

Open Microscopy Environment

Installation Program
Software Design Document

<Date>

<Author>

<Lab>  <Division/Department>
<Institute/University>

<author email>

2

DISCLAIMER OF WARRANTY

This library is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the

Free Software Foundation, Inc.,
59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA�

3

1. Introduction ………………………………................................... 123
 1.1. Requirements ………………………………......................... 123
 1.2. Solution outline ……………………..................................... 123
 1.3. Document overview …..………………….............................. 123

2. Object Model ……………………………..................................... 123
 2.1. Overall architecture ………………………………................ 123
 2.1.1. Structure ……………………………….................. 123
 2.1.2. Dynamics ………………………………................. 123
 2.1.3. Addressing the requirements ……………................... 123
 2.1.4. Rationale ………………………………................. 123
 2.2. Detailed design ……………………...................................... 123

 2.2.1. Static model ……………………………….............. 123
 2.2.2. Dynamic model ………………………………......... 123

3. Process Model ………………………………............................... 123

3.1. Flows of control and synchronization ………………................. 123
3.2. Allocation of processes and threads …………………............... 123
3.3. IPC ………………..……………………………................ 123

4. Mapping to Code ………………………………........................... 123

5. Deployment ………………………………................................... 123

6. Failure Model ………………………………................................ 123

7. Wrapping up ……………………………….................................. 123

References ……………………………….. 123

Contents

4

1. Introduction.

This document details the design of the Installation program within the OME Reference
Implementation. Relative test cases are described in a separate document, <reference
to test document>.

Before diving into detailed design, let’s briefly outline the required functionality and
features of the Installation program. After that, we’ll also give an outline of the solution,
which is fully described in the next sections.

1.1. Requirements.

The Installation program is required to:

1. Perform automated installation.

� Install and configure our versions of required libraries in private namespace (not
possible for all of them).

� Build C and Perl code.
� Set up OME file system.
� Configure Apache.
� Create and configure OME database.
� Install the core semantic types.
� Create core analysis chains.

2. Rollback installation in the case of failure.

3. Support multiple platforms and DBMS.

4. Allow for more tasks to be added in future.

5. Perform automated removal of OME from the system (uninstall process).

<Add more detailed list of tasks and complete discussion>

5

1.2. Solution outline.

An installation program takes care of installation tasks. Those tasks are arranged using
the Command Processor [POSA1] pattern. Every task is a class that implements a
common InstallationTask interface, which declares two operations: execute and rollback.
The execute method of a task object carries out the job by using one or more suppliers
and stores the task state as it goes along in order to allow the rollback method to undo the
work. The suppliers are Wrapper Façades [POSA2] to the platform, the database and the
Web server. Every supplier class has a Factory Method [GoF95] to return a proper
Wrapper Façade  façades are instantiated and configured as specified by a
configuration file. A task and its suppliers are in a Publisher-Subscriber [POSA1] (a.k.a.
Observer [GoF95]) relationship: a supplier fires events related to the state of execution of
one of its methods and the task gets notified of such events in order to maintain the
execution state for rollback. An Installer object takes care of instantiating, configuring
and ordering the tasks that have to be performed for installation. It maintains a queue of
tasks to be executed and a stack of already executed tasks. The Installer cyclically
removes a task from the queue, calls its execute method and then pushes the task on the
stack. In the case of failure, the Installer pops every element from the executed tasks
stack and calls its rollback method. If all tasks successfully complete, the Installer
serializes the executed tasks stack to disk in order to be able to uninstall  simply
popping tasks and calling rollback.

1.3. Document overview.

The following sections in this document will deal with:

� Object Model: The core of this document, depicting both the static and dynamic

model of the software in terms of objects.
� Process Model: In this section, we examine synchronization issues, describe IPC and

see how the object model can fit into different concurrency models.
� Mapping to Code: How the object model relates to concrete Perl <or other target

language> classes and namespaces.
� Deployment: Configuration, dependencies, distribution and hardware topology.
� Failure Model: How failures are handled and recovered.
� Wrapping up: We put all the pieces together into a big picture, we explain how to use

and configure the <SW unit name> from an outsider’s point of view and make some
final considerations.

6

UML [OMG01] diagrams are extensively used throughout this document to precisely
depict design. Even though all presented diagrams are commented out and many of them
are quite self-explanatory, in order to understand in full the semantics of the diagrams a
certain familiarity with UML is necessary. Those that are unfamiliar with UML may want
to keep a reference at hand, such as [BRJ00].

7

2. Object Model.

This section describes both the static and dynamic model of the software in terms of
objects. We first introduce the overall logical architecture of the solution model and we
show how the solution addresses the requirements. We then dive deeper into detailed
object design.

2.1. Overall architecture.

The Install program architecture is quite easy. It basically combines and builds on the
Command Processor [POSA1] and the PAC [POSA1] patterns in order to group
installation actions into tasks, to track the execution of those tasks  either to be able to
roll back a faulty installation or to uninstall, and to have every task manage the required
task-specific user input, if any.

Follows a summarized description of the logical structure and behavior of the object
model. Focus is on the key elements and on how they relate and cooperate to fulfill the
requirements. Notice that what follows is not a detailed description of all elements,
relationships and behaviors. This is a bird-eye description that elides many details for the
sake of presenting the key ideas to the reader. Detailed static and dynamic models are
discussed later.

2.1.1. Structure.

The overall structure of the Installation program is organized around three main
abstractions:

� Tasks to be performed. Closely related installation actions are grouped into tasks.

Every task is responsible for keeping track and maintaining state relative to the
ongoing activity as well as managing user interaction, if any is needed to carry out the
work. All tasks share a common interface, InstallationTask, which defines two
operations: execute and rollback. The first operation is obviously implemented to start
the activity and the second one to undo whatever has been done at the time it is
invoked  this is possible because the task maintains execution state.

� Service suppliers that those tasks need to carry out their work. These are Wrapper
Façades [POSA2] around specific platforms, DBMS and Web servers. All platform
façades share the same public interface, but they obviously have different
implementations. Every supplier class has a Factory Method [GoF95] to return a
proper Wrapper Façade, specific to the platform at hand  façades are instantiated

8

and configured as specified by a configuration file. The same applies to DBMS and
Web server façades. A task and its suppliers are in a Publisher-Subscriber [POSA1]
(a.k.a. Observer [GoF95]) relationship: a supplier fires events related to the state of
execution of one of its methods and the task gets notified of such events in order to
maintain the execution state for rollback.

� A task executor. An Installer object takes care of instantiating, configuring and
ordering the tasks that have to be performed for installation. It maintains a queue of
tasks to be executed and a stack of already executed tasks. The Installer cyclically
removes a task from the queue, calls its execute method and then pushes the task on
the stack. In the case of failure, the Installer pops every element from the executed
tasks stack and calls its rollback method. If all tasks successfully complete, the
Installer serializes the executed tasks stack to disk in order to be able to uninstall 
simply popping tasks and calling rollback.

The following UML class diagram depicts the overall program structure.

Installer

install()
remove()

«interface»
InstallationTask

execute()
rollback()

FileSystemSetUp
baseDirs
installedTree

Platform

getInstance()
getOperatingSystem()
copyTree(from, to)
deleteTree(path)
getMACAddress()

Storable

FSSetUpScreen

getBaseDirs()

Terminal

clear()
readLine()
printHeader(h)

Supplied-functionality

1

1

subscriber

publisher

{FIFO} 1..*

pending

{LIFO} 1..*

executed

PAC-agent1 1

abstraction control

Presentation

1helper

persist-executed-
tasks

1

��������	���
��

	����

�
��������
����
� ���
�
�����

�
���������
�
���

� � ����
�����	�� 	���� 	�
�������

��
���������������� �������

������
���
����
�������
����

� � ����
�����	�� 	����	���
����

� �����
���
��
������������

���
��
�
�����! �� �"����

��#������#�����$�
����
	��

��������������$�
��% ��������

. . .

! �
����#���
���
�
�

�����
�
�
����
������

Fig 2-1: Overall static model.

9

The above diagram refers to the task of setting up the OME file system. Its only supplier
is the Platform façade that encapsulates access to the specific operating system where
OME is being installed. The FileSystemSetUp class knows what are the base directories
where OME files shall go and maintains a list of the items currently installed. This list is
dynamically updated as the Platform object copies the files. In fact, the FileSystemSetUp
object registers interest in file-copied events which are fired by Platform every time a file
is copied  recall the Publisher-Subscriber relationship. The FileSystemSetUp object
gets to know about the actual base directories by asking its FSSetUpScreen object, which
controls and oversees the acquisition of user input from the terminal.

Other tasks are arranged in a similar fashion.

Let’s now take a closer look at the key elements.

<Necessary??>

2.1.2. Dynamics.

The overall behavior of the Installation program during a typical interaction scenario can
be characterized by the following phases:

� Removing a task from the pending queue.
� Executing that task.
� Pushing the executed task on the executed stack.

The following UML sequence diagram further details a typical interaction. This diagram
refers to the FileSystemSetUp task depicted in the overall static structure earlier. Similar
concepts apply to all other tasks though.

10

: Installer

task : InstallationTask

: FSSetUpScreen

: Terminal p : Platform: Platform

task := next()

execute()

«create»

getBaseDirs()

clear()

printHeader("Base OME directory [/OME]: ")

readLine()

p := getInstance()

copyTree("../html", "$OMEbase/html")

dirsList

register(task, "FileCopied")

push(task)

� ����

��������&���� #

��� �
� ��

�	
�'	

����(�

����
���% �
��
��
��

(�

������) �
�
�
�������
���

������$�*	�	��

+����
����������
�������

������
	���
�����

�������
�

���
������

��������
���������

��������
�
��������
������
����

� �,����	����$����

&����"��#��������������������
���&���-�������"��
��� ������

�"��
	���#���
��
�����
��
�
��.
���	$���"��
���
�����
���

�����

�	�
	������"������#�� � ����
�����	�� 	����	���
���/�

��
�	���
�
�
�����

�����	����
�#���

����������
�

� ���
�
��
��
���� ��	
���

�
�
�

����

(�����
��������� � ����
�����	�� 	����	���
����

�
����
���� � ����
�����	�� 	���� 	�
�������
�

���
����������"��
���
�����
������

�

(��������������	�
��(�

����
���% �
��

����
����� ���
����� ������
�

��	$�
��#�(�

��������
�
��
�����
�

(�

����������
�������������
���

�	����
�
�
������
��������
���� �#�

�����
��
������"��	
�#�� ��	
���

�
�
����
���

����
����
��������
�������

���
����� �#���

Fig 2-2: Overall dynamic model.

<
Maybe I should say a few more words on this section . . .

>

A final consideration on design patterns.

<
I guess it‘d be better to explain why we don‘t have a Controller in our
incarnation of Command Processor and why the Control takes on the role
of Presentation (partially) in our version of PAC. Beneficial for those
who know about design patterns . . .
>

11

2.1.3. Addressing the requirements.

The reader should have, by now, a grasp of the key ideas within the solution model. Thus,
it’s a good time to point out how the solution model addresses the requirements outlined
in section 1.1.

Every task outlined in the Requirements section is implemented by a specific task class.
If something goes wrong during installation, then whatever has been performed can be
undone because the Installer keeps track of the tasks that have already been executed and
every task maintains its execution state. This is also the key to an automated removal of
the software from the system: when the program is asked to uninstall, then it simply has
to retrieve all the tasks that were performed during installation and undo them.

Multiple platforms are supported by writing a specific Wrapper façade for each of them.
All the façades have a common interface, but obviously a different implementation. Same
story for different DBMS.

The installation procedure is extensible. In fact, more installation tasks can be easily
added in future. Adding a task is only a matter of coding the specific task class and tell
the Installer when it has to be executed during the installation process. The key to
extensibility is obviously the InstallationTask interface, which decouples a task specific
implementation from the environment in which it is run.

2.1.4. Rationale.

Installation has become an annoying obstacle to whomever tried to run OME. This is
mainly due to the following reasons:

� OME relies on specific libraries and settings that may conflict with the current status

of the platform where the system is being installed.
� Various platform-specific hacks have to be taken into account when installing.
� The average biologist has little understanding of the above factors (honestly, some of

them could be classified as hacker’s tricks) and so it is quite normal for them to get
something wrong during a manual installation procedure.

The installation program aims to reduce to the minimum the above problems. Where
possible, the third-party libraries that OME depends upon are installed in a private
namespace in order to avoid conflicts with existing ones. All platform-specific hacks are
enforced by the program and the installation procedure is automated in order to avoid
human errors.

12

Now a few words on design choices. One possibility would have been to extend the
glorious bootstrap script (bootstrapOME.pl) in order to accommodate a new, automated
installation procedure. This script has already a lot of ready-to-use functionality and it has
recently been re-factored to a cleaner and neater procedural style. However, this script, at
present, comprises over 700 lines of code and it’s not a good idea to inflate it even more.
Also, the procedural paradigm wouldn’t cope very well with the increased complexity
and required flexibility and extensibility. A sound object model is needed. To this end,
we can achieve a clean, flexible and extensible design through the use of the:

� Command Processor [POSA1] design pattern to manage the installation/removal

procedure and to allow for rollback of a faulty installation.
� InstallationTask interface for extensibility.
� Wrapper façade [POSA2] and Factory Method [GoF95] design patterns to have a

clean and uniform access to low-level platform and DBMS functionalities and to
allow the program to be flexibly configured with different combinations of platforms
and DBMS.

2.2. Detailed design.

Follows a detailed description of the components of the <SW unit name>. Classes and
relationships are discussed in the static model. The dynamic model addresses the
collective behavior of those elements.

<Necessary??>

13

References

[BRJ00] G. Booch, J. Rumbaugh, I. Jacobson:
 The Unified Modeling Language User Guide
 Addison-Wesley, 2000

[GoF95] E. Gamma, R. Helm, R. Johnson, J. Vlissides:
 Design Patterns  Elements of Reusable Object-Oriented Software
 Addison-Wesley, 1995

[OMG01] Object Management Group:
 Unified Modeling Language Specification v1.4
 Available from http://www.uml.org/

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal:
 Pattern-Oriented Software Architecture  A System of Patterns
 John Wiley & Sons, 1996

[POSA2] D. Schmidt, M. Stal, , H. Rohnert, F. Buschmann:
 Pattern-Oriented Software Architecture 
 Patterns for Concurrent and Networked Objects
 John Wiley & Sons, 2001

�

