formats listed on the Bio-Formats page, because Bio-Formats can convert your files to
OME-TIFF format.

To facilitate support of OME-XML, we have created a library in Java® for reading and writing OME-XML> metadata.
There are three types of metadata in Bio-Formats, which we call core metadata, original metadata, and OME metadata.

1. Core metadata only includes things necessary to understand the basic structure of the pixels: image resolution; number
of focal planes, time points, channels, and other dimensional axes; byte order; dimension order; color arrangement (RGB,
indexed color or separate channels); and thumbnail resolution.

2. Original metadata is information specific to a particular file format. These fields are key/value pairs in the original format,
with no guarantee of cross-format naming consistency or compatibility. Nomenclature often differs between formats, as
each vendor is free to use their own terminology.

3. OME metadata is information from #1 and #2 converted by Bio-Formats into the OME data model. Performing this
conversion is the primary purpose of Bio-Formats. Bio-Formats uses its ability to convert proprietary metadata into
OME-XML as part of its integration with the OME and OMERO servers— essentially, they are able to populate their
databases in a structured way because Bio-Formats sorts the metadata into the proper places. This conversion is nowhere
near complete or bug free, but we are constantly working to improve it. We would greatly appreciate any and all input from
users concerning missing or improperly converted metadata fields.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions’ page to find documentation for the version you are using.

4.1 Reporting a bug

4.1.1 Before filing a bug report

If you think you have found a bug in Bio-Formats, the first thing to do is update your version of Bio-Formats to the latest version
to check if the problem has already been addressed. The Fiji updater will automatically do this for you, while in ImageJ you can
select Plugins — Bio-Formats — Update Bio-Formats Plugins.

You can also download the latest version of Bio-Formats®. If you are not sure which version you need, select the latest build of
the Bio-Formats package bundle from the components table.

Thttp://genomebiology.com/2005/6/5/R47
2http://www.openmicroscopy.org/site/support/ome-model/ome-xml
3http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
“http://www.openmicroscopy.org/site/support/ome-model/ome-xml/java-library.html
Shttp://www.openmicroscopy.org/site/support/ome-model/ome-xml
Shttp://www.openmicroscopy.org/site/support/bio-formats5.0/
7http://www.openmicroscopy.org/site/support/legacy/
8http://downloads.openmicroscopy.org/latest/bio-formats5.1/

http://genomebiology.com/2005/6/5/R47
http://www.openmicroscopy.org/site/support/ome-model/ome-xml
http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
http://www.openmicroscopy.org/site/support/ome-model/ome-xml/java-library.html
http://www.openmicroscopy.org/site/support/ome-model/ome-xml
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://downloads.openmicroscopy.org/latest/bio-formats5.1/

Bio-Formats Documentation, Release 5.1.3

4.1.2 Common issues to check

e If your 12, 14 or 16-bit images look all black when you open them, typically the problem is that the pixel values are very,
very small relative to the maximum possible pixel value (4095, 16383, and 65535, respectively), so when displayed the
pixels are effectively black. In ImagelJ/Fiji, this is fixable by checking the “Autoscale” option; with the command line tools,
the “-autoscale -fast” options should work.

« If the file is very, very small (4096 bytes) and any exception is generated when reading the file, then make sure it is not a
Mac OS X resource fork”. The ‘file’ command should tell you:

$ file /path/to/suspicious-file
suspicious-file: AppleDouble encoded Macintosh file

¢ If you get an OutOfMemory or NegativeArraySize error message when attempting to open an SVS or JPEG-2000
file then the amount of pixel data in a single image plane exceeds the amount of memory allocated to the JVM (Java Virtual
Machine) or 2 GB, respectively. For the former, you can increase the amount of memory allocated; in the latter case, you
will need to open the image in sections. If you are using Bio-Formats as a library, this means using the openBytes (int,
int, int, int, int) method in loci.formats.IFormatReader. If you are using Bio-Formats within ImageJ, you can
use the Crop on import option.

Note that JPEG-2000 is a very efficient compression algorithm - thus the size of the file on disk will be substantially smaller
than the amount of memory required to store the uncompressed pixel data. It is not uncommon for a JPEG-2000 or SVS
file to occupy less than 200 MB on disk, and yet have over 2 GB of uncompressed pixel data.

4.1.3 Sending a bug report

If you can still reproduce the bug after updating to the latest version of Bio-Formats, and your issue does not relate to anything
listed above or noted on the relevant file format page, please send a bug report to the OME Users mailing list'’. You can upload
files to our QA system'! or for large files (>2 GB), we can provide you with an FTP server address if you write to the mailing list.

To ensure that any inquiries you make are resolved promptly, please include the following information:

» Exact error message. Copy and paste any error messages into the text of your email. Alternatively, attach a screenshot of
the relevant windows.

¢ Version information. Indicate which release of Bio-Formats, which operating system, and which version of Java you are
using.

* Non-working data. If possible, please send a non-working file. This helps us ensure that the problem is fixed for next
release and will not reappear in later releases. Note that any data provided is used for internal testing only; we do not make
images publicly available unless given explicit permission to do so.

* Metadata and screenshots. If possible, include any additional information about your data. We are especially interested
in the expected dimensions (width, height, number of channels, Z slices, and timepoints). Screenshots of the image being
successfully opened in other software are also useful.

* Format details. If you are requesting support for a new format, we ask that you send as much data as you have regarding
this format (sample files, specifications, vendor/manufacturer information, etc.). This helps us to better support the format
and ensures future versions of the format are also supported.

Please be patient - it may be a few days until you receive a response, but we reply to every email inquiry we receive.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version'? or the previous
versions'? page to find documentation for the version you are using.

9http://en.wikipedia.org/Wiki/Resourceifork#TheiMacintoShiﬁleisystem
10http://lists.openmicroscopy.org.uk/mailman/listinfo/ome-users
http://qa.openmicroscopy.org.uk/qa/upload/
Zhttp://www.openmicroscopy.org/site/support/bio-formats5.0/
Bhttp://www.openmicroscopy.org/site/support/legacy/

4.1. Reporting a bug 8

http://en.wikipedia.org/wiki/Resource_fork#The_Macintosh_file_system
http://lists.openmicroscopy.org.uk/mailman/listinfo/ome-users
http://qa.openmicroscopy.org.uk/qa/upload/
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

4.2 Version history

4.2.1 5.1.3 (2015 July 21)

¢ Native C++ updates:

Added cmake superbuild to build core dependencies (zlib, bzip2, png, icu, xerces, boost)

Progress on support for Windows

* Bug fixes, including:

Fixed segfault in the showinf tool used with the C++ bindings
Allow reading from https URLSs
Image]
* improved performance of displaying ROIs
Command line tools
* fixed bfconvert to correctly create datasets with multiple files
Metamorph
* improved detection of time series
* fixed .nd datasets with variable Z and T counts in each channel
* fixed .nd datasets that contain invalid TIFF/STK files
* fixed dimensions when the number of planes does not match the recorded Z, C, and T sizes
SlideBook
* improved native library detection (thanks to Richard Myers)
JPEG
* fixed decompression of lossless files with multiple channels (thanks to Aaron Avery)
Imspector OBF
* updated to support version 2 files (thanks to Bjoern Thiel)
Imspector MSR
* improved detection of Z stacks
PerkinElmer Opera Flex
* improved handling of multiple acquisitions of the same plate
Zeiss CZ1
* fixed error when opening single-file datasets whose names contained “(” and ”*)”
TIFF
* improved speed of reading files with many tiles
AVI
* updated to read frame index (idx1) tables
Nikon ND2
* fixed channel counts for files with more than 3 channels
PNG
* fixed decoding of interlaced images with a width or height that is not a multiple of 8
PSD

* improved reading of compressed images

4.2. Version history 9

Bio-Formats Documentation, Release 5.1.3

* Documentation improvements, including:
— updated instructions for writing a new file format reader
— updated usage information for command line tools

— new Javadocs for the MetadataStore and MetadataRetrieve interfaces

4.2.2 5.1.2 (2015 May 28)

Added OME-TIFF writing support to the native C++ implementation

OME-TIFF export: switch to BigTIFF if .ome.tf2, .ome.tf8, or .ome.btf extensions are used

* Improved MATLAB developer documentation

Added SlideBook reader that uses the SDK from 3I (thanks to Richard Myers and 31 - Intelligent Imaging Innovations'#)
* Preliminary work to make MATLAB toolbox work with Octave

¢ Many bug fixes, including:

Image]
* fixed regression in getPlanePosition* macro extension methods
* fixed display of composite color virtual stacks

Nikon ND2

* improved parsing of plane position and timestamp data
— TIFF
* reduced memory required to read color lookup tables

Zeiss LSM

* improved parsing of 16-bit color lookup tables

Zeiss CZ1

* fixed ordering of original metadata table
* fixed reading of large pre-stitched tiled images
- AIM
* fixed handling of truncated files
Metamorph/MetaXpress TIFF

* improved UIC1 metadata tag parsing

4.2.3 5.1.1 (2015 April 28)

* Add TIFF writing support to the native C++ implementation
* Fixed remaining functional differences between Windows and Mac/Linux
* Improved performance of ImageJ plugin when working with ROIs
» TIFF export: switch to BigTIFF if .tf2, .tf8, or .btf extensions are used
¢ Many bug fixes, including:
- fixed upgrade checking to more accurately report when a new version is available
— Zeiss CZ1
* fixed ordering of multiposition data

* improved support for RGB and fused images

“https://www.intelligent-imaging.com

4.2. Version history 10

https://www.intelligent-imaging.com

Bio-Formats Documentation, Release 5.1.3

Nikon ND2
* improved ordering of multiposition data

Leica LIF

* improved metadata validity checks
* improved excitation wavelength detection

Metamorph STK/TIFF

* record lens numerical aperture
* fixed millisecond values in timestamps

Gatan DM3

* correctly detect signed pixel data

Imaris HDF

* fix channel count detection

ICS export
* fix writing of files larger than 2GB

4.2.4 5.1.0 (2015 April 2)

* Improvements to performance with network file systems
* Improvements to developer documentation
¢ Initial version of native C++ implementation
* Improved support for opening and saving ROI data with ImageJ
* Added support for CellH5 data (thanks to Christophe Sommer)
* Added support for Perkin Elmer Nuance data (thanks to Lee Kamentsky)
* Added support for Amnis FlowSight data (thanks to Lee Kamentsky and Sebastien Simard)
* Added support for Veeco AFM data
* Added support for Zeiss .lms data (not to be confused with .1sm)
* Added support for /2/ data
* Added support for writing Vaa3D data (thanks to Brian Long)
« Updated to OME schema 2015-01"
» Update RandomAccessInputStream and RandomAccessOutputStream to read and write bits
¢ Many bug fixes, including:
— Leica SCN
* fix pixel data decompression
* fix handling of files with multiple channels
* parse magnification and physical pixel size data
— Olympus/CellSens .vsi
* more thorough parsing of metadata
* improved reading of thumbnails and multi-resolution images
- NDPI
* fix reading of files larger than 4GB

I5http://www.openmicroscopy.org/site/support/ome-model//schemas/january-2015.html

4.2. Version history 11

http://www.openmicroscopy.org/site/support/ome-model//schemas/january-2015.html

Bio-Formats Documentation, Release 5.1.3

* parse magnification data
— Zeiss CZI
* improve parsing of plane position coordinates
— Inveon
* fix reading of files larger than 2 GB
— Nikon ND2
* many improvements to dimension detection
* many improvements to metadata parsing accuracy
* update original metadata table to include PFS data
— Gatan DM3
* fix encoding when parsing metadata
* fix physical pixel size parsing
— Metamorph
* fix off-by-one in metadata parsing
* fix number parsing to be independent of the system locale
- JPEG
* parse EXIF data, if present (thanks to Paul Van Schayck)
- OME-XML/OME-TIFF
* fix handling of missing image data
— PrairieView
* improved support for version 5.2 data (thanks to Curtis Rueden)
- DICOM
* fix dimensions for multi-file datasets
* fix pixel data decoding for files with multiple images
- PNG
* reduce memory required to read large images
— Imspector OBF
* fix support for version 5 data (thanks to Bjoern Thiel)
- PCORAW
* fix reading of files larger than 4 GB
- AIM
* fix reading of files larger than 4 GB
- MRC
* add support for signed 8-bit data
— Fix build errors in MIPAV plugin
— Image]
* fix export from a script/macro
* fix windowless export
* allow exporting from any open image window
* allow the “Group files with similar names” and “Swap dimensions” options to be used from a script/macro

bfconvert

4.2. Version history 12

Bio-Formats Documentation, Release 5.1.3

* fix writing each channel, Z section, and/or timepoint to a separate file

* add options for configuring the tile size to be used when saving images

4.2.5 5.0.8 (2015 February 10)

* No changes - release to keep version numbers in sync with OMERO

4.2.6 5.0.7 (2015 February 5)

* Several bug fixes, including:

— ND filter parsing for DeltaVision

Timepoint count and original metadata parsing for Metamorph

Build issues when Genshi or Git are missing

LZW image decoding

4.2.7 5.0.6 (2014 November 11)

* Several bug fixes, including:
— Pixel sign for DICOM images
— Image dimensions for Zeiss CZI and Nikon ND2
— Support for Leica LIF files produced by LAS AF 4.0 and later

4.2.8 5.0.5 (2014 September 23)

* Documentation improvements

* Support for non-spectral Prairie 5.2 datasets

4.2.9 5.0.4 (2014 September 3)

* Fix compile and runtime errors under Java 1.8
* Improvements to Nikon .nd2 metadata parsing

* Added support for PicoQuant .bin files (thanks to Ian Munro)

4.2.10 5.0.3 (2014 August 7)

* Many bug fixes for Nikon .nd2 files

* Several other bug fixes, including:

LZW image decoding

Stage position parsing for Zeiss CZI

Exposure time units for ScanR

Physical pixel size units for DICOM
NDPI and Zeiss LSM files larger than 4GB

Z and T dimensions for InCell 6000 plates

Export of RGB images in ImageJ

* Improved metadata saving in MATLAB functions

4.2. Version history 13

Bio-Formats Documentation, Release 5.1.3

4.2.11 5.0.2 (2014 May 28)

* Many bug fixes for Zeiss .czi files

* Several other bug fixes, including:
— Gatan .dm3 units and step count parsing
— Imspector .msr 5D image support
— DICOM reading of nested tags

» Update native-lib-loader version (to 2.0.1)

» Updates and improvements to user documentation

4.2.12 5.0.1 (2014 Apr 7)

* Added image pyramid support for CellSens .vsi data

* Several bug fixes, including:

Woolz import into OMERO

Cellomics file name parsing (thanks to Lee Kamentsky)

Olympus FV1000 timestamp support (thanks to Lewis Kraft and Patrick Riley)

(A)PNG large image support

Zeiss .czi dimension detection for SPIM datasets

 Performance improvements for Becker & Hickl .sdt file reading (thanks to Ian Munro)

¢ Performance improvements to directory listing over NFS

Update slf4j and logback versions (to 1.7.6 and 1.1.1 respectively)

e Update jgoodies-forms version (to 1.7.2)

4.2.13 5.0.0 (2014 Feb 25)

* New bundled ‘bioformats_package.jar’ for ImageJ

* Now uses logback as the slf4j binding by default

» Updated component names, .jar file names, and Maven artifact names

* Fixed support for Becker & Hickl .sdt files with multiple blocks

* Fixed tiling support for TIFF, Hamamatsu .ndpi, JPEG, and Zeiss .czi files
» Improved continuous integration testing

e Updated command line documentation

4.2.14 5.0.0-RC1 (2013 Dec 19)

» Updated Maven build system and launched new Artifactory repository (http://artifacts.openmicroscopy.org)
¢ Added support for:
Bio-Rad SCN

Yokogawa CellVoyager (thanks to Jean-Yves Tinevez)

LaVision Imspector
PCORAW
Woolz (thanks to Bill Hill)

* Added support for populating and parsing ModuloAlong{Z, C, T} annotations for FLIM/SPIM data

4.2. Version history

14

http://artifacts.openmicroscopy.org

Bio-Formats Documentation, Release 5.1.3

» Updated netCDF and slf4j version requirements - netCDF 4.3.19 and slf4j 1.7.2 are now required
» Updated and improved MATLAB users and developers documentation
* Many bug fixes including for Nikon ND2, Zeiss CZI, and CellWorX formats

4.2.15 5.0.0-betal (2013 June 20)

« Updated to 2013-06 OME-XML schema'®

* Improved the performance in tiled formats

Added caching of Reader metadata using http://code.google.com/p/kryo/
e Added support for:
— Aperio AFI
— Inveon
— MPI-BPC Imspector
¢ Many bug fixes, including:
— Add ZEN 2012/Lightsheet support to Zeiss CZI
— Improved testing of autogenerated code

— Moved OME-XML specification into Bio-Formats repository

4.2.16 4.4.10 (2014 Jan 15)

* Bug fixes including CellWorx, Metamorph and Zeiss CZI
» Updates to MATLAB documentation

4.2.17 4.4.9 (2013 Oct 16)

* Many bug fixes including improvements to support for ND2 format

* Java 1.6 is now the minimum supported version; Java 1.5 is no longer supported

4.2.18 4.4.8 (2013 May 2)

* No changes - release to keep version numbers in sync with OMERO

4.2.19 4.4.7 (2013 April 25)

* Many bug fixes to improve support for more than 20 formats
» Improved export to multi-file datasets

* Now uses slf4j for logging rather than using log4j directly, enabling other logging implementations to be used, for example
when Bio-Formats is used as a component in other software using a different logging system.

4.2.20 4.4.6 (2013 February 11)

e Many bug fixes

* Further documentation improvements

16http://www.openmicroscopy.org/site/support/ome-model/

4.2. Version history 15

http://www.openmicroscopy.org/site/support/ome-model/
http://code.google.com/p/kryo/

Bio-Formats Documentation, Release 5.1.3

4.2.21 4.4.5 (2012 November 13)

* Restructured and improved documentation

¢ Many bug fixes, including:
— File grouping in many multi-file formats
— Maven build fixes

— ITK plugin fixes

4.2.22 4.4.4 (2012 September 24)

e Many bug fixes

4.2.23 4.4.2 (2012 August 22)

* Security fix for OMERO plugins for Image]

4.2.24 4.4.1 (2012 July 20)

* Fix a bug that prevented BigTIFF files from being read
* Fix a bug that prevented PerkinElmer .flex files from importing into OMERO

4.2.25 4.4.0 (2012 July 13)

* Many, many bug fixes
¢ Added support for:

.nd2 files from Nikon Elements version 4

PerkinElmer Operetta data
— MIJPEG-compressed AVIs

MicroManager datasets with multiple positions
Zeiss CZI data
IMOD data

4.2.26 4.3.3 (2011 October 18)

¢ Many bug fixes, including:

Speed improvements to HCImage/SimplePCI and Zeiss ZVI files

Reduce memory required by Leica LIF reader

More accurately populate metadata for Prairie TIFF datasets

Various fixes to improve the security of the OMERO plugin for ImageJ

Better dimension detection for Bruker MRI datasets

Better thumbnail generation for histology (SVS, NDPI) datasets

Fix stage position parsing for Metamorph TIFF datasets

Correctly populate the channel name for PerkinElmer Flex files

4.2. Version history

16

Bio-Formats Documentation, Release 5.1.3

4.2.27 4.3.2 (2011 September 15)

¢ Many bug fixes, including:
— Better support for Volocity datasets that contain compressed data
— More accurate parsing of ICS metadata
— More accurate parsing of cellSens .vsi files
¢ Added support for a few new formats
- .inr
Canon DNG
Hitachi S-4800
Kodak .bip
- JPX

Volocity Library Clipping (.acff)
Bruker MRI

» Updated Zeiss LSM reader to parse application tags
 Various performance improvements, particularly for reading/writing TIFFs

* Updated OMERO Imagel plugin to work with OMERO 4.3 .x

4.2.28 4.3.1 (2011 July 8)

* Several bug fixes, including:

Fixes for multi-position DeltaVision files

Fixes for MicroManager 1.4 data
Fixes for 12 and 14-bit JPEG-2000 data

Various fixes for reading Volocity .mvd2 datasets
* Added various options to the ‘showinf’ and ‘bfconvert’ command line tools
* Added better tests for OME-XML backwards compatibility

* Added the ability to roughly stitch tiles in a multi-position dataset

4.2.29 4.3.0 (2011 June 14)

* Many bug fixes, including:

— Many fixes for reading and writing sub-images

— Fixes for stage position parsing in the Zeiss formats

— File type detection fixes
» Updated JPEG-2000 reading and writing support to be more flexible
¢ Added support for 9 new formats:

InCell 3000

Trestle

Hamamatsu .ndpi
Hamamatsu VMS
SPIDER

Volocity .mvd2

4.2. Version history 17

Bio-Formats Documentation, Release 5.1.3

— Olympus SIS TIFF
- IMAGIC
— cellSens VSI
Updated to 2011-06 OME-XML schema
Minor speed improvements in many formats
Switched version control system from SVN to Git
Moved all Trac tickets into the OME Trac: http://trac.openmicroscopy.org.uk
Improvements to testing frameworks
Added Maven build system as an alternative to the existing Ant build system

Added pre-compiled C++ bindings to the download page

4.2.30 4.2.2 (2010 December 6)

L]

Several bug fixes, notably:
— Metadata parsing fixes for Zeiss LSM, Metamorph STK, and FV1000
— Prevented leaked file handles when exporting to TIFF/OME-TIFF
— Fixed how BufferedImages are converted to byte arrays

Proper support for OME-XML XML annotations

Added support for SCANCO Medical .aim files

Minor improvements to ImageJ plugins

Added support for reading JPEG-compressed AVI files

4.2.31 4.2.1 (2010 November 12)

» Updated Zeiss LSM metadata parsing, with generous assistance from Zeiss, FMI, and MPI-CBG

Many, many bug fixes

Added support for 7 new formats:
CellWorX .pnl

ECAT7

Varian FDF

Perkin Elmer Densitometer
FEI TIFF
Compix/SimplePCI TIFF
— Nikon Elements TIFF

Lots of work to ensure that converted OME-XML validates

» Improved file stitching functionality; non-numerical file patterns and limited regular expression-style patterns are now

supported

4.2.32 4.2.0 (2010 July 9)

Fixed many, many bugs in all aspects of Bio-Formats
Reworked Image] plugins to be more user- and developer-friendly

Added many new unit tests

4.2. Version history

18

http://trac.openmicroscopy.org.uk

Bio-Formats Documentation, Release 5.1.3

* Added support for approximately 25 new file formats, primarily in the SPM domain

* Rewrote underlying I/O infrastructure to be thread-safe and based on Java NIO

* Rewrote OME-XML parsing/generation layer; OME-XML 2010-06 is now supported
* Improved support for exporting large images

* Improved support for exporting to multiple files

Updated logging infrastructure to use slf4j and log4j

4.2.33 4.1.1 (2009 December 3)

* Fixed many bugs in popular file format readers
4.1 (2009 October 21):
* Fixed many bugs in most file format readers
* Significantly improved confocal and HCS metadata parsing
* Improved C++ bindings
 Eliminated references to Java AWT classes in core Bio-Formats packages
¢ Added support for reading Flex datasets from multiple servers
* Improved OME-XML generation; generated OME-XML is now valid
* Added support for Olympus ScanR data
* Added OSGi information to JARs
* Added support for Amira Mesh files
* Added support for LI-FLIM files
* Added more informative exceptions
* Added support for various types of ICS lifetime data
* Added support for Nikon EZ-C1 TIFFs
* Added support for Maia Scientific MIAS data

4.2.34 4.0.1 (2009 June 1)

* Lots of bug fixes in most format readers and writers

* Added support for Analyze 7.1 files

* Added support for Nifti files

* Added support for Cellomics .cO1 files

* Refactored ImageJ plugins

* Bio-Formats, the common package, and the ImageJ plugins now require Java 1.5
 Eliminated native library dependency for reading lossless JPEGs

» Changed license from GPL v3 or later to GPL v2 or later

» Updated Olympus FV1000, Zeiss LSM, Zeiss ZVI and Nikon ND2 readers to parse ROI data
* Added option to ImageJ plugin for displaying ROIs parsed from the chosen dataset

¢ Fixed BufferedImage construction for signed data and unsigned int data

4.2. Version history 19

Bio-Formats Documentation, Release 5.1.3

4.2.35 4.0.0 (2009 March 3)
¢ Improved OME data model population for Olympus FV 1000, Nikon ND2, Metamorph STK, Leica LEI, Leica LIF, InCell
1000 and MicroManager
* Added TestNG tests for format writers
* Added option to ImageJ plugin to specify custom colors when customizing channels
* Added ability to upgrade the ImagelJ plugin from within ImageJ]
* Fixed bugs in Nikon ND2, Leica LIF, BioRad PIC, TIFF, PSD, and OME-TIFF
* Fixed bugs in Data Browser and Exporter plugins
* Added support for Axon Raw Format (ARF), courtesy of Johannes Schindelin
* Added preliminary support for [IPLab-Mac file format

4.2.36 2008 December 29

* Improved metadata support for DeltaVision, Zeiss LSM, MicroManager, and Leica LEI
* Restructured code base/build system to be component-driven

* Added support for JPEG and JPEG-2000 codecs within TIFF, OME-TIFF and OME-XML
* Added support for 16-bit compressed Flex files

* Added support for writing JPEG-2000 files

* Added support for Minolta MRW format

* Added support for the 2008-09 release of OME-XML

* Removed dependency on JMagick

* Re-added caching support to data browser plugin

» Updated loci.formats.Codec API to be more user-friendly

» Expanded loci.formats.MetadataStore API to better represent the OME-XML model

* Improved support for Nikon NEF

* Improved support for TillVision files

* Improved ImageJ import options dialog

* Fixed bugs with Zeiss LSM files larger than 4 GB

* Fixed minor bugs in most readers

* Fixed bugs with exporting from an Image5D window

* Fixed several problems with virtual stacks in ImageJ

4.2.37 2008 August 30

* Fixed bugs in many file format readers

* Fixed several bugs with swapping dimensions

* Added support for Olympus CellR/APL files

* Added support for MINC MRI files

* Added support for Aperio SVS files compressed with JPEG 2000
* Added support for writing OME-XML files

* Added support for writing APNG files

* Added faster LZW codec

4.2. Version history 20

Bio-Formats Documentation, Release 5.1.3

* Added drag and drop support to ImageJ shortcut window

* Re-integrated caching into the data browser plugin

4.2.38 2008 July 1

* Fixed bugs in most file format readers

* Fixed bugs in OME and OMERO download functionality

* Fixed bugs in OME server-side import

» Improved metadata storage/retrieval when uploading to and downloading from the OME Perl server
* Improved Bio-Formats ImageJ macro extensions

* Major updates to MetadataStore API

» Updated OME-XML generation to use 2008-02 schema by default

* Addressed time and memory performance issues in many readers

* Changed license from LGPL to GPL

* Added support for the FEI file format

* Added support for uncompressed Hamamatsu Aquacosmos NAF files
* Added support for Animated PNG files

* Added several new options to Bio-Formats ImageJ plugin

* Added support for writing ICS files

4.2.39 2008 April 17
* Fixed bugs in Slidebook, ND2, FV1000 OIB/OIF, Perkin Elmer, TIFF, Prairie, Openlab, Zeiss LSM, MNG, Molecular
Dynamics GEL, and OME-TIFF
* Fixed bugs in OME and OMERO download functionality
* Fixed bugs in OME server-side import
* Fixed bugs in Data Browser
* Added support for downloading from OMERO 2.3 servers
* Added configuration plugin
» Updates to MetadataStore API
» Updates to OME-XML generation - 2007-06 schema used by default
* Added support for Li-Cor L2D format
* Major updates to TestNG testing framework
* Added support for writing multi-series OME-TIFF files
* Added support for writing BigTIFF files

4.2.40 2008 Feb 12

* Fixed bugs in QuickTime, SimplePCI and DICOM

* Fixed a bug in channel splitting logic

4.2. Version history 21

Bio-Formats Documentation, Release 5.1.3

4.2.41 2008 Feb 8

e Many critical bugfixes in format readers and ImageJ plugins
¢ Newly reborn Data Browser for 5D image visualization

— some combinations of import options do not work yet

4.2.42 2008 Feb 1
* Fixed bugs in Zeiss LSM, Metamorph STK, FV1000 OIB/OIF, Leica LEI, TIFF, Zeiss ZVI, ICS, Prairie, Openlab LIFF,
Gatan, DICOM, QuickTime
* Fixed bug in OME-TIFF writer
* Major changes to MetadataStore API
* Added support for JPEG-compressed TIFF files
¢ Added basic support for Aperio SVS files
— JPEG2000 compression is still not supported
* Improved “crop on import” functionality
* Improvements to bfconvert and bfview
* Improved OME-XML population for several formats
* Added support for JPEG2000-compressed DICOM files
» EXIF data is now parsed from TIFF files

4.2.43 2007 Dec 28

* Fixed bugs in Leica LEI, Leica TCS, SDT, Leica LIF, Visitech, DICOM, Imaris 5.5 (HDF), and Slidebook readers
* Better parsing of comments in TIFF files exported from ImageJ

* Fixed problem with exporting 48-bit RGB data

* Added logic to read multi-series datasets spread across multiple files

* Improved channel merging in ImageJ - requires ImageJ 1.391

* Support for hyperstacks and virtual stacks in ImageJ - requires ImageJ 1.391
* Added API for reading directly from a byte array or InputStream

* Metadata key/value pairs are now stored in ImageJ’s “Info” property

¢ Improved OMERO download plugin - it is now much faster

* Added “open all series” option to ImageJ] importer

* ND2 reader based on Nikon’s SDK now uses our own native bindings

* Fixed metadata saving bug in ImageJ

* Added sub-channel labels to ImageJ windows

* Major updates to 4D Data Browser

* Minor updates to automated testing suite

4.2. Version history 22

Bio-Formats Documentation, Release 5.1.3

4.2.44 2007 Dec 1

» Updated OME plugin for ImageJ to support downloading from OMERO
* Fixed bug with floating point TIFFs

 Fixed bugs in Visitech, Zeiss LSM, Imaris 5.5 (HDF)

* Added alternate ND2 reader that uses Nikon’s native libraries

* Fixed calibration and series name settings in importer

* Added basic support for InCell 1000 datasets

4.2.45 2007 Nov 21
* Fixed bugs in ND2, Leica LIF, DICOM, Zeiss ZVI, Zeiss LSM, FV1000 OIB, FV1000 OIF, BMP, Evotec Flex, BioRad
PIC, Slidebook, TIFF
* Added new ImagelJ plugins to slice stacks and do “smart” RGB merging
* Added “windowless’” importer plugin
— uses import parameters from IJ_Prefs.txt, without prompting the user
* Improved stack slicing and colorizing logic in importer plugin
¢ Added support for DICOM files compressed with lossless JPEG
— requires native libraries
* Fixed bugs with signed pixel data
* Added support for Imaris 5.5 (HDF) files
* Added 4 channel merging to importer plugin
* Added API methods for reading subimages

* Major updates to the 4D Data Browser

4.2.46 2007 Oct 17

¢ Critical OME-TIFF bugfixes

* Fixed bugs in Leica LIF, Zeiss ZVI, TIFF, DICOM, and AVI readers
* Added support for JPEG-compressed ZVI images

* Added support for BigTIFF

* Added importer plugin option to open each plane in a new window

Added MS Video 1 codec for AVI

4.2.47 2007 Oct 1

* Added support for compressed DICOM images

¢ Added support for uncompressed LIM files

* Added support for Adobe Photoshop PSD files

* Fixed bugs in DICOM, OME-TIFF, Leica LIF, Zeiss ZV1, Visitech, PerkinElmer and Metamorph
 Improved indexed color support

* Addressed several efficiency issues

* Fixed how multiple series are handled in 4D data browser

* Added option to reorder stacks in importer plugin

4.2. Version history 23

Bio-Formats Documentation, Release 5.1.3

* Added option to turn off autoscaling in importer plugin

¢ Additional metadata convenience methods

4.2.48 2007 Sept 11

* Major improvements to ND2 support; lossless compression now supported

* Support for indexed color images

* Added support for Simple-PCI .cxd files

* Command-line OME-XML validation

* Bugfixes in most readers, especially Zeiss ZVI, Metamorph, PerkinElmer and Leica LEI

¢ Initial version of Bio-Formats macro extensions for ImageJ

4.2.49 2007 Aug 1

* Added support for latest version of Leica LIF
¢ Fixed several issues with Leica LIF, Zeiss ZVI
* Better metadata mapping for Zeiss ZVI
Added OME-TIFF writer

L]

Added MetadataRetrieve API for retrieving data from a MetadataStore

» Miscellaneous bugfixes

4.2.50 2007 July 16

 Fixed several issues with ImagelJ plugins
* Better support for Improvision and Leica TCS TIFF files
* Minor improvements to Leica LIF, ICS, QuickTime and Zeiss ZVI readers

* Added searchable metadata window to ImageJ importer

4.2.51 2007 July 2

* Fixed issues with ND2, Openlab LIFF and Slidebook
* Added support for Visitech XYS

* Added composite stack support to ImageJ importer

4.2.52 2007 June 18

* Fixed issues with ICS, ND2, MicroManager, Leica LEI, and FV1000 OIF
* Added support for large (> 2 GB) ND2 files

* Added support for new version of ND2

* Minor enhancements to ImageJ importer

* Implemented more flexible logging

» Updated automated testing framework to use TestNG

Added package for caching images produced by Bio-Formats

4.2. Version history 24

Bio-Formats Documentation, Release 5.1.3

4.2.53 2007 June 6

Fixed OME upload/download bugs
Fixed issues with ND2, EPS, Leica LIF, and OIF
Added support for Khoros XV

Minor improvements to the importer

4.2.54 2007 May 24

L]

Better Slidebook support

Added support for Quicktime RPZA

Better Leica LIF metadata parsing

Added support for BioRad PIC companion files
Added support for bzip2-compressed files
Improved ImageJ plugins

Native support for FITS and PGM

4.2.55 2007 May 2

L]

L]

Added support for NRRD

Added support for Evotec Flex (requires LuraWave Java SDK with license code)

Added support for gzip-compressed files

Added support for compressed QuickTime headers

Fixed QuickTime Motion JPEG-B support

Fixed some memory issues (repeated small array allocations)

Fixed issues reading large (> 2 GB) files

Removed “ignore color table” logic, and replaced with Leica-specific solution
Added status event reporting to readers

Added API to toggle metadata collection

Support for multiple dimensions rasterized into channels

Deprecated reader and writer methods that accept the ‘id’ parameter
Deprecated I[FormatWriter.save in favor of savelmage and saveBytes
Moved dimension swapping and min/max calculation logic to delegates
Separate GUI logic into isolated loci.formats.gui package
Miscellaneous bugfixes and tweaks in most readers and writers

Many other bugfixes and improvements

4.2.56 2007 Mar 16

L]

Fixed calibration bugs in importer plugin
Enhanced metadata support for additional formats

Fixed LSM bug

4.2. Version history

25

Bio-Formats Documentation, Release 5.1.3

4.2.57 2007 Mar 7

¢ Added support for Micro-Manager file format

* Fixed several bugs — Leica LIF, Leica LEI, ICS, ND2, and others

* Enhanced metadata support for several formats

* Load series preview thumbnails in the background

* Better implementation of openBytes(String, int, byte[]) for most readers

» Expanded unit testing framework

4.2.58 2007 Feb 28

 Better series preview thumbnails
* Fixed bugs with multi-channel Leica LEI

* Fixed bugs with “ignore color tables” option in ImageJ plugin

4.2.59 2007 Feb 26

* Many bugfixes: Leica LEIL ICS, FV1000 OIB, OME-XML and others
» Better metadata parsing for BioRad PIC files

* Enhanced API for calculating channel minimum and maximum values
* Expanded MetadataStore API to include more semantic types

* Added thumbnails to series chooser in ImageJ plugin

* Fixed plugins that upload and download from an OME server

4.2.60 2007 Feb 7

* Added plugin for downloading images from OME server

* Improved HTTP import functionality

¢ Added metadata filtering — unreadable metadata is no longer shown

* Better metadata table for multi-series datasets

* Added support for calibration information in Gatan DM3

 Eliminated need to install JAI Image 1/O Tools to read ND2 files

* Fixed ZVI bugs: metadata truncation, and other problems

* Fixed bugs in Leica LIF: incorrect calibration, first series labeling

* Fixed memory bug in Zeiss LSM

¢ Many bugfixes: PerkinElmer, DeltaVision, Leica LEI, LSM, ND2, and others
 JFormatReader.close(boolean) method to close files temporarily

* Replaced Compression utility class with extensible Compressor interface

» Improved testing framework to use .bioformats configuration files

4.2. Version history 26

Bio-Formats Documentation, Release 5.1.3

4.2.61 2007 Jan 5

* Added support for Prairie TIFF

* Fixed bugs in Zeiss LSM, OIB, OIF, and ND2
* Improved API for writing files

* Added feature to read files over HTTP

* Fixed bugs in automated testing framework

* Miscellaneous bugfixes

4.2.62 2006 Dec 22

» Expanded ImageJ plugin to optionally use Image5D or View5D
* Improved support for ND2 and JPEG-2000 files

* Added automated testing framework

* Fixed bugs in Zeiss ZVI reader

* Miscellaneous bugfixes

4.2.63 2006 Nov 30

* Added support for ND2/JPEG-2000

* Added support for MRC

* Added support for MNG

» Improved support for floating-point images

* Fixed problem with 2-channel Leica LIF data
* Minor tweaks and bugfixes in many readers

* Improved file stitching logic

* Allow Image]J plugin to be called from a macro

4.2.64 2006 Nov 2

* Bugfixes and improvements for Leica LIF, Zeiss LSM, OIF and OIB
» Colorize channels when they are split into separate windows

* Fixed a bug with 4-channel datasets

4.2.65 2006 Oct 31

* Added support for Imaris 5 files
* Added support for RGB ICS images

4.2.66 2006 Oct 30

* Added support for tiled TIFFs
* Fixed bugs in ICS reader

* Fixed importer plugin deadlock on some systems

4.2. Version history 27

Bio-Formats Documentation, Release 5.1.3

4.2.67 2006 Oct 27

Multi-series support for Slidebook

Added support for Alicona AL3D

Fixed plane ordering issue with FV1000 OIB
Enhanced dimension detection in FV1000 OIF
Added preliminary support for reading NEF images
Added option to ignore color tables

Fixed ImageJ GUI problems

Fixed spatial calibration problem in ImageJ
Fixed some lingering bugs in Zeiss ZVI support
Fixed bugs in OME-XML reader

Tweaked ICS floating-point logic

Fixed memory leaks in all readers

Better file stitching logic

4.2.68 2006 Oct 6

Support for 3i SlideBook format (single series only for now)

Support for 16-bit RGB palette TIFF

Fixed bug preventing import of certain Metamorph STK files

Fixed some bugs in PerkinElmer UltraView support

Fixed some bugs in Leica LEI support
Fixed a bug in Zeiss ZVI support
Fixed bugs in Zeiss LSM support

Fixed a bug causing slow identification of Leica datasets

Fixed bugs in the channel merging logic
Fixed memory leak for OIB format

Better scaling of 48-bit RGB data to 24-bit RGB

Fixed duplicate channels bug in “open each channel in a separate window’

Fixed a bug preventing PICT import into ImageJ
Better integration with HandleExtraFileTypes
Better virtual stack support in Data Browser plugin
Fixed bug in native QuickTime random access
Keep aspect ratio for computed thumbnails

Much faster file stitching logic

4.2.69 2006 Sep 27

L]

PerkinElmer: support for PE UltraView
Openlab LIFF: support for Openlab v5

Leica LEI: bugfixes, and support for multiple series

s

ZV1, OIB, IPW: more robust handling of these formats (eliminated custom OLE parsing logic in favor of Apache POI)

4.2. Version history

28

Bio-Formats Documentation, Release 5.1.3

* OIB: better metadata parsing (but maybe still not perfect?)

LSM: fixed a bug preventing import of certain LSMs
* Metamorph STK: fixed a bug resulting in duplicate image planes
 User interface: use of system look & feel for file chooser dialog when available

* Better notification when JAR libraries are missing

4.2.70 2006 Sep 6

¢ Leica LIF: multiple distinct image series within a single file

Zeiss ZVTI: fixes and improvements contributed by Michel Boudinot

» Zeiss LSM: fixed bugs preventing the import of certain LSM files

TIFF: fixed a bug preventing import of TIFFs created with Bio-Rad software

4.2.71 2006 Mar 31

¢ First release

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version'” or the previous
versions'® page to find documentation for the version you are using.

http://www.openmicroscopy.org/site/support/bio-formats5.0/
18http://www.openmicroscopy.org/site/support/legacy/

4.2. Version history 29

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Part 11

User Information

30

CHAPTER
FIVE

USING BIO-FORMATS WITH IMAGEJ AND FIJI

The following sections explain the features of Bio-Formats and how to use it within ImageJ and Fiji:

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version' or the previous
versions” page to find documentation for the version you are using.

5.1 Imaged overview

ImageJ? is an image processing and analysis application written in Java, widely used in the life sciences fields, with an extensible
plugin infrastructure. You can use Bio-Formats as a plugin for ImageJ to read and write images in the formats it supports.

5.1.1 Installation

Download bioformats_package.jar* and drop it into your ImageJ/plugins folder. Next time you run ImageJ, a new Bio-Formats
submenu with several plugins will appear in the Plugins menu, including the Bio-Formats Importer and Bio-Formats Exporter.

5.1.2 Usage

The Bio-Formats Importer plugin can display image stacks in several ways:
* In a standard ImageJ window (including as a hyperstack)
* Using the LOCI Data Browser’ plugin (included)
» With Joachim Walter’s Image5D® plugin (if installed)
 With Rainer Heintzmann’s View5D’ plugin (if installed)

ImageJ v1.37 and later automatically (via HandleExtraFileTypes) calls the Bio-Formats logic, if installed, as needed when
afile is opened within ImagelJ, i.e. when using File — Open instead of explicitly choosing Plugins — Bio-Formats — Bio-Formats
Importer from the menu.

For a more detailed description of each plugin, see the Bio-Formats page® of the Fiji wiki.

5.1.3 Upgrading

To upgrade, just overwrite the old bioformats_package.jar with the latest one”.

You may want to download the latest version of Image] first, to take advantage of new features and bug-fixes.

Thttp://www.openmicroscopy.org/site/support/bio-formats5.0/
Zhttp://www.openmicroscopy.org/site/support/legacy/

3http://rsb.info.nih.gov/ij/

“http://downloads.openmicroscopy.org/latest/bio-formats3. 1/artifacts/bioformats_package.jar
Shttp://loci.wisc.edu/software/data-browser

Shttp://developer.imagej.net/plugins/image5d

7http://www.nanoimaging.de/View5D

8http://fiji.sc/Bio-Formats

9http://downloads.openmicroscopy.org/latest/bio-formats5.1/

31

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://rsb.info.nih.gov/ij/
http://downloads.openmicroscopy.org/latest/bio-formats5.1/artifacts/bioformats_package.jar
http://loci.wisc.edu/software/data-browser
http://developer.imagej.net/plugins/image5d
http://www.nanoimaging.de/View5D
http://fiji.sc/Bio-Formats
http://downloads.openmicroscopy.org/latest/bio-formats5.1/

Bio-Formats Documentation, Release 5.1.3

As of the 4.0.0 release, you can also upgrade the Bio-Formats plugin directly from Imagel. Select Plugins — Bio-Formats —
Update Bio-Formats Plugins from the ImageJ menu, then select which release you would like to use. You will then need to restart
Image] to complete the upgrade process.

5.1.4 Macros and plugins

Bio-Formats is fully scriptable in a macro, and callable from a plugin. To use in a macro, use the Macro Recorder to record a call to
the Bio-Formats Importer with the desired options. You can also perform more targeted metadata queries using the Bio-Formats
macro extensions.

Here are some example ImageJ macros and plugins that use Bio-Formats to get you started:

basicMetadata.txt'? - A macro that uses the Bio-Formats macro extensions to print the chosen file’s basic dimensional parameters
to the Log.

planeTimings.txt'" - A macro that uses the Bio-Formats macro extensions to print the chosen file’s plane timings to the Log.
recursiveTiffConvert.txt'? - A macro for recursively converting files to TIFF using Bio-Formats.

bfOpenAsHyperstack.txt'? - This macro from Wayne Rasband opens a file as a hyperstack using only the Bio-Formats macro
extensions (without calling the Bio-Formats Importer plugin).

zvi2HyperStack.txt'* - This macro from Sebastien Huart reads in a ZVI file using Bio-Formats, synthesizes the LUT using emis-
sion wavelength metadata, and displays the result as a hyperstack.

dvSplitTimePoints.txt'> - This macro from Sebastien Huart splits timepoints/channels on all DV files in a folder.
batchTiffConvert.txt'® - This macro converts all files in a directory to TIFF using the Bio-Formats macro extensions.
Read_Image!” - A simple plugin that demonstrates how to use Bio-Formats to read files into Imagel.

Mass_Importer'® - A simple plugin that demonstrates how to open all image files in a directory using Bio-Formats, grouping files
with similar names to avoiding opening the same dataset more than once.

5.1.5 Usage tips

* “How do I make the options window go away?” is a common question. There are a few ways to do this:

— To disable the options window only for files in a specific format, select Plugins > Bio-Formats > Bio-Formats Plugins
Configuration, then pick the format from the list and make sure the “Windowless” option is checked.

— To avoid the options window entirely, use the Plugins > Bio-Formats > Bio-Formats Windowless Importer menu item
to import files.

— Open files by calling the Bio-Formats importer plugin from a macro.

* A common cause of problems having multiple copies of bioformats_package. jar in you Imagel plugins folder, or
acopy of bioformats_package. jar and a copy of formats—gpl. jar. Itis often difficult to determine for sure
that this is the problem - the only error message that pretty much guarantees it is a NoSuchMethodException. If you
downloaded the latest version and whatever error message or odd behavior you are seeing has been reported as fixed, it is
worth removing all copies of bioformats_package. jar (and loci_tools. jar or any other Bio-Formats jars)
and download a fresh version.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version'® or the previous
versions”’ page to find documentation for the version you are using.

10https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/basicMetadata. txt
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/plane Timings.txt
Zhttps://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/recursive TiffConvert. txt
Bhttps://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/bfOpenAsHyperstack.txt
4https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/zvi2HyperStack. txt
IShttps://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/dvSplit TimePoints.txt
16https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/batch TiffConvert.txt
Thttps://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Read_Image java
18https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Mass_Importer.java
http://www.openmicroscopy.org/site/support/bio-formats5.0/

20http://www.openmicroscopy.org/site/support/legacy/

5.1. ImagedJ overview 32

https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/basicMetadata.txt
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/planeTimings.txt
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/recursiveTiffConvert.txt
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/bfOpenAsHyperstack.txt
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/zvi2HyperStack.txt
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/dvSplitTimePoints.txt
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/batchTiffConvert.txt
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Read_Image.java
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Mass_Importer.java
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

5.2 Fiji overview

Fiji’! is an image processing package. It can be described as a distribution of /mageJ together with Java, Java 3D and a lot of
plugins organized into a coherent menu structure”. Fiji compares to ImageJ as Ubuntu compares to Linux.

Fiji works with Bio-Formats out of the box, because it comes bundled with the Bio-Formats ImageJ plugins.

For further details on Bio-Formats in Fiji, see the Bio-Formats Fiji wiki page”’.

5.2.1 Upgrading

Upgrading Bio-Formats within Fiji is as simple as invoking the “Update Fiji” command from the Help menu. By default, Fiji even
automatically checks for updates every time it is launched, so you will always be notified when new versions of Bio-Formats (or
any other bundled plugin) are available.

Using Bio-Formats daily builds

Fiji currently shipping with the 5.1.x release versions of Bio-Formats. However, if you have encountered a bug which has been
fixed by the Bio-Formats team but not yet released, you can use the Bio-Formats update site to access the daily build as described
in the Fiji documentation®*.

Warning: These builds are not yet released and should be considered beta in quality. In particular, you should avoid
exporting data using the Bio-Formats Exporter in case you write incompatible files which cannot be read by released
versions of Bio-Formats or other OME-compliant tools.

We recommend waiting for a fully tested release version of Bio-Formats if possible.

Manual upgrade

Manually updating your Fiji installation should not be necessary but if you need to do so, the steps are detailed below. Note that
although we assume you will be upgrading to the latest release version, all previous versions of Bio-Formats are available from
http://downloads.openmicroscopy.org/bio-formats/ so you can revert to an earlier version using this guide if you need to.

1. Fiji must first be fully updated
Close Fiji
Open the Fiji installation folder (typically named ‘Fiji.app’)

Remove bio-formats_plugins.jar from the ‘plugins’ sub-folder

wooR »N

Remove all of the .jars from the ‘jars/bio-formats’ sub-folder:
* jai_imageio.jar
* formats-gpl.jar
* formats-common.jar
* turbojpeg.jar
e ome-xml.jar
* formats-bsd.jar
* ome-poi.jar
* specification.jar
* mdbtools-java.jar

* metakit.jar

2 http://fiji.sc/
22http://fiji.sc/Plugins_Menu
Zhttp://fiji.sc/Bio-Formats
Z4http:/fiji.sc/Bio-Formats#Daily_builds

5.2. Fiji overview 33

http://fiji.sc/
http://fiji.sc/Plugins_Menu
http://fiji.sc/Bio-Formats
http://fiji.sc/Bio-Formats#Daily_builds
http://downloads.openmicroscopy.org/bio-formats/

Bio-Formats Documentation, Release 5.1.3

8.

9.

* formats-api.jar

Download bio-formats_plugins.jar (from the latest release http://downloads.openmicroscopy.org/bio-formats/) and place it
in the ‘plugins’ sub-folder

Download each of the following (from the latest release http://downloads.openmicroscopy.org/bio-formats/) and place them
in the ‘jars/bio-formats’ sub-folder:

* jai_imageio.jar

o formats-gpl.jar

* formats-common.jar
* turbojpeg.jar

* ome-xml.jar

* formats-bsd.jar

* ome-poi.jar

* specification.jar
* mdbtools-java.jar
* metakit.jar

* formats-api.jar

To Check Version of Bio-Formats Select Help > About Plugins > Bio-Formats Plugins... Check that the version of Bio-
Formats matches the freshly downloaded version.

Start Fiji and open any Image file using Plugins > Bio-Formats > Bio-Formats Importer

Note:

It is vital to perform all of those steps in order; omitting even one will cause a problem. In particular, make sure that the

old files are fully removed; it is not sufficient to add the new files to any sub-directory without removing the old files first.

Note:
versions

This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
2% page to find documentation for the version you are using.

5.3

Bio-Formats features in ImagedJ and Fiji

When you select Bio-Formats under the Plugin menu, you will see the following features:

The Bio-Formats Importer is a plugin for loading images into ImageJ or Fiji. It can read over 140 proprietary life sciences
formats and standardizes their acquisition metadata into the common OME data model. It will also extract and set basic
metadata values such as spatial calibration®’ if they are available in the file.

The Bio-Formats Exporter is a plugin for exporting data to disk. It can save to the open OME-TIFF?® file format, as well
as several movie formats (e.g. QuickTime, AVI) and graphics formats (e.g. PNG, JPEG).

The Bio-Formats Remote Importer is a plugin for importing data from a remote URL. It is likely to be less robust than
working with files on disk, so we recommend downloading your data to disk and using the regular Bio-Formats Importer
whenever possible.

The Bio-Formats Windowless Importer is a version of the Bio-Formats Importer plugin that runs with the last used settings
to avoid any additional dialogs beyond the file chooser. If you always use the same import settings, you may wish to use the
windowless importer to save time (Learn more /here).

The Bio-Formats Macro Extensions plugin prints out the set of commands that can be used to create macro exten-
sions. The commands and the instructions for using them are printed to the ImageJ log window.

ZShttp://www.openmicroscopy.org/site/support/bio-formats5.0/
26http://www.openmicroscopy.org/site/support/legacy/
2Thttp://fiji.sc/SpatialCalibration

28 http://www.openmicroscopy.org/site/support/ome-model/ome-tiff

5.3. Bio-Formats features in ImagedJ and Fiji 34

http://downloads.openmicroscopy.org/bio-formats/
http://downloads.openmicroscopy.org/bio-formats/
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://fiji.sc/SpatialCalibration
http://www.openmicroscopy.org/site/support/ome-model/ome-tiff

Bio-Formats Documentation, Release 5.1.3

* The Stack Slicer plugin is a helper plugin used by the Bio-Formats Importer. It can also be used to split a stack across
channels, focal planes or time points.

* The Bio-Formats Plugins Configuration dialog is a useful way to configure the behavior of each file format. The Formats
tab lists supported file formats and toggles each format on or off, which is useful if your file is detected as the wrong format.
It also toggles whether each format bypasses the importer options dialog through the “Windowless” checkbox. You can
also configure any specific option for each format. The Libraries tab provides a list of available helper libraries used by
Bio-Formats.

* The Bio-Formats Plugins Shortcut Window opens a small window with a quick-launch button for each plugin. Dragging
and dropping files onto the shortcut window opens them quickly using the Bio-Formats Importer plugin.

* The Update Bio-Formats Plugins command will check for updates to the plugins. We recommend you update to the newest
Trunk build as soon as you think you may have discovered a bug.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®” or the previous
versions’ page to find documentation for the version you are using.

5.4 Installing Bio-Formats in ImageJ

Note: Since FIJI is essentially ImageJ with plugins like Bio-Formats already built in, people who install Fiji can skip this section.

If you are also using the OMERO plugin for ImageJ, you may find the set-up guide on the new user help site*! useful for getting
you started with both plugins at the same time.

Once you download*? and install ImagelJ, you can install the Bio-Formats plugin by going to the Bio-Formats download page®*.
For most end-users, we recommend downloading the bioformats_package.jar complete bundle.

However, you must decide which version of it you want to install. There are three primary versions of Bio-Formats: the latest
builds, the daily builds, and the release versions. Which version you should download depends on your needs:

* The latest build is automatically updated every time any change is made to the source code on the main “dev_5_0" branch
in Git, Bio-Formats’ software version control system. This build has the latest bug fixes, but it is not well tested and may
have also introduced new bugs.

e The daily build is a compilation of that day’s changes that occurs daily around midnight. It is not any better tested than the
latest build; but if you download it multiple times in a day, you can be sure you will get the same version each time.

* The release is thoroughly tested and has documentation to match. The list of supported formats on the Bio-Formats site
corresponds to the most recent release. We do not add new formats to the list until a release containing support for that
format has been completed. The release is less likely to contain bugs.

The release version is also more useful to programmers because they can link their software to a known, fixed version of Bio-
Formats. Bio-Formats’ behavior will not be changing “out from under them” as they continue developing their own programs.

Note: There are currently two release version of Bio-Formats as we are maintaining support for the 4.4.x series while only
actively developing the new 5.x series. Unless you are using Bio-Formats with the OMERO ImageJ plugin and an OMERO 4.4.x

server, we recommend you use Bio-Formats 5. A new 4.4.x version will only be released if a major bug fix is required.

We often recommend that most people simply use the latest build for two reasons. First, it may contain bug-fixes or new
features you want anyway; secondly, you will have to reproduce any bug you encounter in Bio-Formats against the latest build
before submitting a bug report. Rather than using the release until you find a bug that requires you to upgrade and reproduce it,
why not just use the latest build to begin with?

Once you decide which version you need, go to the Bio-Formats download page** and save the appropriate biofor-
mats_package.jar to the Plugins directory within Image].

2http://www.openmicroscopy.org/site/support/bio-formats5.0/
30http://www.openmicroscopy.org/site/support/legacy/
31http://help.openmicroscopy.org/imagej.html
3http://rsbweb.nih.gov/ij/download.html
3http://downloads.openmicroscopy.org/latest/bio-formats5.1/
34http://downloads.openmicroscopy.org/latest/bio-formats5.1/

5.4. Installing Bio-Formats in ImagedJ 35

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://help.openmicroscopy.org/imagej.html
http://rsbweb.nih.gov/ij/download.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/
http://downloads.openmicroscopy.org/latest/bio-formats5.1/

Bio-Formats Documentation, Release 5.1.3

Computer + Local Disk (C:) » Program Files (x86) » Image) » plugins b—

=
MName

D

Analyze

. Examples

. Filters

. Graphics

o Input-Output

jars

. OMERQ.insight-ij-4.4.10-ice35-b112
. Scripts

. Stacks

. Tools

FEEEEEEEEEEE

.@, bioformats_package.jar
|| README.bet

Date modified

1/28/2014 10:44 AM

f28/2014 10:44 AM
F28/2014 10:44 AM
28/2014 10:44 AM

2/6/2014 12:34 PM
6/10/2013 8:56 PM

Type Size

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder

Executable Jar File 15,297KB| h—

Test Document

3KB

Figure 5.1: Plugin Directory for ImageJ: Where in ImageJ’s file structure you should place the file once you downloaded it.

You may have to quit and restart ImageJ. Once you restart it, you will find Bio-Formats in the Bio-Formats option under the

Plugins menu:

File Edit Image Process Analyze
I8 olz|o|« 4]+~] Al

ImageJ 1.47v; Java 1.6.0_20 [32-bit]; 450 comr

Window Help

Macros

Shortcuts r
Utilities r
Mew »
Compile and Run__.

Install Ctrl+Shift+M
3D »
Analyze 4
Examples »
Filters »
Graphics »
Input-Output r
LOCI »
OMERO »
Scripts r
Stacks *
Tools *

Bio-Formats Importer
Bio-Formats Exporter

Bio-Formats Remote Importer
Bio-Formats Windowless Importer

Bio-Formats Macro Extensions

Stack Slicer

Bio-Formats Plugins Configuration
Bio-Formats Plugins Shortcut Window

You are now ready to start using Bio-Formats

Update Bio-Formats Plugins

Help

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions®® page to find documentation for the version you are using.

3Shttp://www.openmicroscopy.org/site/support/bio-formats3.0/

36http://www.openmicroscopy.org/site/support/legacy/

5.4. Installing Bio-Formats in ImagedJ

36

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

5.5 Using Bio-Formats to load images into ImagedJ

This section will explain how to use Bio-Formats to import files into ImageJ and how to use the settings on the Bio-Formats
Import Options screen.

5.5.1 Opening files

There are three ways you can open a file using Bio-Formats:
1. Select the Bio-Formats Importer under the Bio-Formats plugins menu.
2. Drag and drop it onto the Bio-Formats Plugins Shortcut window.
3. Use the Open command in the File menu.

Unless you used the Bio-Formats Plugins Configuration dialog to open the file type windowlessly, you know you used Bio-Formats
to open a file when you see a screen like this:

Big=Farmats Impart Optians

stack viewing Metadata viewlng Information
Vilew stack with Hyperstack - O Display metadata View stuck with - The type of image viewer to =
e — s when displaying ihe dataset
Stack order: WY CZ - Display OME-XM
= Display- OME L metadata Passible choices are:
+ : ;
= Display RNy # Metadata only - Display no pivels,
only metndatn
Drataset organization Memory management w Standurd Image] - Display the piels
¥ Group files with similar names ! Use virtual stack II? |""HHL'J'=-L|""I[|!'="|3'-" r':f'-'-_l'f-l ;
i _ & Hyperstack - Dhsplay the pinels in
! Open files individually # specify range for sach series ImageF's buili-in 5D viewer
) Swap dimensions ! Crop on import ® Data Browser - Lisplay the pixels in
: LOCT s multidinsenssonal Data Browser
) Open all series viewer. The Data Browser has some
! Concatenate series when compatible Split inte separate windows additional features on top of the normal
Imagel hyperitack
w ImageSD - Digplay the pinels in
| Saitch tiles — Split channels Joachim Walter's ImageSD viewer.
Color options . Split focal planes Requires the Image5IF plugin
- @ View3ll = Display the paxels in Ramer
Coler mode: | Default = | Ll5plit timepoints Heintrnsane's Yiew 3D viewer. Requires |,
the ViewSD plogin.
- Autoscale 2

-' o
L Cancel § [OK

If you used the File > Open command and did not see the Bio-Formats Import Options screen, ImagelJ/Fiji probably used another
plugin instead of Bio-Formats to open the file. If this happens and you want to open a file using Bio-Formats, use one of the other
two methods instead.

5.5.2 Opening files windowlessly

When you open a file with Bio-Formats, the Import Options Screen automatically recalls the settings you last used to open a file
with that specific format (e.g. JPG, TIF, LSM, etc.). If you always choose the same options whenever you open files in a specific
file format, you can save yourself time by bypassing the Bio-Formats Import Options screen. You can accomplish this two ways:

1. You can select the Bio-Formats Windowless Importer, located in the Bio-Formats menu under ImageJ’s Plugin menu. When
you select this option, Bio-Formats will import the file using the same settings you used the last time you imported a file with the
same format.

2. If you invariably use the same settings when you open files in a specific format, you can always bypass the Import Options
Screen by changing the settings in the Bio-Formats Plugins Configuration option, which is also located in the Bio-Formats
menu under ImageJ’s Plugin menu.

Once you select this option, select the file format you are interested in from the list on the left side of the screen. Check both the
Enabled and Windowless boxes. Once you do this, whenever you open a file using the Bio-Formats Windowless Importer,the

5.5. Using Bio-Formats to load images into ImageJ 37

Bio-Formats Documentation, Release 5.1.3

Bio-Formats Importer, or the drag-and-drop method described in the previous section, the file will always open the same way
using the last setting used.

Please note that if you want to change any of the import settings once you enable this windowless option, you will have to go back
to the Bio-Formats Plugins Configuration screen, unselect the windowless option, open a file using the regular Bio-Formats
Importer, select your settings, and re-select the windowless option.

5.5.3 Group files with similar names
One of the most important features of Bio-Formats is to combine multiple files from a data set into one coherent, multi-dimensional
image.

To demonstrate how to use the Group files with similar names feature, you can use the dub?’ data set available under LOCI’s
Sample Data®® page. You will notice that it is a large dataset: each of the 85 files shows the specimen at 33 optical sections along
the z-plane at a specific time.

If you open just one file in Imagel/Fiji using the Bio-Formats Importer, you will get an image incorporating three dimensions
(X, y, z). However, if you select Group files with similar names from the Bio-Formats Import Options screen, you will be able
to create a 4-D image (X, y, z, and t) incorporating the 85 files.

After clicking OK, you will see a screen like this:

The list of files to be grouped can be specified in one of three ways:

Axis 1 number of images [85

Axis 1 axis first image 1

Axis 1 axis increment 1

File name contains:

¥ FPattern: sersflasonPalmer/Desktop/Sample Data/dub/dub<01-85>,

0] Cancel

This screen allows you to select which files within the 85-file cluster to use to create that 4-D image. Some information will be
pre-populated in the fields. Unless you want to change the settings in that field, there is no need to change or delete it. If you click
OK at this point, you will load all 85 files.

However, you can specify which files you want to open by adjusting the “axis information”, the file “name contains”, or the
“pattern” sections. Even though there are three options, you only need to need to make changes to one of them. Since Bio-
Format’s precedence for processing data is from top to bottom, only the uppermost section that you made changes to will be used.
If you change multiple boxes, any information you enter into lower boxes will be ignored.

To return to the example involving the dub data set, suppose you want to open the first image and only every fifth image afterwards
(i.e. dubO1, dub06, dubl1 . . . dub81). This would give you 17 images. There are different ways to accomplish this:

You can use the Axis Settings only when your files are numbered in sequential order and you want to open only a subset of the
files that have similar names. Since the dub data set is numbered sequentially, you can use this feature.

Axis 1 number of images refers to the total number of images you want to open. Since you want to view 17 images, enter 17.
Axis 1 axis first image specifies which image in the set you want to be the first. Since you want to start with dubO1, enter 1 in
that box. You also want to view only every fifth image, so enter 5 in the Axis 1 axis increment box.

3Thttp://loci.wisc.edu/sample-data/dub
3Bhttp://loci.wisc.edu/software/sample-data

5.5. Using Bio-Formats to load images into ImageJ 38

http://loci.wisc.edu/sample-data/dub
http://loci.wisc.edu/software/sample-data

Bio-Formats Documentation, Release 5.1.3

The File name contains box should be used if all of the files that you want to open have common text. This is especially useful
when the files are not numbered. For example, if you have “Image_Red.tif”, “Image_Green.tif”, and “Image_Blue.tif”” you could
enter “Image_" in the box to group them all.

To continue the example involving the dub data set, you cannot use the file name contains box to open every fifth image. However,
if you only wanted to open dub10 thorough dub19, you could enter “dub1” in the file name contains box.

The pattern box can be used to do either of the options listed above or much more. This box can accept a single file name like
“dubO1.pic”. It can also contain a pattern that use “<” and “>” to specify what numbers or text the file names contain.

There are three basic forms to the “< > blocks:

e Text enumeration - “Image_<Red,Green,Blue>.tif” is the pattern for Image_Red.tif, Image_Green.tif, Im-
age_Blue.tif. (Note that the order you in which you enter the file names is the order in which they will be loaded.)

* Number range - “dub<1-85>.pic” is the pattern for “dubl.pic”, “dub2.pic”, “dub3.pic” . . . “dub85.pic”.

e Number range with step - “dub<1-85:5>.pic” is the pattern for “dubl.pic”, “dub6.pic”, “dubll.pic”, “dubll.pic” . . .
“dub85.pic”.

It can also accept a Java regular expression’”.

5.5.4 Autoscale

Autoscale helps increase the brightness and contrast of an image by adjusting the range of light intensity within an image to match
the range of possible display values. Note that Autoscale does not change your data. It just changes how it is displayed.

Each pixel in an image has a numerical value ascribed to it to describe its intensity. The bit depth—the number of possible
values— depends on the number of bits used in the image. Eight bits, for example, gives 256 values to express intensity where 0
is completely black, 255 is completely white, and 1 through 254 display increasingly lighter shades of grey.

ImagelJ can collect the intensity information about each pixel from an image or stack and create a histogram (you can see it by
selecting Histogram under the Analyze menu). Here is the histogram of a one particular image:

Histogram of 15test.ome

B 2 00 |
1] 255
Count: 393216 Min: O

Mean: 19.489 Max: 125
StdDev: 10.967 Mode: 20 (15344)

3 Y Value: 202

Fa K ki W LW
. List) [Copy) (Log count: 0

Notice that the histogram heavily skews right. Even though there are 256 possible values, only 0 thorough 125 are being used.

3http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html

5.5. Using Bio-Formats to load images into ImageJ 39

http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html

Bio-Formats Documentation, Release 5.1.3

Autoscale adjusts the image so the smallest and largest number in that image or stack’s histogram become the darkest and brightest
settings. For this image, pixels with the intensity of 125 will be displayed in pure white. The other values will be adjusted too to
help show contrast between values that were too insignificant to see before.

Here is one image Bio-Formats imported with and without using Autoscale:

TEA 0551200 =

oo (TEE5 121 E=ba1, TEAK

TES 0005 1.2 00 miveen (TEES 10 B b BRAK

Autoscale readjusts the image based on the highest value in the entire data set. This means if the highest value in your dataset is
close to maximum display value, Autoscale’s adjusting may be undetectable to the eye.

ImagelJ/Fiji also has its own tools for adjusting the image, which are available by selecting Brightness/Contrast, which is under
the Adjust option in the Image menu.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version*” or the previous
versions*! page to find documentation for the version you are using.

4Ohttp://www.openmicroscopy.org/site/support/bio-formats5.0/
4T http://www.openmicroscopy.org/site/support/legacy/

5.5. Using Bio-Formats to load images into ImageJ 40

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

5.6 Managing memory in ImageJ/Fiji using Bio-Formats

When dealing with a large stack of images, you may receive a warning like this:

—

Bio-Formats Memory Usage

Warning: It will require approximately 1051 ME to open this dataset.
However, only 994 ME is currently available. You may receive an error
message about insufficient memory. Are you sure you want to proceed?

(N)
L Cancel o X g oK |

o

This means the allotted memory is less than what Bio-Formats needs to load all the images. If you have a very large data set, you
may have to:

* View your stack with Data Browser
* Crop the view area

* Open only a subset of images
 Use Virtual Stack

* Increase Imagel/Fiji’s memory.

If your files contain JPEG or JPEG-2000 images, you may see this memory warning even if your file size is smaller than the
amount of allocated memory. This is because compressed images like JPEG need to be decompressed into memory before being
displayed and require more memory than their file size suggests. If you are having this issue, try utilizing one of the memory
management tools below.

5.6.1 View your stack with Data Browser
Data Browser is another part of Bio-Formats that enables users to view large 3, 4, or 5-D datasets by caching a subset of all the
images available. This enables users to view a stack that is bigger than the computer’s memory.

You can select Data Browser as an option for View stack with, the leftmost, uppermost option in the Bio-Formats Import
Options screen.

5.6. Managing memory in ImageJ/Fiji using Bio-Formats 41

Bio-Formats Documentation, Release 5.1.3

F T =
A 1 Metadata only I Bio-Formats Import Optians. |
Standard Image)
Stack viewing Hyperstack Metadata viewing _Infﬂrmatlm il
view stack with: FBEC R e : ﬂ Display metadata View rh:;ln‘: 'ﬂ-:llh “i:ltlﬁlw of mmage viewer 1o .nl
) Image 5D . KIS Wk dusplayung 1 Alascl. | |
Stack order Cemsmes = _! Display OME-XML rmetadata Possible choloes are:
— Display ROls & Metaduia only - Display no pixels,
oaly metadara,
Dataset organization Memary management & Standard ImageJ - Display the pixels
™ Group files with similar names ™ Use virtual stack in Tmagel's bailt-in 10 viewer
eSS : & Hyperstack - Dusplay the paxels in
! Open files individually Hpecily range 1or each Jeres [magels built-in 30 viewer. |
[Swap dimensions Crorn o ENDai & Duta Browser - Display the pixels in |
: LT s mnlndimenswonal Dala Browser
- Open all series veewer. The Diata Browser has sme
[Concatenate series when campatible Split into separate windows additional features on top of the pormal |||
Imagel hyperstack | [
; : S & Imagesh - Dusplay the paxels
= Stitch tiles sibio bl Joachim Walier's Image3D viewer |
Color options Split focal pland Bequires the TmageSD plugin |
=l & YiewsDh - Display the pueels in Baner (5]
Caolar made: | Default e Split imepoints Heintemane's ViewSD viewer. Requires |,
atnseal ihe ViewSD plugin, -
{ Cancet) Ok)

Note that when you use Data Browser, other features like cropping and specifying range are not available. You can, however,

adjust the size of the image cache in the Data Browser after you open the files. You can read more about it on LOCI’s Data

Browser page*’.

5.6.2 Cropping the view area
Crop on Import is useful if your images are very large and you are only interested in one specific section of the stack you are

importing. If you select this feature, you will see a screen where you can enter the height and width (in pixels) of the part of image
you want to see. Note that these measurements are from the top left corner of the image.

5.6.3 Opening only a subset of images

The Specify Range for Each Series option is useful for viewing a portion of a data set where all the plane images are encapsulated
into one file (e.g. the Zeiss LSM format). If your file has a large quantity of images, you can specify which channels, Z-planes,
and times you want to load.

5.6.4 Use Virtual Stack

Virtual Stack conserves memory by not loading specific images until necessary. Note that unlike Data Browser, Virtual Stack
does not contain a buffer and may produce choppy animations.

5.6.5 Increasing ImagedJ/Fiji’'s memory

Finally, you can also increase the amount of the computer memory devoted to Imagel/Fiji by selecting Memory & Threads under
the Edit menu.

“http://loci.wisc.edu/software/data-browser

5.6. Managing memory in ImageJ/Fiji using Bio-Formats 42

http://loci.wisc.edu/software/data-browser
http://loci.wisc.edu/software/data-browser

Bio-Formats Documentation, Release 5.1.3

Image Process Analyze Plugins Window Help
Undo b

Cut BEN
Copy #C
Copy to System
Paste Al
Paste Control...

Clear

Clear Qutside

FFill 3L F
Crraw XD
Irvert {r 3|

Selection [
Options Line Width...

Input/Output. ..
Fonts...

Profile Plot Options...
Arrow Toal...

Paint Tool...

Wand Toaol...
Colors...
Appearance...
Conversions...
Memory & Threads. ..
Proxy Settings...
Compiler...

DICOM. ..

Misc...

Generally, allocating more than 75% of the computer’s total memory will cause Imagel/Fiji to become slow and unstable.

Please note that unlike the other three features, ImagelJ/Fiji itself provides this feature and not Bio-Formats. You can find out

more about this feature by looking at ImageJ’s documentation**.

“3http://rsbweb.nih.gov/ij/docs/menus/edit.html#options

5.6. Managing memory in ImageJ/Fiji using Bio-Formats 43

http://rsbweb.nih.gov/ij/docs/menus/edit.html#options

CHAPTER
SIX

COMMAND LINE TOOLS

The Bio-Formats Command line tools (bftools.zip) provide a complete package for carrying out a variety of tasks:

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version' or the previous
versions” page to find documentation for the version you are using.

6.1 Command line tools introduction

There are several scripts for using Bio-Formats on the command line.

6.1.1 Installation

Download bftools.zip3, unzip it into a new folder.

Note: As of Bio-Formats 5.0.0, this zip now contains the bundled jar and you no longer need to download 1oci_tools. jar
or the new bioformats_package. jar separately.

The zip file contains both Unix scripts and Windows batch files.

6.1.2 Tools available

Currently available tools include:

showinf Prints information about a given image file to the console, and displays the image itself in the Bio-Formats image viewer
(see Displaying images and metadata for more information).

ijview Displays the given image file in ImageJ using the Bio-Formats Importer plugin. See Display file in ImageJ for details.

bfconvert Converts an image file from one format to another. Bio-Formats must support writing to the output file (see Converting
a file to different format for more information).

formatlist Displays a list of supported file formats in HTML, plaintext or XML. See List supported file formats for details.

xmlindent A simple XML prettifier similar to xmllint —format but more robust in that it attempts to produce output regardless
of syntax errors in the XML. See Format XML data for details.

xmlvalid A command-line XML validation tool, useful for checking an OME-XML document for compliance with the OME-
XML schema.

tiffcomment Dumps the comment from the given TIFF file’s first IFD entry; useful for examining the OME-XML block in an
OME-TIFF file (also see Editing XML in an OME-TIFF).

domainlist Displays a list of imaging domains and the supported formats associated with each domain. See List formats by
domain for more information.

Thttp://www.openmicroscopy.org/site/support/bio-formats5.0/
2http://www.openmicroscopy.org/site/support/legacy/
3http://downloads.openmicroscopy.org/latest/bio-formatsS3. 1/artifacts/bftools.zip

44

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://downloads.openmicroscopy.org/latest/bio-formats5.1/artifacts/bftools.zip

Bio-Formats Documentation, Release 5.1.3

mkfake Creates a “fake” high-content screen with configurable dimensions. This is useful for testing how HCS metadata is
handled, without requiring real image data from an acquired screen. See Create a high-content screen for testing for more
information.

Some of these tools also work in combination, for example Validating XML in an OME-TIFF uses both tiffcomment and xmlvalid.

Running any of these commands without any arguments will print usage information to help you. When run with the ~version
argument, showinf and bfconvert will display the version of Bio-Formats that is being used (version number, build date, and Git
commit reference).

6.1.3 Using the tools directly from source

Firstly, obtain a copy of the sources and build them (see Obtaining and building Bio-Formats). You can configure the scripts to
use your source tree instead of bioformats_package.jar in the same directory by following these steps:

1. Point your CLASSPATH to the checked-out directory and the JAR files in the jar folder.

* E.g. on Windows with Java 1.6 or later, if you have checked out the source at C: \code\bio-formats, set your
CLASSPATH environment variable to the value C: \code\bio-formats\jar*;C:\code\bio-formats.
You can access the environment variable configuration area by right-clicking on My Computer, choosing Properties,
Advanced tab, Environment Variables button.

2. Compile the source with ant compile.

3. Set the BF_DEVEL environment variable to any value (the variable just needs to be defined).

6.1.4 Version checker

If you run bftools outside of the OMERO environment, you may encounter an issue with the automatic version checker causing a
tool to crash when trying to connect to upgrade . openmicroscopy.org.uk. The error message will look something like
this:

Failed to compare version numbers

java.io.IOException: Server returned HTTP response code: 400 for URL:
http://upgrade.openmicroscopy.org.uk?version=4.4.8;0s.name=Linux;os.

version=2.6.32-358.6.2.e16.x86_64;0s.arch=amd64; java.runtime.version=
1.6.0_24-b24;java.vm.vendor=Sun+Microsystems+Inc.;bioformats.caller=

Bio-Formats+utilities

To avoid this issue, call the tool with the —no—upgrade parameter.

6.1.5 Profiling

For debugging errors or investigating performance issues, it can be useful to use profiling tools while running Bio-Formats. The
command-line tools can invoke the HPROF* agent library to profile Heap and CPU usage. Setting the BF_PROF I LE environment
variable allows to turn profiling on, e.g.:

BF_PROFILE=true showinf -nopix —-no-upgrade myfile

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions® page to find documentation for the version you are using.

“http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
Shttp://www.openmicroscopy.org/site/support/bio-formats5.0/
Shttp://www.openmicroscopy.org/site/support/legacy/

6.1. Command line tools introduction 45

http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

6.2 Displaying images and metadata

The showinf command line tool can be used to show the images and metadata contained in a file.
If no options are specified, showinf displays a summary of available options.

To simply display images:

showinf /path/to/file

All of the images in the first ‘series’ (or 5 dimensional stack) will be opened and displayed in a simple image viewer. The number
of series, image dimensions, and other basic metadata will be printed to the console.

—-series SERIES
Displays a different series, for example the second one:

showinf -series 1 /path/to/file

Note that series numbers begin with 0.

—omexml
Displays the OME-XML metadata for a file on the console:

showinf -omexml /path/to/file

—-nopix
Image reading can be suppressed if only the metadata is needed:

showinf -nopix /path/to/file

—range START END
A subset of images can also be opened instead of the entire stack, by specifying the start and end plane indices (inclusive):

showinf -range 0 0 /path/to/file

That opens only the first image in first series in the file.

—crop X,Y,WIDTH, HEIGHT
For very large images, it may also be useful to open a small tile from the image instead of reading everything into memory.
To open the upper-left-most 512x512 tile from the images:

showinf —-crop 0,0,512,512 /path/to/file

The parameter to —crop is of the format x, y, width, height. The (X, y) coordinate (0, 0) is the upper-left corner of
the image; x + width must be less than or equal to the image width and y + height must be less than or equal to the
image height.

—no—upgrade
By default, showinf will check for a new version of Bio-Formats. This can take several seconds (especially on a slow
internet connection); to save time, the update check can be disabled:

showinf -no-upgrade /path/to/file

—-no-valid
Similarly, if OME-XML is displayed then it will automatically be validated. On slow or missing internet connections, this
can take some time, and so can be disabled:

6.2. Displaying images and metadata 46

Bio-Formats Documentation, Release 5.1.3

showinf -novalid /path/to/file

-no-core
Most output can be suppressed:

showinf -nocore /path/to/file

—omexml-only
Displays the OME-XML alone:

showinf -omexml-only /path/to/file

This is particularly helpful when there are hundreds or thousands of series.

—-debug
Enables debugging output if more information is needed:

showinf -debug /path/to/file

-fast
Displays an image as quickly as possible. This is achieved by converting the raw data into a 8 bit RGB image:

showinf -fast /path/to/file

Note: Due to the data conversion to a RGB image, using this option results in a loss of precision.

—autoscale
Adjusts the display range to the minimum and maximum pixel values:

showinf —-autoscale /path/to/file

Note: This option automatically sets the —fast option and suffers from the same limitations.

—cache
Caches the reader under the same directory as the input file after initialization:

showinf -cache /path/to/file

—cache-dir DIR
Specifies the base directory under which the reader should be cached:

showinf -cache-dir /tmp/cachedir /path/to/file

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version’ or the previous
versions® page to find documentation for the version you are using.

7http://www.openmicroscopy.org/site/support/bio-formats5.0/
8http://www.openmicroscopy.org/site/support/legacy/

6.2. Displaying images and metadata 47

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

6.3 Converting a file to different format

The bfconvert command line tool can be used to convert files between supported formats.
bfconvert with no options displays a summary of available options.

To convert a file to single output file (e.g. TIFF):

bfconvert /path/to/input output.tiff

The output file format is determined by the extension of the output file, e.g. .tiff for TIFF files, .ome.tiff for OME-TIFF, .png for
PNG.

—-series SERIES
All images in the input file are converted by default. To convert only one series:

bfconvert -series 0 /path/to/input output-first-series.tiff

—timepoint TIMEPOINT
To convert only one timepoint:

bfconvert -timepoint 0 /path/to/input output-first-timepoint.tiff

—channel CHANNEL
To convert only one channel:

bfconvert -channel 0 /path/to/input output-first—-channel.tiff

-z 7
To convert only one Z section:

bfconvert -z 0 /path/to/input output-first—-z.tiff

—range START END
To convert images between certain indices (inclusive):

bfconvert -range 0 2 /path/to/input output-first-3-images.tiff

-tilex TILEX, -tiley TILEY
All images larger than 4096x4096 will be saved as a set of tiles if the output format supports doing so. The default tile size
is determined by the input format, and can be overridden like this:

bfconvert -tilex 512 -tiley 512 /path/to/input output-512x512-tiles.tiff

—~t1ilex is the width in pixels of each tile; —t i Iey is the height in pixels of each tile. The last row and column of tiles
may be slightly smaller if the image width and height are not multiples of the specified tile width and height. Note that
specifying ~t i lex and —t iley will cause tiles to be written even if the image is smaller than 4096x4096.

Also note that the specified tile size will affect performance. If large amounts of data are being processed, it is a good idea
to try converting a single tile with a few different tile sizes using the —crop option. This gives an idea of what the most
performant size will be.

Images can also be written to multiple files by specifying a pattern string in the output file. For example, to write one series,
timepoint, channel, and Z section per file:

6.3. Converting a file to different format 48

Bio-Formats Documentation, Release 5.1.3

bfconvert /path/to/input output_series_%s_Z%z_C%c_T%t.tiff

%s is the series index, %z is the Z section index, %c is the channel index, and %t is the timepoint index (all indices begin at 0).

For large images in particular, it can also be useful to write each tile to a separate file:

o

bfconvert -tilex 512 -tiley 512 /path/to/input output_tile_%$x_%y_ %m.Jjpg

%$x is the row index of the tile, $y is the column index of the tile, and $m is the overall tile index. As above, all indices begin at
0. Note that if $x or %y is included in the file name pattern, then the other must be included too. The only exception is if $m was

also included in the pattern.

—compression COMPRESSION
By default, all images will be written uncompressed. Supported compression modes vary based upon the output format,
but when multiple modes are available the compression can be changed using the ~compression option. For example,
to use LZW compression in a TIFF file:

bfconvert -compression LZW /path/to/input output-lzw.tiff

—overwrite
If the specified output file already exists, bfconvert will prompt to overwrite the file. When running bfconvert non-

interactively, it may be useful to always allow bfconvert to overwrite the output file:

bfconvert -overwrite /path/to/input /path/to/output

—-nooverwrite
To always exit without overwriting:

bfconvert -nooverwrite /path/to/input /path/to/output

-bigtiff
This option forces the writing of a BigTiff file:

bfconvert -bigtiff /path/to/input output.ome.tiff
New in version 5.1.2: The —bigt iff option is not necessary if a BigTiff extension is used for the output file, e.g.:

bfconvert /path/to/input output.ome.btf

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions'? page to find documentation for the version you are using.

6.4 Validating XML in an OME-TIFF

The XML stored in an OME-TIFF file can be validated using the command line tools.

Both the tiffcomment and xmlvalid commands are used; tiffcomment extracts the XML from the file and xmlvalid validates the
XML and prints any errors to the console.

For example:

9http://www.openmicroscopy.org/site/support/bio-formats5.0/
10http://www.openmicroscopy.org/site/support/legacy/

6.4. Validating XML in an OME-TIFF 49

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

tiffcomment /path/to/file.ome.tiff | xmlvalid -

will perform the extraction and validation all at once.

Typical successful output is:

[~/Work/bftools]$./xmlvalid sample.ome

Parsing schema path
http://www.openmicroscopy.org/Schemas/OME/2010-06/ome.xsd
Validating sample.ome

No validation errors found.

[~/Work/bftools]$

If any errors are found they are reported. When correcting errors it is usually best to work from the top of the file as errors higher
up can cause extra errors further down. In this example the output shows 3 errors but there are only 2 mistakes in the file:

[~/Work/bftools]$./xmlvalid broken.ome

Parsing schema path

http://www.openmicroscopy.org/Schemas/OME/2010-06/ome.xsd

Validating broken.ome

cvc-complex—-type.4: Attribute ’'SizeY’ must appear on element ’'Pixels’.

cvc—enumeration-valid: Value ’'Non Zero’ is not facet-valid with respect
to enumeration ' [EvenOdd, NonZero]’. It must be a value from the enumeration.

cvc—attribute.3: The value ’'Non Zero’ of attribute 'FillRule’ on element
"ROI:Shape’ is not valid with respect to its type, 'null’.

Error validating document: 3 errors found

[~/Work/bftools]$

If the XML is found to have validation errors, the tiffcomment command can be used to overwrite the XML in the OME-TIFF
file with corrected XML. The XML can be displayed in an editor window:

tiffcomment -edit /path/to/file.ome.tiff

or the new XML can be read from a file:

tiffcomment —-set new-comment.xml /path/to/file.ome.tiff

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version'! or the previous
versions'? page to find documentation for the version you are using.

6.5 Editing XML in an OME-TIFF

To edit the XML in an OME-TIFF file you can use tiffcomment, one of the Bio-Formats tools.

To use the built in editor run:

tiffcomment -edit sample.ome.tif

To extract or view the XML run:

http://www.openmicroscopy.org/site/support/bio-formats5.0/
2http://www.openmicroscopy.org/site/support/legacy/

6.5. Editing XML in an OME-TIFF 50

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

tiffcomment sample.ome.tif

To inject replacement XML into a file run:

tiffcomment -set ’'newmetadata.xml’ sample.ome.tif

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version'?® or the previous

versions'* page to find documentation for the version you are using.

6.6 List formats by domain

Each supported file format has one or more imaging domains associated with it. To print the list of formats associated with each
imaging domain:

domainlist

The command does not accept any arguments. The known image domains are defined by:
+ ASTRONOMY_DOMAIN"
« EM_DOMAIN'¢
« FLIM_DOMAIN!’

+ GEL_DOMAIN'8

+ GRAPHICS_DOMAIN"
» HCS_DOMAIN?

+ HISTOLOGY_DOMAIN?!
« LM_DOMAIN?

* MEDICAL_DOMAIN?

« SEM_DOMAIN?**

+ SPM_DOMAIN?%

* UNKNOWN_DOMAIN?¢

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®’ or the previous
versions”® page to find documentation for the version you are using.

Bhttp://www.openmicroscopy.org/site/support/bio-formats5.0/

4http://www.openmicroscopy.org/site/support/legacy/

I5http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/FormatTools. htmI#ASTRONOMY_DOMAIN
16http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/Format Tools.htmI#EM_DOMAIN
17http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/FormatTools. htm#FLIM_DOMAIN
8http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/FormatTools. htmI#GEL_DOMAIN
19http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FormatTools. htmI#GRAPHICS_DOMAIN
2Ohttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/FormatTools.html#HCS_DOMAIN

21 http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/FormatTools.htmI#HISTOLOGY_DOMAIN
22http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/FormatTools.html#LM_DOMAIN
Z3http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/FormatTools.htmI#MEDICAL_DOMAIN
24http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/FormatTools.htmI#SEM_DOMAIN
2Shttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/FormatTools.html#SPM_DOMAIN
26http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/FormatTools.htmI#UNKNOWN_DOMAIN
2Thttp://www.openmicroscopy.org/site/support/bio-formats5.0/

28 http://www.openmicroscopy.org/site/support/legacy/

6.6. List formats by domain 51

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FormatTools.html#ASTRONOMY_DOMAIN
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FormatTools.html#EM_DOMAIN
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FormatTools.html#FLIM_DOMAIN
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FormatTools.html#GEL_DOMAIN
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FormatTools.html#GRAPHICS_DOMAIN
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FormatTools.html#HCS_DOMAIN
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FormatTools.html#HISTOLOGY_DOMAIN
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FormatTools.html#LM_DOMAIN
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FormatTools.html#MEDICAL_DOMAIN
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FormatTools.html#SEM_DOMAIN
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FormatTools.html#SPM_DOMAIN
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FormatTools.html#UNKNOWN_DOMAIN
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

6.7 List supported file formats

A detailed list of supported formats can be displayed using the formatlist command.

The default behavior is to print a plain-text list of formats:

formatlist

-txt
Prints the list of formats as plain-text:

formatlist -txt

-html
Prints the list of formats as HTML.:

formatlist -html

—-xml
Prints the list of formats as XML:

formatlist —-xml

-help
Displays the usage information:

formatlist -—help

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®” or the previous
versions’ page to find documentation for the version you are using.

6.8 Display file in ImagedJ

Files can be displayed from the command line in ImageJ. The Bio-Formats importer plugin for ImageJ is used to open the file.

The command takes a single argument:

ijview /file/to/open

If the input file is not specified, ImageJ will show a file chooser window.
The Bio-Formats import options window will then appear, after which the image(s) will be displayed.

If the BF_DEVEL environment variable is set, the ImageJ jar <jars/ij.jar> mustbe included in the classpath.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®' or the previous
versions®” page to find documentation for the version you are using.

2http://www.openmicroscopy.org/site/support/bio-formats5.0/
30http://www.openmicroscopy.org/site/support/legacy/
31http://www.openmicroscopy.org/site/support/bio-formats5.0/
3 http://www.openmicroscopy.org/site/support/legacy/

6.7. List supported file formats 52

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

6.9 Format XML data

The xmlindent command formats and adds indenting to XML so that it is easier to read. Indenting is currently set to 3 spaces.

If an XML file name is not specified, the XML to indent will be read from standard output. Otherwise, one or more file names
can be specified:

xmlindent /path/to/xml
xmlindent /path/to/first-xml /path/to/second-xml

The formatted XML from each file will be printed in the order in which the files were specified.

By default, extra whitespace may be added to CDATA elements. To preserve the contents of CDATA elements:

xmlindent -valid /path/to/xml

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®® or the previous
versions** page to find documentation for the version you are using.

6.10 Create a high-content screen for testing

The mkfake command creates a high-content screen for testing. The image data will be meaningless, but it allows testing of
screen, plate, and well metadata without having to find appropriately-sized screens from real acquisitions.

If no arguments are specified, mkfake prints usage information.

To create a single screen with default plate dimensions:

mkfake default-screen.fake

This will create a directory that represents one screen with a single plate containing one well, one field, and one acquisition of the
plate (see PlateAcquisition™).

-plates PLATES
To change the number of plates in the screen:

mkfake -plates 3 three-plates.fake

—runs RUNS
To change the number of acquisitions for each plate:

mkfake —-runs 4 four-plate—-acquisitions.fake

—rows ROWS
To change the number of rows of wells in each plate:

mkfake —-rows 8 eight-row-plate.fake

—columns COLUMNS
To change the number of columns of wells in each plate:

3 http://www.openmicroscopy.org/site/support/bio-formats5.0/
34http://www.openmicroscopy.org/site/support/legacy/
35http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2015-01/SPW _xsd.html#Plate Acquisition_ID

6.9. Format XML data 53

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2015-01/SPW_xsd.html#PlateAcquisition_ID

Bio-Formats Documentation, Release 5.1.3

mkfake —-columns 12 twelve-column-plate.fake

—fields FIELDS
To change the number of fields per well:

mkfake —-fields 2 two-field-plate.fake

It is often most useful to use the arguments together to create a realistic screen, for example:

mkfake -rows 16 —-columns 24 -plates 2 -fields 3 two-384-well-plates.fake

—-debug DEBUG
As with other command line tools, debugging output can be enabled if necessary:

mkfake —-debug debug-screen.fake

6.10. Create a high-content screen for testing

54

CHAPTER
SEVEN

OMERO

OMERO 5 uses Bio-Formats to read original files from over 140 file formats. Please refer to the OMERO documentation' for
further information.

Remote Clients
Lab & Facility
' o E
1-100 CB/day “

£ BIO-FORMATS **OMERO

.server

Rendering Service

Repositories

Thttp://www.openmicroscopy.org/site/support/omero5.1/

55

http://www.openmicroscopy.org/site/support/omero5.1/

CHAPTER
EIGHT

IMAGE SERVER APPLICATIONS

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version' or the previous
versions” page to find documentation for the version you are using.

8.1 BISQUE

The BISQUE? (Bio-Image Semantic Query User Environment) Database, developed at the Center for Bio-Image Informatics at
UCSB, was developed for the exchange and exploration of biological images. The Bisque system supports several areas useful
for imaging researchers from image capture to image analysis and querying. The bisque system is centered around a database of
images and metadata. Search and comparison of datasets by image data and content is supported. Novel semantic analyses are
integrated into the system allowing high level semantic queries and comparison of image content.

Bisque integrates with Bio-Formats by calling the showinf command line tool.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version* or the previous
versions® page to find documentation for the version you are using.

8.2 OME Server

OME? is a set of software that interacts with a database to manage images, image metadata, image analysis and analysis results.
The OME system is capable of leveraging Bio-Formats to import files.

Please note - the OME server is no longer maintained and has now been superseded by the OMERO server’. Support for the
OME server has been entirely removed in the 5.0.0 version of Bio-Formats; the following instructions can still be used with the
4.4.x versions.

8.2.1 Installation

For OME Perl v2.6.1% and later, the command line installer automatically downloads the latest loci_tools.jar and places it in the
proper location. This location is configurable, but is /OME/java/loci_tools.jar by default.

For a list of what was recognized for a particular import into the OME server, go to the Image details page in the web interface,
and click the “Image import” link in the upper right hand box.

Bio-Formats is capable of parsing original metadata for supported formats, and standardizes what it can into the OME data model.
For the rest, it expresses the metadata in OME terms as key/value pairs using an OriginalMetadata custom semantic type. However,
this latter method of metadata representation is of limited utility, as it is not a full conversion into the OME data model.

Thttp://www.openmicroscopy.org/site/support/bio-formats5.0/
Zhttp://www.openmicroscopy.org/site/support/legacy/
3http://www.bioimage.ucsb.edu/bisque
“http://www.openmicroscopy.org/site/support/bio-formats5.0/
Shttp://www.openmicroscopy.org/site/support/legacy/
Shttp://openmicroscopy.org/site/support/legacy/ome-server
7http://www.openmicroscopy.org/site/support/omero5.1/
8http://downloads.openmicroscopy.org/ome/2.6.1/

56

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.bioimage.ucsb.edu/bisque
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://openmicroscopy.org/site/support/legacy/ome-server
http://www.openmicroscopy.org/site/support/omero5.1/
http://downloads.openmicroscopy.org/ome/2.6.1/

Bio-Formats Documentation, Release 5.1.3

Bio-Formats is enabled in OME v2.6.1 for all formats except:
¢ OME-TIFF
* Metamorph HTD
¢ Deltavision DV
* Metamorph STK
¢ Bio-Rad PIC
» Zeiss LSM
¢ TIFF
« BMP
* DICOM
e OME-XML

The above formats have their own Perl importers that override Bio-Formats, meaning that Bio-Formats is not used to process
them by default. However, you can override this behavior (except for Metamorph HTD, which Bio-Formats does not support) by
editing an OME database configuration value:

[

% psgl ome

To see the current file format reader list:

ome=# select value from configuration where name=’'import_formats’;

value
["OME: :ImportEngine: :OMETIFFreader’, 'OME: : ImportEngine: :MetamorphHTDFormat’,
"OME: : ImportEngine: :DVreader’, 'OME: : ImportEngine: :STKreader’,
"OME: : ImportEngine: :BioradReader’, 'OME: : ImportEngine: :LSMreader’,
"OME: : ImportEngine: :TIFFreader’, 'OME: : ImportEngine: :BMPreader’,
"OME: : ImportEngine: :DICOMreader’, 'OME: : ImportEngine: : XMLreader’,
"OME: : ImportEngine: :BioFormats’]

(1 row)

To remove extraneous readers from the list:

ome=# update configuration set value=’[\'OME::ImportEngine: :MetamorphHTDFormat\’,
\’OME: : ImportEngine: :XMLreader\’, \'OME: : ImportEngine: :BioFormats\’]’ where
name='import_formats’;
UPDATE 1
ome=# select value from configuration where name=’import_formats’;

value
['OME: : ImportEngine: :MetamorphHTDFormat’, 'OME: : ImportEngine: : XMLreader’,
"OME: : ImportEngine: :BioFormats’]

(1 row)

To reset things back to how they were:

ome=# update configuration set value=’'[\'OME::ImportEngine: :OMETIFFreader\’,
\/OME: : ImportEngine: :MetamorphHTDFormat\’, \'OME: : ImportEngine: :DVreader\’,
\'OME: : ImportEngine: : STKreader\’, \'OME: : ImportEngine: :BioradReader\’,
\'OME: : ImportEngine: : LSMreader\’, \'OME: : ImportEngine: : TIFFreader\’,

\/OME: : ImportEngine: :BMPreader\’, \'OME: : ImportEngine: :DICOMreader\’,

\'OME: : ImportEngine: : XMLreader\’, \'OME: : ImportEngine: :BioFormats\’]’ where
name='1import_formats’;

8.2. OME Server 57

Bio-Formats Documentation, Release 5.1.3

Lastly, please note that Li-Cor L2D files cannot be imported into an OME server (see this Trac ticket” for details). Since the OME
perl server has been discontinued, we have no plans to fix this limitation.

8.2.2 Upgrading

You can upgrade your OME server installation to take advantage of a new Bio-Formats release'”

loci_tools.jar with the new one.

by overwriting the old

8.2.3 Source Code

The source code for the Bio-Formats integration with OME server spans three languages, using piped system calls in both direc-
tions to communicate, with imported pixels written to OMEIS pixels files. The relevant source files are:

» OmeisImporter.java'! — omebf Java command line tool
* BioFormats.pm'? — Perl module for OME Bio-Formats importer

+ omeis.c'® — OMEIS C functions for Bio-Formats (search for “bioformats” case insensitively to find relevant sections)

9http://dev.loci.wisc.edu/trac/software/ticket/266

10nttp://downloads.openmicroscopy.org/latest/bio-formats5.1/
http://github.com/openmicroscopy/bioformats/tree/v4.4.10/components/scifio/src/loci/formats/ome/OmeisImporter.java
Zhttp://downloads.openmicroscopy.org/ome/code/BioFormats.pm
Bhttp://downloads.openmicroscopy.org/ome/code/omeis.c

8.2. OME Server 58

http://dev.loci.wisc.edu/trac/software/ticket/266
http://downloads.openmicroscopy.org/latest/bio-formats5.1/
http://github.com/openmicroscopy/bioformats/tree/v4.4.10/components/scifio/src/loci/formats/ome/OmeisImporter.java
http://downloads.openmicroscopy.org/ome/code/BioFormats.pm
http://downloads.openmicroscopy.org/ome/code/omeis.c

CHAPTER
NINE

LIBRARIES AND SCRIPTING APPLICATIONS

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version' or the previous
versions” page to find documentation for the version you are using.

9.1 FARSIGHT

FARSIGHT? is a collection of modules for image analysis created by LOCI’s collaborators at the University of Houston®. These
open source modules are built on the /7K library and thus can take advantage of ITK’s support for Bio-Formats to process
otherwise unsupported image formats.

The principal FARSIGHT module that benefits from Bio-Formats is the Nucleus Editor®, though in principle any FARSIGHT-
based code that reads image formats via the standard ITK mechanism will be able to leverage Bio-Formats.

See also:
FARSIGHT Downloads page®
FARSIGHT HowToBuild tutorial’

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions’ page to find documentation for the version you are using.

9.2 i3dcore

i3dcore'?, also known as the CBIA 3D image representation library, is a 3D image processing library developed at the Centre
for Biomedical Image Analysis'!. Together with i3dalgo'? and i4dcore'?, i3dcore forms a continuously developed templated
cross-platform C++ suite of libraries for multidimensional image processing and analysis.

i3dcore is capable of reading images with Bio-Formats using Java for C++'* (javadcpp).
See also:

Download i3dcore!?

Thttp://www.openmicroscopy.org/site/support/bio-formats5.0/
Zhttp://www.openmicroscopy.org/site/support/legacy/
3http://www.farsight-toolkit.org/

“http://www.uh.edu/
Shttp://www.farsight-toolkit.org/wiki/NucleusEditor
Ohttp://www.farsight-toolkit.org/wiki/Special:FarsightDownloads
Thttp://www.farsight-toolkit.org/wiki/FARSIGHT_HowToBuild
8http://www.openmicroscopy.org/site/support/bio-formats5.0/
9http://www.openmicroscopy.org/site/support/legacy/
10http://cbia.ﬁ .muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html
http://cbia.fi.muni.cz/software-development.html
12http://cbia.ﬁ.muni.cz/useridirs/i3dlib7d0c/i3dalgo/index.html
13http://(:bia.ﬁ.muni.cz/user_dirs/of_doc/libi4d.html
4http://javadcpp kapott.org/
15http://(:bia.ﬁ.muni.(:z/user_dirs/i3dlib_doc/i3dcore/index.html#download

59

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.farsight-toolkit.org/
http://www.uh.edu/
http://www.farsight-toolkit.org/wiki/NucleusEditor
http://www.farsight-toolkit.org/wiki/Special:FarsightDownloads
http://www.farsight-toolkit.org/wiki/FARSIGHT_HowToBuild
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html
http://cbia.fi.muni.cz/software-development.html
http://cbia.fi.muni.cz/software-development.html
http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dalgo/index.html
http://cbia.fi.muni.cz/user_dirs/of_doc/libi4d.html
http://java4cpp.kapott.org/
http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html#download

Bio-Formats Documentation, Release 5.1.3

CBIA Software Development!'®

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version!” or the previous
versions'® page to find documentation for the version you are using.

9.3 ImgLib

ImgLib2'? is a multidimensional image processing library. It provides a general mechanism for writing image analysis algorithms,
without writing case logic for bit depth?’, or worrying about the source of the pixel data (arrays in memory, files on disk, etc.).

The SCIFIO?! project provides an ImgOpener’” utility class for reading data into ImgLib2 data structures using Bio-Formats.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®® or the previous
versions®* page to find documentation for the version you are using.

9.4 ITK

The Insight Toolkit>> (ITK) is an open-source, cross-platform system that provides developers with an extensive suite of software
tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for
registering and segmenting multidimensional data.

ITK provides an ImagelO plug-in structure that works via discovery through a dependency injection scheme. This allows a
program built on ITK to load plug-ins for reading and writing different image types without actually linking to the ImagelO
libraries required for those types. Such encapsulation automatically grants two major boons: firstly, programs can be easily
extended just by virtue of using ITK (developers do not have to specifically accommodate or anticipate what plug-ins may be
used). Secondly, the architecture provides a distribution method for open source software, like Bio-Formats, which have licenses
that might otherwise exclude them from being used with other software suites.

The SCIFIO ImagelO?° plugin provides an ITK imagelO base that uses Bio-Formats to read and write supported life sciences file
formats. This plugin allows any program built on ITK to read any of the image types supported by Bio-Formats.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®’ or the previous
versions”® page to find documentation for the version you are using.

9.5 Qu for MATLAB

Qu for MATLAB?’ is a MATLAB toolbox for the visualization and analysis of N-dimensional datasets targeted to the field of
biomedical imaging, developed by Aaron Ponti.

¢ Uses Bio-Formats to read files

* Open source software available under the Mozilla Public License

16http://cbia.fi.muni.cz/software-development.html
Thttp://www.openmicroscopy.org/site/support/bio-formats5.0/
18http://www.openmicroscopy.org/site/support/legacy/

http://imglib2.net/

2Ohttp://en.wikipedia.org/wiki/Color_depth

21 http://scif.io/
22pttps://github.com/scifio/scifio/blob/master/src/main/java/io/scif/img/ImgOpener.java
Zhttp://www.openmicroscopy.org/site/support/bio-formats5.0/
24http://www.openmicroscopy.org/site/support/legacy/

ZShttp://itk.org/

26https://github.com/scifio/scifio-imageio
2Thttp://www.openmicroscopy.org/site/support/bio-formats5.0/

28 http://www.openmicroscopy.org/site/support/legacy/
2http://www.scs2.net/home/index.php?option=com_content&view=article&id=46%3 Aqu-for-matlab&catid=34%3 Aqué&Itemid=55

9.3. ImgLib 60

http://cbia.fi.muni.cz/software-development.html
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://imglib2.net/
http://en.wikipedia.org/wiki/Color_depth
http://scif.io/
https://github.com/scifio/scifio/blob/master/src/main/java/io/scif/img/ImgOpener.java
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://itk.org/
https://github.com/scifio/scifio-imageio
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.scs2.net/home/index.php?option=com_content&view=article&id=46%3Aqu-for-matlab&catid=34%3Aqu&Itemid=55

Bio-Formats Documentation, Release 5.1.3

See also:

Qu for MATLAB download page®®

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version’! or the previous

versions? page to find documentation for the version you are using.

9.6 Subimager

Subimager®, the SUBprocess IMAGE servER, is an HTTP server that uses Bio-Formats as a back-end to serve .TIF images.

Subimager is designed to be run as a subprocess of CellProfiler to provide CellProfiler with the capability to read and write a
variety of image formats. It can be used as a stand-alone image server. It was developed by the Broad Institute®* to facilitate
integration with their CellProfiler’ image analysis application.

30http://www.scs2.net/home/index php?option=com_content&view=article&id=46%3 Aqu-for-matlab&catid=34%3 Aqué&Itemid=55&limitstart=3
31http://www.openmicroscopy.org/site/support/bio-formats5.0/

3 http://www.openmicroscopy.org/site/support/legacy/

3https://github.com/CellProfiler/subimager

34http://www.broadinstitute.org/

3Shttp://www.cellprofiler.org/

9.6. Subimager 61

http://www.scs2.net/home/index.php?option=com_content&view=article&id=46%3Aqu-for-matlab&catid=34%3Aqu&Itemid=55&limitstart=3
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
https://github.com/CellProfiler/subimager
http://www.broadinstitute.org/
http://www.cellprofiler.org/

CHAPTER
TEN

NUMERICAL DATA PROCESSING APPLICATIONS

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version' or the previous
versions” page to find documentation for the version you are using.

10.1 IDL

IDL? (Interactive Data Language) is a popular data visualization and analysis platform used for interactive processing of large
amounts of data including images.

IDL possesses the ability to interact with Java applications via its IDL-Java bridge. Karsten Rodenacker has written a script that
uses Bio-Formats to read in image files to IDL.

10.1.1 Installation

Download the ij_read_bio_formats.pro* script from Karsten Rodenacker’s IDL goodies (?)° web site. See the comments at the
top of the script for installation instructions and caveats.

10.1.2 Upgrading

To use a newer version of Bio-Formats, overwrite the requisite JAR files with the newer version® and restart IDL.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version’ or the previous
versions® page to find documentation for the version you are using.

10.2 KNIME

KNIME’ (Konstanz Information Miner) is a user-friendly and comprehensive open-source data integration, processing, analysis,
and exploration platform. KNIME supports image import using Bio-Formats using the KNIME Image Processing'’ (a.k.a. KNIP)
plugin.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version'! or the previous
versions'? page to find documentation for the version you are using.

Thttp://www.openmicroscopy.org/site/support/bio-formats5.0/
2http://www.openmicroscopy.org/site/support/legacy/
3http://www.exelisvis.com/ProductsServices/IDL.aspx
“http://karo03.bplaced.net/karo/IDL/_pro/ij_read_bio_formats.pro
Shttp://karo03.bplaced.net/karo/ro_embed.php?file=IDL/index.html
Shttp://downloads.openmicroscopy.org/latest/bio-formats5.1/
7http://www.openmicroscopy.org/site/support/bio-formats5.0/
8http://www.openmicroscopy.org/site/support/legacy/
http://www.knime.org/
10http://tech knime.org/community/image-processing
http://www.openmicroscopy.org/site/support/bio-formats5.0/
2http://www.openmicroscopy.org/site/support/legacy/

62

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.exelisvis.com/ProductsServices/IDL.aspx
http://karo03.bplaced.net/karo/IDL/_pro/ij_read_bio_formats.pro
http://karo03.bplaced.net/karo/ro_embed.php?file=IDL/index.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.knime.org/
http://tech.knime.org/community/image-processing
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

10.3 MATLAB

MATLAB'" is a high-level language and interactive environment that facilitates rapid development of algorithms for performing
computationally intensive tasks.

Calling Bio-Formats from MATLAB is fairly straightforward, since MATLAB has built-in interoperability with Java. We have
created a set of scripts'* for reading image files. Note the minimum supported MATLAB version is R2007b (7.5).

10.3.1 Installation

Download the MATLAB toolbox from the Bio-Formats downloads page'’. Unzip bfmatlab. zip and add the unzipped bf-
mat lab folder to your MATLAB path.

Note: As of Bio-Formats 5.0.0, this zip now contains the bundled jar and you no longer need to download 1oci_tools. jar
or the new bioformats_package. jar separately.

10.3.2 Usage

Please see Using Bio-Formats in MATLAB for usage instructions. If you intend to extend the existing .m files, please also see the
developer page for more information on how to use Bio-Formats in general.

10.3.3 Performance

In our tests (MATLAB R14 vs. java 1.6.0_20), the script executes at approximately half the speed of our showinf command line
tool, due to overhead from copying arrays.

10.3.4 Upgrading

To use a newer version of Bio-Formats, overwrite the content of the bfmat 1ab folder with the newer version'® of the toolbox
and restart MATLAB.

10.3.5 Alternative scripts

Several other groups have developed their own MATLAB scripts that use Bio-Formats, including the following:
¢ https://github.com/prakatmac/bf-tools/

« imread for multiple life science image file formats'’

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version'® or the previous
versions'? page to find documentation for the version you are using.

Bhttp://www.mathworks.com/products/matlab/
4https://github.com/openmicroscopy/bioformats/tree/develop/components/formats-gpl/matlab
Shttp://downloads.openmicroscopy.org/latest/bio-formats5.1/
16http://downloads.openmicroscopy.org/latest/bio-formats5.1/
Thttp://www.mathworks.com/matlabcentral/fileexchange/32920-imread-for-multiple-life-science-image-file-formats
8http://www.openmicroscopy.org/site/support/bio-formats5.0/
9http://www.openmicroscopy.org/site/support/legacy/

10.3. MATLAB 63

http://www.mathworks.com/products/matlab/
https://github.com/openmicroscopy/bioformats/tree/develop/components/formats-gpl/matlab
http://downloads.openmicroscopy.org/latest/bio-formats5.1/
http://downloads.openmicroscopy.org/latest/bio-formats5.1/
https://github.com/prakatmac/bf-tools/
http://www.mathworks.com/matlabcentral/fileexchange/32920-imread-for-multiple-life-science-image-file-formats
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

10.4 VisAD

The VisAD? visualization toolkit is a Java component library for interactive and collaborative visualization and analysis of
numerical data. VisAD uses Bio-Formats to read many image formats, notably TIFF.

10.4.1 Installation

The visad.jar file has Bio-Formats bundled inside, so no further installation is necessary.

10.4.2 Upgrading

It should be possible to use a newer version of Bio-Formats by putting the latest bioformats_package.jar’' or formats-gpl.jar’>
before visad.jar in the class path. Alternately, you can create a “VisAD Lite” using the make 1lite command from VisAD
source, and use the resultant visad-lite.jar, which is a stripped down version of VisAD without sample applications or Bio-Formats
bundled in.

http://www.ssec.wisc.edu/%TEbillh/visad.html
21 http://downloads.openmicroscopy.org/latest/bio-formats3. 1 /artifacts/bioformats_package.jar
22http://downloads.openmicroscopy.org/latest/bio-formats5. 1 /artifacts/formats-gpl jar

10.4. VisAD 64

http://www.ssec.wisc.edu/%7Ebillh/visad.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/artifacts/bioformats_package.jar
http://downloads.openmicroscopy.org/latest/bio-formats5.1/artifacts/formats-gpl.jar

CHAPTER
ELEVEN

VISUALIZATION AND ANALYSIS APPLICATIONS

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version' or the previous
versions” page to find documentation for the version you are using.

11.1 Bitplane Imaris

Imaris® is Bitplane’s core scientific software module that delivers all the necessary functionality for data visualization, analysis,
segmentation and interpretation of 3D and 4D microscopy datasets. Combining speed, precision and ease-of-use, Imaris provides
a complete set of features for working with three- and four-dimensional multi-channel images of any size, from a few megabytes
to multiple gigabytes in size.

As of version 7.2%, Imaris integrates with Fiji overview, which includes Bio-Formats. See this page’ for a detailed list of Imaris’
features.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions’ page to find documentation for the version you are using.

11.2 CellProfiler

CellProfiler®—developed by the Broad Institute Imaging Platform’—is free open-source software designed to enable biologists
without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automati-
cally. CellProfiler uses Bio-Formats to read images from disk, as well as write movies.

11.2.1 Installation

The CellProfiler distribution comes with Bio-Formats included, so no further installation is necessary.

11.2.2 Upgrading

It should be possible to use a newer version of Bio-Formats by replacing the bundled loci_tools.jar with a newer version.

* For example, on Mac OS X, Ctrl+click the CellProfiler icon, choose Show Package Contents, and replace the following
files:

— Contents/Resources/bioformats/loci_tools. jar

Thttp://www.openmicroscopy.org/site/support/bio-formats5.0/
Zhttp://www.openmicroscopy.org/site/support/legacy/

3http://www.bitplane.com/

“http://www.bitplane.com/releasenotes.aspx ?product=Imaris&version=7.2&patch=0
Shttp://www.bitplane.com/imaris/imaris
Shttp://www.openmicroscopy.org/site/support/bio-formats5.0/
7http://www.openmicroscopy.org/site/support/legacy/

8http://www.cellprofiler.org
%http://www.broadinstitute.org/science/platforms/imaging/imaging-platform

65

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.bitplane.com/
http://www.bitplane.com/releasenotes.aspx?product=Imaris&version=7.2&patch=0
http://www.bitplane.com/imaris/imaris
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.cellprofiler.org
http://www.broadinstitute.org/science/platforms/imaging/imaging-platform

Bio-Formats Documentation, Release 5.1.3

— Contents/Resources/lib/python2.5/bioformats/loci_tools. jar
See also:
CellProfiler'® Website of the CellProfiler software

Using Bio-Formats in Python Section of the developer documentation describing the Python wrapper for Bio-Formats used by
CellProfiler

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version'! or the previous
versions'? page to find documentation for the version you are using.

11.3 Comstat2

Comstat2 is a Java-based computer program for the analysis and treatment of biofilm images in 3D. It is the Master’s project of
Martin Vorregaard'3.

Comstat2 uses the Bio-Formats Importer plugin for ImageJ to read files in TIFF and Leica LIF formats.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version'* or the previous
versions'® page to find documentation for the version you are using.

11.4 Endrov

Endrov'® (or http://www.endrov.net) (EV) is a multi-purpose image analysis program developed by the Thomas Burglin group'”
at Karolinska Institute'®, Department of Biosciences and Nutrition.

11.4.1 Installation

The EV distribution comes bundled with the core Bio-Formats library (bio-formats.jar), so no further installation is necessary.

11.4.2 Upgrading

It should be possible to use a newer version of Bio-Formats by downloading the latest formats-gpl.jar'® and putting it into the
1ibs folder of the EV distribution, overwriting the old file.

You could also include some optional libraries, to add support for additional formats, if desired.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version’” or the previous
versions”! page to find documentation for the version you are using.

http://www.openmicroscopy.org/site/support/bio-formats5.0/
Zhttp://www.openmicroscopy.org/site/support/legacy/
Bhttp://www.comstat.dk/
4http://www.openmicroscopy.org/site/support/bio-formats5.0/
Bhttp://www.openmicroscopy.org/site/support/legacy/
16https://github.com/mahogny/Endrov

Thttp://www.biosci ki.se/groups/tbu

Bhttp://www.ki.se/
19http://downloads.openmicroscopy.org/latest/bio-formats3. 1/artifacts/formats-gpl.jar
20http://www.openmicroscopy.org/site/support/bio-formats5.0/
21 http://www.openmicroscopy.org/site/support/legacy/

11.3. Comstat2 66

http://www.cellprofiler.org
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.comstat.dk/
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
https://github.com/mahogny/Endrov
http://www.endrov.net
http://www.biosci.ki.se/groups/tbu
http://www.ki.se/
http://downloads.openmicroscopy.org/latest/bio-formats5.1/artifacts/formats-gpl.jar
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

11.5 FocalPoint

FocalPoint* is an image browser, similar to Windows Explorer?® or other file manager’* application, specifically designed to
work with more complex image types. FocalPoint uses Bio-Formats to generate thumbnails for some formats.

11.5.1 Installation

FocalPoint is bundled with Bio-Formats, so no further installation is necessary.

11.5.2 Upgrading

It should be possible to use a newer version of Bio-Formats® by overwriting the old loci_tools.jar within the FocalPoint distribu-
tion. For Mac OS X, you will have to control click the FocalPoint program icon, choose “Show Package Contents” and navigate
into Contents/Resources/Java to find the loci_tools.jar file.

26

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version=® or the previous

. 2 . . .
versions®’ page to find documentation for the version you are using.

11.6 Graphic Converter

Graphic Converter®® is a Mac OS application for opening, editing, and organizing photos. Versions 6.4.1 and later use Bio-Formats
to open all file formats supported by Bio-Formats.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions®” page to find documentation for the version you are using.

11.7 ley

Icy?! is an open-source image analysis and visualization software package that combines a user-friendly graphical interface with
the ability to write scripts and plugins that can be uploaded to a centralized website. It uses Bio-Formats internally to read images
and acquisition metadata, so no further installation is necessary.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®” or the previous

versions®® page to find documentation for the version you are using.

11.8 imago

Mayachitra imago* is an advanced desktop image management package that enables scientists to easily store, manage, search,
and analyze 5D biological images and their analysis results. imago integrates flexible annotation and metadata management with
advanced image analysis tools.

22http://www.bioinformatics.bbsrc.ac.uk/projects/focalpoint/
Zhttp://en.wikipedia.org/wiki/Windows_Explorer
24http://en.wikipedia.org/wiki/File_manager
ZShttp://downloads.openmicroscopy.org/latest/bio-formats5.1/
26http://www.openmicroscopy.org/site/support/bio-formats5.0/
2Thttp://www.openmicroscopy.org/site/support/legacy/
Z8http://www.lemkesoft.com
2http://www.openmicroscopy.org/site/support/bio-formats5.0/
30http://www.openmicroscopy.org/site/support/legacy/
31http://icy.bioimageanalysis.org/

3 http://www.openmicroscopy.org/site/support/bio-formats5.0/
3 http://www.openmicroscopy.org/site/support/legacy/
3*http://mayachitra.com/imago/index.html

11.5. FocalPoint 67

http://www.bioinformatics.bbsrc.ac.uk/projects/focalpoint/
http://en.wikipedia.org/wiki/Windows_Explorer
http://en.wikipedia.org/wiki/File_manager
http://downloads.openmicroscopy.org/latest/bio-formats5.1/
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.lemkesoft.com
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://icy.bioimageanalysis.org/
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://mayachitra.com/imago/index.html

Bio-Formats Documentation, Release 5.1.3

imago uses Bio-Formats to read files in some formats, including Bio-Rad PIC, Image-Pro Workspace, Metamorph TIFF, Leica
LCS LEI, Olympus FluoView FV1000, Nikon NIS-Elements ND2, and Zeiss LSM.

A free 30-day trial version of imago is available here™.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions®’ page to find documentation for the version you are using.

11.9 Igm

Iqm™® is an image processing application written in Java. It is mainly constructed around the Java JAI library and furthermore it
incorporates the functionality of the popular ImageJ image processing software.

Because iqm integrates with ImageJ, it can take advantage of the Bio-Formats ImageJ plugin to read image data.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions*’ page to find documentation for the version you are using.

11.10 Macnification

Macnification*! is a Mac OS X application for organizing, editing, analyzing and annotating microscopic images, designed for
ease of use. It is being developed by Orbicule*?.

Macnification uses Bio-Formats to read files in some formats, including Gatan DM3, ICS, ImagePro SEQ, ImagePro IPW, Meta-
morph STK, OME-TIFF and Zeiss LSM.

See also:

Free trial download®?

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version** or the previous
versions* page to find documentation for the version you are using.

11.11 MIPAV

The MIPAV#® (Medical Image Processing, Analysis, and Visualization) application—developed at the Center for Information
Technology®” at the National Institutes of Health**—enables quantitative analysis and visualization of medical images of numerous
modalities such as PET, MRI, CT, or microscopy. You can use Bio-Formats as a plugin for MIPAV to read images in the formats
it supports.

11.11.1 Installation

Follow these steps to install the Bio-Formats plugin for MIPAV:

35http://mayachitra.com/imago/download-trial php
36http://www.openmicroscopy.org/site/support/bio-formats5.0/
3Thttp://www.openmicroscopy.org/site/support/legacy/
38http://code.google.com/p/igm/
3http://www.openmicroscopy.org/site/support/bio-formats5.0/
4Ohttp://www.openmicroscopy.org/site/support/legacy/
“http://www.orbicule.com/macnification/
“http://www.orbicule.com
“hitp://www.orbicule.com/macnification/download
“http://www.openmicroscopy.org/site/support/bio-formats5.0/
“hitp://www.openmicroscopy.org/site/support/legacy/
4Shttp://mipav.cit.nih.gov/

“Thttp://cit.nih.gov/

“Shttp://nih.gov/

11.9. Iqm 68

http://mayachitra.com/imago/download-trial.php
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://code.google.com/p/iqm/
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.orbicule.com/macnification/
http://www.orbicule.com
http://www.orbicule.com/macnification/download
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://mipav.cit.nih.gov/
http://cit.nih.gov/
http://cit.nih.gov/
http://nih.gov/

Bio-Formats Documentation, Release 5.1.3

1. Download bioformats_package.jar*’ and drop it into your MIPAV folder.

50

2. Download the plugin source code’” into your user mipav/plugins folder.

3. From the command line, compile the plugin with:
cd mipav/plugins

javac —-cp SMIPAV:S$SMIPAV/bioformats_package.jar \\
PlugInBioFormatsImporter. java

4. where $SMIPAV is the location of your MIPAV installation.
5. Add bioformats_package.jar to MIPAV’s class path:
* How to do so depends on your platform.
* E.g.,in Mac OS X, edit the mipav.app/Contents/Info.plist file.
6. Run MIPAV and a new “BioFormatsImporter - read image” menu item will appear in the Plugins > File submenu.
See the readme file’! for more information.

To upgrade, just overwrite the old bioformats_package.jar with the latest one’>. You may want to download the latest version
of MIPAV first, to take advantage of new features and bug-fixes.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions>* page to find documentation for the version you are using.

11.12 Vaa3D

Vaa3D™, developed by the Peng L.ab>® at the HHMI Janelia Farm Research Campus®’, is a handy, fast, and versatile 3D/4D/5D
Image Visualization & Analysis System for Bioimages & Surface Objects.

Vaa3D can use Bio-Formats via the Bio-Formats C++ bindings®® to read images.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions®” page to find documentation for the version you are using.

11.13 VisBio

VisBio®' is a biological visualization tool designed for easy visualization and analysis of multidimensional image data. VisBio
uses Bio-Formats to import files as the Bio-Formats library originally grew out of our efforts to continually expand the file format
support within VisBio.

11.13.1 Installation

VisBio is bundled with Bio-Formats, so no further installation is necessary.

“http://downloads.openmicroscopy.org/latest/bio-formats5. 1/artifacts/bioformats_package.jar
SOhttps://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/utils/mipav/PlugInBioFormatsImporter.java
S1https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/utils/mipav/readme. txt
52http://downloads.openmicroscopy.org/latest/bio-formats5.1/

33http://www.openmicroscopy.org/site/support/bio-formats5.0/

S4http://www.openmicroscopy.org/site/support/legacy/

SShttp://vaa3d.org

6http://penglab.janelia.org/

SThttp://www.hhmi.org/janelia/

38 http://www.farsight-toolkit.org/wiki/FARSIGHT_Tutorials/Building_Software/Bio-Formats/Building_C%2B%2B_Bindings
http://www.openmicroscopy.org/site/support/bio-formats5.0/

Ohttp://www.openmicroscopy.org/site/support/legacy/

61http://loci.wisc.edu/software/visbio

11.12. Vaa3D 69

http://downloads.openmicroscopy.org/latest/bio-formats5.1/artifacts/bioformats_package.jar
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/utils/mipav/PlugInBioFormatsImporter.java
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/utils/mipav/readme.txt
http://downloads.openmicroscopy.org/latest/bio-formats5.1/
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://vaa3d.org
http://penglab.janelia.org/
http://www.hhmi.org/janelia/
http://www.farsight-toolkit.org/wiki/FARSIGHT_Tutorials/Building_Software/Bio-Formats/Building_C%2B%2B_Bindings
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://loci.wisc.edu/software/visbio

Bio-Formats Documentation, Release 5.1.3

11.13.2 Upgrading

It should be possible to use a newer version of Bio-Formats® by overwriting the old bio-formats.jar and optional libraries within
the VisBio distribution. For Mac OS X, you’ll have to control click the VisBio program icon, choose “Show Package Contents”
and navigate into Contents/Resources/Java to find the JAR files.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions®* page to find documentation for the version you are using.

11.14 XuvTools

XuvTools® is automated 3D stitching software for biomedical image data. As of release 1.8.0, XuvTools uses Bio-Formats to
read image data.

66

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®® or the previous

versions®’ page to find documentation for the version you are using.

2http://downloads.openmicroscopy.org/latest/bio-formats5.1/
3 http://www.openmicroscopy.org/site/support/bio-formats5.0/
%http://www.openmicroscopy.org/site/support/legacy/
Shttp://www.xuvtools.org
6http://www.openmicroscopy.org/site/support/bio-formats5.0/
©7http://www.openmicroscopy.org/site/support/legacy/

11.14. XuvTools 70

http://downloads.openmicroscopy.org/latest/bio-formats5.1/
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.xuvtools.org
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Part 111

Developer Documentation

71

Bio-Formats Documentation, Release 5.1.3

The following sections describe various things that are useful to know when working with Bio-Formats. It is recommended that

you obtain the Bio-Formats source by following the directions in the Source code section. Referring to the Javadocs®® as you read

over these pages should help, as the notes will make more sense when you see the APIL.
For a complete list of supported formats, see the Bio-Formats supported formats table.

For a few working examples of how to use Bio-Formats, see these Github pages®.

%8http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/
% https://github.com/openmicroscopy/bioformats/tree/develop/components/formats-gpl/utils

72

http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/
https://github.com/openmicroscopy/bioformats/tree/develop/components/formats-gpl/utils

CHAPTER
TWELVE

INTRODUCTION TO BIO-FORMATS

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version' or the previous
versions” page to find documentation for the version you are using.

12.1 Overview for developers

From the rest of the Bio-Formats developer documentation one may piece together a correct and useful understanding of what
Bio-Formats does and how it does it. This section gives a high-level tour of these technical details, for those new to working on
Bio-Formats itself, making it easier to understand how the information from the other sections fits into the big picture.

12.1.1 Terms and concepts

Bio-Formats can read image data from files for many formats, and can write image data to files for some formats. An image may
have many two-dimensional “planes” of pixel intensity values. Each pixel on a plane is identified by its x, y values. Planes within
an image may be identified by various dimensions including z (third spatial dimension), ¢ (channel, e.g. wavelength) or # (time).
Planes may be divided into tiles, which are rectangular subsections of a plane; this is helpful in handling very large planes. A file
(or set of related files) on disk may contain multiple images: each image is identified by a unique series number.

An image is more than a set of planes: it also has metadata. Bio-Formats distinguishes core metadata, such as the x, y, z, c, t
dimensions of the image, from format-specific original metadata, e.g. information about the microscope and its settings, which
is represented as a dictionary of values indexed by unique keys. Metadata apply to the image data as a whole, or separately to
specific series within it.

Bio-Formats is able to translate the above metadata into a further form, OME metadata. The translation may be partial or in-
complete, but remains very useful for allowing the metadata of images from different file formats to be used and compared in a
common format defined by the OME data model.

12.1.2 Implementation

Bio-Formats is primarily a Java project. It can be used from MATLAB, and there are C++ bindings and an ongoing C++ imple-
mentation effort. The source code is available for download and sometimes the user community contributes code back into Bio-
Formats by opening a pull request on GitHub. Bio-Formats is built from source with Ant or Maven and some of the Bio-Formats
source code is generated from other files during the build process. The resulting JARs corresponding to official Bio-Formats
releases are available for download.

Readers and writers for different image file formats are implemented in separate Java classes. Readers for related formats may
reflect that relationship in the Java class hierarchy. Simple standalone command-line tools are provided with Bio-Formats, but it
is more commonly used as a third-party library by other applications. Various examples show how one may use Bio-Formats in
different ways in writing a new application that reads or writes image data. A common pattern is to initialize a reader based on
the image data’s primary file, then query that reader for the metadata and planes of interest.

The set of readers is easily modified. The readers.txt” file lists the readers to try in determining an image file’s format, and there
are many useful classes and methods among the Bio-Formats Java code to assist in writing new readers and writers.

Thttp://www.openmicroscopy.org/site/support/bio-formats5.0/
Zhttp://www.openmicroscopy.org/site/support/legacy/
3https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/readers. txt

73

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/readers.txt

Bio-Formats Documentation, Release 5.1.3

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions® page to find documentation for the version you are using.

12.2 Obtaining and building Bio-Formats

12.2.1 Source code

The source code for this Bio-Formats release is available from the download page®. This release and the latest Bio-Formats source
code are also available from the Git repository. This may be accessed using the repository path:

git@github.com:openmicroscopy/bioformats.git

More information about Git and client downloads are available from the Git project website’. You can also browse the Bio-Formats
source on GitHub?

Note: Windows users must set git to use core .autocrlf=input to ensure that Bio-Formats uses LF rather than CRLF line
endings, otherwise the build will fail (Genshi can’t process code templates with CRLF line endings, leading to broken sources

being generated). This can be set globally in the registry when installing msysgit or by editing et c/gitconfig in the git
installation directory. Annoyingly, these settings appear to override per-user and per-repository configuration values, requiring
these to be set globally.

Lastly, you can browse the Bio-Formats Javadocs online’, or generate them yourself using the “docs” Ant target.

12.2.2 Source code structure

The Bio-Formats code is divided into several projects. Core components are located in subfolders of the components'? folder,
with some components further classified into components/forks'!" or components/stubs'?, depending on the nature of the project.
See the Component overview for more information, including associated build targets for each component.

Each project has a corresponding Maven POM file, which can be used to work with the project in your favorite IDE, or from the
command line, once you have cloned the source.

12.2.3 Building from source

Instructions for several popular options follow. In all cases, make sure that the prerequisites are installed before you begin.

If you are interested in working on the Bio-Formats source code itself, you can load it into your favorite IDE, or develop with your
favorite text editor.

Prerequisites

In addition to the Bio-Formats source code, the following programs and packages are also required:
* Python 2'3, version 2.6 or later (note: not version 3)

o Genshi'* 0.5 or later (0.7 recommended)

“http://www.openmicroscopy.org/site/support/bio-formats5.0/
Shttp://www.openmicroscopy.org/site/support/legacy/
Shttp://downloads.openmicroscopy.org/latest/bio-formats5.1/
7http://git-scm.com/

8https://github.com/openmicroscopy/bioformats
9http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/
10https://github.com/openmicroscopy/bioformats/tree/develop/components/
https://github.com/openmicroscopy/bioformats/tree/develop/components/forks/
2https://github.com/openmicroscopy/bioformats/tree/develop/components/stubs/
Bhttp://python.org

“http://genshi.edgewall.org

12.2. Obtaining and building Bio-Formats 74

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://downloads.openmicroscopy.org/latest/bio-formats5.1/
http://git-scm.com/
https://github.com/openmicroscopy/bioformats
https://github.com/openmicroscopy/bioformats
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/
https://github.com/openmicroscopy/bioformats/tree/develop/components/
https://github.com/openmicroscopy/bioformats/tree/develop/components/forks/
https://github.com/openmicroscopy/bioformats/tree/develop/components/stubs/
http://python.org
http://genshi.edgewall.org

Bio-Formats Documentation, Release 5.1.3

Note: Genshi may be installed (in order of decreasing preference) with some Linux distributions’ package managers, pip (pip
install genshi), by downloading a compatible . egg for your system from the Genshi download page'>, or from source. If

using a . egg, make sure it is added to your PYTHONPATH environment variable.

NetBeans

NetBeans comes with Maven support built in. To import the Bio-Formats source, perform the following steps:
1. Select File — Open Project from the menu - choose the top-level path to bioformats.git and click Open Project

2. Inthe ‘Projects’ tab on the left-hand side, expand the ‘Bio-Formats projects’ entry - you should now have a series of folders
including ‘Other Sources’, ‘Modules’ and ‘Dependencies.

3. Expand the ‘Modules’ folder to give a list of components and then double-click the desired project(s) to work with them.

7] Bio-Formats projects - NetBeans IDE 8.0.2 - 0 n

File Edit View Mavigate Source Refactor Bun Debug Profile Team ook Window Help Qr Search (Cli+)
el B @ <t VEE - -
Projects X | Files Services —|[startpage = 0O

=-{ils pBio-Formats projects ~

&P NetBeans D Wy NeBeans

5 MDB Tools (1ava port)
B Apache Jakarta POT
£ Ibjpeg-turbo Java bindngs I‘."Iy NetBeans
B io-Formats code generator =
B8 io-Formats AP

B9 530 BioFormats readers and writers . X
B sioFormats lbrary Recent Projects Install Fluging
8 bioformats_package bundie

a Common <o recent project> Add support for other languages and technologies by instaling phugins from the
8% Bio-Formats Flugns for Image) NetBeans Update Center.

8 LOCI Took bundie
B9 mMetakit

il OME Tools bundie ORACLE
B OME PEG R codec ibrary

Navigator -
& buidrumber create-timestamp |
(&) buidrumiber hochangeset
(& deploy deploy-file
& groovy compile
£ groovy console
{2 groovy generateStubs
(&4 greavy generateTestStubs
& groovy providers
(&) groovy shell
&) groovy testCompile
(& install install-file
(&) Iense add-third-party
(£} lcense aggregate-add-third-party
{54 lcense check-file-header
{54 heense comment-style-list
(& license download-licenses -

[K=

Alternately, you can clone the source directly from NetBeans into a project by selecting Team — Git — Clone Other... from the
menu.

Eclipse

Eclipse uses the “Maven Integration for Eclipse” (m2e) plugin to work with Maven projects. It is more flexible than Eclipse’s
built-in project management because m2e transparently converts between project dependencies and JAR dependencies (stored in
the Maven repository in ~/ .m2/repository) on the build path, depending on which projects are currently open.

We recommend using Eclipse 4.3 (Kepler), specifically - “Eclipse IDE for Java developers”. It comes with m2e installed
(http://eclipse.org/downloads/compare.php?release=kepler).

You can then import the Bio-Formats source by choosing File — Import — Existing Maven Projects from the menu and browsing
to the top-level folder of your Bio-Formats working copy. Alternatively, run the Eclipse Maven target with mvn eclipse:eclipse
to create the Eclipse project files, then use File — Import — Existing Projects into Workspace.

To remove post-import errors, either close the ome-xml project or run:

I5http://genshi.edgewall.org/wiki/Download

12.2. Obtaining and building Bio-Formats 75

http://genshi.edgewall.org/wiki/Download
http://eclipse.org/downloads/compare.php?release=kepler

Bio-Formats Documentation, Release 5.1.3

ant jars && mvn generate—sources

See also:

[ome-devel] Importing source into eclipse!®

Command line

If you prefer developing code with a text editor such as vim or emacs, you can use the Ant or Maven command line tools to
compile Bio-Formats. The Bio-Formats source tree provides parallel build systems for both Ant and Maven, so you can use either
one to build the code.

For a list of Ant targets, run:

ant -p

In general, ant jars or ant tools isthe correct command.
When using Maven, Bio-Formats is configured to run the “install” target by default, so all JARs will be copied into your local

Maven repository in ~/.m2/repository. Simply run:

mvn

With either Ant or Maven, you can use similar commands in any subproject folder to build just that component.

12.2.4 Using Gradle, Maven or lvy

All released . jar artifacts may be obtained through the OME Artifactory server'’. The “Client Settings” section of the Artifac-
tory main page provides example code snippets for inclusion into your Gradle, Maven or Ivy project, which will enable the use
of this repository.

Example snippets for using the Bio-Formats 5.1-SNAPSHOT formats—gpl artifact are available for Gradle and for Maven.
These may be copied into your project to enable the use of the Bio-Formats library components, and may be adjusted to use
different components or different release or development versions of Bio-Formats.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version'® or the previous
versions'? page to find documentation for the version you are using.

12.3 Component overview

The Bio-Formats code repository is divided up into separate components.

The Ant targets to build each component from the repository root are noted in the component descriptions below. Unless otherwise
noted, each component can also be built with Maven by running mvn in the component’s subdirectory. The Maven module name
for each component (as it is shown in most IDEs) is also noted in parenthesis.

12.3.1 Core components

The most commonly used and actively modified components.

* formats-common

16http://lists.openmicroscopy.org.uk/pipermail/ome-devel/2014-March/002719.html
Thttp://artifacts.openmicroscopy.org/artifactory
18http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/

12.3. Component overview 76

http://lists.openmicroscopy.org.uk/pipermail/ome-devel/2014-March/002719.html
http://artifacts.openmicroscopy.org/artifactory
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

* formats-api
e formats-bsd
* formats-gpl
e specification

e ome-xml

12.3.2 Internal testing components

These components are used heavily during continuous integration testing, but are less relevant for active development work.
* autogen

* test-suite

12.3.3 Forks of existing projects

e mdbtools
* jai
* turbojpeg

* poi

12.3.4 All components

autogen (Bio-Formats code generator)®’:
Ant: jar-autogen

Contains everything needed to automatically generate documentation for supported file formats. format-pages.txt>' should be
updated for each new file format reader or writer, but otherwise manual changes should be unnecessary. The following Ant targets
are used to regenerate the documentation for all formats:

gen-format-pages
gen-meta-support
gen-original-meta-support

bio-formats-plugins (Bio-Formats Plugins for ImageJ)**:
Ant: jar-bio-formats-plugins

Everything pertaining to the Bio-Formats plugins for ImageJ lives in this component. Note that when built, this component
produces bio-formats_plugins. jar (instead of bio-formats-plugins. jar) to be in keeping with ImageJ plugin
naming conventions. bio-formats-tools (Bio-Formats command line tools)>?:

Ant: jar-bio-formats-tools

The classes that implement the showinf, bfconvert, and mkfake command line tools are contained in this component. Note that
this is built with the jar-bio-formats-tools Ant target, and not the tools target (which is the Ant equivalent of bundles). bundles
(bioformats_package bundle, LOCI Tools bundle, OME Tools bundle)?*:

Ant: tools

This is only needed by the Maven build system, and is used to aggregate all of the individual .jar files into biofor-
mats_package. jar. There should not be any code here, just build system files. forks/jai (JAI Image 1/0 Tools)*:

20https://github.com/openmicroscopy/bioformats/blob/develop/components/autogen

21 https://github.com/openmicroscopy/bioformats/blob/develop/components/autogen/src/format-pages. txt
22https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins
Zhttps://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-tools
24https://github.com/openmicroscopy/bioformats/blob/develop/components/bundles
ZShttps://github.com/openmicroscopy/bioformats/blob/develop/components/forks/jai

12.3. Component overview 77

https://github.com/openmicroscopy/bioformats/blob/develop/components/autogen
https://github.com/openmicroscopy/bioformats/blob/develop/components/autogen/src/format-pages.txt
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-tools
https://github.com/openmicroscopy/bioformats/blob/develop/components/bundles
https://github.com/openmicroscopy/bioformats/blob/develop/components/bundles
https://github.com/openmicroscopy/bioformats/blob/develop/components/forks/jai

Bio-Formats Documentation, Release 5.1.3

Ant: jar-jai

This is a fork of JAI ImagelO?® which adds support for decoding YCbCr JPEG-2000 data. This is primarily needed for reading
images from histology/pathology formats in formats-gpl. There are no dependencies on other components. forks/mdbtools
(MDB Tools (Java port))*’:

Ant: jar-mdbtools

This is a fork of the mdbtools-java®® project. There are numerous bug fixes, as well as changes to reduce the memory required for
large files. There are no dependencies on other components. forks/poi (Apache Jakarta POI)?:

Ant: jar-ome-poi

This is a fork of Apache POI’?, which allows reading of Microsoft OLE document files. We have made substantial changes to
support files larger than 2GB and reduce the amount of memory required to open a file. I/O is also handled by classes from
formats-common, which allows OLE files to be read from memory. forks/turbojpeg (libjpeg-turbo Java bindings)*':

Ant: jar-turbojpeg

This is a fork of libjpeg-turbo®”. There are not any real code changes, but having this as a separate component allows us to package
the libjpeg-turbo Java API together with all of the required binaries into a single .jar file using native-lib-loader**. There are no
dependencies on other components. formats-api (Bio-Formats API)*:

Ant: jar-formats-api

This defines all of the high level interfaces and abstract classes for reading and writing files. There are no file format readers or
writers actually implemented in this component, but it does contain the majority of the API that defines Bio-Formats. formats-bsd
and formats-gpl implement this API to provide file format readers and writers. formats-common and ome-xml are both required
as part of the interface definitions. formats-common (Common)*>:

Ant: jar-formats-common

Provides I/O classes that unify reading from files on disk, streams or files in memory, compressed streams, and non-file URLSs.
The primary entry points are Location*®, RandomAccessInputStream?®’ (for reading), and RandomAccessOutputStream’® (for
writing).

In addition to I/O, there are several classes to assist in working with XML (XMLTools), date/timestamps (DateTools*’), logging
configuration (DebugTools*"), and byte arithmetic (DataTools*?).

This does not depend on any other components, so can be used anywhere independent of the rest of the Bio-Formats API.
formats-bsd (BSD Bio-Formats readers and writers)*:

Ant: jar-formats-bsd, jar-formats-bsd-tests

This contains readers and writers for formats which have a publicly available specification, e.g. TIFF. Everything in the component
is BSD-licensed. formats-gpl (Bio-Formats library)*:

Ant: jar-formats-gpl

The majority of the file format readers and some file format writers are contained in this component. Everything in the component
is GPL-licensed (in contrast with formats-bsd). Most file formats represented in this component do not have a publicly available
specification. metakit (Metakit)*:

26http://java.net/projects/jai-imageio-core
2Thttps://github.com/openmicroscopy/bioformats/blob/develop/components/forks/mdbtools
Z8http://mdbtools.cvs.sourceforge.net/viewve/mdbtools/mdbtools-java
2https://github.com/openmicroscopy/bioformats/blob/develop/components/forks/poi

3Onttp://poi.apache.org
31https://github.com/openmicroscopy/bioformats/blob/develop/components/forks/turbojpeg
32http://libjpeg-turbo.virtualgl.org/

3http://github.com/scijava/native-lib-loader
34https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api
3Shttps://github.com/openmicroscopy/bioformats/blob/develop/components/formats-common
36http://downloads.openmicroscopy.org/latest/bio-formats3. 1/api/loci/common/Location.html
37http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/common/RandomAccessInputStream. html
38http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/common/RandomAccessOutputStream.html
3nhttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/common/xml/XMLTools.html
“Ohttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/common/DateTools.html
4Ihttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/common/Debug Tools.html
“Zhttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/common/DataTools.html
“3https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd
“https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl
“Shttps://github.com/openmicroscopy/bioformats/blob/develop/components/metakit

12.3. Component overview 78

http://java.net/projects/jai-imageio-core
https://github.com/openmicroscopy/bioformats/blob/develop/components/forks/mdbtools
https://github.com/openmicroscopy/bioformats/blob/develop/components/forks/mdbtools
http://mdbtools.cvs.sourceforge.net/viewvc/mdbtools/mdbtools-java
https://github.com/openmicroscopy/bioformats/blob/develop/components/forks/poi
http://poi.apache.org
https://github.com/openmicroscopy/bioformats/blob/develop/components/forks/turbojpeg
http://libjpeg-turbo.virtualgl.org/
http://github.com/scijava/native-lib-loader
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-common
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/common/Location.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/common/RandomAccessInputStream.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/common/RandomAccessOutputStream.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/common/xml/XMLTools.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/common/DateTools.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/common/DebugTools.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/common/DataTools.html
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl
https://github.com/openmicroscopy/bioformats/blob/develop/components/metakit

Bio-Formats Documentation, Release 5.1.3

Ant: jar-metakit

Java implementation of the Metakit database specification*. This uses classes from formats-common and is used by formats-gpl,
but is otherwise independent of the main Bio-Formats API. ome-jxr (OME JPEG XR codec library)*:

Ant: jar-ome-jxr

Experimental implementation of JPEG-XR* in Java. This uses classes from formats-common, but is otherwise independent of
Bio-Formats. ome-xml (OME-XML Java library)*:

Ant: jar-ome-xml

This component contains classes that represent the OME-XML schema. Some classes are committed to the Git repository, but
the majority are generated at build time by using xsd-fu to parse the OME-XML schema files. Classes from this component are
used by Bio-Formats to read and write OME-XML, but they can also be used independently. specification (Specification)’’:

Ant: jar-specification

All released and in-progress OME-XML schema files are contained in this component. The specification component is also the
location of all XSLT stylesheets for converting between OME-XML schema versions, as well as example OME-XML files in each
of the released schema versions. stubs (Luratech LuraWave stubs, MIPAV stubs)’!:

Ant: jar-lwf-stubs, jar-mipav-stubs

This component provides empty classes that mirror third-party dependencies which are required at compile time but cannot be
included in the build system (usually due to licensing issues). The build succeeds since required class names are present with the
correct method signatures; the end user is then expected to replace the stub .jar files at runtime. test-suite (Bio-Formats testing
framework)>?:

Ant: jar-tests

All tests that operate on files from our data repository (i.e. integration tests) are included in this component. These tests are
primarily run by the continuous integration jobs>, and verify that there are no regressions in reading images or metadata. xsd-fu
(XSD-FU)**:

Ant: no target

xsd-fu is a Python framework for turning the schema files in the specification component into the classes that represent the OME-
XML schema in the ome-xml component.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions® page to find documentation for the version you are using.

12.4 Reading files

12.4.1 Basic file reading

Bio-Formats provides several methods for retrieving data from files in an arbitrary (supported) format. These methods fall
into three categories: raw pixels, core metadata, and format-specific metadata. All methods described here are present
and documented in loci.formats.IFormatReader’’. In general, it is recommended that you read files using an instance of
loci.formats.ImageReader’®. While it is possible to work with readers for a specific format, ImageReader contains additional
logic to automatically detect the format of a file and delegate subsequent calls to the appropriate reader.

4Shttp://equi4.com/metakit/
“Thttps://github.com/openmicroscopy/bioformats/blob/develop/components/ome-jxr
“Bhttp://en.wikipedia.org/wiki/JPEG_XR
“Ohttps://github.com/openmicroscopy/bioformats/blob/develop/components/ome-xml
SOhttps://github.com/openmicroscopy/bioformats/blob/develop/components/specification
SThttps://github.com/openmicroscopy/bioformats/blob/develop/components/stubs
52https://github.com/openmicroscopy/bioformats/blob/develop/components/test-suite
33http://www.openmicroscopy.org/site/support/contributing/ci-bio-formats.html
S4https://github.com/openmicroscopy/bioformats/blob/develop/components/xsd-fu
5Shttp://www.openmicroscopy.org/site/support/bio-formats5.0/
S6http://www.openmicroscopy.org/site/support/legacy/
57http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html
38 http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/ImageReader.html

12.4. Reading files 79

http://equi4.com/metakit/
https://github.com/openmicroscopy/bioformats/blob/develop/components/ome-jxr
http://en.wikipedia.org/wiki/JPEG_XR
https://github.com/openmicroscopy/bioformats/blob/develop/components/ome-xml
https://github.com/openmicroscopy/bioformats/blob/develop/components/specification
https://github.com/openmicroscopy/bioformats/blob/develop/components/stubs
https://github.com/openmicroscopy/bioformats/blob/develop/components/test-suite
https://github.com/openmicroscopy/bioformats/blob/develop/components/test-suite
http://www.openmicroscopy.org/site/support/contributing/ci-bio-formats.html
https://github.com/openmicroscopy/bioformats/blob/develop/components/xsd-fu
https://github.com/openmicroscopy/bioformats/blob/develop/components/xsd-fu
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/ImageReader.html

Bio-Formats Documentation, Release 5.1.3

Prior to retrieving pixels or metadata, it is necessary to call setld(java.lang.String)*” on the reader instance, passing in the name

of the file to read. Some formats allow multiple series (SD image stacks) per file; in this case you may wish to call setSeries(int)*’
to change which series is being read.

Raw pixels are always retrieved one plane at a time. Planes are returned as raw byte arrays, using one of the openBytes methods.

Core metadata is the general term for anything that might be needed to work with the planes in a file. A list of core metadata fields
is given in the table below together with the appropriate accessor method:

Core metadata field API method
image width getSizeX()"
image height getSizeY()"
number of series per file getSeriesCount()’°
total number of images per series getImageCount()”’
number of slices in the current series getSizeZ()78
number of timepoints in the current series getSizeT()””
number of actual channels in the current series getSizeC()gO
number of channels per image getRGBChannelCount()®!
the ordering of the images within the current series getDimensionOrder()®”
whether each image is RGB isSRGB()%?
whether the pixel bytes are in little-endian order isLittleEndian()®*
whether the channels in an image are interleaved isInterleaved()®
the type of pixel data in this file getPixelType ()%

All file formats are guaranteed to accurately report core metadata.

Format-specific metadata refers to any other data specified in the file - this includes acquisition and hardware parameters, among
other things. This data is stored internally in a java.util.Hashtable, and can be accessed in one of two ways: individual values
can be retrieved by calling getMetadataValue(java.lang.String)®’, which gets the value of the specified key. Note that the keys in
this Hashtable are different for each format, hence the name “format-specific metadata”.

See Bio-Formats metadata processing for more information on the metadata capabilities that Bio-Formats provides.
See also:

IFormatReader®® Source code of the 1oci. formats.IFormatReader interface

http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatHandler.html#setId(java.lang. String)
Ohttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#setSeries(int)
61http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getSize X ()
%2http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getSize Y ()

3 http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getSeriesCount()
4http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getImageCount()

S http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getSizeZ()

% http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getSizeT()
7http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getSizeC()
%8http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/TFormatReader.html#getRGBChannel Count()
http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getDimensionOrder()
TOnttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/[FormatReader.htmI#isRGB()
"Ihttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#isLittleEndian()
72http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#isInterleaved()
73http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getPixel Type()
74http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getSize X ()
Thttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getSize Y ()
7T6http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getSeriesCount()
"Thttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getImageCount()

"8 http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getSizeZ()
Thttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getSizeT()
80http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/[FormatReader.html#getSizeC()
81http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getRGBChannel Count()
82http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getDimensionOrder()
83http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.htmI#isRGB()
84http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#isLittleEndian()
85http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#isInterleaved()
86http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader. html#getPixel Type()
87http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getMetadata Value(java.lang.String)

12.4. Reading files 80

http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatHandler.html#setId(java.lang.String)
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#setSeries(int)
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#getSizeX()
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#getSizeY()
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#getSeriesCount()
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#getImageCount()
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#getSizeZ()
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#getSizeT()
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#getSizeC()
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#getRGBChannelCount()
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#getDimensionOrder()
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#isRGB()
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#isLittleEndian()
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#isInterleaved()
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#getPixelType()
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#getMetadataValue(java.lang.String)
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/IFormatReader.java

Bio-Formats Documentation, Release 5.1.3

12.4.2 File reading extras
The previous section described how to read pixels as they are stored in the file. However, the native format is not necessarily
convenient, so Bio-Formats provides a few extras to make file reading more flexible.

* The loci.formats.ReaderWrapper® API that implements 1oci.formats.IFormatReader allows to define “wrapper”
readers that take a reader in the constructor, and manipulate the results somehow, for convenience. Using them is similar
to the java.io InputStream/OutputStream model: just layer whichever functionality you need by nesting the wrappers.

The table below summarizes a few wrapper readers of interest:

Wrapper reader Functionality

loci.formats.BufferedImageReader”™

Allows pixel data to be returned as Bufferedlmages instead of raw byte arrays

loci.formats.FileStitcher””

Uses advanced pattern matching heuristics to group files that belong to the same datase

loci.formats.ChannelSeparator™

Makes sure that all planes are grayscale - RGB images are split into 3 separate grayscale im

loci.formats.ChannelMerger™!

Merges grayscale images to RGB if the number of channels is greater than 1

loci.formats.ChannelFiller'® Converts indexed color images to RGB images

loci.formats.MinMaxCalculator'®

Provides an API for retrieving the minimum and maximum pixel values for each channe

loci.formats.DimensionSwapper!** Provides an API for changing the dimension order of a file

loci.formats.Memoizer'® Caches the state of the reader into a memoization file

106 107

e loci.formats.ImageTools™ and loci.formats.gui. AW TImageTools'”’ provide a number of methods for manipulating
BufferedIlmages and primitive type arrays. In particular, there are methods to split and merge channels in a Buffered-
Image/array, as well as converting to a specific data type (e.g. convert short data to byte data).

12.4.3 Troubleshooting

* Importing multi-file formats (Leica LEI, PerkinElmer, FV1000 OIF, ICS, and Prairie TIFF, to name a few) can fail if any
of the files are renamed. There are “best guess” heuristics in these readers, but they are not guaranteed to work in general.
So please do not rename files in these formats.

e If you are working on a Macintosh, make sure that the data and resource forks of your image files are stored together.
Bio-Formats does not handle separated forks (the native QuickTime reader tries, but usually fails).

* Bio-Formats file readers are not thread-safe. If files are read within a parallelized environment, a new reader must be fully
initialized in each parallel session. See Improving reading performance about ways to improve file reading performance in
multi-threaded mode.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version'%®

or the previous
versions'?” page to find documentation for the version you are using.

8%http://downloads.openmicroscopy.org/latest/bio-formats3. 1/api/loci/formats/ReaderWrapper.html
9Ohttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/gui/BufferedImageReader.html
91http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/FileStitcher.html
9http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/ChannelSeparator.html

9 http://downloads.openmicroscopy.org/latest/bio-formats3. 1/api/loci/formats/ChannelMerger.html
94http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/ChannelFiller.htm]

9 http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/MinMaxCalculator.html
9http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/DimensionSwapper.html
97http://downloads.openmicroscopy.org/latest/bio-formats3. 1/api/loci/formats/Memoizer.html
9http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/gui/BufferedImageReader.html
9http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/FileStitcher.htm]
100http://downloads.openmicroscopy.org/latest/bio-formats3. 1/api/loci/formats/ChannelSeparator.html

10T http://downloads.openmicroscopy.org/latest/bio-formats3. 1/api/loci/formats/ChannelMerger.html
102http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/ChannelFiller.html
103htp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/MinMaxCalculator.html
104http://downloads.openmicroscopy.org/latest/bio-formats3. 1/api/loci/formats/DimensionSwapper.html
105http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/Memoizer.html
106http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/ImageTools.html
107http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/gui/AW TImageTools.html
108 http://www.openmicroscopy.org/site/support/bio-formats5.0/
109http://www.openmicroscopy.org/site/support/legacy/

12.4. Reading files 81

http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/ReaderWrapper.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/gui/BufferedImageReader.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/FileStitcher.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/ChannelSeparator.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/ChannelMerger.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/ChannelFiller.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/MinMaxCalculator.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/DimensionSwapper.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/Memoizer.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/ImageTools.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/gui/AWTImageTools.html
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

12.5 Writing files

The loci.formats.IFormatWriter''” API is very similar to the reader API, in that files are written one plane at time (rather than all
at once).

The file formats which can be written using Bio-Formats are marked in the supported formats table with a green tick in the ‘export’
column. These include, but are not limited to:

* TIFF (uncompressed, LZW, JPEG, or JPEG-2000)
OME-TIFF (uncompressed, LZW, JPEG, or JPEG-2000)
JPEG

* PNG

e AVI (uncompressed)

* QuickTime (uncompressed is supported natively; additional codecs use QTJava)
* Encapsulated PostScript (EPS)

OME-XML (not recommended)

All writers allow the output file to be changed before the last plane has been written. This allows you to write to any number of
output files using the same writer and output settings (compression, frames per second, etc.), and is especially useful for formats
that do not support multiple images per file.

See also:
IFormatWriter''' Source code of the 1oci.formats.IFormatWriter interface
loci.formats.tools.ImageConverter''?> Source code of the 1oci.formats.tools.ImageConverter class

Further details on exporting raw pixel data to OME-TIFF files Examples of OME-TIFF writing

10http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatWriter.html

12.5. Writing files 82

http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatWriter.html
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/IFormatWriter.java
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-tools/src/loci/formats/tools/ImageConverter.java

CHAPTER
THIRTEEN

USING BIO-FORMATS AS A JAVA LIBRARY

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version' or the previous
versions” page to find documentation for the version you are using.

13.1 Using Bio-Formats as a Java library

If you wish to make use of Bio-Formats within your own software, you can download formats-gpl.jar® to use it as a library. Just add
formats-gpl.jar to your CLASSPATH or build path. You will also need common.jar for common I/O functions, ome-xml.jar
for metadata standardization, and SLF4J* for logging.

There are also certain packages that if present will be utilized to provide additional functionality. To include one, just place it in

the same folder.

Package Filename License Notes

Apache Jakarta POI™ ome-poi.jar™ Apache OME fork; for OLE-based formats (zvi, oib, ipw, cxd)

MDB Tools'™ mdbtools-java.jar!’ LGPL Java port, OME fork; for Olympus CellR and Zeiss LSM
metadata (mdb)

JAI Tmage I/O Tools™ | jai_imageio.jar™ BSD Pure Java implementation, OME fork; for JPEG2000-based
formats (nd2, jp2)

NetCDF? netcdf-4.3.19 jar”! LGPL Java library; for HDF5-based formats (Imaris 5.5, MINC
MRI)

QuickTime for Java®? QTJava.zip Commercial | For additional QuickTime codecs

See the list in the Bio-Formats toplevel build file”* for a complete and up-to-date list of all optional libraries, which can all be
found in our Git repository**.

Thttp://www.openmicroscopy.org/site/support/bio-formats5.0/
2http://www.openmicroscopy.org/site/support/legacy/
3http://downloads.openmicroscopy.org/latest/bio-formats3. 1 /artifacts/formats-gpl.jar

“http://sif4]j.org/

Shttp://jakarta.apache.org/poi/
Ohttp://downloads.openmicroscopy.org/latest/bio-formats3. 1/artifacts/ome-poi.jar
7http://sourceforge.net/projects/mdbtools
8http://downloads.openmicroscopy.org/latest/bio-formats5.1/artifacts/mdbtools-java.jar
9http://java.net/projects/jai-imageio
10http://downloads.openmicroscopy.org/latest/bio-formats5. 1/artifacts/jai_imageio.jar
http://www.unidata.ucar.edu/software/netcdf-java/
2http://downloads.openmicroscopy.org/latest/bio-formats3. 1/artifacts/netcdf-4.3.19.jar
Bhttp://www.apple.com/quicktime/download/standalone.html
14http://jakarta.apache.org/poi/
Shttp://downloads.openmicroscopy.org/latest/bio-formats5. 1 /artifacts/ome-poi.jar
16http://sourceforge.net/projects/mdbtools
17http://downloads.openmicroscopy.org/latest/bio-formats5. 1 /artifacts/mdbtools-java jar
8http://java.net/projects/jai-imageio
19http://downloads.openmicroscopy.org/latest/bio-formats5. 1/artifacts/jai_imageio.jar
20http://www.unidata.ucar.edu/software/netcdf-java/
21http://downloads.openmicroscopy.org/latest/bio-formats5. 1 /artifacts/netcdf-4.3.19 jar
22http://www.apple.com/quicktime/download/standalone.html

2 https://github.com/openmicroscopy/bioformats/blob/develop/build.xml
24https://github.com/openmicroscopy/bioformats/tree/develop/jar

83

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://downloads.openmicroscopy.org/latest/bio-formats5.1/artifacts/formats-gpl.jar
http://slf4j.org/
http://jakarta.apache.org/poi/
http://downloads.openmicroscopy.org/latest/bio-formats5.1/artifacts/ome-poi.jar
http://sourceforge.net/projects/mdbtools
http://downloads.openmicroscopy.org/latest/bio-formats5.1/artifacts/mdbtools-java.jar
http://java.net/projects/jai-imageio
http://downloads.openmicroscopy.org/latest/bio-formats5.1/artifacts/jai_imageio.jar
http://www.unidata.ucar.edu/software/netcdf-java/
http://downloads.openmicroscopy.org/latest/bio-formats5.1/artifacts/netcdf-4.3.19.jar
http://www.apple.com/quicktime/download/standalone.html
https://github.com/openmicroscopy/bioformats/blob/develop/build.xml
https://github.com/openmicroscopy/bioformats/tree/develop/jar

Bio-Formats Documentation, Release 5.1.3

13.1.1 Examples of usage

MinimumWriter” - A command line utility demonstrating the minimum amount of metadata needed to write a file.

ImageConverter’® - A simple command line tool for converting between formats.

Imagelnfo?” - A more involved command line utility for thoroughly reading an input file, printing some information about it, and

displaying the pixels onscreen using the Bio-Formats viewer.
PrintTimestamps®® - A command line example demonstrating how to extract timestamps from a file.
Simple_Read” - A simple ImageJ plugin demonstrating how to use Bio-Formats to read files into ImageJ (see ImageJ overview).

Read_Image® - An Image] plugin that uses Bio-Formats to build up an image stack, reading image planes one by one (see ImageJ
overview).

Mass_Importer®! - A simple plugin for ImageJ that demonstrates how to open all image files in a directory using Bio-Formats,
grouping files with similar names to avoiding opening the same dataset more than once (see /mageJ overview).

13.1.2 A Note on Java Web Start (bioformats_package.jar vs. formats-gpl.jar)

To use Bio-Formats with your Java Web Start application, we recommend using formats-gpl.jar rather than biofor-
mats_package.jar—the latter is merely a bundle of formats-gpl.jar plus all its optional dependencies.

The bioformats_package.jar bundle is intended as a convenience (e.g. to simplify installation as an ImageJ plugin), but is by no
means the only solution for developers. We recommend using formats-gpl.jar as a separate entity depending on your needs as a
developer.

The bundle is quite large because we have added support for several formats that need large helper libraries (e.g. Imaris’ HDF-
based format). However, these additional libraries are optional; Bio-Formats has been coded using reflection so that it can both
compile and run without them.

When deploying a INLP-based application, using bioformats_package.jar directly is not the best approach, since every time Bio-
Formats is updated, the server would need to feed another 15+ MB JAR file to the client. Rather, Web Start is a case where you
should keep the JARs separate, since JNLP was designed to make management of JAR dependencies trivial for the end user. By
keeping formats-gpl.jar and the optional dependencies separate, only a <1 MB JAR needs to be updated when formats-gpl.jar
changes.

As a developer, you have the option of packaging formats-gpl.jar with as many or as few optional libraries as you wish, to cut
down on file size as needed. You are free to make whatever kind of “stripped down” version you require. You could even build a
custom formats-gpl.jar that excludes certain classes, if you like.

For an explicit enumeration of all the optional libraries included in bioformats_package.jar, see the package.libraries
variable of the ant/toplevel.properties’” file of the distribution. You can also read our notes about each in the source distribution’s
Ant build.xml* script.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®* or the previous

versions® page to find documentation for the version you are using.

13.2 Exporting files using Bio-Formats

This guide pertains to version 4.2 and later.

ZShttps://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/utils/MinimumWriter. java
26https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-tools/src/loci/formats/tools/ImageConverter.java
2Thttps://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-tools/src/loci/formats/tools/TmageInfo.java
28 https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/utils/Print Timestamps.java
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Simple_Read.java
30https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Read_Image.java
31https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Mass_Importer.java

3 https://github.com/openmicroscopy/bioformats/blob/develop/ant/toplevel.properties

33 https://github.com/openmicroscopy/bioformats/blob/develop/build. xmI#L.240
34http://www.openmicroscopy.org/site/support/bio-formats5.0/

3Shttp://www.openmicroscopy.org/site/support/legacy/

13.2. Exporting files using Bio-Formats 84

https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/utils/MinimumWriter.java
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-tools/src/loci/formats/tools/ImageConverter.java
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-tools/src/loci/formats/tools/ImageInfo.java
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/utils/PrintTimestamps.java
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Simple_Read.java
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Read_Image.java
https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Mass_Importer.java
https://github.com/openmicroscopy/bioformats/blob/develop/ant/toplevel.properties
https://github.com/openmicroscopy/bioformats/blob/develop/build.xml#L240
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

13.2.1 Basic conversion

The first thing we need to do is set up a reader:

// create a reader that will automatically handle any supported format
IFormatReader reader = new ImageReader();

// tell the reader where to store the metadata from the dataset
MetadataStore metadata;

try {
ServiceFactory factory = new ServiceFactory () ;
OMEXMLService service = factory.getInstance (OMEXMLService.class) ;
metadata = service.createOMEXMLMetadata () ;

}
catch (DependencyException exc) {
throw new FormatException (”Could not create OME-XML store.”, exc);
}
catch (ServiceException exc) {
throw new FormatException (”Could not create OME-XML store.”, exc);

reader.setMetadataStore (metadata) ;
// initialize the dataset
reader.setId (" /path/to/file”) ;

Now, we set up our writer:

// create a writer that will automatically handle any supported output format
IFormatWriter writer = new ImageWriter();

// give the writer a MetadataRetrieve object, which encapsulates all of the

// dimension information for the dataset (among many other things)
writer.setMetadataRetrieve (MetadataTools.asRetrieve (reader.getMetadataStore())) ;
// initialize the writer

writer.setId(”/path/to/output/file”) ;

Note that the extension of the file name passed to ‘writer.setld(...)’ determines the file format of the exported file.

Now that everything is set up, we can start writing planes:

for (int series=0; series<reader.getSeriesCount (); series++) {
reader.setSeries (series) ;
writer.setSeries (series);

for (int image=0; image<reader.getImageCount (); image++) {
writer.saveBytes (image, reader.openBytes (image)) ;

Finally, make sure to close both the reader and the writer. Failure to do so can cause:
» file handle leaks
* memory leaks
* truncated output files

Fortunately, closing the files is very easy:

reader.close() ;
writer.close() ;

13.2. Exporting files using Bio-Formats

85

Bio-Formats Documentation, Release 5.1.3

13.2.2 Converting large images

The flaw in the previous example is that it requires an image plane to be fully read into memory before it can be saved. In many
cases this is fine, but if you are working with very large images (especially > 4 GB) this is problematic. The solution is to break
each image plane into a set of reasonably-sized tiles and save each tile separately - thus substantially reducing the amount of
memory required for conversion.

For now, we’ll assume that your tile size is 1024 x 1024, though in practice you will likely want to adjust this. Assuming you have
an [FormatReader and IFormatWriter set up as in the previous example, let’s start writing planes:

int tileWidth = 1024;
int tileHeight = 1024;

for (int series=0; series<reader.getSeriesCount (); series++) {
reader.setSeries (series) ;
writer.setSeries (series);

// determine how many tiles are in each image plane
// for simplicity, we’ll assume that the image width and height are
// multiples of 1024

int tileRows = reader.getSizeY() / tileHeight;
int tileColumns = reader.getSizeX() / tileWidth;

for (int image=0; image<reader.getImageCount (); image++) {
for (int row=0; row<tileRows; row++) {
for (int col=0; col<tileColumns; col++) {
// open a tile - in addition to the image index, we need to specify
// the (x, y) coordinate of the upper left corner of the tile,
// along with the width and height of the tile

int xCoordinate col * tileWidth;
int yCoordinate = row * tileHeight;
byte[] tile =
reader.openBytes (image, xCoordinate, yCoordinate, tileWidth, tileHeight);
writer.saveBytes (
image, tile, xCoordinate, yCoordinate, tileWidth, tileHeight);

As noted, the example assumes that the width and height of the image are multiples of the tile dimensions. Be careful, as this is
not always the case; the last column and/or row may be smaller than preceding columns/rows. An exception will be thrown if you
attempt to read or write a tile that is not completely contained by the original image plane. Most writers perform best if the tile
width is equal to the image width, although specifying any valid width should work.

As before, you need to close the reader and writer.

13.2.3 Converting to multiple files

The recommended method of converting to multiple files is to use a single IFormatWriter, like so:

// you should have set up a reader as in the first example
ImageWriter writer = new ImageWriter () ;
writer.setMetadataRetrieve (MetadataTools.asRetrieve (reader.getMetadataStore()));
// replace this with your own filename definitions
// in this example, we're going to write half of the planes to one file
// and half of the planes to another file
String[] outputFiles =
new String[] {”/path/to/file/1.tiff”, " /path/to/file/2.tiff"};
writer.setId (outputFiles([0]);

13.2. Exporting files using Bio-Formats 86

Bio-Formats Documentation, Release 5.1.3

int planesPerFile = reader.getImageCount () / outputFiles.length;
for (int file=0; file<outputFiles.length; file++) {
writer.changeOutputFile (outputFiles|[file]);
for (int image=0; image<planesPerFile; image++) {
int index = file * planesPerFile + image;
writer.saveBytes (image, reader.openBytes (index)) ;

reader.close() ;
writer.close() ;

The advantage here is that the relationship between the files is preserved when converting to formats that support multi-file datasets
internally (namely OME-TIFF). If you are only converting to graphics formats (e.g. JPEG, AVI, MOV), then you could also use
a separate IFormatWriter for each file, like this:

// again, you should have set up a reader already
String[] outputFiles = new String[] {"”/path/to/file/l.avi”, "/path/to/file/2.avi"};
int planesPerFile = reader.getImageCount () / outputFiles.length;
for (int file=0; file<outputFiles.length; file++) {
ImageWriter writer = new ImageWriter();
writer.setMetadataRetrieve (MetadataTools.asRetrieve (reader.getMetadataStore()));
writer.setId(outputFiles]|[file]) ;
for (int image=0; image<planesPerFile; image++) {
int index = file * planesPerFile + image;
writer.saveBytes (image, reader.openBytes (index)) ;
}

writer.close () ;

13.2.4 Known issues

List of Trac tickets>®

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®’ or the previous
versions®® page to find documentation for the version you are using.

13.3 Further details on exporting raw pixel data to OME-TIFF files

This document explains how to export pixel data to OME-TIFF using Bio-Formats version 4.2 and later.

The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows:

ServiceFactory factory = new ServiceFactory();
OMEXMLService service = factory.getInstance (OMEXMLService.class);
IMetadata omexml = service.createOMEXMLMetadata () ;

The ‘omexml’ object can now be used in our code to store OME-XML metadata, and by the file format writer to retrieve OME-
XML metadata.

Now that we have somewhere to put metadata, we need to populate as much metadata as we can. The minimum amount of
metadata required is:

36http://trac.openmicroscopy.org.uk/ome/query ?status=accepted&status=new&status=reopened &keywords= export&component=Bio-
Formats&col=id&col=summary&col=status&col=type&col=priority &col=milestone&col=component&order=priority

3Thttp://www.openmicroscopy.org/site/support/bio-formatsS5.0/

38http://www.openmicroscopy.org/site/support/legacy/

13.3. Further details on exporting raw pixel data to OME-TIFF files 87

http://trac.openmicroscopy.org.uk/ome/query?status=accepted&status=new&status=reopened&keywords=~export&component=Bio-Formats&col=id&col=summary&col=status&col=type&col=priority&col=milestone&col=component&order=priority
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

 endianness of the pixel data

e the order in which dimensions are stored

* the bit depth of the pixel data

¢ the number of channels

¢ the number of timepoints

* the number of Z sections

* the width (in pixels) of an image

* the height (in pixels) of an image

* the number of samples per channel (3 for RGB images, 1 otherwise)

We populate that metadata as follows:

omexml.setImageID (”"Image:0", 0);
omexml.setPixelsID ("Pixels:0"”, 0);

// specify that the pixel data is stored in big-endian order
// replace 'TRUE’ with 'FALSE’ to specify little-—-endian order
omexml.setPixelsBinDataBigEndian (Boolean.TRUE, 0, O0);

omexml.setPixelsDimensionOrder (DimensionOrder.XYCZT, O0);
omexml.setPixelsType (PixelType.UINT16, O0);
omexml.setPixelsSizeX (new PositiveInteger (width), O0);
omexml.setPixelsSizeY (new PositivelInteger (height), 0);
omexml.setPixelsSizeZ (new PositivelInteger (zSectionCount), O0);
omexml.setPixelsSizeC (new PositivelInteger (channelCount *
samplesPerChannel), 0);

omexml.setPixelsSizeT (new PositiveInteger (timepointCount), 0);

for (int channel=0; channel<channelCount; channel++) {
omexml.setChannelID (”"Channel:0:” + channel, 0, channel);
omexml.setChannelSamplesPerPixel (new PositivelInteger (samplesPerChannel),
0, channel) ;

}

There is much more metadata that can be stored; please see the Javadoc for loci.formats.meta.MetadataStore for a complete list.

Now that we have defined all of the metadata, we need to create a file writer:

ImageWriter writer = new ImageWriter () ;

Now we must associate the ‘omexml’ object with the file writer:

writer.setMetadataRetrieve (omexml) ;

The writer now knows to retrieve any metadata that it needs from ‘omexml’.

‘We now tell the writer which file it should write to:

writer.setId(”"output-file.ome.tiff");

It is critical that the file name given to the writer ends with ”.ome.tiff”” or ”.ome.tif”, as it is the file name extension that determines
which format will be written.

Now that everything is set up, we can save the image data. This is done plane by plane, and we assume that the pixel data is stored
in a 2D byte array ‘pixelData’:

13.3. Further details on exporting raw pixel data to OME-TIFF files 88

Bio-Formats Documentation, Release 5.1.3

int sizeC = omexml.getPixelsSizeC(0) .getValue() ;
int sizeZ = omexml.getPixelsSizeZ (0).getValue() ;
int sizeT = omexml.getPixelsSizeT (0) .getValue() ;
int samplesPerChannel = omexml.getChannelSamplesPerPixel (0).getValue();

sizeC /= samplesPerChannel;
int imageCount = sizeC * sizeZ * sizeT;

for (int image=0; image<imageCount; image++) {
writer.saveBytes (image, pixelData[image]);

Finally, we must tell the writer that we are finished, so that the output file can be properly closed:

writer.close() ;

There should now be a complete OME-TIFF file at whichever path was specified above.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous

versions*” page to find documentation for the version you are using.

13.4 Converting files from FV1000 OIB/OIF to OME-TIFF

This document explains how to convert a file from FV1000 OIB/OIF to OME-TIFF using Bio-Formats version 4.2 and later.
The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows:
ServiceFactory factory = new ServiceFactory();

OMEXMLService service = factory.getInstance (OMEXMLService.class);
IMetadata omexml = service.createOMEXMLMetadata() ;

The ‘omexml’ object can now be used by both a file format reader and a file format writer for storing and retrieving OME-XML
metadata.

Now that have somewhere to put metadata, we need to create a file reader and writer:

ImageReader reader = new ImageReader () ;
ImageWriter writer = new ImageWriter () ;

Now we must associate the ‘omexml’ object with the file reader and writer:

reader.setMetadataStore (omexml) ;
writer.setMetadataRetrieve (omexml) ;

The reader now knows to store all of the metadata that it parses into ‘omexml’, and the writer knows to retrieve any metadata that
it needs from ‘omexml’.

We now tell the reader and writer which files will be read from and written to, respectively:

reader.setId(”"input-file.oib”) ;
writer.setId(”"output—-file.ome.tiff");

3http://www.openmicroscopy.org/site/support/bio-formats5.0/
4Ohttp://www.openmicroscopy.org/site/support/legacy/

13.4. Converting files from FV1000 OIB/OIF to OME-TIFF 89

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

It is critical that the file name given to the writer ends with ”.ome.tiff”” or ”.ome.tif”, as it is the file name extension that determines
which format will be written.

Now that everything is set up, we can convert the image data. This is done plane by plane:

for (int series=0; series<reader.getSeriesCount (); series++) {
reader.setSeries (series) ;
writer.setSeries (series);

byte[] plane = new byte[FormatTools.getPlaneSize (reader)];
for (int image=0; image<reader.getImageCount (); image++) {
reader.openBytes (image, plane);
writer.saveBytes (image, plane) ;

The body of the outer ‘for’ loop may also be replaced with the following:

reader.setSeries (series) ;
writer.setSeries (series);

for (int image=0; image<reader.getImageCount (); image++) {

byte[] plane = reader.openBytes (image) ;
writer.saveBytes (image, plane);

But note that this will be a little slower.

Finally, we must tell the reader and writer that we are finished, so that the input and output files can be properly closed:

reader.close () ;
writer.close () ;

There should now be a complete OME-TIFF file at whichever path was specified above.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version*! or the previous
versions*” page to find documentation for the version you are using.

13.5 Using Bio-Formats in MATLAB

This section assumes that you have installed the MATLAB toolbox as instructed in the MATLAB user information page. Note the
minimum supported MATLAB version is R2007b (7.5).

As described in Using Java Libraries*’, every installation of MATLAB includes a JVM allowing use of the Java API and third-
party Java libraries. All the helper functions included in the MATLAB toolbox make use of the Bio-Formats Java API. Please
refer to the Javadocs** for more information.

13.5.1 Increasing JVM memory settings

The default JVM settings in MATLAB can result in java.lang.OutOfMemoryError: Java heap space exceptions
when opening large image files using Bio-Formats. Information about the Java heap space usage in MATLAB can be retrieved
using:

41 http://www.openmicroscopy.org/site/support/bio-formats5.0/
“2http://www.openmicroscopy.org/site/support/legacy/

“3http://uk. mathworks.com/help/matlab/matlab_external/product-overview.html
“http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/

13.5. Using Bio-Formats in MATLAB 920

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://uk.mathworks.com/help/matlab/matlab_external/product-overview.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/

Bio-Formats Documentation, Release 5.1.3

java.lang.Runtime.getRuntime.maxMemory

Default JVM settings can be increased by creating a java . opts file in the startup directory and overriding the default memory
settings. We recommend using -Xmx512m in your java.opts file. Calling:

bfCheckJavaMemory ()

will also throw a warning if the runtime memory is lower than the recommended value.

If errors of type java.lang.OutOfMemoryError: PermGen space are thrown while using Bio-Formats with the Java
bundled with MATLAB (Java 6 or 7), you may try to increase the default values of ~XX:MaxPermSize and -XX:PermSize
via the java.opts file.

See also:

http://www.mathworks.com/matlabcentral/answers/92813 How do I increase the heap space for the Java VM in MATLAB
6.0 (R12) and later versions?

[ome-users] Release of OMERO & Bio-Formats 5.1.1%

13.5.2 Opening an image file

The first thing to do is initialize a file with the bfopen*® function:

data = bfopen (' /path/to/data/file’);

This function returns an n-by-4 cell array, where n is the number of series in the dataset. If s is the series index between 1 and n:

e The data{s, 1} element is an m-by-2 cell array, where m is the number of planes in the s-th series. If t is the plane
index between 1 and m:

— The data{s, 1}{t, 1} element contains the pixel data for the t-th plane in the s-th series.
— Thedata{s, 1}{t, 2} element contains the label for the t-th plane in the s-th series.

* The data{s, 2} element contains original metadata key/value pairs that apply to the s-th series.

e The data{s, 3} element contains color lookup tables for each plane in the s-th series.

* The data{s, 4} element contains a standardized OME metadata structure, which is the same regardless of the input file
format, and contains common metadata values such as physical pixel sizes - see OME metadata below for examples.

Accessing planes

Here is an example of how to unwrap specific image planes for easy access:

seriesCount = size(data, 1);
seriesl data{l, 1};
series2 = data{2, 1};
series3 = data{3, 1};
metadatalist = data{l, 2};

$ etc

seriesl_planeCount = size(seriesl, 1);
seriesl_planel = seriesl{l, 1};
seriesl_labell = seriesl{l, 2};
seriesl_plane2 = seriesl{2, 1};
seriesl_label2 = seriesl{2, 2};

4Shttp://lists.openmicroscopy.org.uk/mailman/listinfo/ome-users/2015-April/005331.html
46https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfopen.m

13.5. Using Bio-Formats in MATLAB 91

http://www.mathworks.com/matlabcentral/answers/92813
http://lists.openmicroscopy.org.uk/mailman/listinfo/ome-users/2015-April/005331.html
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfopen.m

Bio-Formats Documentation, Release 5.1.3

seriesl_plane3 = seriesl{3, 1};
seriesl_label3 seriesl{3, 2};

Displaying images
If you want to display one of the images, you can do so as follows:

seriesl_colorMaps = data{l, 3};
figure (' Name’, seriesl_labell);
if (isempty(seriesl_colorMaps{1l}))
colormap (gray) ;
else
colormap (seriesl_colorMaps{1l} (1, :));
end
imagesc(seriesl_planel) ;

This will display the first image of the first series with its associated color map (if present). If you would prefer not to apply the
color maps associated with each image, simply comment out the calls to colormap.

If you have the image processing toolbox, you could instead use:

imshow (seriesl_planel, [1]);

You can also create an animated movie (assumes 8-bit unsigned data):

v = linspace (0, 1, 256)';

cmap = [v v Vv];
for p = 1 : size(seriesl, 1)
M(p) = im2frame (uint8 (seriesl{p, 1}), cmap);
end
if feature(’ShowFigureWindows')
movie (M) ;
end

Retrieving metadata

There are two kinds of metadata:

 Original metadata is a set of key/value pairs specific to the input format of the data. It is stored in the data{s, 2}
element of the data structure returned by bfopen.

* OME metadata is a standardized metadata structure, which is the same regardless of input file format. It is stored in the
data{s, 4} element of the data structure returned by bfopen, and contains common metadata values such as physical
pixel sizes, instrument settings, and much more. See the OME Model and Formats*’ documentation for full details.

Original metadata
To retrieve the metadata value for specific keys:

% Query some metadata fields (keys are format-dependent)
metadata = data{l, 2};

subject = metadata.get (’'Subject’);

title = metadata.get (' Title’);

“Thttp://www.openmicroscopy.org/site/support/ome-model/

13.5. Using Bio-Formats in MATLAB 92

http://www.openmicroscopy.org/site/support/ome-model/

Bio-Formats Documentation, Release 5.1.3

To print out all of the metadata key/value pairs for the first series:

metadataKeys = metadata.keySet ().iterator();
for i=1:metadata.size ()

key = metadataKeys.nextElement () ;

value = metadata.get (key);

fprintf ('%$s = %$s\n’, key, value)
end

OME metadata

Conversion of metadata to the OME standard is one of Bio-Formats’ primary features. The OME metadata is always stored the

same way, regardless of input file format.

To access physical voxel and stack sizes of the data:

omeMeta = data{l, 4};

stackSizeX = omeMeta.getPixelsSizeX (0) .getValue() ;
stackSizeY = omeMeta.getPixelsSizeY (0) .getValue() ;
stackSizeZ = omeMeta.getPixelsSizeZ (0) .getValue();

oo

image width, pixels
image height, pixels
number of Z slices

oo oo

voxelSizeXdefaultValue = omeMeta.getPixelsPhysicalSizeX (0) .value();
voxelSizeXdefaultUnit = omeMeta.getPixelsPhysicalSizeX (0) .unit () .getSymbol () ;
voxelSizeX = omeMeta.getPixelsPhysicalSizeX (0).value (ome.units.UNITS.MICROM) ;
voxelSizeXdouble = voxelSizeX.doubleValue() ;

voxelSizeY = omeMeta.getPixelsPhysicalSizeY (0).value (ome.units.UNITS.MICROM) ;
voxelSizeYdouble = voxelSizeY.doubleValue() ;

voxelSizeZ = omeMeta.getPixelsPhysicalSizeZ (0).value (ome.units.UNITS.MICROM) ;
voxelSizeZdouble = voxelSizeZ.doubleValue() ;

For more information about the methods to retrieve the metadata, see the MetadataRetrieve*® Javadoc page.

To convert the OME metadata into a string, use the dumpXML () method:

omeXML = char (omeMeta.dumpXML ()) ;

13.5.3 Reading from an image file

do oo oo oo op oo oo oo

returns value in defaul
returns the default uni
in um
The numeric value repre
in pm
The numeric value repre
in um
The numeric value repre

The main inconvenience of the bfopen.m*’ function is that it loads all the content of an image regardless of its size.

To access the file reader without loading all the data, use the low-level bfGetReader.m>® function:

reader = bfGetReader ('path/to/data/file’);

You can then access the OME metadata using the getMetadataStore () method:

omeMeta = reader.getMetadataStore() ;

Individual planes can be queried using the bfGetPlane.m®' function:

“8http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/meta/MetadataRetrieve html
“Ohttps://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfopen.m
50https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfGetReader.m
SThttps://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfGetPlane.m

13.5. Using Bio-Formats in MATLAB

93

http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/meta/MetadataRetrieve.html
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfopen.m
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfGetReader.m
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfGetPlane.m

Bio-Formats Documentation, Release 5.1.3

seriesl_planel = bfGetPlane (reader, 1);

To switch between series in a multi-image file, use the setSeries(int)’> method. To retrieve a plane given aset of (z, ¢, t) coordinates,

these coordinates must be linearized first using getIndex(int, int, int)>3

oo

Read plane from series iSeries at Z, C, T coordinates (iz, 1iC, 1iT)
All indices are expected to be l-based

reader.setSeries (iSeries - 1);

iPlane = reader.getIndex(iz - 1, iC -1, iT - 1) + 1;

I = bfGetPlane (reader, iPlane);

\
oo

13.5.4 Saving files

The basic code for saving a 5D array into an OME-TIFF file is located in the bfsave.m”* function.

For instance, the following code will save a single image of 64 pixels by 64 pixels with 8 unsigned bits per pixels:

plane = zeros (64, 64, ’'uint8’);
bfsave (plane, ’'single-plane.ome.tiff’);

And the following code snippet will produce an image of 64 pixels by 64 pixels with 2 channels and 2 timepoints:

plane = zeros (64, 64, 1, 2, 2, ’'uint8');
bfsave (plane, 'multiple-planes.ome.tiff’);

By default, bf save will create a minimal OME-XML metadata object containing basic information such as the pixel dimensions,
the dimension order and the pixel type. To customize the OME metadata, it is possible to create a metadata object from the input
array using createMinimalOMEXMILMetadata.m>’, add custom metadata and pass this object directly to bfsave:

plane = zeros (64, 64, 1, 2, 2, 'uint8’);

metadata = createMinimalOMEXMLMetadata (plane) ;

pixelSize = ome.units.quantity.Length(java.lang.Double(.05), ome.units.UNITS.MICROM) ;
metadata.setPixelsPhysicalSizeX (pixelSize, 0);
metadata.setPixelsPhysicalSizeY (pixelSize, O0);

pixelSizeZ = ome.units.quantity.Length (java.lang.Double(.2), ome.units.UNITS.MICROM) ;
metadata.setPixelsPhysicalSizeZ (pixelSizeZz, 0);

bfsave (plane, ’'metadata.ome.tiff’, ’'metadata’, metadata);

56

For more information about the methods to store the metadata, see the MetadataStore’® Javadoc page.

13.5.5 Improving reading performance

Initializing a Bio-Formats reader can consume substantial time and memory. Most of the initialization time is spend in the
setld(java.lang.String)’’ call. Various factors can impact the performance of this step including the file size, the amount of
metadata in the image and also the file format itself.

One solution to improve reading performance is to use Bio-Formats memoization functionalities with the loci.formats. Memoizer>®

reader wrapper. By essence, the speedup gained from memoization will only happen after the first initialization of the reader for
a particular file.

32http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/[FormatReader.html#setSeries(int)

33 http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatReader.html#getIndex(int, int, int)
54https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfsave.m
3Shttps://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/createMinimal OMEXMLMetadata.m
6http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/meta/MetadataStore.html
5Thttp://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/IFormatHandler.html#setId(java.lang.String)
38http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/Memoizer.html

13.5. Using Bio-Formats in MATLAB 94

http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#setSeries(int)
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatReader.html#getIndex(int, int, int)
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfsave.m
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/createMinimalOMEXMLMetadata.m
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/meta/MetadataStore.html
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/IFormatHandler.html#setId(java.lang.String)
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/Memoizer.html

Bio-Formats Documentation, Release 5.1.3

The simplest way to make use the Memo1i zer functionalities in MATLAB is illustrated by the following example:

oo

Construct an empty Bio-Formats reader

= bfGetReader () ;

Decorate the reader with the Memoizer wrapper

= loci.formats.Memoizer (r) ;

Initialize the reader with an input file

If the call is longer than a minimal time, the initialized reader will
be cached in a file under the same directory as the initial file

-

oo

[}

do oo oo oo

name .large_file.bfmemo
.setId(pathToFile) ;

-

o

Perform work using the reader

Close the reader

oo

r.close ()

If the reader has been cached in the call above, re—-initializing the
reader will use the memo file and complete much faster especially for

do oo dp

large data
.setId(pathToFile) ;

-

oo

Perform additional work

oo

Close the reader
r.close()

If the time required to call setld(java.lang.String)’” method is larger than DEFAULT_MINIMUM_ELAPSED®’ or the minimum
value passed in the constructor, the initialized reader will be cached in a memo file under the same folder as the input file. Any
subsequent call to set Id () with areader decorated by the Memoizer on the same input file will load the reader from the memo
file instead of performing a full reader initialization.

More constructors are described in the Memoizer javadocs®! allowing to control the minimal initialization time required before

caching the reader and/or to define a root directory under which the reader should be cached.

As Bio-Formats is not thread-safe, reader memoization offers a new solution to increase reading performance when doing parallel
work. For instance, the following example shows how to combine memoization and MATLAB parfor to do work on a single file
in a parallel loop:

oo

Construct a Bio-Formats reader decorated with the Memoizer wrapper
= loci.formats.Memoizer (bfGetReader (), 0);

Initialize the reader with an input file to cache the reader
.setId(pathToFile) ;

Close reader

.close ()

doe B oo K

-

nWorkers = 4;

o3

¢ Enter parallel loop

parfor i = 1 : nWorkers
% Initialize a new reader per worker as Bio-Formats 1is not thread safe
r2 = javaObject ('loci.formats.Memoizer’, bfGetReader (), O0);

% Initialization should use the memo file cached before entering the

parallel loop
r2.setlId(pathToFile) ;

% Perform work

$ Close the reader

http://downloads.openmicroscopy.org/latest/bio-formats3. 1/api/loci/formats/Memoizer.html#setId(java.lang.String)
http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/Memoizer.htmI#DEFAULT_MINIMUM_ELAPSED
61http://downloads.openmicroscopy.org/latest/bio-formats5. 1/api/loci/formats/Memoizer.html

13.5. Using Bio-Formats in MATLAB 95

http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/Memoizer.html#setId(java.lang.String)
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/Memoizer.html#DEFAULT_MINIMUM_ELAPSED
http://downloads.openmicroscopy.org/latest/bio-formats5.1/api/loci/formats/Memoizer.html

Bio-Formats Documentation, Release 5.1.3

r2.close()
end

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®?

or the previous
versions®® page to find documentation for the version you are using.

13.6 Using Bio-Formats in Python

OME does not currently provide a Python implementation for Bio-Formats.

The CellProfiler project has implemented a Python wrapper around Bio-Formats used by the CellProfiler software which can be
installed using pip:

pip install python-bioformats

See also:

https://pypi.python.org/pypi/python-bioformats Source code of the CellProfiler Python wrapper for Bio-Formats

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions® page to find documentation for the version you are using.

13.7 Interfacing with Bio-Formats from non-Java code

Bio-Formats is written in Java, and is easiest to use with other Java code. However, it is possible to call Bio-Formats from a
program written in another language. But how to do so depends on your program’s needs.

Technologically, there are two broad categories of solutions: in-process approaches, and inter-process communication.
For details, see LOCI’s article Interfacing from non-Java code®®.
Recommended in-process solution: JACE C++ bindings for the Java API

Recommended inter-process solution: Subimager

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®’ or the previous
versions®® page to find documentation for the version you are using.

13.7.1 JACE C++ bindings for the Java API

To make Bio-Formats accessible to software written in C++, we have created a Bio-Formats C++ interface (BF-CPP for short). It
uses LOCI’s jar21ib® program to generate a C++ proxy class for each equivalent Bio-Formats Java class. The resulting proxies are
then compiled into a library, which represents the actual interface from C++ to Bio-Formats. Using this library in your projects
gives you access to the image support of Bio-Formats.

BF-CPP comes with some standalone examples which you can use as a starting point in your own project:

¢ showinf”"

2http://www.openmicroscopy.org/site/support/bio-formats5.0/

3 http://www.openmicroscopy.org/site/support/legacy/
%4http://www.openmicroscopy.org/site/support/bio-formats5.0/
Shttp://www.openmicroscopy.org/site/support/legacy/
http://loci.wisc.edu/software/interfacing-non-java-code
7http://www.openmicroscopy.org/site/support/bio-formats5.0/
%8http://www.openmicroscopy.org/site/support/legacy/

http://loci.wisc.edu/software/jar2lib
TOhttps://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/cppwrap/showinf.cpp

13.6. Using Bio-Formats in Python 96

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
https://pypi.python.org/pypi/python-bioformats
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://loci.wisc.edu/software/interfacing-non-java-code
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://loci.wisc.edu/software/jar2lib
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/cppwrap/showinf.cpp

Bio-Formats Documentation, Release 5.1.3

 minimum_writer’!
Other projects using BF-CPP include:
+ WiscScan’? which uses BF-CPP to write OME-TIFF" files.
 XuvTools which uses an adapted version of BF-CPP called BlitzBioFormats’*.

See the build instructions (Windows, Mac OS X, Linux) for details on compiling BF-CPP from source. Once this is done, simply
include it in your project as you would any other external library.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version” or the previous
versions’® page to find documentation for the version you are using.

13.7.2 Build instructions for C++ bindings

This package provides language bindings for calling into the Bio-Formats Java library from C++ in a cross-platform manner. As
of this writing the bindings are functional with GCC on Linux and Mac OS X systems, as well as with Visual C++ 2005 and
Visual C++ 2008 on Windows.

Compile-time dependencies

To build the Bio-Formats C++ bindings from source, the following modules are required:

» Apache Maven’’ Maven is a software project management and comprehension tool. Along with Ant, it is one of the
supported build systems for the Bio-Formats Java library, and is used to generate the Bio-Formats C++ bindings.

» CMake’® CMake is a cross-platform, open source build system generator, commonly used to build C++ projects in a
platform-independent manner. CMake supports GNU make as well as Microsoft Visual Studio, allowing the Bio-
Formats C++ bindings to be compiled on Windows, Mac OS X, Linux and potentially other platforms.

* Boost Thread”’ Boost is a project providing open source portable C++ source libraries. It has become a suite of de facto
standard libraries for C++. The Bio-Formats C++ bindings require the Boost Thread module in order to handle C++
threads in a platform independent way.

« Java Development Kit® At runtime, only the Java Runtime Environment (JRE) is necessary to execute the Bio-Formats
code. However, the full J2SE development kit is required at compile time on some platforms (Windows in particular),
since it comes bundled with the JVM shared library (jvm.lib) necessary to link with Java.

For information on installing these dependencies, refer to the page for your specific platform: Windows, Mac OS X, Linux.

How to build

The process of building the Bio-Formats C++ bindings is divided into two steps:

1. Generate a C++ project consisting of “proxies”” which wrap the Java code. This step utilizes the Maven project management
tool, specifically a Maven plugin called cppwrap.

2. Compile this generated C++ project. This step utilizes the cross-platform CMake build system.

For details on executing these build steps, refer to the page for your specific platform: Windows, Mac OS X, Linux.

Build results

If all goes well, the build system will:

1. Generate the Bio-Formats C++ proxy classes;

"Ihttps://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/cppwrap/minimum_writer.cpp
"http://loci.wisc.edu/software/wiscscan

T http://www.openmicroscopy.org/site/support/ome-model/ome-tiff

"4http://www.xuvtools.org/devel:libblitzbioformats

TShttp://www.openmicroscopy.org/site/support/bio-formats5.0/

7Shttp://www.openmicroscopy.org/site/support/legacy/

13.7. Interfacing with Bio-Formats from non-Java code 97

https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/cppwrap/minimum_writer.cpp
http://loci.wisc.edu/software/wiscscan
http://www.openmicroscopy.org/site/support/ome-model/ome-tiff
http://www.xuvtools.org/devel:libblitzbioformats
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://maven.apache.org/
http://www.cmake.org/
http://www.boost.org/
http://www.oracle.com/technetwork/java/javase/downloads/

Bio-Formats Documentation, Release 5.1.3

2. Build the Jace C++ library;

3. Build the Java Tools C++ library;

4. Build the Bio-Formats C++ shared library;

5. Build the showinf and minimum_writer command line tools, for testing the functionality.
Please be patient, as the build may require several minutes to complete.
Afterwards, the dist/formats-bsd subdirectory will contain the following files:

1. libjace.so / libjace.jnilib / jace.dll : Jace shared library

2. libformats-bsd.so / libformats-bsd.dylib / formats-bsd.dll : C++ shared library for BSD-licensed readers and writers

3. jace-runtime.jar : Jace Java classes needed at runtime

4. bioformats_package.jar : Bio-Formats Java library needed at runtime

5. libjtools.so / libjtools.jnilib / jtools.dll : Java Tools shared library

6. showinf / showinf.exe : Example command line application

7. minimum_writer / minimum_writer.exe : Example command line application

Items 1-4 are necessary and required to deploy Bio-Formats with your C++ application. Item 5 (jtools) is a useful helper library
for managing the Java virtual machine from C++, but is not strictly necessary to use Bio-Formats. All other files, including the
example programs and various build files generated by CMake, are not needed.

If you prefer, instead of using the bioformats_package.jar bundle, you can provide individual JAR files as appropriate for your
application. For details, see using Bio-Formats as a Java library.

Please direct any questions to the OME team on the forums®' or mailing lists®’.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version® or the previous
versions®* page to find documentation for the version you are using.

13.7.3 Building C++ bindings in Windows

Compile-time dependencies — Windows

Windows users will need to visit the appropriate web sites and download and install the relevant binaries for all the dependencies.

To configure the tools, you will need to edit or create several environment variables on your system. Access them by clicking the
“Environment Variables” button from Control Panel, System, Advanced tab. Use semicolons to separate multiple directories in
the PATH variable.

Compile-time dependencies — Windows — Maven

Download Maven®.

Unpack the Maven archive into your Program Files, then add the folder’s bin subdirectory to your PATH environment variable;
e.g.
C:\Program Files\apache-maven-3.0.4\bin

Once set, new Command Prompts will recognize “mvn” as a valid command.

81http://www.openmicroscopy.org/community/
82http://lists.openmicroscopy.org.uk/mailman/listinfo/
83http://www.openmicroscopy.org/site/support/bio-formats5.0/
84http://www.openmicroscopy.org/site/support/legacy/
85http://maven.apache.org/

13.7. Interfacing with Bio-Formats from non-Java code 98

http://www.openmicroscopy.org/community/
http://lists.openmicroscopy.org.uk/mailman/listinfo/
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://maven.apache.org/

Bio-Formats Documentation, Release 5.1.3

Compile-time dependencies — Windows — CMake

Download and run the CMake installer®®.

During installation, select the “Add CMake to the system PATH for all users” option to ensure that Bio-Formats build system can
find your CMake executable.

Once installed, new Command Prompts will recognize “cmake” and “cmake-gui” as valid commands.

Compile-time dependencies — Windows — Boost

Download Boost®”.

You can either build and install from source using the instructions in the Boost documentation, or follow the link under ‘Other
downloads’ to the prebuilt binaries for several Visual Studio versions.

Compile-time dependencies — Windows — Java Development Kit

Download and install the JDK®®,

After the installation is complete, create a new environment variable called JAVA_HOME pointing to your Java installation; e.g.:
C:\Program Files\Java\jdkl.6.0_25

Setting JAVA_HOME is the easiest way to ensure that Maven can locate Java.

You will also need to append your JDK’s client or server VM folder to the PATH; e.g.:

$JAVA_HOMES%$\jre\bin\client

This step ensures that a directory containing jvm.dll is present in the PATH. If you do not perform this step, you will receive a
runtime error when attempting to initialize a JVM from native code.

Optionally, you can add the bin subdirectory to the PATH; e.g.:
$JAVA_HOME%\bin

Once set, new Command Prompts will recognize (e.g.) “javac” as a valid command.

Compile-time dependencies — Windows — Visual C++

In addition to the other prerequisites, you will also need a working copy of Visual C++. We have tested compilation with Visual
C++ 2005 Professional and Visual C++ 2008 Express; other versions may or may not work.

You can download Visual C++ Express for free®.

You must launch the environment at least once before you will be able to compile the Bio-Formats C++ bindings.

How to build - Windows

Run Command Prompt and change to your Bio-Formats working copy. Then run:

generate the Bio-Formats C++ bindings
cd components\formats-bsd
mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap

build the Bio-Formats C++ bindings
cd target\cppwrap
mkdir build

86http://cmake.org/

87http://www.boost.org/users/download/

88 http://www.oracle.com/technetwork/java/javase/downloads/
89http://www.microsoft.com/express/

13.7. Interfacing with Bio-Formats from non-Java code 929

http://cmake.org/
http://www.boost.org/users/download/
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.microsoft.com/express/

Bio-Formats Documentation, Release 5.1.3

cd build
cmake—gui

The CMake GUI will open. Click the Configure button, and a dialog will appear. Select your installed version of Visual Studio,
and click Finish.

When configuring, you can use the J2I._WIN_BUILD_DEBUG flag to indicate if this will be a Debug or Release build. If the
flag is checked it will build as Debug, unchecked will build as Release.

Once configuration is complete, click Configure again, repeating as necessary until the Generate button becomes available. Then
click Generate. Once generation is complete, close the CMake window.

Back at the Command Prompt, type:
start jace.sln

The solution will then open in Visual Studio. Select Release or Debug as appropriate from the drop-down menu. Press F7 to
compile (or select Build Solution from the Build menu).

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version” or the previous
versions’! page to find documentation for the version you are using.

13.7.4 Building C++ bindings in Mac OS X

Compile-time dependencies — Mac OS X

To install dependencies on Mac OS X, we advise using Homebrew”?:

brew install maven cmake boost

Unless otherwise configured, this will install binaries into /ust/local/.

How to build — Mac OS X

The following commands will generate and build the Bio-Formats C++ bindings:

generate the C++ bindings
cd components/formats-bsd
mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap

compile the C++ bindings
cd target/cppwrap

mkdir build

cd build

cmake

make

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version” or the previous
versions”* page to find documentation for the version you are using.

POhttp://www.openmicroscopy.org/site/support/bio-formats5.0/
9http://www.openmicroscopy.org/site/support/legacy/
9https://github.com/mxcl/homebrew/
9http://www.openmicroscopy.org/site/support/bio-formats5.0/
9http://www.openmicroscopy.org/site/support/legacy/

13.7. Interfacing with Bio-Formats from non-Java code 100

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
https://github.com/mxcl/homebrew/
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

13.7.5 Building C++ bindings in Linux
Compile-time dependencies — Linux

The following directions are specific to Ubuntu Linux. Other Linux distributions may have similar packages available; check your
package manager.

To install dependencies on Ubuntu Linux, execute:

install code generation prerequisites
sudo aptitude install maven2

install build prerequisites
sudo aptitude install build-essential cmake libboost-thread-dev

install Java Development Kit
sudo aptitude install sun-java6-jdk
sudo update—-alternatives —-config java

Then select Sun’s Java implementation as the system default.

It may be possible to use a different Java compiler (i.e., omit the sun-java6-jdk package and update-alternatives step), but we have
only tested the compilation process with Sun’s Java compiler.

How to build — Linux

The following commands will generate and build the Bio-Formats C++ bindings:

generate the Bio-Formats C++ bindings
cd components/formats-bsd
mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap

build the Bio-Formats C++ bindings
cd target/cppwrap

mkdir build

cd build

cmake

make

13.7. Interfacing with Bio-Formats from non-Java code 101

CHAPTER
FOURTEEN

USING BIO-FORMATS AS A NATIVE C++ LIBRARY

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version' or the previous
versions” page to find documentation for the version you are using.

14.1 C++ overview

A completely native Bio-Formats C++ interface is now available. Unlike the JACE bindings, this does not wrap the Java im-
plementation. With this release, TIFF reading and writing, and OME-TIFF reading are available. OME-TIFF writing will be
available soon. All other readers and writers from the Java implementation are currently unavailable; the intention is that support
for these will be added over time.

Note: The C++ implementation is functional in Bio-Formats version 5.1. However, API stability will not be guaranteed until
version 5.2 since it may be necessary to refactor certain parts of the API for optimal usability, robustness and performance.

Applications built against version 5.1 of the API may require updating to work with version 5.2, if they make use of any part of
the API which is changed incompatibly.

14.1.1 Prebuilt packages

MacOS X Homebrew

Run:

brew tap homebrew/science
brew install bioformats-cpp [-—without-docs] [-—-with-gt?5]

——without-docs
Do not build the HTML version of this manual (built by default).

—-with-qgt5
Build the Qt5 OpenGL viewer widget library ome-gtwidgets and bf-test view image viewer (not built by default).

14.1.2 Prerequisites

In order to build the C++ library and its documentation, a number of packages are required to be installed. Note that the minimum
version is the minimum version we regularly test with; older versions may work but are not supported. Some packages are
required only for building Bio-Formats (BF build). A subset of these are required for building client applications making use of
Bio-Formats (Client build) For end-user deployment (Deploy), the library packages rather than the development packages should
be preferred; in some cases such as for Boost and Qt5, these are split up into a separate package for each library.

Thttp://www.openmicroscopy.org/site/support/bio-formats5.0/
Zhttp://www.openmicroscopy.org/site/support/legacy/

102

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

Version When required
Package Recommended | Minimum BF build | Client build | Deploy
Boost 1.54 1.48 . . .
HDF5 1.8.x 1.8.x ° ° °
PNG 1.2 1.2 . . .
TIFF 4.0.3 395 . . .
Xerces-C 3.0 3.0 . . .
GLM* 0.9.6 0.9.5 ° °
Qt5* 5.2 5.0 ° ° °
CMake 3.0 2.8.12 .
Python 2.7 2.6 .
Python Genshi 0.7 0.6 .
Git 2.1x 1.7.x °
GTest 1.7 1.5 °
Doxygent 1.8 1.6 °
Graphviz} 2.xX 1.8.10 °
Python Sphinx%§ | 1.2.x 1.1.x °
TeX (XeLaTeX)§ | TeXLive 2014 TeXLive 2012 °

Required for Bio-Formats build; headers may be needed for client build; libraries and any data files required for deployment

o Optional for Bio-Formats build; if used for the Bio-Formats build, headers may be required for client build and libraries and
any data files required for deployment

* Optional, needed to build the OpenGL image viewer and client applications
T Optional, needed to build the API reference

% Optional, needed to build the manual pages

§ Optional, needed to build the manual (HTML and PDF)

Due to lacking a package manager, if building on Windows most of the above packages will require downloading and installing
by hand. Links for these are provided below.

Quick start

Install the following packages to build Bio-Formats C++. A subset of these packages (or their dependencies) may be used for de-
ployment, where the development package headers and tools for building documentation etc. are not required. Run the appropriate
command below for your platform to install the build dependencies:

BSD Ports pkg install devel/boost-all devel/cmake science/hdf5 graphics/png lang/python
textproc/py—-genshi graphics/tiff textproc/xerces-c3 devel/git devel/googletest
math/glm devel/gt5 graphics/graphviz devel/apache—ant java/openjdk7 textproc/py-
sphinx print/texlive-full

Debian/Ubuntu apt-get install build-essential 1libboost-all-dev cmake 1libhdf5-dev
libpngl2-dev python python—-genshi 1libtiffS-dev libxerces-c-dev git 1libgtest-dev
libglm-dev gtb5-default libgtb-openglb-dev libgtb-svgb-dev graphviz ant ant-contrib
ant-optional openijdk-7-jdk openijdk-7-jre python-sphinx texlive-full

Homebrew brew install boost cmake hdf5 libpng python libtiff xerces-c git glm gt5 graphviz
ant

RedHat/CentOS yum install libhdf5-devel libpng-devel python python-genshi libtiff-devel
xerces—-c—-devel git gtest-devel graphviz java-1.7.0-openjdk

Note that Homebrew and RedHat/CentOS do not provide packages for everything you need; see below for details.
Basic toolchain

A functional compiler, assembler and linker are required to build C++ code.

If possible, install the following packages:

14.1. C++ overview 103

Bio-Formats Documentation, Release 5.1.3

System Package
BSD Ports N/A*
Debian/Ubuntu | build-essential
Homebrew N/A+¥
RedHat/CentOS | N/A%
Windows N/A§

* Available by default
T Install Xcode
¥ Run yum groupinstall "Development Tools”

§ Install Visual Studio or Visual Studio Express3

Boost

If possible, install one of the following packages:

System Package

BSD Ports devel/boost-all
Debian/Ubuntu | libboost-all-dev
Homebrew boost
RedHat/CentOS | boost-devel

1.48 or later needed for Boost.Geometry; 1.54 or later needed for Boost.Geometry spatial indexes. RHEL/CentOS 6 users might

want to look at the Boost 1.48 SCL* or build a more recent Boost release.

CMake

If possible, install the following packages:

System Package
BSD Ports devel/cmake
Debian/Ubuntu | cmake
Homebrew cmake
RedHat/CentOS | cmake

o Website’

e Download®

HDF5

If possible, install the following packages:

System Package
BSD Ports science/hdf5
Debian/Ubuntu | libhdf5-dev
Homebrew hdf5
RedHat/CentOS | libhdf5-devel

PNG

If possible, install the following packages:

3http://www.visualstudio.com/downloads/download-visual-studio-vs#d-express-windows-desktop
“https://www.softwarecollections.org/en/scls/denisarnaud/boost 148/

Shttp://cmake.org/

Shttp://cmake.org/cmake/resources/software.html

14.1. C++ overview

104

http://www.visualstudio.com/downloads/download-visual-studio-vs#d-express-windows-desktop
https://www.softwarecollections.org/en/scls/denisarnaud/boost148/
http://cmake.org/
http://cmake.org/cmake/resources/software.html

Bio-Formats Documentation, Release 5.1.3

System Package

BSD Ports graphics/png

Debian/Ubuntu | libpngl2-dev

Homebrew libpng

RedHat/CentOS | libpng-devel
Python

If possible, install the following packages:

System Package
BSD Ports lang/python
Debian/Ubuntu | python
Homebrew python
RedHat/CentOS | python

» Website’

» Download®

* Extra packages for Windows’

For Python on Windows, either download separate installers for each package, or install setuptools and pip for Python, then
pip install needed packages; ensure downloaded packages are 64-bit if using 64-bit Python.

Python Genshi

If possible, install the following packages:

System Package

BSD Ports textproc/py-genshi
Debian/Ubuntu | python-genshi
Homebrew N/A
RedHat/CentOS | python-genshi

Use pip install genshi if a packaged version is not available.

TIFF

If possible, install the following packages:

System Package
BSD Ports graphics/tiff
Debian/Ubuntu | libtiff5-dev*
Homebrew libtift
RedHat/CentOS | libtiff-devel

* 1ibtiff4-dev with older releases

4.0.2 and earlier do not have TIFFField accessor functions.

Xerces-C

If possible, install the following packages:

System Package

BSD Ports textproc/xerces-c3
Debian/Ubuntu libxerces-c-dev
Homebrew Xerces-c
RedHat/CentOS | xerces-c-devel

https://www.python.org/

8https://www.python.org/download/releases/2.7.8/

%http://www.lfd.uci.edu/ gohlke/pythonlibs/

14.1. C++ overview

105

https://www.python.org/
https://www.python.org/download/releases/2.7.8/
http://www.lfd.uci.edu/~gohlke/pythonlibs/

Bio-Formats Documentation, Release 5.1.3

Git

If possible, install the following packages:

System Package
BSD Ports devel/git
Debian/Ubuntu | git
Homebrew git
RedHat/CentOS | git

» Website!?

e Download!!

Google Test (gtest)

If possible, install the following packages:

System Package

BSD Ports devel/googletest
Debian/Ubuntu | libgtest-dev
Homebrew N/A*
RedHat/CentOS | gtest-devel

* gtest is not available in homebrew'?

An embedded copy of GTest is provided; it is only necessary to use a system-provided or self-built copy of GTest if the embedded

copy is not functional on a specific system.

If using an external GTest, make sure that GTEST_ROOT is set in the environment, or that -DGTEST_ROOT=/path/to/gtest
is passed to cmake and that this points to the location where you installed the gtest library. If the library is located on the default

library search path, this is not necessary.

o Website!?

* Zip download'*

* SVN tagh

GLM

If possible, install the following packages:

System Package
BSD Ports math/glm
Debian/Ubuntu | libglm-dev
Homebrew glm
RedHat/CentOS | N/A

Note: Older versions will allow compilation but use degrees rather than radians, which will lead to unexpected results.

o Website!®

« Download!?

1Ohttp://www.git-scm.com/

Uhttp://www.git-scm.com/downloads
Zhttp://answers.ros.org/question/42335/mac-os-x-install-error-no-available-formula-for-gtest/
Bhttps://code.google.com/p/googletest/

4https://code.google.com/p/googletest/downloads/detail Jname=gtest-1.7.0.zip
Shttp://googletest.googlecode.com/svn/tags/release-1.7.0

16http://glm.g-truc.net/0.9.6/index.html

http://sourceforge.net/projects/ogl-math/files/

14.1. C++ overview

106

http://www.git-scm.com/
http://www.git-scm.com/downloads
http://answers.ros.org/question/42335/mac-os-x-install-error-no-available-formula-for-gtest/
https://code.google.com/p/googletest/
https://code.google.com/p/googletest/downloads/detail?name=gtest-1.7.0.zip
http://googletest.googlecode.com/svn/tags/release-1.7.0
http://glm.g-truc.net/0.9.6/index.html
http://sourceforge.net/projects/ogl-math/files/

Bio-Formats Documentation, Release 5.1.3

Qt5

If possible, install the following packages:

System Package

BSD Ports devel/qt5

Debian/Ubuntu | qt5-default libqt5-opengl5-dev libqt5-svg5-dev
Homebrew qts*

RedHat/CentOS | N/A

* Add /usr/local/opt/qgt5/binto PATH

o Website'®

e Download!

Doxygen
System Package
BSD Ports devel/doxygen
Debian/Ubuntu | doxygen
Homebrew doxygen
RedHat/CentOS | doxygen
» Website?”

¢ Download?!

Graphviz

If possible, install the following packages:

System Package
BSD Ports graphics/graphviz
Debian/Ubuntu | graphviz
Homebrew graphviz
RedHat/CentOS | graphviz

» Website??

» Download (for Windows)??

Apache Ant

If possible, install one of the following packages:

System Package

BSD Ports devel/apache-ant
Debian/Ubuntu | ant ant-contrib ant-optional
Homebrew ant

RedHat/CentOS | N/A

o Website?*

¢ Download®

Bhttp://www.qt.io/

Yhttp://www.qt.io/download/
2Ohttp://www.stack.nl/ dimitri/doxygen/
21 http://www.stack.nl/ dimitri/doxygen/download.html

22http://graphviz.org/

Zhttp://graphviz.org/Download_windows.php
2*http://ant.apache.org/
ZShttp://ant.apache.org/bindownload.cgi

14.1. C++ overview

107

http://www.qt.io/
http://www.qt.io/download/
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/download.html
http://graphviz.org/
http://graphviz.org/Download_windows.php
http://ant.apache.org/
http://ant.apache.org/bindownload.cgi

Bio-Formats Documentation, Release 5.1.3

Java

If possible, install one of the following packages:

System Package

BSD Ports java/openjdk7
Debian/Ubuntu | openjdk-7-jdk openjdk-7-jre
Homebrew N/A

RedHat/CentOS | java-1.7.0-openjdk

» Download?®

Python Sphinx

If possible, install the following packages:

System Package

BSD Ports textproc/py-sphinx
Debian/Ubuntu | python-sphinx
Homebrew N/A (use pip)
RedHat/CentOS | N/A (use pip)

Use pip install sphinx if apackaged version is not available.

TeX

If possible, install the following packages:

System Package

BSD Ports print/texlive-full
Debian/Ubuntu | texlive-full
Homebrew N/A*
RedHat/CentOS | N/AT

* Install TeXLive or MacTeX

T Provides an obsolete version; install TeXLive

» TeXLive website (for Unix)?’

» TeXLive quick install (for Unix)?®
o MacTeX website (for MacOS X)%
o MacTeX download (for MacOS X)3°

» MikTeX website (for Windows)>!

» MikTeX download (for Windows)32

Local font configuration may be required to make the TeX Gyre fonts available:

* Linux and FreeBSD: Use the provided fontconfig template or create your own

* MacOS X: Add to system using FontBook

* Windows: May need adding to the system fonts if not found automatically

26http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

2Thttps://www.tug.org/texlive/
Z8https://www.tug.org/texlive/quickinstall.html
2https://tug.org/mactex/

30http://mirror.ctan.org/systems/mac/mactex/MacTeX.pkg

31http://www.miktex.org/
http://www.miktex.org/download

14.1. C++ overview

108

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
https://www.tug.org/texlive/
https://www.tug.org/texlive/quickinstall.html
https://tug.org/mactex/
http://mirror.ctan.org/systems/mac/mactex/MacTeX.pkg
http://www.miktex.org/
http://www.miktex.org/download

Bio-Formats Documentation, Release 5.1.3

14.1.3 Build environment
General
Custom configuration is needed primarily on Windows, where the needed tools may not be on the search path by default. There
are several possible approaches here:
* Add to the system environment (globally)
* Add to the user environment (affects a single user)
* Set in a batch file and run this to set up the environment on demand (local to the command shell)

The first will affect all programs running on the system and so may cause problems, particularly if multiple configurations or tool
versions are to be used. The last offers the greatest flexibility and safety, and can be sourced automatically when starting a shell
if a console replacement such as ConsoleZ is used.

 Activate a python virtualenv if needed
 Ensure that needed tools are on the user PATH (e.g. ant, cmake, doxygen, dot, git, python, java, sphinx, xelatex)

e Set CMAKE_PREFIX_PATH if some libraries and tools are not on the default search path. Not all tools need to be on the
default path; some will be discovered automatically by cmake

Homebrew

If gt 5 and glm are installed, for building the Qt image viewer, ensure that /usr/local/opt/gt5/bin is on the PATH to
allow Qt to be autodetected by cmake.

14.1.4 Source tree layout

Source tree layout:

cpp

—— cmake

-— ext

-— 1lib

| —-— ome

| -— bioformats
| | —-— detail
| | -— in

\ | -— out

| | —-— tiff

| —— common

\ | -— endian
| | —— xml

\ | —— dom
\ -— compat

| -— internal

| —-— gtwidgets

| -— test

| —-— xml

—— libexec

| —— info

| -— view

—— share

—-— test

Top-level directories inside cpp:
cmake CMake build infrastructure
ext External third-party code

1ib Bio-Formats library headers and sources

14.1. C++ overview 109

Bio-Formats Documentation, Release 5.1.3

libexec Bio-Formats internal binaries (not direct public API)

share Bio-Formats architecture-independent data files

test Bio-Formats unit tests

Components in 1ib and test:

bioformats Bio-Formats reader and writer interfaces and implementations
common Common functionality used by all other components

compat Compatibility workarounds

internal Private implementation details

gtwidgets Qt5 widgets for image rendering with OpenGL

test Unit test common functions

xml OME XML model and metadata

14.1.5 Configuring

Bio-Formats uses cmake, a generic cross-platform build system which generates build files for a large number of common build
systems and IDEs. For example, on BSD, Linux and MacOS X, Unix make Makefile files may be created. On Windows, Visual
Studio msbuild . s1n solution files and . vexproj project may be created. However, Eclipse, Sublime Text or several other
IDEs or alternative build systems may be used instead, if desired.

Start by creating a temporary build directory. This directory may be in any location inside or outside the Bio-Formats source tree.
However, you may not use the source directory as the build directory. (This fills the source tree full of autogenerated files.)

Run cmake from the temporary build directory:

o\

mkdir build
cd build
cmake /path/to/bioformats

o

o\

Run cmake -LH to see the configurable project options; use —~LAH to see advanced options. The following basic options are
supported:

bioformats-superbuild=(ON|OFF) Build Bio-Formats as part of a “super-build” project. This will download and build all
needed library dependencies (Boost, libtiff etc.) prior to building Bio-Formats. This option is disabled by default since
most platforms provide all the libraries by default. However, it is enabled by default when using Microsoft Visual C++,
since this platform does not provide libraries unless you have built your own.

cxxstd-autodetect=(ON|OFF) Enable or disable (default) C++ compiler standard autodetection. If enabled, the compiler will
be put into C++11 mode if available, otherwise falling back to C++03 or C++98. If disabled, the default compiler standard
mode is used, and it is the responsibility of the user to add the appropriate compiler options to build using the required
standard. This is useful if autodetection fails or a compiler is buggy in certain modes (e.g. GCC 4.4 or 4.6 require —
std=gnu++98 or else st darg support is broken).

doxygen=(ON|OFF) Enable doxygen documentation. These will be enabled by default if doxygen is found.

embedded-gtest=(ON|OFF) Enable the use of an embedded copy of the Google Test (gtest) library. This is off by default but
will be enabled automatically if a system copy is not found. This may be enabled explicitly to override the autodetection.

extended-tests=(ON|OFF) Some of the unit tests are comprehensive and run many thousands of tests. These are enabled by
default, but by setting to OFF a representative subset of the tests will be run instead to save time.

extra-warnings=(ON|OFF) Enable or disable additional compiler warnings in addition to the default set. These are disabled by
default since they trigger a large number of false positives, particularly in third-party libraries outside our control.

fatal-warnings=(ON|OFF) Make compiler warnings into fatal errors. This is disabled by default.

sphinx=(ON|OFF) Build manual pages and HTML documentation with Sphinx. Enabled by default if Sphinx is autodetected.
sphinx-pdf=(ON|OFF) Build PDF documentation with Sphinx. Enabled by default if Sphinx and XeLaTeX are autodetected.
test=(ON|OFF) Enable unit tests. Tests are enabled by default.

14.1. C++ overview 110

Bio-Formats Documentation, Release 5.1.3

For example, to disable tests, run cmake -Dtest=0FF. Options will typically be enabled by default if the prerequisites are
available.

The installation prefix may be set at this point using -DCMAKE_INSTALL_PREFIX=prefix. The build system and compiler to
use may also be specified. Please see the cmake documentation for further details of all configurable options, and run cmake
——help to list the available generators for your platform.

C++11

C++11 features such as std::shared_ptr are used when using a C++11 or C++14 compiler, or when —-Dcxxstd-
autodetect=0ON is used and the compiler can be put into a C++11 or C++14 compatibility mode. When using an
older compatbility mode such as C++98, the Boost equivalents of C++11 library features will be used as fallbacks to pro-
vide the same functionality. In both cases these types are imported into the ome: : compat namespace, for example as
ome: :compat: :shared_ptr, and the types in this namespace should be used for portability when using any part of the
API which use types from this namespace.

Linux and MacOS X

The default generator is Unix Makefiles, and the standard CXX, CXXFLAGS and LDFLAGS environment variables may be set
to explicitly specify the compiler, compiler flags and linker flags, respectively. These may be useful for adding additional —I and
-L include and library search paths, for example.

If you wish to use an IDE such as Eclipse or KDevelop, an alternative generator may be used.
Windows
On Windows, the generator will require specifying by hand, and this will configure the version of Visual Studio (or other compiler)

to use. For example, -G "Visual Studio 11 Win64"” will configure for generating Visual Studio 2012 64-bit build files
for use with the Visual C++ compiler.

Note: There is no need to use the Visual Studio command shell when running cmake.

14.1.6 Building

For all platforms and generators, it should usually be possible to build using:

% cmake —-build
which will invoke the platform- and generator-specific build as appropriate.
To build the API reference documentation, run:

°

% cmake —--build . --target doc

Linux and MacOS X
If using Unix Makefiles, simply run:

)

% make

with any additional options required, for example -7 to enable parallel building, or VERBOSE=1 to show the details of every
command being executed.

To build the API reference documentation, run:

14.1. C++ overview 111

Bio-Formats Documentation, Release 5.1.3

o

% make doc
If using an IDE, open the generated project file and proceed using the IDE to build the project.

Windows

If using Visual Studio, the generated project files may be opened using the IDE and then built within the IDE. Alternatively,
the project files may be built directly using the msbuild command-line tool inside a Visual Studio command prompt (or an
appropriately configured command prompt which has run VCVARSALL.BAT or equivalent to configure the environment).

14.1.7 Testing

For all platforms and generators, it should usually be possible to run all tests using ctest. Run:

o

% Ctest

or to run verbosely:

% ctest -V

Additional flags allow specification of the build configuration to use, logging, parallel building and other options. Please see the
ctest documentation for further details.

Individual test programs may be run by hand if required.

Linux and MacOS X
To run all tests, run:

°

% cmake —--build . —--target test

or verbosely:

% cmake —-build . —--target test —-- ARGS=-V

If using Unix Makefiles, simply run:

o

% make test

or verbosely:

% make test ARGS=-V

Windows

To run all tests, run:

> msbuild RUN_TESTS.vcproj

14.1. C++ overview 112

Bio-Formats Documentation, Release 5.1.3

14.1.8 Installation
Linux and MacOS X
To install the headers and libraries directly on the system into the configured prefix:

% cmake —-build . —--target install

Alternatively, to install into a staging directory:

)

% cmake —--build . --target install —-- DESTDIR=/path/to/staging/directory install

If using Unix Makefiles, simply run:

% make install

Alternatively, to install into a staging directory:

% make DESTDIR=/path/to/staging/directory install

Windows
When using Visual Studio, there should be an INSTALL . vcxpro j project which may be run using msbuild, for example:

> msbuild INSTALL.vcxproj /p:platform=x64

Installation layout

A typical installation layout:

$CMAKE_INSTALL_PREFIX
—-— bin
—-— include
| —-— ome
| —-— bioformats
\ —— common
| —-— compat
| —— xml
-—— 1lib
—— libexec
—-— share
-— icons
—-— man
—-— xml

14.1.9 Using the library

The Doxygen API reference® is used to document all aspects of the Bio-Formats API.

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version®* or the previous

3http://downloads.openmicroscopy.org/latest/bio-formats-cpp3. 1/api/annotated.html

14.1. C++ overview 113

http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/annotated.html
http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

versions® page to find documentation for the version you are using.

14.2 C++ conversion details

The C++ codebase has been primarily a conversion of the original Java codebase, with some additional helper functions and
classes added where needed. The intention is that the basic interfaces and classes should be identical between the two languages
unless this is prevented by fundamental differences between the languages.

This section is intended to be useful for
 Users of the existing Java interface, who wish to understand the differences between the two implementations
* Developers who wish to work on the C++ interface

In addition to documenting the specific language and class compatibility issues, this section also documents the idioms in use
in the C++ code which might not be immediately clear by looking at the API reference, and which may not be familiar to Java
developers.

14.2.1 C++ and Java type incompatibility

While C++ and Java have some basic syntactical similarities, there are several basic differences in their type systems.

Java types

Java has primitive types and classes.

int i;
double d;

* No unsigned primitive integer types

Pixels pixels = new Pixels /() ;
» All classes are derived from root Object
* Objects are by reference only
* Objects and arrays are always allocated with new

¢ Destruction is non-deterministic

 All passing is by value (primitives and object references)

Pixels[] array = new Pixels|[5];

* Arrays have an intrinsic size.

* Arrays are safe to index out of bounds (an exception is thrown).

C++ types

C++ has primitive types, structures and classes.

34http://www.openmicroscopy.org/site/support/bio-formats5.0/
3Shttp://www.openmicroscopy.org/site/support/legacy/

14.2. C++ conversion details 114

http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/

Bio-Formats Documentation, Release 5.1.3

intl6_t i1;
uint32_t i2;
double d;

» Primitive integer types may be signed or unsigned.

* Integer types are of defined size.

// Allocate on the stack, or as a struct or class member:
Pixels pixels;

// Allocate on the heap
Pixels *pixelsptrl = new Pixels();

// Pointer to existing instance
const Pixels “*pixelsptr2 = &pixels;

// Reference to existing instance
Pixelss& pixelsref (pixels);

* Classes have no common root

» All types may be instances, pointers or references

* Object construction may be on the stack, on the heap using new or in place using placement new.
* Pointers and references may refer to const type

* Pointers may be const

 References are implicitly const (similar to final)

* Destruction is deterministic

¢ new should never be used in modern C++ code (see below)

Pixels array[5];

* Arrays “decay” to bare pointers
* Arrays are not safe to index out of bounds
* Size information lost at runtime

* Never use arrays outside static initializers

Simplified type names

typedef is used to create an alias for an existing type.

typedef std::vector<std::string> string_list;
string_list 1;

string_list::const_iterator i = l.begin();

// NOT std::vector<std::string>::const_iterator

typedef std::vector<Pixels> plist;

plist pl(6);

plist::size_type idx = 2;

// size_type NOT unsigned int or uint32_t
pl.at(idx) = ...;

Used in standard container types e.g. size_type, value_type and in classes and class templates in Bio-Formats. Consis-
tency is needed for generic programming—use the standard type names to enable interoperability with standard algorithms.

14.2. C++ conversion details 115

Bio-Formats Documentation, Release 5.1.3

14.2.2 Exception handling

Java

throws details which exceptions are thrown by a method. Java exceptions are also “checked”, requiring the caller to catch and
handle all exceptions which might be thrown, aside from Runt imeException and its subclasses.

C++

C++ has exception specifications like Java, however they are useless aside from nothrow. This is because if an exception is
thrown which does not match the specification, it will abort the program with a bad_except ion which makes them unusable
in practice.

Exceptions can be thrown at any point with the exception that they should never be thrown in a destructor. It is not necessary
or typical to check exceptions except where needed. All code must be exception-safe given that an exception could be thrown at
any point; the design considerations for exception safety are covered below.

14.2.3 Interfaces

Java supports single-inheritance, plus interfaces. C++ supports true multiple-inheritance, which is rather more flexible, at the
expense of being rather more complicated and dangerous. However, the Java single-inheritance-plus-interfaces model can be
implemented in C++ using a subset of the facilities provided by multiple inheritance. Rather than being enforced by the language,
it is a set of idioms. These must be rigorously followed or else things will fail horribly!

C++ interfaces are classes with:
* No instance variables
¢ Pure virtual methods
e protected default constructor
e public virtual destructor
* Deleted copy constructor and assignment operator
C++ classes implementing interfaces:
* Use public inheritance for parent class
e Use virtual public inheritance for implemented interfaces
* Have a virtual destructor

When compiled with optimization enabled, the interface classes should have zero storage overhead. If implementing classes do not
use virtual public inheritance, compilation will fail as soon as a second class in the inheritance hierarchy also implements
the interface.

14.2.4 Reference handling and memory management

Pointer problems

Plain (or “dumb”) C++ pointers can be dangerous if used incorrectly. The Bio-Formats API make a point of never using them
unless absolutely necessary. For automatic objects allocated on the stack, allocation and deallocation is automatic and safe:

Image 1i(filename) ;
i.read_plane();

// Object destroyed when i goes out of scope

14.2. C++ conversion details 116

Bio-Formats Documentation, Release 5.1.3

In this case, the object’s destructor was run and the memory freed automatically.

Looking at the case where a pointer is used to reference manually-allocated memory on the heap:

Image *i = new Image (filename) ;
i->read_plane () ;

// Memory not freed when pointer i goes out of scope

In this case new was not paired with the corresponding delete, resulting in a memory leak. This is the code with the “leak”
fixed:

{

Image *i = new Image (filename) ;
i->read_plane(); // throws exception; memory leaked

delete i; // never called

new and delete are now paired, but the code is not exception-safe. If an exception is thrown, memory will still be leaked.
Manual memory management requires correct clean up for every exit point in the function, including both all return statements
and thrown exceptions. Here, we handle this correctly:

Image *1 = new Image (filename) ;

try {
i->read_plane(); // throws exception
} catch (const std::runtime_errors e) {
delete i; // clean up
throw; // rethrow

delete i; // never called for exceptions

However, this does not scale. This is painful and error prone when scaled to an entire codebase. Even within this simple function,
there is only a single variable with a single exception and single return to deal with. Imagine the combinatorial explosion when
there are several variables with different lifetimes and scopes, multiple return points and several exceptions to handle—this is easy
to get wrong, so a more robust approach is needed.

Use of new is not in the general case safe or sensible. The Bio-Formats API never passes pointers allocated with new, nor requires
any manual memory management. Instead, “smart” pointers are used throughout to manage memory safely and automatically.

ome: :compat : : shared_ptr as a “smart” pointer

The unsafe example above, has been rewritten to use ome : : compat : : shared_ptr:

// Start of block
{
ome: :compat::shared_ptr<Image> i (ome::compat::make_shared<Image> (filename)) ;

i->read_plane(); // throws exception

// Memory freed when i’s destructor is

14.2. C++ conversion details 117

Bio-Formats Documentation, Release 5.1.3

// run at exit of block scope

Rather than managing the memory by hand, responsibility for this is delegated to a “smart” pointer,
ome: :compat: :shared_ptr. The memory is freed by the ome: :compat::shared_ptr destructor which is
run at the end of the block scope, on explicit ret urn, or when cleaned up by exception stack unwinding.

Note: ome::compat::shared_ptr is either a std: :shared_ptr or a boost: :shared_ptr, depending upon
whether C++11 features are avaiable or not, respectively.

* shared_ptr object lifetime manages the resource

* new replaced with ome : : compat : :make_shared

* May be used as class members; lifetime is tied to class instance
¢ Clean up for all exit points is automatic and safe

* Allows ownership transfer and sharing

* Allows reference without ownership using weak_ptr

* weak_ptr references the object but does not prevent it being freed when the last shared_pt r reference is lost; this is
useful for cycle breaking and is used by the OME XML model objects for references

Resource Acquisition Is Initialization
Resource Acquisition Is Initialization (RAII) is a programming idiom used throughout modern C++ libraries and applications,
including the Standard Library,
* A class is a proxy for a resource
» The resource is acquired when object is initialised
* The resource is released when object is destroyed
* Any resource may be managed (e.g. memory, files, locks, mutexes)
* The C++ language and runtime guarantees make resource management deterministic and reliable
* Safe for use in any scope
» Exception safe
 Used throughout modern C++ libraries and applications

Because this relies implicitly upon the deterministic object destruction guarantees made by the C++ language, this is not used
widely in Java APIs which often require manual management of resources such as open files. Used carefully, RAII will prevent
resource leaks and result in robust, safe code.

The FormatReader API is currently not using RAII due to the use of the FormatHandler: :setId () interface.

C++ reference variants

// Non-constant Constant
e
// Pointer
Image *i; const Image *i;
Image * const 1i; const Image * const 1i;
// Reference
Imageé& 1i; const Image& 1i;
// Shared pointer
ome: :compat: :shared_ptr<Image> 1i; ome: :compat: :shared_ptr<const Image> 1i;

14.2. C++ conversion details 118

Bio-Formats Documentation, Release 5.1.3

const ome::compat::shared_ptr<Image> 1i; const ome::compat::shared_ptr<const Image> 1i;

// Shared pointer reference
ome: :compat::shared_ptr<Image>& 1i; ome: :compat: :shared_ptr<const Image>& 1i;
const ome::compat::shared_ptr<Image>& i; const ome::compat::shared_ptr<const Image>& 1i;

// Weak pointer
ome: :compat: :weak_ptr<Image> 1i; ome: :compat: :weak_ptr<const Image> 1i;
const ome::compat::weak_ptr<Image> 1i; const ome::compat::weak_ptr<const Image> i;

// Weak pointer reference
ome: :compat: :weak_ptr<Image>& 1i; ome: :compat: :weak_ptr<const Image>& 1i;
const ome::compat::weak_ptr<Image>& 1i; const ome::compat::weak_ptr<const Image>& 1ij;

Java has one reference type. Here, we have 22. Clearly, not all of these will typically be used. Below, a subset of these are shown
for use for particular purposes.

Class member types:

Image 1i; // Concrete instance
ome: :compat::shared_ptr<Image> 1i; // Reference
ome: :compat: :weak_ptr<Image> 1ij; // Weak reference

Wherever possible, a concrete instance should be preferred. This is not possible for polymorphic types, where a reference is
required. In this situation, an ome : : compat : : shared_ptr is preferred if the class owns the member and/or needs control
over its lifetime. If the class does not have ownership then an ome : : compat : : weak_ptr will allow safe access to the object if
it still exists. In circumstances where manual lifetime management is required, e.g. for performance, and the member is guaranteed
to exist for the duration of the object’s lifetime, a plain pointer or reference may be used. A pointer will be used if it is possible
for it to be null, or it may be reassigned more than once, or if is assigned after initial construction. If properly using RAII, using
references should be possible and preferred over bare pointers in all cases.

Argument types:

// Ownership retained

void read_plane (const Imageé& image) ;

// Ownership shared or transferred

void read_plane (const ome::compat::shared_ptr<Image>& image) ;

Passing primitive types by value is acceptable. However, passing a struct or class by value will implicitly copy the object
into the callee’s stack frame, which may be expensive (and requires a copy constructor which will not be guaranteed or even
possible for polymorphic types). Passing by reference avoids the need for any copying, and passing by const reference
will prevent the callee from modifying the object, also making it clear that there is no transfer of ownership. Passing us-
ing an ome: : compat : : shared_ptr is possible but not recommended—the copy will involve reference counting overhead
which can kill multi-threaded performance since it requires synchronization between all threads; use a const reference to an
ome: :compat: :shared_ptr to avoid the overhead. If ownership should be transferred or shared with the callee, use a
non-const reference.

To be absolutely clear, plain pointers are never used and are not acceptable for ownership transfer. A plain reference also makes
it clear there is no ownership transfer.

Return types:

7

Image get_image(); // Ownership transferred
Image& get_image(); // Ownership retained
ome: :compat: :shared_ptr<Image> get_image(); // Ownership shared/trans
ome: :compat: :shared_ptr<Image>& get_image(); // Ownership shared

If the callee does not retain a copy of the original object, it can’t pass by reference since it can’t guarantee the object remaining in
scope after it returns, hence it must create a temporary value and pass by value. If the callee does retain a copy, it has the option
of passing by reference. Passing by reference is preferred when possible. Passing by value implies ownership transfer. Passing

14.2. C++ conversion details 119

Bio-Formats Documentation, Release 5.1.3

by reference implies ownership retention. Passing an ome: : compat : : shared_ptr by value or reference implies sharing
ownership since the caller can retain a reference; if passing by value ownership may be transferred since this implies the callee is
not retaining a reference to it (but this is not guaranteed).

Again, to be absolutely clear, plain pointers are never used and are not acceptable for ownership transfer. A plain reference also
makes it clear there is no ownership transfer.

» Safety: References cannot be null

 Storing polymorphic types requires use of a shared_ptr

 Referencing polymorphic types may require use of a shared_ptr

 Safety: To avoid cyclic dependencies, use weak_ptr

 Safety: To allow object destruction while maintaining a safe reference, use weak_ptr
* weak_ptr is not directly usable

* weak_ptr is convertible back to shared_ptr for use if the object is still in existence

e C++11 move semantics (& &) improve the performance of ownership transfer

14.2.5 Containers

Safe array passing

C++ arrays are not safe to pass in or out of functions since the size is not known unless passed separately.

class Image

{

// Unsafe; size unknown
uint8_t[] getLUT();
void setLUT (uint8_t[]& lut);

i

C++ arrays “decay’ to “bare” pointers, and pointers have no associated size information.

ome: :compat: :array is a safe alternative. This is eithera C++11 std: :array orboost : : array with older compilers.

class Image

{
typedef ome::compat::array<uint8_t, 256> LUT;

// Safe; size defined
const LUT& getLUT () const;
void setLUT (const LUTS) ;
bi

ome: :compat : :array is a array-like object (a class which behaves like an array). Its type and size are defined in the template,
and it may be passed around like any other object. Its array: :at () method provides strict bounds checking, while its index
array: :operator[] () provides unchecked access.

14.2.6 Storing and passing unrelated types

Types with a common base

std::vector<ome: :compat: :shared_ptr<Base> > v;
v.push_back (ome: :compat: :make_shared<Derived>()) ;

14.2. C++ conversion details 120

Bio-Formats Documentation, Release 5.1.3

This can store any type derived from Base. An ome: : compat : : shared_ptr is essential. Without it, bare pointers to the
base would be stored, and memory would be leaked when elements are removed from the container (unless externally managed
[generally unsafe]). The same applies to passing polymorphic types.

Java containers can be problematic:
» Java can store root Ob ject in containers
* Java can pass and return root Ob ject in methods.
* This is not possible in C++: there is no root object.

* An alternative approach is needed.

Arbitrary types

boost : :any may be used to store any type:

std: :vector<boost::any> v;
v.push_back (Anything) ;

* Assign and store any type
» Type erasure (similar to Java generics)

 Use for containers of arbitrary types

Flexible, but need to cast to each type used to extract
* Code will not be able to handle all possible types meaningfully

This is the most flexible solution, but in order to get a value back out, requires casting it to its specific type. This can mean a
situation could arise where values are stored of types which cannot be handled since it is not possible to write the code to handle
every single possibility ahead of time. However, if the open-ended flexibility is needed, this is available.

A fixed set of types

boost::variant may be used to store a limited set of different types: This avoids the boost : : any problem of not being
able to handle all possible types, since the scope is limited to a set of allowed types, and a static_visitor can ensure that
all types are supported by the code at compile time.

typedef boost::variant<int, std::string> variants;
std: :vector<variants> v;

v.push_back (43) ;

v.push_back ("ATTO 647N") ;

* Store a set of discriminated types

» “External polymorphism” via static_visitor
 Used to store original metadata

» Used to store nD pixel data of different pixel types

This is not an alternative to a common root object. Instead, this is a discriminated union, which can store one of a defined set of
“variant” types. A static visitor pattern may be used to generate code to operate on all of the supported types. The variant type
may be used as a class member, passed by value, passed by reference or stored in a container like any other type. Due to the way it
is implemented to store values, it does not necessarily need wrapping in an ome : : compat : : shared_ptr since it can behave
as a value type (depending upon the context).

Java uses polymorphism to store and pass the root Object around. The boost::variant and boost: :any approaches
use templates to (internally) create a common base and manage the stored objects. However, the end user does not need to deal
with this complexity directly—the use of the types is quite transparent.

14.2. C++ conversion details 121

Bio-Formats Documentation, Release 5.1.3

Variant example: MetadataMap

This example demonstrates the use of variants with a simple expansion for two different categories of type (scalars and vectors of
scalars).

The MetadataMap class stores key-value pairs, where the value can be either a string, Boolean, or several integer and floating
point types, or vectors of any of these types. When converting the data to other forms, it is necessary to flatten the vector types to
a set of separate key-value pairs with the key having a numbered suffix, one for each element in the vector.

MetadataMap map;
MetadataMap flat_map (map.flatten());

A flattened map is created using the following method:

MetadataMap MetadataMap: :flatten() const {
MetadataMap newmap;

for (MetadataMap::const_iterator i = oldmap.begin();
i != oldmap.end(); ++i) {
MetadataMapFlattenVisitor v (newmap, i->first);
boost::apply_visitor (v, i->second);

return newmap;

The MetadataMapFlattenVisitor is implemented thusly:

// Flatten MetadataMap vector values

struct MetadataMapFlattenVisitor : public boost::static_visitor<> {
MetadataMaps& map; // Map of flattened elements
const MetadataMap: :key_type& key; // Current key

MetadataMapFlattenVisitor
(MetadataMapé map,
const MetadataMap: :key_typeé& key):
map (map), key(key) {}

// Output a scalar value of arbitrary type.

template <typename T>

void operator () (const T& v) const {
map.set (key, v);

// Output a vector value of arbitrary type.
template <typename T>

void operator () (const std::vector<T>& c) const {
typename std::vector<T>::size_type idx = 1;
for (typename std::vector<T>::const_iterator i = c.begin();
i !'= c.end(); ++i, ++idx) {
std::ostringstream os;
os << key << 7 #" << idx;

map.set (os.str (), *1i);

}
i

The MetadataMapFlattenVisitor is derived from boost::static_visitor, and its templated operator method is
specialized and expanded once for each type supported by the variant type used by the map. In the above example, two separate
overloaded operators are provided, one for scalar values which is a simple copy, and one for vector values which splits the elements

14.2. C++ conversion details 122

Bio-Formats Documentation, Release 5.1.3

into separate keys in the new map. The important part is the call to apply_visitor (), which takes as arguments the visitor
object and the variant to apply it to.

This could be done with a large set of conditionals using boost : : get<T> (value) for each supported type. The benefit of
theboost: :static_visitor approach is that it ensures that all the types are supported at compile time, and in effect results
in the same code. If any types are not supported, the code will fail to compile.

Variant example: VariantPixelBuffer equality comparison

This example demonstrates the use of variants with a combinatorial expansion of types.

The VariantPixelBuffer class can contain PixelBuffer classes of various pixel types. Comparing for equality is only
performed if the pixel types of the two objects are the same:

VariantPixelBuffer a, b;
if (a == Db) {
// Buffers are the same.

This is implemented using an overloaded equality operator:

bool VariantPixelBuffer: :operator ==
(const VariantPixelBuffer& rhs) const
{
return boost::apply_visitor (PBCompareVisitor (),
buffer, rhs.buffer) ;

As before, this is implemented in terms of a boost: :static_visitor, but note that this time it is specialized for bool,
meaning that the return type of apply_visitor () will also be bool, and the operator methods must also return this type.

struct PBCompareVisitor : public boost::static_visitor<bool> {
template <typename T, typename U>
bool operator() (const T& /* lhs */,
const Us& /* rhs */) const {
return false;

template <typename T>

bool operator () (const T& lhs,
const T& rhs) const {
return lhs && rhs && (*lhs == *rhs);

}
bi

Unlike the last example, the operator methods now have two arguments, both of which are variant types, and the ap-
ply_visitor () callis passed two variant objects in addition to the visitor object. This causes the templates to be expanded for
all pairwise combinations of the possible types. When the types are not equal, the first templated operator is called, which always
returns false. When the types are equal the second operator is called; this checks both operands are not null and then performs an
equality comparison using the buffer contents. Given that all the operators are inline, we would hope that a good compiler would
cause all the false cases to be optimized out after expansion.

Variant example: VariantPixelBuffer SFINAE

This example demonstrates the use of variants with SFINAE.

C++ has a concept known as Substitution Failure Is Not An Error (SFINAE), which refers to it not being an error for a candidate
template to fail argument substitution during overload resolution. While this is in and of itself a fairly obscure language detail,

14.2. C++ conversion details 123

Bio-Formats Documentation, Release 5.1.3

it enables overloading of a method not just on type, but different categories of type, for example integer and floating point types,
signed and unsigned integer types, simple and complex types, or combinations of all of these. This is particularly useful when
writing algorithms to process pixel data.

Use of SFINAE has been made accessible through the creation of boost : :enable_if (std::enable_if in C++11), and
type traits (type category checking classes such as is_integer). The following code is an example of how one might write a
visitor for adapting an algorithm to separate integer, floating point, complex floating point and bitmask cases.

struct TypeCategoryVisitor : public boost::static_visitor<>

{

typedef ::ome::bioformats::PixelProperties< ::ome::xml::model::enums::PixelType: :BIT>::std_type bit_t

TypeCategoryVisitor ()
{}

// Integer pixel types
template <typename T>
typename boost::enable_if_c<
boost::is_integral<T>::value, wvoid
>::type
operator () (ome::compat::shared_ptr< ::ome::bioformats::PixelBuffer<T> >& buf)
{
// Integer algorithm.

// Floating point pixel types
template <typename T>
typename boost::enable_if_c<
boost::is_floating_point<T>::value, wvoid
>::type
operator () (ome::compat::shared_ptr< ::ome::bioformats::PixelBuffer<T> >& buf)
{
// Floating point algorithm.

// Complex floating point pixel types
template <typename T>
typename boost::enable_if_ c<
boost::is_complex<T>::value, wvoid
>::itype
operator () (ome::compat::shared _ptr< ::ome::bioformats::PixelBuffer<T> >& buf)
{
// Complex floating point algorithm.

// BIT/bool pixel type. Note this is a simple overload since it 1is
// a simple type, not a category of different types.
void
operator () (ome::compat::shared_ptr< ::ome::bioformats::PixelBuffer<bit_type> >& buf)
{
// Boolean algorithm.
}
bi

This visitor may be used with apply_visitor () in a similar manner to the previously demonstrated visitors.

enable_if has two parameters, the first being a conditional, the second being the return type (in this example, all the methods
return void). If the conditional is true, then the type expands to the return type and the template is successfully substituted. If
the conditional is false (types do not match), then the substitution fails and the template will not be used. Note that the conditional
is itself a type, which can be confusing, since all this logic is driven by conditional template expansion.

Normal templates are specialized for a type. This approach allows specialization for different categories of type. Without this
approach it would be necessary to write separate overloads for each individual type (each integer type, each floating point type,
each complex type, etc.), even when the logic would be identical for e.g. the different integer types. This approach therefore
removes the need for unnecessary code duplication, and the type traits checks make each type category explicit to the reader.

14.2. C++ conversion details 124

Bio-Formats Documentation, Release 5.1.3

Note: This documentation is for the new Bio-Formats 5.1 version. See the latest Bio-Formats 5.0.x version>°

or the previous
versions®’ page to find documentation for the version you are using.

14.3 Tutorial

14.3.1 Metadata

Bio-Formats supports several different classes of metadata, from very basic information about the image dimensions and pixel
type to detailed information about the acquisition hardware and experimental parameters. From simplest to most complex, these
are:

Core metadata Basic information describing an individual 5D image (series), including dimension sizes, dimension order and
pixel type

Original metadata Key-value pairs describing metadata from the original file format for the image. Two forms exist: global
metadata for an entire dataset (image collection) and series metadata for an individual 5D image

Metadata store A container for all image metadata providing interfaces to get and set individual metadata values. This is a su-
perset of the core and original metadata content (it can represent all values contained within the core and original metadata).
It is an alternative representation of the OME-XML data model objects, and is used by the Bio-Formats reader and writer
interfaces.

OME-XML data model objects The abstract OME-XML data model is realized as a collection of model objects. Classes are
generated from the elements of the OME-XML data model schema, and a tree of the model objects acts as a representation
of the OME data model which may be modified and manipulated. The model objects may be created from an OME-XML
text document, and vice versa.

For the simplest cases of reading and writing image data, the core metadata interface will likely be sufficient. If specific individual
parameters from the original file format are needed, then original metadata may also be useful. For more advanced processing
and rendering, the metadata store should be the next source of information, for example to get information about the image scale,
stage position, instrument setup including light sources, light paths, detectors etc., and access to plate/well information, regions
of interest etc. Direct access to the OME-XML data model objects is an alternative to the metadata store, but is more difficult to
use; certain modifications to the data model may only be made via direct access to the model objects, otherwise the higher-level
metadata store interface should be preferred.

The header file ome/bioformats/MetadataTools.h*® provides several convenience functions to work with and manipulate the var-
ious forms of metadata, including conversion of Core metadata to and from a metadata store.

Core metadata

Core metadata is accessible through the getter methods in the FormatReader interface. These operate on the current series, set
using the setSeries () method. The CoreMetadata objects are also accessible directly using the get CoreMetadatal—
ist method. The FormatReader interface should be preferred; the objects themselves are more of an implementation detail
at present.

void
readMetadata (const FormatReader& reader,
std::ostream& stream)

// Get total number of images (series)
dimension_size_type ic = reader.getSeriesCount () ;
stream << "Image count: ” << ic << '\n’;

// Loop over images
for (dimension_size_type 1 = 0 ; 1 < ic; ++1)

{

36http://www.openmicroscopy.org/site/support/bio-formats5.0/
3Thttp://www.openmicroscopy.org/site/support/legacy/
38http://downloads.openmicroscopy.org/latest/bio-formats-cpp5. 1/api/MetadataTools_8h_source.html

14.3. Tutorial 125

http://www.openmicroscopy.org/site/support/bio-formats5.0/
http://www.openmicroscopy.org/site/support/legacy/
http://www.openmicroscopy.org/site/support/legacy/
http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/MetadataTools_8h_source.html

Bio-Formats Documentation, Release 5.1.3

// Change the current series to this index
reader.setSeries (i) ;

// Print image dimensions (for this image index)

stream << "Dimensions for Image " << 1 << ’:’
<< "\n\tX = " << reader.getSizeX()
<< "\n\tY = " << reader.getSizeY()
<< "\n\tZ = " << reader.getSizeZ()
<< "\n\tT = " << reader.getSizeT ()
<< "\n\tC = " << reader.getSizeC()
<< "\n\tEffectiveC = " << reader.getEffectiveSizeC();
for (dimension_size_type channel = 0;
channel < reader.getEffectiveSizeC() ;
++channel)
{
stream << “\n\tChannel ” << channel << ’':'
<< "\n\t\tRGB = ” << (reader.isRGB(channel) ? "true” : "false’)
<< "\n\t\tRGBC = ” << reader.getRGBChannelCount (channel) ;

}

stream << '\n’;

// Get total number of planes (for this image index)
dimension_size_type pc = reader.getImageCount () ;
stream << ”\tPlane count: ” << pc << '\n’;

// Loop over planes (for this image index)
for (dimension_size_type p = 0 ; p < pc; ++p)
{
// Print plane position (for this image index and plane
// index)
ome: :compat::array<dimension_size_type, 3> coords =
reader.getZCTCoords (p) ;

stream << ”\tPosition of Plane ” << p << ’':'
<< "\n\t\tTheZ = 7 << coords[0]
<< "\n\t\tTheT = " << coords[2]
<< "\n\t\tTheC = ” << coords[1]
<< ’'\n’;

If implementing a reader, it is fairly typical to set the basic image metadata in CoreMetadata objects, and then use the fill-
Metadata () function in ome/bioformats/MetadataTools.h*® to fill the reader’s metadata store with this information, before
filling the metadata store with additional (non-core) metadata as required. When writing an image, a metadata store is required
in order to provide the writer with all the metadata needed to write an image. If the metadata store was not already obtained from
areader, fil I1Metadata () may also be used in this situation to create a suitable metadata store:

shared_ptr< ::ome::xml::meta::0OMEXMLMetadata>
createMetadata ()
{
// OME-XML metadata store.
shared_ptr< ::ome::xml::meta::0OMEXMLMetadata> meta (make_shared< ::ome::xml::meta::0OMEXMLMetadata> ()

// Create simple CoreMetadata and use this to set up the OME-XML
// metadata. This is purely for convenience in this example; a

// real writer would typically set up the OME-XML metadata from an
// existing MetadataRetrieve instance or by hand.
std::vector<shared_ptr<CoreMetadata> > seriesList;
shared_ptr<CoreMetadata> core (make_shared<CoreMetadata>()) ;
core—->sizeX = 5120U;

core—->sizeY = 5120U;

3http://downloads.openmicroscopy.org/latest/bio-formats-cpp5. 1/api/MetadataTools_8h_source.html

14.3. Tutorial 126

http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/MetadataTools_8h_source.html

Bio-Formats Documentation, Release 5.1.3

core—->sizeC.clear(); // defaults to 1 channel with 1 subchannel; clear this
core->sizeC.push_back (3U); // replace with single RGB channel
core->pixelType = ome::xml::model::enums::PixelType: :UINT16;

core->interleaved = false;
core->bitsPerPixel = 12U;
core->dimensionOrder = DimensionOrder: :XYZTC;

seriesList.push_back (core) ;

fillMetadata (*meta, seriesList);

return meta;

Full example source: metadata-formatreader.cpp, metadata-formatreader.cpp

See also:

 CoreMetadata*

¢ FormatReader*!

Original metadata

Original metadata is stored in two forms: in a Met adataMap which is accessible through the FormatReader interface, which
offers access to individual keys and the whole map for both global and series metadata. It is also accessible using the metadata
store; original metadata is stored as an XMLAnnotation. The following example demonstrates access to the global and series
metadata using the FormatReader interface to get access to the maps:

void

readOriginalMetadata (const FormatReader& reader,

std::ostream& stream)

// Get total number of images (series)
dimension_size_type ic = reader.getSeriesCount () ;

stream << ”"Image count:

7c< o ic << r\n/;

// Get global metadata
const MetadataMapé& global = reader.getGlobalMetadatal() ;

// Print global metadata
stream << ”"Global metadata:\n” << global << ’'\n’;

// Loop over images
for (dimension_size_type i = 0 ; i < ic; ++1i)

{

// Change the current series to this index
reader.setSeries (i) ;

// Print series metadata
const MetadataMapé& series = reader.getSeriesMetadatal() ;

// Print image dimensions (for this image index)
stream << "Metadata for Image " << i << ”":\n”
<< series

<< '\n’;

“Ohttp://downloads.openmicroscopy.org/latest/bio-formats-cpp5. 1/api/classome_1_1bioformats_1_1CoreMetadata.html
“Ihttp://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/classome_1_1bioformats_1_1FormatReader.html

14.3. Tutorial

127

http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/classome_1_1bioformats_1_1CoreMetadata.html
http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/classome_1_1bioformats_1_1FormatReader.html

Bio-Formats Documentation, Release 5.1.3

It would also be possible to use getMetadataValue () and getSeriesMetadataValue () to obtain values for individual
keys. Note that the MetadataMap values can be scalar values or lists of scalar values; call the flatten () method to split the
lists into separate key-value pairs with a numbered suffix.

Full example source: metadata-formatreader.cpp
See also:

» MetadataMap™®?

 FormatReader*?

* OriginalMetadataAnnotation**

Metadata store

Access to metadata is provided via the MetadataStore and MetadataRetrieve interfaces. These provide setters and
getters, respectively, to store and retrieve metadata to and from an underlying abstract metadata store. The primary store is the
OMEXMLMetadata which stores the metadata in OME-XML data model objects (see below), and implements both interfaces.
However, other storage classes are available, and may be used to filter the stored metadata, combine different stores, or do nothing
at all. Additional storage backends could also be implemented, for example to allow metadata retrieval from a relational database,
or JSON/YAML.

When using OMEXMLMetadata the convenience function createOMEXMLMetadata () is the recommended method for
creating a new instance and then filling it with the content from an OME-XML document. This is overloaded to allow the OME-
XML to be obtained from various sources. For example, from a file:

// Create metadata directly from file
shared_ptr<meta::OMEXMLMetadata> filemeta (createOMEXMLMetadata (filename)) ;

Alternatively from a DOM tree:

// XML platform (required by Xerces)

xml::Platform xmlplat;

// XML DOM tree containing parsed file content

xml: :dom: :Document inputdoc (xml::dom: :createDocument (filename)) ;

// Create metadata from DOM document

shared_ptr<meta::OMEXMLMetadata> dommeta (createOMEXMLMetadata (inputdoc)) ;

The convenience function get OMEXML () may be used to reverse the process, i.e. obtain an OME-XML document from the
store. Note the use of convert (). Only the OMEXMLMetadata class can dump an OME-XML document, therefore if the
source of the data is another class implementing the MetadataRet rieve interface, the stored data will need to be copied into
an OMEXMLMetadata instance first.

meta: :OMEXMLMetadata *omexmlmeta = dynamic_cast<meta::OMEXMLMetadata *> (&meta) ;
shared_ptr<meta::OMEXMLMetadata> convertmeta;
if (!omexmlmeta)
{
convertmeta = make_shared<meta::OMEXMLMetadata> () ;
meta::convert (meta, *convertmeta) ;
omexmlmeta = &*convertmeta;

}
// Get OME-XML text from metadata store (and validate it)
std::string omexml (getOMEXML (*omexmlmeta, true));

Conceptually, the metadata store contains lists of objects, accessed by index (insertion order). In the example below, get Im-
ageCount () method is used to find the number of images. This is then used to safely loop through each of the available images.
Each of the getPixelsSizeA () methods takes the image index as its only argument. Internally, this is used to find the Image

“http://downloads.openmicroscopy.org/latest/bio-formats-cpp5. 1/api/classome_1_Ibioformats_I_IMetadataMap.html
“3http://downloads.openmicroscopy.org/latest/bio-formats-cpp5. 1/api/classome_1_1bioformats_1_1FormatReader.html
“http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/classome_1_1xml_I1_Imodel_1_10OriginalMetadataAnnotation.html

14.3. Tutorial 128

http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/classome_1_1bioformats_1_1MetadataMap.html
http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/classome_1_1bioformats_1_1FormatReader.html
http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/classome_1_1xml_1_1model_1_1OriginalMetadataAnnotation.html

Bio-Formats Documentation, Release 5.1.3

model object for the specified index, and then call the get SizeA () method on that object and return the result. Since objects
can contain other objects, some accessor methods require the use of more than one index. For example, an Image object can
contain multiple P1ane objects. Similar to the above example, there is a getPlaneCount () method, however since it is
contained by an Image it has an additional image index argument to get the plane count for the specified image. Likewise its
accessors such as getPlaneTheZ () take two arguments, the image index and the plane index. Internally, these indices will be
used to find the Image, then the P1ane, and then call get TheZ (). When using the MetadataRetrieve interface with an

OMEXMLMetadata store, the methods are simply a shorthand for navigating through the tree of model objects.

void

queryMetadata (const meta::MetadataRetrieve& meta,
const std::stringé
std::ostream&

state,
stream)

// Get total number of images (series)
= meta.getImageCount () ;

index_type ic

stream << ”"Image count:

// Loop over images
for (index_type i =

{

0

!

"To<< ic

i < ic;

<< '\n’;

++1)

// Print image dimensions (for this image index)

stream <<
<<
<<
<<
<<
<<

<<

"Dimensions for Image ” << i << ' ' << state <<
"\n\tX = " << meta.getPixelsSizeX (i)

"\n\tY = " << meta.getPixelsSizeY (i)

"\n\tZz = " << meta.getPixelsSizeZ (i)

"\n\tT = " << meta.getPixelsSizeT (i)

"\n\tC = " << meta.getPixelsSizeC (i)

!\nl;

// Get total number of planes (for this image index)
= meta.getPlaneCount (i) ;

index_type pc
"\tPlane count:

stream <<

// Loop over planes

"

<< pc << "\n’;

(for this image index)

for (index_type p = 0 ; p < pc; ++p)

{

// Print plane position (for this image index and plane

// index)
stream <<

<<

<<

<<

<<

"\tPosition

"\n\t\tTheT
"\n\t\tTheC
/\n/;

of Plane
"\n\t\tThez =

"<< p << it
" << meta.getPlaneTheZ (1,
" << meta.getPlaneTheT (i,

" << meta.getPlaneTheC (i,

The methods for storing data using the Met adataStore interface are similar. The set methods use the same indices as the get
methods, with the value to set as an additional initial argument. The following example demonstrates how to update dimension
sizes for images in the store:

void

updateMetadata (meta: :Metadata& meta)

{

// Get total number of images (series)
= meta.getImageCount () ;

index_type ic

// Loop over images
for (index_type i

{

=0 ; i < ic;

i)

// Change image dimensions (for this image index)

meta.setPixelsSizeX (12,
meta.setPixelsSizeY (24,

i);
i);

14.3. Tutorial

129

Bio-Formats Documentation, Release 5.1.3

meta.setPixelsSizeZ (6, 1i);
meta.setPixelsSizeT (30, 1i);
meta.setPixelsSizeC (4, 1i);

When adding new objects to the store, as opposed to updating existing ones, some additional considerations apply. An new object
is added to the store if the object corresponding to an index does not exist and the index is the current object count (i.e. one past
the end of the last valid index). Note that for data model objects with a set ID () method, this method alone will trigger insertion
and must be called first, before any other methods which modify the object. The following example demonstrates the addition of
anew Image to the store, plus contained P1lane objects.

void

addMetadata (meta: :Metadatas& meta)

{
// Get total number of images (series)
index_type i1 = meta.getImageCount () ;

// Size of Z, T and C dimensions
index_type nz = 3;
index_type nt = 1;
index_type nc = 4;

// Create new image; the image index is the same as the image
// count, 1i.e. one past the end of the current limit; createlID
// creates a unique identifier for the image

meta.setImagelD (createlID (”Image”, 1), 1i);
// Set Pixels identifier using createID and the same image index
meta.setPixelsID (createlD ("Pixels”, 1), 1i);

// Now set the dimension order, pixel type and dimension sizes for
// this image, using the same image index
meta.setPixelsDimensionOrder (model: :enums: :DimensionOrder: :XYZTC, 1i);
meta.setPixelsType (model: :enums: :PixelType: :UINT8, 1);
meta.setPixelsSizeX (256, 1i);

meta.setPixelsSizeY (256, 1i);

(
meta.setPixelsSizeZ (nz, 1i);
meta.setPixelsSizeT (nt, 1i);
meta.setPixelsSizeC(nc, 1);
// Plane count
index_type pc = nz * nc * nt;

// Loop over planes
for (index_type p = 0; p < pc; ++p)
{
// Get the Z, T and C coordinate for this plane index
array<dimension_size_type, 3> coord =
getZCTCoords ("XYZTC”, nz, nc, nt, pc, p);

// Set the plane position using the image index and plane
// index to reference the correct plane

meta.setPlaneTheZ (coord[0], i, p);

meta.setPlaneTheT (coord[2], i, p);

meta.setPlaneTheC (coord[1l], i, p);

// Add MetadataOnly to Pixels since this is an example without
// Tiffbata or BinData
meta: :OMEXMLMetadata *omexmlmeta = dynamic_ cast<meta::OMEXMLMetadata *> (&meta);
if (omexmlmeta)
addMetadataOnly (*omexmlmeta, 1i);

14.3. Tutorial 130

Bio-Formats Documentation, Release 5.1.3

Full example source: metadata—-io.cpp

See also:

» Metadata classes®

* createID*
o creattOMEXMLMetadata®’
» getOMEXML*

OME-XML data model objects

The data model objects are not typically used directly, but are created, modified and queried using the Metadata interfaces
(above), so in practice these examples should not be needed.

To create a tree of OME-XML data model objects from OME-XML text:

// XML DOM tree containing parsed file content

xml: :dom: :Document inputdoc (xml::dom: :createDocument (filename)) ;

// OME Model (needed only during parsing to track model object references)
model: :detail: :0OMEModel model;

// OME Model root object

shared_ptr<model::OME> modelroot (make_shared<model: :OME> ()) ;

// Fill OME model object tree from XML DOM tree

modelroot->update (inputdoc.getDocumentElement (), model) ;

In this example, the OME-XML text is read from a file into a DOM tree. This could have been read directly from a string or
stream if the source was not a file. The DOM tree is then processed using the OME root object’s update () method, which uses
the data from the DOM tree elements to create a tree of corresponding model objects contained by the root object.

To reverse the process, taking a tree of OME-XML model objects and converting them back of OME-XML text:

// Schema version to use

const std::string schema ("http://www.openmicroscopy.org/Schemas/OME/2013-06") ;
// XML DOM tree (initially containing an empty OME root element)

xml: :dom: :Document outputdoc (xml::dom: :createEmptyDocument (schema, "OME")) ;

// Fill output DOM document from OME-XML model

modelroot->asXMLElement (outputdoc) ;

// Dump DOM tree as text to stream

xml: :dom: :writeDocument (outputdoc, stream);

Here, the OME root object’s asXMLElement () method is used to copy the data from the OME root object and its children into
an XML DOM tree. The DOM tree is then converted to text for output.

Full example source: model-io.cpp
See also:
* OME model classes*

° OMES()

14.3.2 Pixel data

The Bio-Formats Java implementation stores and passes pixel values in a raw byt e array. Due to limitations with C++ array pass-
ing, this was not possible for the C++ implementation. While a vector or other container could have been used, several problems

4Shttp://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/namespaceome_1_1xml_1_Imeta.html
46http://downloads.openmicroscopy.org/latest/bio-formats-cpp5. 1/api/namespaceome_1_1bioformats.html#ab3bf80ec03bcf20b199ce2761d48fe01
“Thttp://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/namespaceome_1_1bioformats.html#ae61f12958973765¢8328348874a8573 1
“Shttp://downloads.openmicroscopy.org/latest/bio-formats-cpp5. 1/api/namespaceome_1_1bioformats.html#a32e5424991ce09b857ddc0d5be37c4f1
“Ohttp://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/namespaceome_1_1xml_1_Imodel.html
SOhttp://downloads.openmicroscopy.org/latest/bio-formats-cpp5. 1/api/classome_1_1xml_1_lmodel_1_1OME.html

14.3. Tutorial 131

http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/namespaceome_1_1xml_1_1meta.html
http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/namespaceome_1_1bioformats.html#ab3bf80ec03bcf20b199ce2761d48fe01
http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/namespaceome_1_1bioformats.html#ae61f12958973765e8328348874a85731
http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/namespaceome_1_1bioformats.html#a32e5424991ce09b857ddc0d5be37c4f1
http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/namespaceome_1_1xml_1_1model.html
http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/classome_1_1xml_1_1model_1_1OME.html

Bio-Formats Documentation, Release 5.1.3

remain. The type and endianness of the data in the raw bytes is not known, and the dimension ordering and dimension extents are
also unknown, which imposes a significant burden on the programmer to correctly process the data. The C++ implementation
provides two types to solve these problems.

The PixelBuffer class is a container of pixel data. It is a template class, templated on the pixel type in use. The class contains
the order of the dimensions, and the size of each dimension, making it possible to process pixel data without need for externally-
provided metadata to describe its structure. This class may be used to contain and process pixel data of a specific pixel type.
Internally, the pixel data is contained within a boost : :multi_array as a 9D hyper-volume, though its usage in this release
of Bio-Formats is limited to 5D. The class can either contain its own memory allocation for pixel data, or it can reference memory
allocated or mapped externally, allowing use with memory-mapped data, for example.

In many situations, it is desirable to work with arbitrary pixel types, or at least the set of pixel types defined in the OME data
model in its PixelType enumeration. The VariantPixelBuffer fulfills this need, using boost: : variant to allow it
to contain a PixelBuffer specialized for any of the pixel types in the OME data model. This is used to allow transfer and
processing of any supported pixel type, for example by the FormatReader class’ get LookupTable () and openBytes ()
methods, and the corresponding FormatWriter class’ setLookupTable () and saveBytes () methods.

An additional problem with supporting many different pixel types is that each operation upon the pixel data, for exam-
ple for display or analysis, may require implementing separately for each pixel type. This imposes a significant testing
and maintenance burden. VariantPixelBuffer solves this problem through use of boost: :apply_visitor () and
boost::static_visitor, which allow algorithms to be defined in a template and compiled for each pixel type. They also
allow algorithms to be specialized for different classes of pixel type, for example signed vs. unsigned, integer vs. floating point, or
simple vs. complex, or special-cased per type e.g. for bitmasks. When boost : :apply_visitor () iscalled with a specified
algorithm and VariantPixelBuffer object, it will select the matching algorithm for the pixel type contained within the buffer,
and then invoke it on the buffer. This permits the programmer to support arbitrary pixel types without creating a maintenance
nightmare, and without unnecessary code duplication.

The 9D pixel buffer makes a distinction between the logical dimension order (used by the API) and the storage order (the layout
of the pixel data in memory). The logical order is defined by the values in the Dimensions’' enum. The storage order is specified
by the programmer when creating a pixel buffer.

The following example shows creation of a pixel buffer with a defined size, and default storage order’:

// Language type for FLOAT pixel data

typedef PixelProperties<PixelType: :FLOAT>::std_type float_pixel_type;

// Create PixelBuffer for floating point data

// X=512 Y=512 Z=16 T=1 C=3 S/z/t/c=1

PixelBuffer<float_pixel_type> buffer
(boost::extents[512][512][16][1][3]1[11[1]1[1][1], PixelType: :FLOAT) ;

The storage order may be set explicitly. The order may be created by hand, or with a helper function®>. While the helper function
is limited to supporting the ordering defined by the data model, specifying the order by hand allows additional flexibility. Manual
ordering may be used to allow the indexing for individual dimensions to run backward rather than forward, which is useful if
the Y-axis requires inverting, for example. The following example shows creation of two pixel buffers with defined storage order
using the helper function:

// Language type for UINT16 pixel data
typedef PixelProperties<PixelType::UINT16>::std_type uintlé_pixel_ type;
// Storage order is XYSCTZztc; subchannels are not interleaved
// ("planar”) after XY; lowercase letters are unused Modulo
// dimensions
PixelBufferBase: :storage_order_type orderl
(PixelBufferBase: :make_storage_order (DimensionOrder: :XYCTZ, false));
// Create PixelBuffer for unsigned 16-bit data with specified
// storage order
// X=512 Y=512 Z=16 T=1 C=3 S/z/t/c=1
PixelBuffer<uintl6_pixel_ type> bufferl
(boost::extents[512] [512][16][1][3T[11 (1] [1][1],
PixelType: :UINT16

Shttp://downloads.openmicroscopy.org/latest/bio-formats-cpp5. 1/api/namespaceome_1_1bioformats.html#ad9ebb405a4815¢189fa78832568a91a

52http://downloads.openmicroscopy.org/latest/bio-formats-cpp3. 1/api/classome_1_1bioformats_1_1PixelBufferBase html#a419ad49f2ea90937a57b81a74b56380b
33http://downloads.openmicroscopy.org/latest/bio-formats-cpp5. 1 /api/classome_1_Ibioformats_1_1PixelBufferBase.html#ac7e922610bf561f311d13c3d7fcaeb69

14.3. Tutorial 132

http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/namespaceome_1_1bioformats.html#ad9ebb405a4815c189fa788325f68a91a
http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/classome_1_1bioformats_1_1PixelBufferBase.html#a419ad49f2ea90937a57b81a74b56380b
http://downloads.openmicroscopy.org/latest/bio-formats-cpp5.1/api/classome_1_1bioformats_1_1PixelBufferBase.html#ac7e922610bf561f311d13c3d7fcaeb69

Bio-Formats Documentation, Release 5.1.3

ome: :bioformats: :ENDIAN_NATIVE,
orderl) ;

// Language type for INT8 pixel data
typedef PixelProperties<PixelType::INT8>::std_type int8_pixel_type;
// Storage order is SXYZCTztc; subchannels are interleaved
// (”chunky”) before XY; lowercase letters are unused Modulo
// dimensions
PixelBufferBase: :storage_order_type order?2
(PixelBufferBase: :make_storage_order (DimensionOrder: :XYZCT, true));
// Create PixelBuffer for signed 8-bit RGB data with specified storage
// order
// X=1024 Y=1024 Z=1 T=1 C=1 S=3 z/t/c=1
PixelBuffer<int8_pixel_ type> buffer2
(boost::extents[1024][1024) [1]([1]1[1][37([1]1[1][1]
PixelType: : INTS,
ome: :bioformats: :ENDIAN_NATIVE,
order?2) ;

Note that the logical order of the dimension extents is unchanged.

In practice, it is unlikely that you will need to create any PixelBuffer objects directly. The FormatReader and For-
matWriter interfaces use VariantPixelBuffer objects, and in the case of the reader interface the get LookupTable ()

and openBytes () methods can be passed a default-constructed VariantPixelBuffer and it will be set up automatically,
changing the image dimensions, dimension order and pixel type to match the data being fetched, if the size, order and type do not
match. For example, to read all pixel data in an image using openBytes () :

void

readPixelData (const FormatReader& reader,

std: :ostreamé& stream)

// Get total number of images (series)
dimension_size_type ic = reader.getSeriesCount () ;
stream << "Image count: ” << ic << ’'\n’;

// Loop over images
for (dimension_size_type i = 0 ; i < ic; ++1i)
{
// Change the current series to this index
reader.setSeries (i) ;

// Get total number of planes (for this image index)
dimension_size_type pc = reader.getImageCount () ;
stream << ”\tPlane count: ” << pc << '\n’;

// Pixel buffer
VariantPixelBuffer buf;

// Loop over planes (for this image index)
for (dimension_size_type p = 0 ; p < pc; ++p)
{
// Read the entire plane into the pixel buffer.
reader.openBytes (p, buf);

// If this wasn’t an example, we would do something
// exciting with the pixel data here.

stream << "Pixel data for Image " << i
<< " Plane " << p << " contains ”
<< buf.num_elements () << " pixels\n”;

14.3. Tutorial

133

Bio-Formats Documentation, Release 5.1.3

To perform the reverse process, writing pixel data with saveBytes ():

void
writePixelData (FormatWriter& writer,
std::ostream& stream)

// Total number of images (series)

dimension_size_type ic = 1;

stream << ”Image count: ” << ic << ’'\n’;

// Loop over images

for (dimension_size_type i = 0 ; 1 < ic; ++1i)

{
// Change the current series to this index
writer.setSeries (i) ;

// Total number of planes.
dimension_size_type pc = 1;
stream << “\tPlane count: " << pc << '\n’;
// Loop over planes (for this image index)
for (dimension_size_type p = 0 ; p < pc; ++p)
{
// Pixel buffer;
// uintlé_t.
// storage order of XYZTC without interleaving
// (subchannels are planar).

size 512 x 512 with 3 subchannels of type
It uses the native endianness and has a

shared_ptr<PixelBuffer<PixelProperties<PixelType: :UINT16>::std_type> >
buffer (make_shared<PixelBuffer<PixelProperties<PixelType::UINT16>::std_type> >

(boost::extents[512]1[512] [11[11[1]1[31[11[11([1]
PixelType: :UINT16,

ome: :bioformats: :ENDIAN_NATIVE,

PixelBufferBase: :make_storage_order (DimensionOr