SSBD: An Integrated Database of **Spatiotemporal Dynamics and Microscopy Data**

Simulation

Experiment

Overview

SSBD aims to provide a computer platform to support and drive forward a modeling and experimental approach for understanding molecular/cellular/developmental systems.

We have developed a Systems Science of Biological Dynamics (SSBD) database. It is a repository of quantitative data of biological dynamics. A new unified data format Biological Dynamics Markup Language (BDML) is being used by SSBD. Quantitative data can be exchanged easily using BDML/SSBD (Fig. 1). New software tools for analysis and visualization can be built utilizing SSBD and BDML

Biological Dynamics Markup Language (BDML)

We propose a new BDML schema (ver. 0.15) to represent different types of biological dynamical data. BDML allows us to use a unified format to analyze biological dynamics (Fig. 2).

Fig. 2: Heterogeneous biological dynamics by representing BDML format

The schema consists of five top-levels. Data are represented in four different types of features, point, line, circle, and sphere (Fig. 3).

- (a) • (b) - (c) ((d)
- Fig. 3: Types of features. Information of the BDML file, e.g. license, release date, etc. Info
- 2. Summary: Short summary of the numerical information of biological dynamics
- Contact Contact information of the author/owner/maintainer of the BDML files
- 4. Methods: Sources files and extraction protocols 5. Data: Description of numeric data

GFP-histone-labeled nuclei (Sarov et al. 2012) can be described in BDML (Figs. 4-6).

Data analysis by BDML format

http://ssbd.qbic.riken.jp/ SSBD database

Systems Science of Biological Dynamics (SSBD) database manages both raw image data and quantitative numerical data (Fig. 9). Image data

Fig. 9: SSBD database

OMERO is integrated into SSBD allowing image data, quantitative data and experimental conditions to be organized (Fig. 10). More than 2 million DIC images can be accessed via SSBD (Fig. 11).

browser via OMERO server.

Fig. 11: Browsing images remotely on 11 A 11 A SSBD provides a wide variety of quantitative data (Arjunan & Tomita 2007) (Kimura & Onami 2005)

(Keller et al. 2010) (Kyoda et al. 2013) (Bao et al. 2006) (Keller et al. 2008) Organisms Molecules Cells

Fig. 12: Visualized quantitative data

Table 1: List of available resources in SSBD: Iplanned release, Currently available

Organism	Dynamics	Type of source	Paper	#BDML	Туре	#Entries	#Image	Туре
Mouse	nuclear	experiment	Kurotaki et al. 2007	1	point	12096	80	liff
Mouse	nuclear	experiment	Bashar et al. 2012	1	point			
Zebrafish	nuclear	experiment	Keller et al. 2008	7	point	9613526		
D. melanogaster	nuclear	experiment	Keller et al. 2010	2	sphere	3624857		
D. melanogaster	nuclear	experiment	Supatto et al. 2009	1	point	40534		
C. elegans	nuclear	experiment	Kyoda et al. 2013	186	line	262	33480	ipm
C. elegans	nuclear	experiment	Bao et al. 2005	2	sphere	23980		
C. elegans	nuclear	simulation	Kimura & Onami 2005	100	sphere + line	24001		
C. elegans	nuclear	experiment	Kyoda et al.	261	line	597	256	lif
C. elegans	nuclear	experiment	Sönnichsen et al. 2005	979	line	1197		
C. elegans	nuclear	experiment	Gonczy et al. 2000	1	line	2988		
C. elegans	nuclear	experiment	Takayama et al.	12	line	1628	4899	tiff
C. elegans	expression	experiment	Sarov et al. 2012	273	sphere	17456		
C. elegans	movement	experiment	Cronin et al. 2005	11	line	1450		
D. discoideum	single- molecule	experiment	Jin et al.	1	point	987	1	avi
E. coli	single- molecule	simulation	Arjunan & Tomita 2010	1	point	721		

ImageJ coordination

We developed an ImageJ plugin named BDML4DViewer for visualization (Fig 13). We are also planning to develop software applications to work with BDML content, e.g. programming libraries to create/edit/translate **BDML** files

Future plans

RESTful API

The RESTful API allows third party applications to access SSBD using various programming languages, tools and development frameworks (Fig. 14).

Fig. 14: RESTful API service

Fig. 13: A snapshot of BDML4DViewer

Experiment versus simulation

Developing an innovative environment for understanding molecular, cellular, developmental systems by comparative analysis of data obtained from experiment and simulation (Fig. 15).

Differences in RNAi Differences in parameter

Fig. 15: Comparative analysis