

Open Microscopy Environment

<SW Unit Name>
Software Design Document

<Date>

<Author>

<Lab>  <Division/Department>
<Institute/University>

<author email>

2

DISCLAIMER OF WARRANTY

This library is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the

Free Software Foundation, Inc.,
59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA�

3

1. Introduction ………………………………................................... 123
 1.1. Requirements ………………………………......................... 123
 1.2. Solution outline ……………………..................................... 123
 1.3. Document overview …..………………….............................. 123

2. Object Model ……………………………..................................... 123
 2.1. Overall architecture ………………………………................ 123
 2.1.1. Structure ……………………………….................. 123
 2.1.2. Dynamics ………………………………................. 123
 2.1.3. Addressing the requirements ……………................... 123
 2.1.4. Rationale ………………………………................. 123
 2.2. Detailed design ……………………...................................... 123

 2.2.1. Static model ……………………………….............. 123
 2.2.2. Dynamic model ………………………………......... 123

3. Process Model ………………………………............................... 123

3.1. Flows of control and synchronization ………………................. 123
3.2. Allocation of processes and threads …………………............... 123
3.3. IPC ………………..……………………………................ 123

4. Mapping to Code ………………………………........................... 123

5. Deployment ………………………………................................... 123

6. Failure Model ………………………………................................ 123

7. Wrapping up ……………………………….................................. 123

References ……………………………….. 123

Contents

4

1. Introduction.

This document details the design of the <SW unit name> within the OME Reference
Implementation. Relative test cases are described in a separate document, <reference
to test document>.

Before diving into detailed design, let’s briefly outline the <SW unit name> required
functionality and features. After that, we’ll also give an outline of the solution, which is
fully described in the next sections.

1.1. Requirements.

<
Briefly outline the requirements that have been allocated to the
software unit under design and reference the requirements document. Make
clear the objectives to be achieved.

Pay attention to non-functional requirements such as performance,
scalability, reliability, security, adaptability and extendibility, and
so on. Those requirements usually have a deep impact on the flavor and
shape of the architecture. Refer to the SAD template for a discussion of
quality attributes and scenarios.

Sometimes it might be worth supplying concrete usage scenarios and
examples. However, those issues should have already been unfolded into
the requirements document. Rather point the reader there and try not to
inflate this document.

>

1.2. Solution outline.

<
Sum up the solution model. Focus on the logical solution. Mention where
appropriate other views such as process and deployment view  refer to
the SAD template for a discussion of views. Also outline how the
solution model addresses the given requirements and mention where
appropriate the rationale for the design choices. Be concise.

>

1.3. Document overview.

<
Sum up the documents contents. State noteworthy assumptions made about

5

the readership and give reading guidelines where needed.

>

The following sections in this document will deal with:

� Object Model: The core of this document, depicting both the static and dynamic

model of the software in terms of objects.
� Process Model: In this section, we examine synchronization issues, describe IPC and

see how the object model can fit into different concurrency models.
� Mapping to Code: How the object model relates to concrete Perl <or other target

language> classes and namespaces.
� Deployment: Configuration, dependencies, distribution and hardware topology.
� Failure Model: How failures are handled and recovered.
� Wrapping up: We put all the pieces together into a big picture, we explain how to use

and configure the <SW unit name> from an outsider’s point of view and make some
final considerations.

UML [OMG01] diagrams are extensively used throughout this document to precisely
depict design. Even though all presented diagrams are commented out and many of them
are quite self-explanatory, in order to understand in full the semantics of the diagrams a
certain familiarity with UML is necessary. Those that are unfamiliar with UML may want
to keep a reference at hand, such as [BRJ00].

6

2. Object Model.

This section describes both the static and dynamic model of the software in terms of
objects. We first introduce the overall logical architecture of the solution model and we
show how the solution addresses the requirements. We then dive deeper into detailed
object design.

2.1. Overall architecture.

<
A few introductory lines to highlight the key points. Very concise and
to the point.
>

Follows a summarized description of the logical structure and behavior of the object
model. Focus is on the key elements and on how they relate and cooperate to fulfill the
requirements. Notice that what follows is not a detailed description of all elements,
relationships and behaviors. This is a bird-eye description that elides many details for the
sake of presenting the key ideas to the reader. Detailed static and dynamic models are
discussed later.

2.1.1. Structure.

<
Overall organization of the key component elements. Description of the
key elements, their responsibilities and their relationships. Focus on
macro-organization.

Group responsibilities into cohesive sets and assign each set to a
software component. Make use of design patterns that deal with macro-
elements (architectural patterns, such as Layers, Pipes and Filters,
Model-View-Controller, etcetera).

Assigning responsibilities to software components is a crucial step in
achieving good design. Some basic useful principles:
� Low Coupling: assign responsibilities so that unnecessary coupling

among elements remains low.
� Indirection: when direct coupling is undesirable, assign the

responsibility to an intermediate component to mediate between other
components or services, so that they’re not directly coupled.

� High Cohesion: assign responsibilities so that cohesion remains high.
Every element should be assigned a set of highly related
responsibilities.

� Protected Variations: identify points of variation or instability and
assign responsibilities to create a stable interface around them.

7

� Information Expert: assign a responsibility to the component that has
the information necessary to fulfill the responsibility.

>

Fig 2-1: Overall static model.

<
Provide at least a UML class diagram that presents the key classes,
their roles and relationships. Don’t clutter diagrams with too many
details and don’t try to include all possible classes (those needed to
support key elements, remember this is a bird-eye view); compare the
static model in Fig 2-1 in the Log Service SDD with the detailed state
models in sections 2.2.1 and 2.3.1 for a further clue.
>

Let’s now take a closer look at the key elements.

<
Briefly detail each key class, focusing on the class responsibilities
and explaining roles and relationships with other classes.
>

2.1.2. Dynamics.

<
Describe the key interaction scenarios that characterize the behavior of
the key elements and highlight how those elements collaborate to fulfill
the requirements. Focus on macro-behavior.

>

The overall behavior of the <SW unit name> during a typical interaction scenario can be
characterized by the following phases:

<
The goal here is to show how the key elements in the static model
collaborate to fulfill the tasks they were assigned to. Identify and
briefly describe the key phases in a typical interaction scenario. Focus
on macro-behavior.
>

The following UML sequence diagram further details a typical interaction:

8

Fig 2-2: Overall dynamic model.

<
Provide at least a UML sequence diagram that depicts a typical
interaction scenario. Don’t clutter diagrams with too many details and
don’t try to include all possible messages (those needed to support key
messages that are exchanged during the collaboration, remember this is a
bird-eye view); compare the dynamic model in Fig 2-2 in the Log Service
SDD with the detailed dynamic models in sections 2.2.2 and 2.3.2 for a
further clue.

>

A final consideration on design patterns.

<
Relate the used design patterns to the actual design.
>

2.1.3. Addressing the requirements.

The reader should have, by now, a grasp of the key ideas within the solution model. Thus,
it’s a good time to point out how the solution model addresses the <SW unit name>
requirements outlined in section 1.1.

<
Show how the solution model works the given requirements out.

>

2.1.4. Rationale.

<
Explain the design choices and any trade-off.

Often we'll come up with more than one solution and we'll have to decide
which one best meets our goals. To make things more difficult, many
times those goals are contrasting. It turns out that we'll have to
understand the consequences of our decisions with respect to our goals,
weight and trade-off different solutions. We'll eventually have to come
up with a solution that strikes a good balance among contrasting goals
and satisfies the given requirements.

This section is the right place to explain all that.>

9

2.2. Detailed design.

Follows a detailed description of the components of the <SW unit name>. Classes and
relationships are discussed in the static model. The dynamic model addresses the
collective behavior of those elements.

2.2.1. Static model.

We describe here the static structure, encompassing classes and relationships.
Responsibilities, roles and collaborators of each element are detailed.

<SW unit name> classes serve the following purposes:

<
Break down and group classes according to the purpose they serve. State
those purposes. Apply design patterns.

>

The following UML class diagram presents the structure, which is then further detailed,
specifying the responsibilities, roles and collaborators of each element.

Fig 2-3: Static structure.

<
Provide at least a UML class diagram that presents the classes, their
roles and relationships. Don’t blow diagrams up with too many classes
and don’t try to include all possible classes into just one diagram.
Rather provide a class diagram for each of the purposes identified above
and only show the organization of the classes serving that specific
purpose. See section 2.3.1 of the Log Service SDD for an example.
>

The classes in the above diagram are detailed below.

<
Describe classes as follows (similar to CRC style):

Class

Description.

Responsibilities

10

� Responsibility.

Collaborators
� Collaborator.

Fields
� Field name  Description. Mention type if appropriate.

Methods
� Method signature  Describe what the method does and the meaning of

its parameters (mention type where appropriate). Detail return value
and any thrown exception.

>

2.2.2. Dynamic model.

We now focus on the collective behavior of those elements described in the static model.
The <SW unit name> classes have to collaborate in order to:

<
Combine single class behavior into larger tasks. State those tasks.
Apply design patterns.

>

The first of the above tasks is illustrated by the following interaction scenario:

Fig 2-4: Dynamics.

<
Provide UML collaboration and sequence diagrams as appropriate for each
interaction scenario.

>

A final note. Some trivial issues (such as routine initialization code, constructors and
destructors, accessors and mutators or, in general, features that are required to write
working source code, but that can be trivially derived from this object model) haven‘t
been addressed by this object model explicitly. Those are routine programming tasks that
would add little to the semantics of this model  but would inflate this document quite a
bit, and for this reason are omitted.

11

3. Process Model.

In this section, we examine synchronization issues, describe IPC and see how the object
model can fit into different concurrency models.

3.1. Flows of control and synchronization.

We have already mentioned some concurrency issues in the object model. Now it’ time to
completely unfold that matter. Before talking about processes and threads, it‘s worth
studying concurrency from a logical and general point of view. Specific process and
thread semantics introduce many details that would add nothing to the concurrency issues
that we’re going to study, but would simply obfuscate the matter. We discuss later
allocation of flows of control to processes and threads as well as specific issues relative to
the Perl environment <or other target environment>.

<
Study how the collaborations described in the object model may be
carried out concurrently. Focus on logical flows of control that execute
concurrently rather than on processes and threads. Allocate data and
behavior to those flows of control. Find out what data those flows need
share and how they coordinate their behavior. Establish an abstract
synchronization policy.

Concurrent state machines can be used to model those flows of control.
They are represented in UML by statechart diagrams. Another useful tool
is a UML collaboration diagram with focus on active objects and showing
messages rooted by flow of control.

>

3.2. Allocation of processes and threads.

The <SW unit name> makes use of the Perl 5.8 built-in threading environment <or
other target environment>.

<
A couple of lines to state the mapping of abstract flows of control to
actual processes and threads.
>

The Perl threading environment that we’re using is called ithreads (a short for interpreter
threads). <or other target environment>

12

<
A couple of lines to explain why this environment has been chosen.
>

In the ithreads model each thread runs in its own Perl interpreter, all of its data is private
and any data sharing must be explicit. In fact, when a new thread is created, all the data
associated with the parent thread (the thread that spawned the new one) is copied to the
new thread and can’t be accessed from any other thread (including the parent thread)
unless is marked as shared  through the shared attribute.
However, there are restrictions on what data may be shared. In fact, you can share scalars,
arrays and hashes, but only simple values or references to shared variables may be
assigned to shared array and hash elements. Moreover, even though references to shared
variables can be passed among threads, it is not possible to share a blessed reference,
which makes impossible to share objects directly.
Also notice that spawning a new thread after the parent thread has already accumulated a
lot of data involves a considerable creation time overhead and subsequent expensive
memory usage because of the cloning semantics of ithreads.

<
If not using ithreads, replace the above with information about the
chosen environment. Briefly state the bits of the specific
process/thread semantics that are going to affect the mapping of the
logical concurrency model in 3.1 onto the target environment.

>

<
Now map the logical process model onto the target environment. Explain
how processes and threads are created and managed. Detail what data
belong to what process/thread and what data is to be shared. Decide what
mechanism to use in order to maintain consistency on shared data. UML
object diagrams can help focus on the discussion. Decide on the actual
mechanism to coordinate processes and threads. In the case of processes,
this is best described in the IPC section.
Tricky algorithms can be described with the help of UML activity
diagrams.
>

3.3. IPC.

This section details the inter-process communication (IPC) in terms of communication
protocols and means.

<

13

Specify the communication protocol, rules and roles as well as the
format of the data that has to cross process boundaries.
>

<
Specify the communication means to be used among processes. Add
noteworthy things to take into account during implementation.
>

14

References

[BRJ00] G. Booch, J. Rumbaugh, I. Jacobson:
 The Unified Modeling Language User Guide
 Addison-Wesley, 2000

[OMG01] Object Management Group:
 Unified Modeling Language Specification v1.4
 Available from http://www.uml.org/

<Other references>

�

�

