

Open Microscopy Environment

Log Service
Software Design Document

May 2003

Andrea Falconi

Swedlow Lab  MSI/WTB Complex
University of Dundee

a.falconi@dundee.ac.uk

2

DISCLAIMER OF WARRANTY

This library is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the

Free Software Foundation, Inc.,
59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA�

3

1. Introduction ………………………………................................... 123
 1.1. Requirements ………………………………......................... 123
 1.2. Solution outline ……………………..................................... 123
 1.3. Document overview …..………………….............................. 123

2. Object Model ……………………………..................................... 123
 2.1. Overall architecture ………………………………................ 123
 2.1.1. Structure ……………………………….................. 123
 2.1.2. Dynamics ………………………………................. 123
 2.1.3. Addressing the requirements ……………................... 123
 2.1.4. Rationale ………………………………................. 123
 2.2. Client side ……………………... 123
 2.2.1. Static model ……………………………….............. 123
 2.2.2. Dynamic model ………………………………......... 123
 2.3. Server side …..…………………... 123
 2.3.1. Static model ……………………………….............. 123
 2.3.2. Dynamic model ………………………………......... 123

3. Process Model ………………………………............................... 123

3.1. Flows of control and synchronization ………………................. 123
3.2. Allocation of processes and threads …………………............... 123
3.3. IPC ………………..……………………………................ 123

4. Mapping to Code ………………………………........................... 123

5. Deployment ………………………………................................... 123

6. Failure Model ………………………………................................ 123

7. Wrapping up ……………………………….................................. 123

References ……………………………….. 123

Contents

4

1. Introduction.

This document details the design of the Log Service within the OME Reference
Implementation. Relative test cases are described in a separate document.

Before diving into detailed design, let’s briefly outline the Log Service required
functionality and features. After that, we’ll also give an outline of the solution, which is
fully described in the next sections.

1.1. Requirements.

The Log Service is required to:

� Allow any class to pass on a log message to be output in a given location (terminal,

log file, etc.) by specifying a level of priority for the message. The levels to be
supported are, in priority order: DEBUG  all debug messages, INFO  regular log
messages that inform about normal application workflow, WARN  messages
emitted in case of abnormal or suspect application behavior, ERROR  all error
conditions and failures that can be recovered, FATAL  severe failures that require
the application to terminate.

� Be flexible and configurable. A configuration file shall provide for fine-tuning of the
log settings on a per-class basis. Those settings include the choice of output locations
and verbosity based on priority levels.

� Be fast. We want to avoid, as much as possible, to incur into overhead when logging
 for example, I/O time and too many context switches. The reason is quite obvious
if we think about the high frequency and number of calls to the Log Service from
within the application. Even a small per-call overhead might well result in bringing
the application to its knees.

� Decouple the application from the actual service implementation. This is important if
the implementation heavily relies on somehow instable libraries. The Log Service is
virtually called from all the parts of the system and we don’t want changes to the
implementation (which are likely to be fired by changes in the third-party libraries) to
affect the whole system.

� Fit into different concurrency models. The Log Service shall be able to operate the
same way either within a single-threaded process or within a multi-threaded process.
Moreover, the service shall be able to conveniently synchronize unrelated flows of
control in order to maintain data consistency. For example, assuming that the service
is configured to output the messages to a log file, a process hosting the UI and another
one running from the command line would need to be synchronized somehow, in
order to avoid race conditions when writing to the log file.

5

� Offer an easy-to-use interface to the external classes.

1.2. Solution outline.

The Log Service is implemented as a tiny distributed-objects system, being a Logger the
only distributed object. This object exports an ILogger interface that defines the
operations available to any external class for logging and lives in an address space
separate from those ones that host the client objects that call upon the service.

The Logger itself is an adapter that makes use of the Log4perl [L4P03] library to
implement the operations defined by the ILogger interface. Log4perl is a Perl port of the
popular Log4j [L4J03] library, which has already proven good for several years. Even
though Log4perl exhibits most of the useful features of Log4j (it is meant to be an exact
clone), at the time of writing, the library is still in alpha release. For this reason, the
ILogger interface, other than serving the purpose of distribution, will ensure protected
variations [Larm01] with respect to changes in the Log4perl library. By building on top of
Log4perl, it is trivial to fulfill our goals of being flexible and configurable. Furthermore,
Log4perl already supplies the means to pass on a log message to be output in a given
location (terminal, log file, etc.) by specifying a level of priority for the message.

For every flow of control  be that a single-threaded process or a thread in a multi-
threaded process, there will be a proxy object [GoF95] that is a local representative of the
Logger object (through the ILogger interface) and forwards the calls to the remote Logger
object. Even though there may be several proxy objects forwarding calls to the Logger
object at any given point in time, those calls are eventually serialized  within the
process hosting the Logger object  to ensure synchronization and consistency.

In our specific case, the middleware infrastructure required to support object distribution
is pretty simple (with respect to the general case). We directly build it in order to enforce
asynchronous invocation semantics and minimize the overhead carried by each call to the
Log Service. Upon each call, the proxy objects collect all the required information 
such as the log message, information about the caller, etc.  into a log record that is then
marshaled in order to be sent into a request to a processor object in the process space
hosting the Logger object. The processor object unmarshals the request and dispatches
the corresponding call to the Logger object. The communication protocol, which also
specifies the external data representation, is fairly simple and ASCII encoded. The
transport protocol is UDP. This has the advantage that as soon as the operating system
puts the data on the local UDP buffer, the proxy is free to carry on and its flow of control
doesn’t block.

6

1.3. Document overview.

The following sections in this document will deal with:

� Object Model: The core of this document, depicting both the static and dynamic

model of the software in terms of objects.
� Process Model: In this section, we examine synchronization issues, describe IPC and

see how the object model can fit into different concurrency models.
� Mapping to Code: How the object model relates to concrete Perl classes and

namespaces.
� Deployment: Configuration, dependencies, distribution and hardware topology.
� Failure Model: Analysis of the possible failures and how such failures are handled.
� Wrapping up: We put all the pieces together into a big picture, we explain how to use

and configure the Log Service from an outsider’s point of view and make some final
considerations.

UML [OMG01] diagrams are extensively used throughout this document to precisely
depict design. Even though all presented diagrams are commented out and many of them
are quite self-explanatory, in order to understand in full the semantics of the diagrams a
certain familiarity with UML is necessary. Those that are unfamiliar with UML may want
to keep a reference at hand, such as [BRJ00].

7

2. Object Model.

This section describes both the static and dynamic model of the software in terms of
objects. We first introduce the overall logical architecture of the solution model and we
show how the solution addresses the requirements. We then dive deeper into detailed
object design.

2.1. Overall architecture.

The Log Service is implemented as a tiny distributed-objects system, being a Logger the
only distributed object. This object exports an ILogger interface that defines the
operations available to any external class for logging and lives in an address space
separate from those ones that host the client objects that call upon the service.
In our specific case, the middleware infrastructure required to support object distribution
is pretty simple  with respect to the general case [CDK01]. We directly build it in order
to enforce asynchronous invocation semantics and minimize the overhead carried by each
call to the Log Service.
The machinery enabling remote method invocations (RMI) is arranged in a client-server
fashion and a communication protocol is provided.

Follows a summarized description of the logical structure and behavior of the object
model. Focus is on the key elements and on how they relate and cooperate to fulfill the
requirements. Notice that what follows is not a detailed description of all elements,
relationships and behaviors. This is a bird-eye description that elides many details for the
sake of presenting the key ideas to the reader. Detailed static and dynamic models are
discussed later.

2.1.1. Structure.

The overall structure of the Log Service is organized according to the Layers pattern
[POSA1]. Functionality is sliced at different levels of abstraction (layers), which are
stacked according to increasing level of abstraction and are arranged in order to interact
with each other according to a strict ordering relation [BBC+00]. Each layer represents a
logical partition of the software and provides a cohesive set of functionalities that can be
used by others with no concern about the actual implementation.

Our layering scheme is organized as follows (from the top to the bottom):

• Application: Contains the object being distributed and its clients. At this level of

8

abstraction, the mechanism used to dispatch a method call to the servant is
immaterial to its clients.

• Distribution: The machinery to support RMI. By completely hiding the RMI
mechanism (total RMI transparency), this layer provides the clients of the Logger
servant object in the Application layer with the illusion of interacting with a local
object. Also, it makes immaterial to the servant where its methods are invoked
from.

• Transport: This layer encapsulates the underlying transport mechanism, UDP, and
provides the above layer with a higher level concept of text based communication
channel. This is useful as the exchanged messages are ASCII encoded text
streams.

The following UML class diagram depicts the overall system structure, the organization
into layers and the key elements within each layer:

«layer»
Application

«layer»
Transport

«layer»
Distribution

Logger

debug(ctx, logMsg)
info(ctx, logMsg)
warn(ctx, logMsg)
error(ctx, logMsg)
fatal(ctx, logMsg)

Log4perl

Forwarder

send(txtMsg)

Receiver

receive(..): TextMessage

+LogGateway

+getLogger(): ILogger

«interface»
+ILogger

+debug(logMsg)
+info(logMsg)
+warn(logMsg)
+error(logMsg)
+fatal(logMsg)

LogRecord

marshal(): text
unmarshal(text)

LogProxy

dispatch(..)

LogSkeleton

dispatch(request)

TextMessage
MAX_SIZE
pack(text)

MsgProcessor

Creates-or-recycles

1

1

factory

local-representative

Sends-request

1

1

producer

communication-channel

Transforms

adapter
adaptee

Fetches-request

1

1

consumer

communication-channel

Invokes

1

1

dispatcher

servant

provides

builds-request

exports

retrieves-arguments

routes-request

«bridging»

packs-message

����������	
���
��
��
�������

�	��
	���������
��
	������	���

�����
����
�������������
�

����
���������� ��� ������
��

����

	������������	��	���	���

� ���	��������

����
��������� � ���
���
	
�

����

	������������������

� ��
����	��
!������������������ " �
��
�������������!������������ �� 	��������

� �������� �������	����
�����

� ���	������������� � ���
����

Fig 2-1: Overall static model. Layers are rendered using a stereotyped package. The “layer” stereotype is
used to extend the semantics of a UML package to that of a layer and add a new building block to the UML
meta-model.

The ordering relation among layers is top-down, meaning that the Application layer
depends on the Distribution layer, which, in turn, depends on the Transport layer. Thus,
the Application layer doesn’t even get to know about the existence of the Transport layer.

9

However, there are a few small exceptions to the dependency chain. Namely, the skeleton
and the proxy in the Distribution layer will be affected by changes to the servant
interface. Controlled and circumscribed dependency that breaks the ordering relation is
acceptable and goes under the name of bridging [BBC+00].

Let’s now take a closer look at the key elements within each layer.

The LogGateway is the access point for the client classes within the application to the
Log Service. It provides client classes with a local representative  the LogProxy  of
the servant object, the Logger. The LogGateway is a factory [GoF95] that initially creates
a LogProxy object and subsequently recycles this object among client objects that require
access to the Log Service.

The LogProxy is only known to client classes through the ILogger interface, which is
exported by the Logger to provide access to the Log Service functionalities and is
implemented by the proxy [GoF95]. The LogProxy is responsible for building an
invocation request  represented by the LogRecord class  for each call to the ILogger
implemented operations. The LogProxy also packs some information about the log
context (such as caller's details and a timestamp) into the invocation request. After
building the request, the proxy takes care of marshaling it into an ASCII text stream and
passes it on to its communication channel  represented by the Forwarder  in order to
be sent to the server process hosting the Logger object.

The Forwarder encapsulates the underlying transport mechanism, UDP, and provides the
LogProxy with a higher level concept of text based communication channel. This is
useful to the proxy as the messages exchanged with the server are ASCII encoded text
streams. The exact message formats as well as the communication rules observed by
client/server communication are defined by a simple protocol, OME-SLP, which is
detailed in the next sections.

The LogRecord represents invocation requests made by proxies and is in charge of
marshalling/unmarsalling itself into the external data representation defined by the OME-
SLP protocol. Marshaled text streams are encapsulated by the TextMessage class, that
also makes sure they don't exceed the length specified by the MAX_SIZE constant.

On the server side, the transport mechanism is encapsulated by the Receiver, which pairs
up with the Forwarder on the client side. As request messages arrive from proxies, they
get queued up for retrieval by the MsgProcessor. Thus, the LogProxy and the
MsgProcessor are in a producer/consumer relationship by means of the communication
channel abstraction provided by the transport layer.

10

The MsgProcessor supervises and coordinates request dispatching. It fetches marshaled
requests from the communication channel, obtains the corresponding unmarshaled
invocation request objects and passes those objects on to the skeleton in order to dispatch
a method invocation to the servant. Requests have to be routed to request handlers (one is
the LogSkeleton in the diagram) because there are requests other than log requests
(represented by LogRecord) and request handlers other than LogSkeleton. Those
requests/handlers are necessary for server-specific control tasks, such as shutdown. This
is not explicitly shown in the diagram.

The LogSkeleton maps a request to a servant's method, retrieves the log context and
message from the request and eventually invokes the servant's method passing those
arguments. Thus, the method call requested by the proxy is eventually dispatched to the
servant by the LogSkeleton, which is, in this respect, the counterpart of the LogProxy:
they virtually cooperate to dispatch a method call.

The Logger is the servant that exports the ILogger interface defining the operations
available to client classes for logging. It is an adapter [GoF95] that makes use of the
Log4perl [L4P03] library to implement the operations defined by the ILogger interface.
Its methods transform the original call into a suitable call to the Log4perl library. Thanks
to the machinery provided by the Distribution layer, client objects can transparently
invoke the methods of the servant object as if it was a local object. For this reason, we
can think of clients and servant virtually exchanging messages.

2.1.2. Dynamics.

The overall behavior of the Log Service during a typical interaction with a client object
can be characterized by three phases:

� Method invocation: A client object invokes a method defined by the ILogger

interface, the proxy creates an invocation request, represented by an instance of
LogRecord, and forwards it to the server-side.

� Invocation request processing: The request is received on the server-side and is
routed to the skeleton for execution.

� Method execution: The skeleton invokes the requested method on the Logger servant
object.

Notice the separation, both in space (client and server address space) and time, of method
invocation from method execution.

The following UML sequence diagram further details a typical interaction:

11

: ClassA
proxy : ILogger

: LogRecord

: Forwarder : Receiver : MsgProcessor : LogRecord : LogSkeleton : Logger

info(logMsg)

«create»

txt := marshal()

send(txt)

receive()

text request :=
unmarshal(text)

dispatch(request)

info(ctx,logMsg)

receive()

!����# ����������
��
�������

	���

�
	� �����$	%& ���' ����(' ���

����

	������	������	' ���	�!����#

����������������$	%%�
�

������	%�� ����%�������	� ��

���	�� 	��������	%��	������

����
���������
�

��������	��

�������� ��) � ��" $��

	�	�	��

* �����	
����	� ��%�
��������

���
�����	%��	�����

����� ����%��

+ ����� ����%��
��������

�
	� �����������������

� �
������������� ����%��

�������
�����������	�� � ��

����%
�� �����������	�����

��
��
��# ���		���������

� ����%�����
���	������) "

 ����
,��������	�� ���	��

���
���

�	����
�������

��
���	�$	%-
�
��

{ location = client } { location = server }

Fig 2-2: Overall dynamic model. Notice the half arrow (asynchronous message) used for the info message
to denote separation in time from method invocation to method execution. Also notice the tagged values
used to denote separation in space (client and server address space).

The diagram depicts a client object (an instance of a given ClassA) invoking the info
method defined by the ILogger interface. The client object has previously retrieved an
instance of the LogProxy (named proxy in the diagram) from the LogGateway (not shown
in the diagram). To the client object’s eyes, the proxy is an instance of the Logger servant.
Upon invocation, the proxy creates a new LogRecord object to represent the invocation
request made by the client object and packs in it the log message specified by the client
along with some information about the log context (such as client object's details and a
timestamp). The LogRecord instance is then asked to provide the ASCII text encoding the
marshaled request  the external data representation is defined by the OME-SLP
protocol, as already mentioned. At this point, the proxy asks the Forwarder object to send
this text message to the server-side.
As UDP is the transport mechanism used by the Forwarder to send messages, the info
method returns as soon as the text message is put on the outgoing operating system
buffer. The client object relinquishes control straight away, without having to wait for the
message to be received on the server-side or for the method to be executed by the servant

12

(asynchronous RMI).

On the server-side, the Receiver object would have already obtained an UDP socket and
would have been waiting for incoming UDP datagrams to arrive. The MsgProcessor
object blocks on the receive method, waiting for the Receiver to deliver an incoming text
message. When UDP datagrams do come in, the Receiver queues their content up for
retrieval by the MsgProcessor. The diagram shows the MsgProcessor instance fetching
the request sent by the proxy. As this request is encoded according to the external data
representation dictated by OME-SLP, the unmarshal method of the LogRecord class is
used in order to rebuild a copy of the original LogRecord object created by the proxy. At
this point the MsgProcessor object picks the object that can handle this request, an
instance of LogSkeleton in this case  we have already mentioned that there are
requests/handlers necessary for server-specific control tasks and that requests have to be
routed to the right request handler.

Thereafter the MsgProcessor object delegates the servant’s method execution to the
LogSkeleton object by invoking the dispatch method and by passing the unmarshaled
request object. The LogSkeleton instance extracts the log context and message from the
request in order to invoke the info method on the servant. This latter method eventually
takes care of adapting the invocation to the Log4perl library, thus fulfilling the service
request.

A final consideration on design patterns. The structure and dynamics of the Log Service
relates to the distributed variant of the Active Object pattern [POSA2] and to the
Forwarder-Receiver pattern [POSA1].

2.1.3. Addressing the requirements.

The reader should have, by now, a grasp of the key ideas within the solution model. Thus,
it’s a good time to point out how the solution model addresses the Log Service
requirements outlined in section 1.1.

The Log Service provides its clients with a fairly simple to use interface  ILogger.
Clients log messages according to the needed level of priority by invoking the
corresponding method defined by ILogger  debug, info, warn, error or fatal. The log
message is eventually output in a location specified by a configuration file  terminal,
log file, database, and so on.
The above is easily achieved by using Log4perl [L4P03]. Moreover, Log4perl provides
the means for fine-tuning of the log settings on a per-class basis.
Also notice that the ILogger interface, other than serving the purpose of distribution, will

13

ensure protected variations [Larm01] with respect to changes in the Log4perl library.

It turns out that the ILogger interface and the Logger adapter allow the Log Service to:

� Log a message according to its priority and in a given output location.
� Be flexible and configurable.
� Offer an easy-to-use interface to the external classes.
� Decouple the application from the actual service implementation.

Our goal of being fast (on the client side) is achieved by using asynchronous RMI over
UDP. Clients of the Log Service relinquish control straight away after invoking one of the
ILogger methods, without having to wait for the message to be received on the server-
side or for the method to be executed by the servant.

The design that we have discussed so far will easily fit into different concurrency models.
In fact, the Log Service can operate the same way either within a single-threaded process
or within a multi-threaded process. For every flow of control  be that a single-threaded
process or a thread in a multi-threaded process, there is a proxy object [GoF95] that
forwards calls to the remote Logger object by using its own Forwarder. No
synchronization is thus required on the client side. Even though there may be several
proxy objects forwarding calls to the Logger object at any given point in time, those calls
are eventually serialized by the MsgProcessor  within the process hosting the Logger
object  to ensure synchronization and consistency.

2.1.4. Rationale.

The decision of relying on a third-party library to provide the logging infrastructure is
quite obvious  we’re not developing a general purpose logging facility, we‘re already
too busy with OME. Log4perl [L4P03] seems to offer a lot in terms of functionality and
flexibility. Moreover, it is a Perl port of the popular Log4j [L4J03] library, which has
already proven good for several years. That’s why we preferred it over other candidates.

We don’t couple our application directly with Log4perl because, at the time of writing,
the library is still in alpha release. This is one reason for wrapping the library with the
ILogger interface. Notice that, even though the library is in alpha, radical variations are
unlikely as Log4perl is a port of Log4j, which is a mature library. Thus, it makes sense to
trade-off the big deal of functionality and flexibility that Log4perl provides against
possible variations in the library.

14

There are other reasons for not using Log4perl directly within our code. Namely, this is
because we want to:

� Enforce fast asynchronous invocation and minimize the overhead carried by each call

to the Log Service. Log4perl provides synchronous invocation, which means, in many
cases, that the invoker will have to wait until the log message is output in the desired
location. This usually involves overhead due to I/O time.

� Synchronize access to the log resource. In fact, Log4perl, as many excellent Perl
libraries, is not thread-safe and doesn’t take into account the possibility that different
processes may try to access the same log resource, for example a log file,
concurrently. This is a problem in our case, as a process hosting the UI and another
one running from the command line would need to be synchronized somehow, in
order to avoid race conditions when writing to the same log file.

� Exploit processing parallelism.

The above factors can be elegantly resolved by object distribution. In our specific case,
the middleware infrastructure required to support object distribution is pretty simple 
with respect to the general case [CDK01]. This is one point to build directly the required
middleware infrastructure. Reducing to the minimum the overhead carried by each call to
the Log Service is another point to it. In fact, our implementation makes use of UDP,
which doesn’t incur into protocol flow-control (TCP does).
The above trades-off against using a general purpose middleware infrastructure which
would require complex configuration (or even hacking) to fulfill the mentioned goals.
This would require a few days of work, more or less what is needed to implement our
Distribution and Transport layers.

Another point to building the middleware infrastructure is that of experimenting with Perl
threads. In fact, the server-side of the Log Service is multi-threaded. This choice
represents a first attempt to explore Perl support to multi-threading and gain useful
feedback in order to evaluate the possibility of using Perl threads on a larger scale within
the OME Reference Implementation.

15

2.2. Client side.

Follows a detailed description of the client-side of the Log Service. Classes and
relationships are discussed in the static model. The dynamic model addresses the
collective behavior of those elements.

2.2.1. Static model.

We describe here the client-side structure, encompassing classes and relationships. The
following UML class diagram presents the structure, which is then further detailed,
specifying the responsibilities, roles and collaborators of each element.

«interface»
+ILogger

+debug(logMsg)
+info(logMsg)
+warn(logMsg)
+error(logMsg)
+fatal(logMsg)

+LogGateway

+getLogger(): ILogger

LogProxy
pid
tid
dispatch(priority, logMsg)

Forwarder

send(txtMsg)

LogRecord
priority
logMsg
marshal(): text
unmarshal(text)

LogContext
pid
tid
file
line
class
method
timestamp

TextMessage
MAX_SIZE
pack(text)

Creates-or-recycles
1 1

factory

local-representative

Sends-request

1

1

producer

communication-channel

1

data

metadata

provides

builds-request

packs-message

�. /) ,�� �0� & ,�* # �. ,�

���) �,�/# + # $�������

�	���������������� �

�����������

Fig 2-3: Client-side structure. LogGateway and ILogger visibility is explicitly stated as public. These are
the only elements known to client classes. The remainder classes have a package visibility that is not
explicitly marked.

LogGateway

Access point for the client classes within the application to the Log Service. It provides
client classes with a local representative  or proxy [GoF95], the LogProxy in our case
 of the servant object, the Logger. The LogGateway is a factory [GoF95] that initially

16

creates a LogProxy object and subsequently recycles this object among client objects that
require access to the Log Service. The proxy is initialized with a new Forwarder instance
(this justifies the dependency in the above diagram) and only one Forwarder instance is
allowed per flow of control  be that a single-threaded process or a thread in a multi-
threaded process. That is needed for synchronization purposes (as we‘ll see later) and is
enforced by the LogGateway by checking the thread id when clients retrieve the proxy.
Client objects retrieve the Logger proxy trough the getLogger class method.

Responsibilities
� Provide client classes with a proxy to the servant object, the Logger.
� Manage proxy life-cycle.
� Enforce client-side synchronization.

Collaborators
� LogProxy
� Forwarder

Methods
� getLogger(): ILogger  Static factory method to retrieve a local representative of the

servant. Returned object is a proxy implementing the ILogger interface.

ILogger

The interface exported by the Logger servant object for distribution. It defines the
operations that are available to client objects to access the Log Service.

Methods
� info, debug, warn, error, fatal  Each of these methods takes a string representing a

log message as parameter. Clients log messages according to the needed level of
priority by invoking the corresponding method. No return value.

LogProxy

This class implements the ILogger interface in order to provide access to the Log Service
to client objects. A LogProxy instance is a local representative of the Logger servant
object. The LogProxy is responsible for building an invocation request  represented by
the LogRecord class  for each call to the ILogger implemented operations. The
LogProxy also packs some information about the log context (such as caller's details and
a timestamp) into the invocation request by means of the LogContext class. After building

17

the request, the proxy marshals it into ASCII text, packs it into a text message (using the
TextMessage class) and passes it on to its communication channel  represented by the
Forwarder  in order to be sent to the server process hosting the Logger object. The
LogProxy acts as a message producer to the communication channel.

Responsibilities
� Represent the Logger servant to client objects through the ILogger interface.
� Build, marshal and send invocation requests on behalf of client objects.

Collaborators
� LogRecord
� LogContext
� TextMessage
� Forwarder

Fields
� pid  The process id (integer).
� tid  The thread id of the current thread within a process (integer, default to 0 if

process single-threaded).

Methods
� info, debug, warn, error, fatal  Implementations of the operations defined by the

ILogger interface. These methods simply invoke the dispatch method by passing the
relevant priority code, which is stored by the LogRecord class, and the log message.

� dispatch(priority, logMsg)  Builds, marshals and sends an invocation request. No
return value.

LogRecord

The LogRecord represents invocation requests made by proxies and is in charge of
marshalling/unmarsalling itself into the external data representation defined by the OME-
SLP protocol. This is a simple protocol that specifies the exact message formats as well
as the communication rules observed by client/server communication and is detailed in
the next sections. The invocation request data is stored into the priority and logMsg
fields. Also, some metadata about the caller’s context is embedded by means of the
LogContext class.

Responsibilities
� Represent invocation request, carrying request data and context information.
� Translate objects to external data representation and vice versa.

18

Collaborators
� LogContext

Fields
� priority  The integer code representing the log priority for the invocation request.
� logMsg  The log message as a text string.
� INFO, DEBUG, WARN, ERROR, FATAL  Static constant integers to represent the

log priorities.

Methods
� marshal(): text  Transforms the current object into an ASCII text string according

to the external data representation defined by OME-SLP. This also includes the
metadata carried by the LogContext instance. Returned value is an ASCII string
encoding this LogRecord instance.

� unmarshal(text)  Reverts a marshaled LogRecord, represented by the text
parameter, back into an object. This also includes the metadata carried by the
LogContext instance. No return value, this instance represents the unmarshaled object.

LogContext

Convenience class to store some metadata about the context in which a log method is
invoked. This includes the caller's details and a timestamp.

Responsibilities
� Hold invocation request metadata.

Fields
� pid  The process id (integer).
� tid  The thread id of the current thread within a process (integer, default to 0 if

process single-threaded).
� file  Name of the file containing the caller’s code.
� line  Line number within the file containing the caller’s code where the log method

was invoked.
� class  Fully qualified package (or class) name of the caller.
� method  Method or function containing the invocation to the log method.
� timestamp  Point in time when the log method was invoked.

19

TextMessage

Convenience class to store text representing marshaled objects.

Responsibilities
� Hold marshaled objects text and make sure it doesn’t exceed MAX_SIZE.

Fields
� MAX_SIZE  The maximum size of marshaled objects text (integer).

Methods
� pack(text)  Stores the passed text representing marshaled objects, possibly

truncating the text at MAX_SIZE. No return value.

Forwarder

This class encapsulates the underlying transport mechanism, UDP, and provides the
LogProxy with a higher level concept of text based communication channel. This is
useful to the proxy as the messages exchanged with the server are ASCII encoded text
streams.

Responsibilities
� Encapsulate UDP.
� Send ASCII messages to the server-side.

Collaborators
� UDP API.

Methods
� send(txtMsg)  Accepts a TextMessage instance as parameter and sends its content

to the server-side over UDP. No return value.

2.2.2. Dynamic model.

We now focus on the collective behavior of those elements described in the static model.
The client-side classes have to collaborate in order to:

� Provide the application client objects with a Logger proxy.
� Forward an invocation request each time a log method is invoked on the proxy.

20

The first of the above tasks is illustrated by the following interaction scenario:

: ClassA : LogGateway

fwd : Forwarder

proxy : LogProxy

: ClassB

getLogger()

«create»

«create»
new(fwd)

proxy

getLogger()

proxy

{ first time }

" ����
�� � ���	�����

/
	� �!����# �����!����0������
	���,�

	����������$	%%�
�

����
����� ��

	���

&
� �
�����������

{ ClassA, ClassB
 instances rooted
 by same thread }

���!����0 ��������������	��
		���� �

��� ����
�������!����# ���������,�

�
���������' �/	
' �
��
�1��������

����
	������ 	���2�

$�3����������3���	��

Fig 2-4: Retrieving a proxy. Notice the use of constraints to specify that ClassA and ClassB instances are
rooted by the same thread and that ClassA instance is the first object to retrieve the proxy within that thread.

The above UML sequence diagram shows an instance of a given client class, ClassA, that
calls the getLogger factory method of LogGateway. This is the first time that this method
is invoked within the current thread  this is detected by the absence of a link to a
LogProxy instance. Because of that, the LogGateway creates a new Forwarder object,
fwd, which internally sets up the UDP socket needed to connect to the server. Also, a new
LogProxy is instantiated as proxy and linked up with the freshly created fwd and cached
by the LogGateway. The proxy is eventually returned to ClassA instance that can now use
it as a local representative of the servant. At some point later in time, another client
object, an instance of ClassB rooted by the same thread as ClassA instance, calls the
getLogger method. This time the cached proxy is returned. The same holds for any
subsequent call from the same thread.

What happens when ClassA instance (or any other client object) invokes a method of the
ILogger interface on the proxy, is illustrated by the following typical interaction scenario,

21

where ClassA instance calls the info method.

: ILogger

: ClassA proxy : LogProxy
ctx : LogContext

{transient}

fwd : Forwarder

rec : LogRecord
{transient}

tm : TextMessage
{transient}

1: info
(logMsg)

«realize»
«local»

1.1.1: new

«local»

1.1.2: new(ctx, INFO, logMsg)

1.1.3: txt := marshal()

1.1.6: send(tm)

1.1: dispatch(INFO, logMsg)

«local»

1.1.4: new

1.1.5: pack(txt)

+ ���
������������
����
�����

��	
������	�

	���1����
����	��

��� �2��) ���
����	�
��
������

�
	� ������
12���
�� ��������

������	�����������
������	��

�	������	���
���	
�

�. /) ��	��������������������������

����������������������	��$	%���	
��

" �� ���

������	������	���������	
�

����	���
��������

� �
�������������	
���%�

�	�) � ��" $��

+ ���� ����%�� ������
�������������	�

������
��
�	��
�� � ���(' ���
,�����

�����������������������		���������) "

����������	
���%���������� �����	��

����	��%	��%�� � �� ����
�

Fig 2-5: Logging. Notice the use of stereotyped links. The realize stereotype is used to mean the fact that
the proxy object exposes the methods defined by the ILogger interface because of the realization
relationship between LogProxy and ILogger. The local stereotype marks links that are method-scoped. Also
notice the use of the transient tagged value to denote objects that are in existence only for the duration of
the interaction.

The info method delegates the task of issuing an invocation request to the dispatch
method of LogProxy by passing along the message to be logged and the method id  an
integer used to identify the method on the server-side, the INFO constant in this case,
which is defined by LogRecord. The proxy collects some information about the caller’s
context (by using the caller built-in Perl function) and stores it into a newly created
LogContext object, along with the pid and tid. It next creates a new LogRecord to
represent the info invocation request, links it up with the LogContext object and specifies
the log message. At this point, the LogRecord object is asked to provide the ASCII text
representing this invocation request through the marshal method. This text is packed into
a new TextMessage (truncation to MAX_SIZE may occur) and passed to the Forwarder
object, which takes care of sending it over the wire. As soon as the operating system
finishes copying the text bytes on the outgoing UDP buffer, the caller relinquishes
control.

22

2.3. Server side.

Follows a detailed description of the server-side of the Log Service. Classes and
relationships are discussed in the static model. The dynamic model addresses the
collective behavior of those elements.

2.3.1. Static model.

We describe here the server-side structure, encompassing classes and relationships.
Responsibilities, roles and collaborators of each element are detailed.

Server-side classes serve two purposes:

� Invocation request reception and processing: The server has to wait for incoming

invocation requests, has to unmarshal the received ASCII text bytes into a request
object and has to route this request to a corresponding request handler for execution.
There are two possible types of requests. One is a request to execute a method of the
Logger servant object. The other is a request to perform a server control task  only
server shutdown for the time being, but possibly other tasks in future.

� Method execution: The request handler has to invoke the requested method on the
servant object, in the case of logging requests, or has to perform server shutdown
otherwise.

It is interesting to notice that request processing can be carried out in a manner that is
independent from specific request and request handler types. For this reason, we
introduce two abstract super-classes: Request and Skeleton. The first class, obviously
enough, represents any request. The Skeleton represents any request handler.
The Request and Skeleton hierarchies are represented in the following UML class
diagram:

23

Skeleton

getSkeleton(r: Request): Skeleton
dispatch(r: Request)

LogSkeleton CtrlSkeleton

shutdown()

Request
LOG
CONTROL
getRequest(text): Request
getType(): integer
marshal(): text
unmarshal(text)

CtrlOp
opID

LogRecord
priority
logMsg
marshal(): text
unmarshal(text)

Logger

debug(ctx, logMsg)
info(ctx, logMsg)
warn(ctx, logMsg)
error(ctx, logMsg)
fatal(ctx, logMsg)

Invokes

1

1

dispatcher

servant

Maps-ctrl-
request

1

1 ctrl-handler

Maps-log-
request

1

1log-handler

delegates-
unmarshal

delegates-
unmarshal

direct-indexing

$	%" �����	����
�����	��$	%�����������

�������
������ ���	�������	����������� ��
����

��������	����	��
����$	%��������	 4�������

	
��
��	����
������������������	
� ���	���

" �� ���

������	�!�
�" �����	������!�
�)
�

+ ��
������	�!�
����
������+ ��

!�
��������	�����
�����������

������� �����	���%������	' ��

Fig 2-6: Request and Skeleton hierarchies.

The Request and Skeleton classes decouple the MsgProcessor from knowing about
concrete requests and request handlers. In fact, as we’ll see later, the MsgProcessor
fetches a marshaled request, asks Request to provide an unmarshaled concrete Request
object (getRequest factory method [GoF95]) and asks Skeleton to map this concrete
request to a request handler (getSkeleton method), which is just a Skeleton instance to the
MsgProcessor. The map is built by using direct indexing on an array: the n-request
handler in the array is the one in charge of handling the request whose id is n. This is
easily done through the LOG and CONTROL constants of Request.
At this point the MsgProcessor asks the concrete Skeleton instance to dispatch the
concrete request. Notice that the only types known to the MsgProcessor are Request and
Skeleton.

The above diagram points out the absence of a servant for server control tasks. In fact,
such tasks belong to the Distribution layer. Thus, we don’t have to provide client classes
in the Application layer with an interface to control the server-side. Those classes don’t
have to be aware of the RMI machinery that we’re using. The CtrlSkeleton will dispatch
server control requests (just shutdown for the time being) by invoking its corresponding
control method (shutdown method).

24

Fine, but where do server control requests come from? A script will instantiate a
ServerCtrl class (not shown in the diagram) and will ask it to send a shutdown request.

The ServerCtrl class and the other classes in the above diagram are detailed below.

Request

Being the super-class of all requests, Request defines the common interface that the
MsgProcessor and the Skeleton use to handle any request. This class has a static factory
method [GoF95], getRequest, that rebuilds concrete request objects from their external
data representation. After retrieving the request type identifier from the external data
representation, the task of unmarshaling is delegated to the corresponding Request
subclass, either LogRecord or CtrlOp. In this regard, the getRequest method can be
considered a template method and the unmarshal method a hook method, as in the
Template Method pattern [GoF95].

Responsibilities
� Represent any request, supplying a common interface.
� Rebuild request objects from external data representation.

Collaborators
� LogRecord.
� CtrlOp.

Fields
� LOG  Static constant integer to identify log requests.
� CONTROL  Static constant integer to identify server control requests.

Methods
� getRequest(text): Request  Static factory method that returns a concrete Request

object from the external data representation in text.
� getType()  Subclasses implement this method in order to return the proper request

identifier, either LOG or CONTROL.
� marshal(): text  Abstract method to be implemented by subclasses in order to

transform the current object into an ASCII text string according to the external data
representation defined by OME-SLP. Returned value is an ASCII string encoding the
concrete instance.

25

� unmarshal(text)  Abstract method to be implemented by subclasses in order to
revert a marshaled ASCII text, represented by the text parameter, back into an object.
No return value, the concrete instance represents the unmarshaled object.

LogRecord

This class has already been detailed in the client-side section. The only addictions made
here are sub-classing and the getType method.

CtrlOp

Subclass of Request that represents a control request.

Responsibilities
� Represent control request.
� Translate objects to external data representation and vice versa.

Fields
� opID  Set to 0. If new control tasks will be needed, then this field will identify the

task.

Methods
Implements the getType, marshal and unmarshal methods as explained in Request.

ServerCtrl

Convenience class to control the server process hosting the servant. Only server shutdown
is implemented for the time being, but possibly other control tasks may be needed in
future. Upon creation, a new Forwarder is configured in order to be able to send control
requests afterward. When the shutdown method is invoked, a new CtrlOp object is
created and then its marshaled representation is wrapped into a TextMessage and sent
over the wire to the server by means of the Forwarder.

Responsibilities
� Send shutdown request.

Collaborators
� CtrlOp.

26

� TextMessage.
� Forwarder.

Methods
� shutdown()  Sends the shutdown request as outlined above. No return value.

Skeleton

Being the super-class of all request handlers, Skeleton defines the common interface that
the MsgProcessor uses to dispatch any request to the corresponding handler. This class
has a static method, getSkeleton, that maps concrete request objects to the corresponding
request handler, either LogSkeleton or CtrlSkeleton.

Responsibilities
� Represent any request handler, supplying a common interface.
� Map concrete request objects to corresponding handler.

Collaborators
� LogSkeleton.
� CtrlSkeleton.

Methods
� getSkeleton(Request): Skeleton  Static method that, given a concrete request object,

returns the corresponding request handler.
� dispatch(Request)  Abstract method to be implemented by subclasses in order to

invoke the method specified by the concrete Request passed in. No return value.

LogSkeleton

This class implements the Skeleton abstract interface to handle log requests. The
LogSkeleton maps a log request to a Logger servant's method, retrieves the log context
and message from the request and eventually invokes the servant's method passing those
arguments. Thus, the method call requested by the proxy is eventually dispatched to the
servant by the LogSkeleton, which is, in this respect, the counterpart of the LogProxy:
they virtually cooperate to dispatch a method call.

Methods
� dispatch(Request)  Casts the input parameter to a LogRecord and then handles the

request as explained above. No return value.

27

CtrlSkeleton

This class implements the Skeleton abstract interface to handle server control requests.
The CtrlSkeleton maps a control request to its shutdown method, which is invoked to
fulfill the request.

Methods
� dispatch(Request)  Casts the input parameter to a CtrlOp and then handles the

request as explained above. No return value.
� shutdown()  Performs server shutdown. No return value.

Logger

The Logger is the servant that exports the ILogger interface defining the operations
available to client classes for logging. It is an adapter [GoF95] that makes use of the
Log4perl [L4P03] library to implement the operations defined by the ILogger interface.
Its methods transform the original call into a suitable call to the Log4perl library. Thanks
to the machinery provided by the Distribution layer, client objects can transparently
invoke the methods of the servant object as if it was a local object. For this reason, we
can think of clients and servant virtually exchanging messages.

Methods
� info, debug, warn, error, fatal (ctx, logMsg)  Merge the input parameters into a

string and pass it to the corresponding method of Log4perl. No return value.

The classes in the Request and Skeleton hierarchies as well as the Logger are involved in
the method execution task mentioned before. The reception and processing task is
undertaken by the Receiver and MsgProcessor. The Receiver is responsible for collecting
messages from the network and buffering them  with the help of the MsgQueue class
 for later fetching by the MsgProcessor, which supervises and coordinates request
dispatching. In doing so, it delegates tasks to the Request and Skeleton classes.

The following UML class diagram illustrates and further details the above.

28

MsgProcessor

Request
LOG
CONTROL
getRequest(text): Request
getType(): integer
marshal(): text
unmarshal(text)

Skeleton

getSkeleton(r: Request): Skeleton
dispatch(r: Request)

Receiver

receive(timeout): TextMessage

MsgQueue

getMessage(): TextMessage
putMessage(t: TextMessage)

TextMessage
MAX_SIZE
pack(text)

Fetches-request

1

1

consumer

communication-channel

Buffers1 *
Adds-and-
removes-messages

1

1

producer-consumer

buffer

Gets-concrete-request

1

1

factory

Route-requests

1

1

map

Wraps-datagrams

Fig 2-7: Structure of the participants in the reception and processing task.

Let’s take a closer look at the MsgQueue, Receiver and MsgProcessor classes.

MsgQueue

This is a synchronized unbounded queue that buffers TextMessage instances. Only one
tread at a time is allowed to access the queue as in the Monitor Object pattern [POSA2].
Thus, the getMessage and putMessage method execution is synchronized to ensure that
only one method at a time runs within the MsgQueue object.

Responsibilities
� Buffer TextMessage instances.
� Synchronize access to the queue.

29

Collaborators
� TextMessage.

Methods
� getMessage(): TextMessage  Returns the message at the head of the queue. If the

queue is empty, then a null value is returned.
� putMessage(TextMessage)  Adds the input message to the queue (at the tail). No

return value.

Receiver

This class encapsulates the underlying transport mechanism, UDP, and provides the
MsgProcessor with a higher level concept of text based communication channel. As UDP
datagrams come in, their content is wrapped into a TextMessage object which is then
added to the message queue (managed by MsgQueue) for retrieval by the MsgProcessor.
The Receiver regards the MsgQueue as a buffer and it acts both as a producer and as a
consumer. It is a producer because it adds messages to the queue and a consumer because
it removes messages from the queue on behalf of the MsgProcessor (receive method).

Responsibilities
� Encapsulate UDP.
� Receive and queue messages.
� Removes messages from the queue on behalf of the MsgProcessor.

Collaborators
� MsgQueue.
� TextMessage.
� UDP API.

Methods
� receive(timeout): TextMessage  Fetches a message from the queue by calling the

getMessage method of MsgQueue. If the queue is empty, the caller is blocked until a
message is added to the queue or timeout elapses. If timeout elapses and the queue is
still empty, then a null value is returned.

MsgProcessor

The MsgProcessor supervises and coordinates request dispatching. It fetches marshaled
requests from the communication channel  represented by the Receiver, obtains the

30

corresponding unmarshaled request objects from Request  which acts as a factory
[GoF95] by providing concrete requests objects, and passes those objects on to Skeleton
in order to route those requests to the corresponding request handler. The Skeleton maps
LogRecord objects to the LogSkeleton instance and CtrlOp objects to the CtrlSkeleton
instance. After obtaining the right request handler, the MsgProcessor can dispatch the
request.

Responsibilities
� Supervise and coordinate request dispatching.

Collaborators
� Receiver.
� Request.
� Skeleton.

2.3.2. Dynamic model.

We now focus on the collective behavior of those elements described in the static model.
The server-side classes have to collaborate in order to:

� Initialize the server process: Processing resources have to be acquired, objects have to

be created, initialized and linked according to the structure described in the static
model.

� Receive and process requests: As UDP datagrams come in, their content has to be
buffered and then unmarshaled into a concrete request object, which has to be routed
to the corresponding request handler for request fulfillment.

� Fulfill requests: The request handler has to invoke the requested method on the
servant object, in the case of logging requests, or has to perform server shutdown
otherwise.

� Terminate the server process: Acquired resources have to be released, the receiving
and processing activities have to terminate.

Let’s analyze each of the above collaborations in detail.

Initialization

The initialization code will allocate two flows of control, one for the Receiver object and
the other for the MsgProcessor object, will then create and initialize those objects, and

31

will finally start their processing loops. This initialization code is contained in a
convenience class, LogService. The Receiver initialization code will set up the message
queue, the UDP socket and will start listening for incoming requests. The MsgProcessor
object is passed a reference to the Receiver object and will access the static methods of
the Request and Skeleton classes, no instance of those classes is therefore needed and the
links to those classes are implicit because of global visibility. However, the Skeleton class
requires some static initialization in order to create and link the LogSkeleton and
CtrlSkeleton objects. A static initialization method of the Skeleton class will do the job
when invoked by the MsgProcessor initialization code. The CtrlSkeleton object needs to
be linked to the Receiver and MsgProcessor objects in order to perform server shutdown.
Thus, the MsgProcessor object will pass a reference to itself and to the Receiver object to
the Skeleton static initialization method. Upon creation, the LogSkeleton object will
create, link and initialize the Logger servant object, which, in turn, will configure
Log4perl.

Reception and processing

The Receiver object runs in its own flow of control and blocks on its UDP socket waiting
for incoming datagrams. When datagrams do come in, their content is wrapped into a new
TextMessage object which is then added to the message queue by invoking the
putMessage method. The Receiver object carries on in this processing loop until the
server is shut down.
In the mean time, the MsgProcessor object, which also runs in its own flow of control, is
trying to fetch any pending message from the queue  by invoking the receive method of
Receiver. The receive method regularly polls the queue by calling the getMessage
method. When a message is available, this is returned to the MsgProcessor object. If no
message comes in within a timeout specified by the MsgProcessor object, then the
receive method gives up and returns a null value. This timeout is needed in order to allow
the MsgProcessor to check when it’s time to exit its processing loop. That is detailed in
the Process Model.

Here is a typical interaction scenario:

32

: MsgQueue
[empty]

mp : MsgProcessor r : Receiver

tm1 : TextMessage

tm2 : TextMessage

mp1: receive(timeout)

mp1.1: getMessage()

r1: new

r2: putMessage(tm1)

tm1

r3: new

r4: putMessage(tm2)

mp1.2: getMessage()

{ UDP
 datagram
 arrives }

+ ��������������
��,����������
�

1�
2�������
��������������

� ����%�����������	
���� �	���

���
����

. 	' �' ���������� ����%��1�� 52�

	�������������* ������
���
�����

�	����������
�1�
2���������������

	������	�

	��������

�
6����	' �	���	��
	�

6����	' �	���	��
	�

{ UDP
 datagram
 arrives }

Fig 2-8: Message reception. MsgProcessor and Receiver objects are active objects. The name of the flow of
control is prefixed to each message number in order to distinguish one flow from another (also, different
colors are used).

The above UML sequence diagram gives an idea of how the Receiver and MsgProcessor
objects run concurrently and coordinate their activity. Also, the Receiver processing loop
is clearly outlined as well as the work carried out by the receive method, which runs in
the MsgProcessor object’s flow of control. All these topics will be further discussed in
the Process Model.

What happens after the MsgProcessor object has obtained a message from the Receiver
object? The message is unmarshaled into a concrete request object and the request is
routed and dispatched to the corresponding request handler. Thus, the MsgProcessor
processing loop consists in fetching a marshaled request from the Receiver, unmarshaling,
routing and dispatching the request. The MsgProcessor object carries on in this
processing loop until the server is shut down.

33

The following UML collaboration diagram shows what happens when a log request is
received:

: Skeleton: MsgProcessor

: Request logRec : Request
{transient}

logSk : Skeleton

1: logRec := getRequest(text)

«local»

3: dispatch(logRec)

2: logSk :=
getSkeleton(logRec)

«local»

1.1: new
1.2: unmarshal(text)

«local»
2.1: getType()

# �+ ���� ����%��	 4��������

 ����
���������������������

���� �������
������

/����	���
���������
��

+ ������

����	� �����	%�
����������

����' �$	%���	
�������������������	

�����' ��������� �
������������

(' ���
,�������������������	 4�����	

����� �%�
	����	
�����" �����	��

	 4����6������

� �
�$	%���	
����
���	�

$	%" �����	�����������

+ ���������$	%" �����	����������,

 ���	������" �����	���	����

� �%�
	����	
6�������

Fig 2-9: Unmarshaling, routing and dispatching a request. The local stereotype marks links that are method-
scoped. The transient tagged value states that the logRec object is in existence only for the duration of the
interaction.

After fetching the TextMessage object from the Receiver object, the MsgProcessor object
extracts the text string encoding the marshaled request and asks Request to supply the
corresponding unmarshaled request objects (getRequest method). Request finds out the
request type, creates a concrete request object of that type (this happens to be LogRecord
in the diagram) and then delegates unmarshaling. Having obtained a concrete request
(which is still a Request to the MsgProcessor), the MsgProcessor object passes it on to
Skeleton in order to route the request object to the corresponding request handler
(getSkeleton method). The Skeleton maps LogRecord objects to the LogSkeleton instance
and CtrlOp objects to the CtrlSkeleton instance. Thus, a reference to the LogSkeleton
instance is returned to the MsgProcessor in the above collaboration. After obtaining the
right request handler, the MsgProcessor can dispatch the request.

34

Request fulfillment

After a request is dispatched to the corresponding request handler, it is fulfilled as already
explained in the LogSkeleton, Logger and CtrlSkeleton class specifications.

Termination

Upon dispatching of a shutdown request, the CtrlSkeleton will invoke its shutdown
method, which will ask the Receiver and MsgProcessor objects to terminate execution.
The Receiver and MsgProcessor both expose an exit method that causes the object to
leave its processing loop, stop its activity and release its flow of control. This is detailed
in the Process Model. The Receiver also releases the UDP socket.

A final note. Some trivial issues (such as routine initialization code, constructors and
destructors, accessors and mutators or, in general, features that are required to write
working source code, but that can be trivially derived from this object model) haven‘t
been addressed by this object model explicitly. Those are routine programming tasks that
would add little to the semantics of this model  but would inflate this document quite a
bit, and for this reason are omitted.

35

3. Process Model.

In this section, we examine synchronization issues, describe IPC and see how the object
model can fit into different concurrency models.

3.1. Flows of control and synchronization.

We have already mentioned some concurrency issues in the object model. Now it’s time
to completely unfold that matter. Before talking about processes and threads, it‘s worth
studying concurrency from a logical and general point of view. Specific process and
thread semantics introduce many details that would add nothing to the concurrency issues
that we’re going to study, but would simply obfuscate the matter. We discuss later
allocation of flows of control to processes and threads as well as specific issues relative to
the Perl environment.

As far as the client-side goes, we don‘t want to make assumptions on the number of
threads running within a process. Thus, the client-side objects could be rooted by just one
flow of control  in the case of a single-threaded process, or different flows of control
might be sharing some objects  possible in a multi-threaded process. The only objects
that would cause consistency problems if accessed concurrently are the Forwarder and
the LogGateway. The first one would cause problems because different flows of control
might be overlapping while writing to the UDP socket managed by the Forwarder. For a
similar reason, the code that provides lazy initialization in the LogGateway needs to be
synchronized.

No matter how many threads are running within the client process, we only allow one
Forwarder per flow of control. As a result, every flow of control (be that a single-
threaded process or a thread in a multi-threaded process)  will be able to write to its
own UDP socket without having to synchronize with other concurrent flows of control, if
any. Moreover, we don’t incur into synchronization overhead, in fact different flows of
control don’t have to compete to access a shared synchronized Forwarder.
The LogGateway could be organized according to the Thread-Specific Storage pattern
[POSA2], in order to allow different flows of control to use one global access point to
retrieve an object that is local to a thread, without incurring synchronization overhead.
However, Perl threads automatically enforce a mechanism that turns out to have a similar
effect. We’ll detail that later along with how to enforce only one Forwarder object per-
thread when Perl threads are used. Obviously enough, in a single-threaded process the
only Forwarder instance can not possibly be shared and access to the LogGateway
doesn’t need to be synchronized.

36

Even though all processes that host the client-side objects could be single-threaded, we’ll
definitely have to take into account the possibility of having several of those processes
active at the same time  for example, think about the Web UI run by mod_perl and
about accessing OME through the CLI. Thus, in general, we have to allow for different
flows of control on the client-side that concurrently send logging requests to the server.
This is not a problem if those request are eventually serialized in order to access to
Log4perl serially. The server takes care of that.

Server-side concurrency is a bit more complicated due to the fact that, in order to improve
performance, we have two concurrent flows of control that need share some data.
Specifically, one flow is rooted by the Receiver and the other one is rooted by the
MsgProcessor. The Receiver cyclically waits for incoming UDP datagrams and buffers
their content on the MsgQueue. The MsgProcessor cyclically fetches pending messages
from the queue (by invoking the receive method of Receiver), unmarshals them into
request objects, routes and dispatches those requests to the corresponding request handler.
So, it turns out that access to the MsgQueue object need to be serialized in order to
maintain consistency. This can be easily achieved by means of a lock. Before a flow of
control can enter the queue, it has to acquire a lock. This lock may be held by just one
flow of control at a time. When the operation on the queue completes, the lock is released
and the other flow can acquire it. To implement the queue, we’ll use a Perl thread-safe
queue that exploits a behavior similar to that in the Monitor Object pattern [POSA2].
This is detailed later.

The server behavior is modeled with a concurrent finite state machine, that we present in
the following UML statechart:

37

Running

shutdown / receiver.quit=processor.quit=true

Initializing

Processing

quit: boolean = false
r: Receiver

Entry / check quit
Do [msg] / unmarshal-route-dispatch

Polling

q: MsgQueue

noMsg / sleep(S_TO)

Accessing queue

Entry / acquire lock
Exit / release lock

Listening

quit: boolean = false
q: MsgQueue

Entry / check quit
Do / recvfrom(L_TO)

after(P_TO)
/ return null

[no msg]
/r.receive(R_TO)

[quit]

after(L_TO)

[quit]
/close(socket)

newMsg/ return msg

newDgm / q.putMessage

/q.getMessage

Receiver loop

MsgProcessor loop

�������
��		
7

' �����1�8�����2�9

���%� �:��������1$�" + �. ;+ �� �) � + 2�<

�����1��%� �2�9

������ �:���' �+ ���� ����%��1�%� 2�<

������������������1�� 2�<

��=

=�

�������1��� �	��2�9

����� �;' ������:�>�<

��� �%�:������<

��' �����1���� �;' ������?���� �	���2�9

����� �%�:��������������;� 12�<

�������1� �%2����
����<

��������
�1" $���;+ �� �) � + 2�<

������� �;' ������@:�" $���;+ �� �) � + �<

��=�

��
���
������ �%�<

=

� �%�
	����	
��		
7

' �����1�8�����2�9

��� �%�:�
������
�

�����
�������1��!��A �;+ �� �) � + 2�<

�����1� �%2�9

����BB���� �
�����
	�������
����

��=

=�

Fig 3-1: Server concurrent FSM. Notice the two concurrent sub-states nested into the Running state. Some
notes with pseudo-code have also been attached to the diagram for further clarity.

Upon start up, the server enters into the Initializing state. Initialization is performed as
already explained in the object model and two flows of control are allocated to run,
respectively, the Receiver and the MsgProcessor processing loops.

Upon completion of the initialization phase, the server automatically transitions to the
Running state, which is composed by two concurrent sub-states, the Receiver loop and the
MsgProcessor loop. The Receiver loop is broken down into two states. In the Listening
state the Receiver waits for incoming datagrams. When a datagram comes in (this is
represented by the newDgm event), the Receiver puts the contained message on the
queue, thus transitioning to the Accessing queue state. When both flows of control are in
this state, they have to synchronize by acquiring and releasing the lock on the queue.
After gaining exclusive access to the queue and adding the message, the Receiver
transitions back to the Listening state. There is also a self transition to this latter state
after a listening timeout has elapsed. This is to avoid the Receiver blocking forever on the

38

UDP socket. In fact, every time the Listening state is entered, the Boolean variable quit
(initially set to false) is checked in order to see when it’s time to exit the processing loop.
If the quit variable holds true, then the Receiver exits its processing loop, releases the
socket and waits for the MsgProcessor flow to join.

The MsgProcessor main activity (unmarshaling, routing and dispatching) is carried out in
the Processing state. If no message is available to process, then the MsgProcessor tries to
fetch one from the Receiver, by invoking the receive method. This causes a transition to
the Polling state. The receive method regularly polls the queue by calling the getMessage
method and putting to sleep the MsgProcessor for a given sleep timeout if no message is
returned by the getMessage method (noMsg event, that causes an internal transition).
When a message is available, this is returned to the MsgProcessor (newMsg event),
which transitions back to the Processing state. If no message comes in within a timeout
specified by the MsgProcessor, then the receive method gives up and returns a null value.
This timeout is needed in order to allow the MsgProcessor to check when it’s time to exit
its processing loop. In fact, the MsgProcessor uses the same strategy as the Receiver:
every time the Processing state is entered, the Boolean variable quit (initially set to false)
is checked. If the quit variable holds true, then the MsgProcessor exits its processing loop
and waits for the Receiver flow to join.

Upon dispatching of a shutdown request (represented by the shutdown event, which
causes an internal transition in the Running super-state), the CtrlSkeleton (which runs in
the MsgProcessor flow) will invoke its shutdown method, which will ask the Receiver
and MsgProcessor objects to terminate execution. The Receiver and MsgProcessor both
expose an exit method that sets the quit variable to false, causing the object to eventually
leave its processing loop.

3.2. Allocation of processes and threads.

The Log Service makes use of the Perl 5.8 built-in threading environment. Specifically,
two threads are allocated to the server-side and the client-side software needs to be able to
allocate a different Forwarder object to each thread running in the client process, if the
latter is a multi-threaded process.

The Perl threading environment that we’re using is called ithreads (a short for interpreter
threads). This choice represents a first attempt to explore Perl support to multi-threading
and gain useful feedback in order to evaluate the possibility of using Perl threads on a
larger scale within the OME Reference Implementation.

39

In the ithreads model each thread runs in its own Perl interpreter, all of its data is private
and any data sharing must be explicit. In fact, when a new thread is created, all the data
associated with the parent thread (the thread that spawned the new one) is copied to the
new thread and can’t be accessed from any other thread (including the parent thread)
unless is marked as shared  through the shared attribute.
However, there are restrictions on what data may be shared. In fact, you can share scalars,
arrays and hashes, but only simple values or references to shared variables may be
assigned to shared array and hash elements. Moreover, even though references to shared
variables can be passed among threads, it is not possible to share a blessed reference,
which makes impossible to share objects directly.
Also notice that spawning a new thread after the parent thread has already accumulated a
lot of data involves a considerable creation time overhead and subsequent expensive
memory usage because of the cloning semantics of ithreads.

Back to the Log Service, how can the client-side software enforce just one Forwarder
object per thread? The answer is not difficult. Recall that the LogGateway creates a proxy
the first time the getLogger method is invoked and then recycles it in the next
invocations. The proxy grabs the thread id at creation time by accessing the Perl threading
API and stores that value into its tid field. The Forwarder object is also created and
linked up to the proxy the first time getLogger is invoked. Now, for any given thread,
only one of the following conditions will hold true whenever the getLogger method is
called within that thread:

� There is no LogProxy object (and thus no Forwarder either). This means that the

getLogger method is being invoked for the first time within the current thread. It also
implies that the parent thread never called getLogger before spawning the child
thread.

� There exists a LogProxy object (and thus a Forwarder), but the getLogger method has
never been called before within the current thread. This is because the parent thread
called getLogger before spawning the child. The LogProxy and Forwarder objects are
copies of the original ones in the parent thread. Notice that, even though we have a
copy of the Forwarder object, the file descriptor held by the object (recall that the
Forwarder sets up the UDP socket at creation time) is exactly the same one  this is
why we want to have one Forwarder per thread: we want to have a different UDP
socket for each thread so that we don’t need to synchronize access to a shared socket.

� There exists a LogProxy object (and thus a Forwarder) and the getLogger method has
already been called within the current thread.

It turns out that in the first case we only have to create and link the LogProxy and

40

Forwarder objects and then return the proxy. This case is obviously detected by the
absence of a link to a LogProxy instance.

The second condition is detected by the existence of the link to the proxy and by the fact
that the current thread id is not the same as the one stored into the tid field of the proxy.
In this second case we have to create a new Forwarder and re-link it to the copy of the
proxy that we already have. We also have to set the tid field of the proxy to the id of the
current thread, as it contains the id of the parent thread.

Subsequent invocations of the getLogger method within the same thread are detected by
the existence of the link to the proxy and by the fact that the current thread id is the same
as the one stored into the tid field of the proxy. In this case we only have to return the
proxy instance. The getLogger algorithm is described by the following UML activity
diagram:

Create Forwarder
and LogProxy

Replace Forwarder
and tid

Return proxy

fwd : Forwarder

proxy : LogProxy
[forwarder=fwd; tid=1]

fwd_2
 : Forwarder

proxy_ : LogProxy
[forwarder=fwd_2; tid=2]

[else]

[proxy]

[curThrID != proxy.tid]

[else]

/�
������ ������������
���,

������
����5�

� ����
���	���
���� �������� ����
����

	
���
������ �������' ��	
����	���

/�
������ �������' ��	
����

��
���,�������
����C�

. 	���������������
����C,�����

	�����
�� ��

�	������
���
������	����	
��	������

	��

	 4���������
����5�

Fig 3-2: The getLogger algorithm. Notice the object flow associated to the action states.

A final observation about client-side concurrency. Access to the getLogger method
doesn’t need to be synchronized. In fact, different threads will be invoking this method on

41

their own private copy of the LogGatweay.

As you would expect, things get trickier on the server-side. We allocate two threads, one
for the Receiver object and another for the MsgProcessor object. The Receiver object
lives within the root thread. The MsgProcessor thread is spawned from the root thread.
Here’s the initialization code in the LogService class that allocates the threads and starts
the processing loops:

sub start {
 my $self = shift ;
 my $receiver = new OME::Log::Impl::Server::Receiver() ;
 my $processor = threads->new(sub {
 my $p = new
 OME::Log::Impl::Server::MsgProcessor($receiver) ;
 $p->run() ;
 });
 $receiver->run() ;
 $processor->join() ;
 return ;
}

The Receiver and MsgProcessor constructors perform initialization as explained in the
server-side dynamic model. As a convenience, we don’t implement our own MsgQueue
class, but we rely on the Perl utility class Thread::Queue. The behavior of this class is
similar to that in the Monitor Object pattern [POSA2]  however we only need this class
for its capability of serializing access to the buffered data. So the Receiver will instantiate
a Thread::Queue rather than a MsgQueue.

As you can see in the code snippet above, the MsgProcessor is initialized with a reference
to the Receiver object in the parent thread. However, what the MsgProcessor eventually
gets is a copy of that object. In fact, the thread that runs the MsgProcessor object will
initially contain a copy of all the data held by the parent thread at the time of spawning.
This means that the Thread::Queue object and the Perl IO handle used to access the
operating system UDP socket are copied too. However, the socket file descriptor can’t be
copied (obviously enough) and the two handles refer to the same operating system
resource. The LogSkeleton, Logger and CtrlSkeleton objects are initialized within the new
thread and so are private to this thread. The MsgProcessor object has to pass a reference
to itself and to the Receiver object to the Skeleton static initialization method. However,
the reference to the Receiver object that the MsgProcessor constructor passes along is a
reference to the copied Receiver object. As a result, the CtrlSkeleton object gets linked to
the right MsgProcessor object, but to the copy of the Receiver.

This means that the quit field of Receiver needs to be a shared variable. Otherwise, the
CtrlSkeleton object wouldn’t be able to set this field to true in the master Receiver object

42

(the instance in the parent thread) when invoking the exit method on the copied object.
Other data that need to be shared are the messages buffered on the queue. In fact, those
messages are queued up by the Receiver on one side and fetched by the MsgProcessor on
the other side  indirectly, through the receive method of Receiver. As the
Thread::Queue class uses a shared array to buffer data internally, we won’t have to worry
about this. Nevertheless, we can’t buffer TextMessage objects on the queue, because we
may not share blessed references. As a result, the Receiver will queue up string messages
as received from the UDP socket and the receive method (which runs within the
MsgProcessor thread and removes messages from the queue) will take care of wrapping
those strings into TextMessage objects and then returning those object to the
MsgProcessor.

All the above might look a bit cumbersome, but it is unavoidable because of the cloning
semantics of ithreads. The following UML object diagram is a snapshot of the server
state after initialization and should help focus on the discussion.

receiver : Receiver rcvCopy
 : Receiver

socket : Handle sktCopy : Handle

OS_socket
 : FileDesc

buffer : Queue

«shared var»
quit

processor
 : MsgProcessor

: Skeleton

log-handler
 : LogSkeleton

ctrl-handler
 : CtrlSkeleton

bufCopy : Queue«shared array»
array_buffer

servant : Logger

read write

select

receive

«global»

exit

exit

enqueue dequeue

) 4�����' �����������������
���
���

" ��
������� ����

) 4�����' ����������� �%�
	����	
���
���

Fig 3-3: Snapshot of the server state after initialization. Different colors are used as a visual aid to
distinguish objects that live in different threads and elements that are shared. The global stereotype means
that Skeleton is visible to MsgProcessor because of static class visibility.

Looking at the above diagram, we can easily locate the elements that can be shared
between the Receiver and MsgProcessor threads. Those elements may be accessed

43

concurrently by the two threads and, for this reason, we need to decide on a
synchronization policy for each element.

The shared array is managed by Thread::Queue and we won’t have to worry about
synchronization as this class already takes care of that  access is serialized internally by
means of a lock.

Access to the quit shared variable of Receiver doesn’t need to be coordinated between the
two threads. In fact, this variable is periodically read by the master Receiver object
(receiver in the above diagram) in the Receiver thread and is written once by the cloned
Receiver object (rcvCopy in the above diagram) when the CtrlSkelton object (ctrl-handler
in the above diagram) in the MsgProcessor thread invokes the exit method. It turns out
that, even if read and write access may be overlapped, no harm can be done: the master
Receiver will eventually read the value written by the cloned Receiver because the master
cyclically checks the quit variable.

Finally, no action needs to be taken for synchronizing access to the operating system
socket. The exit method is the only method of Receiver that is invoked within the
MsgProcessor thread and that acts on the copied IO handle. This method closes the
socket, but this won‘t damage the master Receiver. In fact, while the MsgProcessor
thread is into the exit method (as a result of processing the shutdown request), the
Receiver thread will be idling. This is because the shutdown request is the last request
that can be received  the system administrator will have to make sure that all the other
subsystems that use the Log Service have already terminated execution before sending the
shutdown request to the Log Service.

3.3. IPC.

This section details the inter-process communication (IPC) in terms of communication
protocols and means. We need to specify how client-server communication takes place
within the Log Service.

We adopted a very easy communication protocol that we called OME Simple Log
Protocol (OME-SLP). Communication rules are pretty straightforward: client-side
software simply sends invocation requests to the server. No previous connection
establishment, sessions or server responses are needed. Clients may send requests at any
time and then carry on in their activity without having to collect a response from the
server. The server processes requests in the same order as they come in and needs not
issue responses.

44

Each request object is transformed into a machine-neutral data representation  which
both server and clients agree upon  before it is sent to the server. This external data
representation is ASCII encoded and line-based. Each line is terminated by the Internet
line terminator, the ASCII byte sequence (0x0D, 0x0A) = (015, 012) = (13, 10).

Logging requests, represented by the LogRecord class, are encoded in the following way:

TYPE: 1 ¬
CONTEXT: χ ¬
TIMESTAMP: τ GMT ¬
PRIORITY: π ¬
MESSAGE: µ ¬

where ¬ is the Internet line terminator sequence and χ, τ, π, µ encode the information
carried by LogRecord according to the following regex patterns:

χ PID<(.*)> TID<(.*)> FILE<(.*)> LINE<(.*)> PKG<(.*)> SUB<(.*)>
τ (.*)\/(.*)\/(.*) (.*):(.*):(.*)
π (.*)
µ (.*)

All of the above are self explanatory besides τ. It encodes a timestamp (relative to
GMT+0) in the format:

dd/mm/yyyy hh:mm:ss

Server control requests, encoded by the CtrlOp class, are encoded in the following way:

TYPE: 0 ¬
OPID: δ ¬

where ¬ is the Internet line terminator sequence and δ encodes the information carried by
CtrlOp according to the following regex pattern:

δ (.*)

45

As already mentioned in several occasions, the transport mechanisms relies on UDP. The
implementation is based on standard socket programming through the Perl socket
functions that wrap the corresponding C system calls. This a routine programming task
which doesn’t need to be detailed here. Just some quick notes though.

We explicitly set the size of the socket buffers both on the client and server side. This is
mainly to achieve better reliability, as detailed in the Failure Model, and is done through
the setsockopt Perl function, which is a wrapper to the corresponding C system call.

For every client-side socket, we should make sure that any pending message in the
outgoing UDP buffer is eventually sent before the socket is closed. The setsockopt C call,
allows you to do that. In fact, the SO_LINGER option flag tells the system to block the
process on a close() until all unsent messages queued on the socket are sent or until a
given timeout expires. If SO_LINGER is not specified, and close() is issued, the system
handles the call in a way that allows the process to continue as quickly as possible, which
means that the outgoing buffer may well be de-allocated before all pending messages are
transmitted. The C function takes a linger structure to specify the state of the option and
the linger interval. Unfortunately, the Perl documentation available for setsockopt(),
doesn't tell you how to pass the linger structure. So we'll leave this out for now...

The Forwarder transmits data by calling the Perl send function on an unconnected socket.
This eventually results in a call to the C sendto function, which will block until space is
available at the sending socket if the outgoing buffer is full  this is the behavior of
sendto() if the socket doesn’t have O_NONBLOCK set.

The Receiver uses the select function in order to perform asynchronous reads on the
server socket. This is also a Perl wrapper function to the corresponding C system call.
However a difference is that when using select from Perl, the helper macros FD_SET,
FD_CLR, FD_ZERO, and FD_ISSET aren't available. Instead, Perl provides an
assignable function vec which can be used to build the arguments to select. For example,
the Perl statement

vec($rin, fileno(SKT), 1) = 1 ;

sets the bit corresponding to the file handle SKT, and

if (vec($rin, fileno(SKT), 1))

checks the same bit.

46

4. Mapping to Code.

The classes in the object model are mapped onto concrete Perl classes according to the
most obvious paradigm: every class is a module and every module is contained in its own
file, which has exactly the same name as the class plus the “.pm” extension.

Namespaces are arranged as shown by the packages in the following UML diagram (a
package forms a namespace in UML):

+OME

+Log
[Package] -Impl
[Class] +ILogger
[Class] +LogGateway

-Impl
[Package] Client
[Package] Server
[Class] CtrlOp
[Class] LogRecord
[Class] Request
[Class] TextMessage

Client
[Class] Forwarder
[Class] LogProxy

Server
[Class] CtrlSkeleton
[Class] Logger
[Class] LogService
[Class] LogSkeleton
[Class] MsgProcessor
[Class] Receiver
[Class] ServerCtrl
[Class] Skeleton

+ ����	�������	��������
��
����%���
��

�	��� ������	� ������� ��	������
��

+ �����
	
���	������$	%�
����%���
��

�$	%%�
�����$	%& ���' ����+ ����

���������
������	�������� ��������� ��

�
	� �	�������

+ ���
����������
����
��	��������
���	
�����	�������%������	�
������������	
%���3������	
���%��	��������
����
���# �
����%��� �
�

�	�����
���	
��' ����������� ����� ����������������%�	
��
����

���
�����# �������� �
���	��������' �	������ �����%����� ������������

��� ��
����D�
� D��������������	�����������������
���	
�������%�������� ����� �������������	���%�
����%��

+ ����� �������
��%���	
' �
���	����	
�������� 	������ ��
����������
��

+ ���$	%!	�����������������
��� ��������

����
��������(' ���
,����' 	�����	%�������

 ��	�%��	������
����%��

+ ���� �%E ��������������
�
������ �����

+ �
���77E �������
�����������(' ���
,���

' 	���� ��	�%��	������
����%��

Fig 4-1: Logical namespaces. Notice the visibility symbols used to denote public (+) and private (-)
elements.

The physical structure of the directories containing the source files is organized
according to this structure. A package maps to a directory with the same name and the

47

nesting order is preserved. A class file is contained in the directory having the same name
as the enclosing package. This makes straightforward to enforce the above namespaces in
Perl.

As a final remark, notice the absence of MsgQueue and LogContext. The former is
replaced by the Thread::Queue class, as already stated in the process model. The latter is
implemented as a Perl hash.

48

5. Deployment.

In the current deployment configuration, both the client-side and the server-side of the
Log Service are deployed on the same processing node. Client and server make use of the
network loopback interface and the server port is 12345. Thus, we have distribution
across processes, but those processes have to be located in the same machine. This will be
changed if we need the clients to be located in different machines. However, for the time
being, this is not needed.

The server is started through the LogService.pl script, that has to be run passing start as a
parameter on the command line. To shut the server down, just run the same script, but
pass stop as a parameter. Client classes access the service by importing the
OME::Log::LogGateway module.

All the Log Service Perl modules are contained into the Log directory that has to be
placed under the main OME directory into the base directory of the Perl development tree.
The Perl script Makefile.pl into the base directory of the Perl development tree will write
an appropriate make file so that all the modules in the base directory can be installed into
the proper system locations and can be therefore available to the Perl interpreter.

The LogService.pl script also goes into the base directory of the Perl development tree,
along with the OME-LS.conf file. This latter file is the configuration file that is used to
fine-tune the logging behavior and has to be <in the same directory as the LogService.pl
script?>.

<Talk about config file and give examples to show how to fine-tune behavior>

The Log Service depends on the Log4perl library, that needs to be installed before
starting the service  this library is only required by the server side, so in the case of
distribution across different machines, the client machines won‘t need it. The target
platform is any platform that supports Perl. However, as we make use of ithreads (the
new Perl threading model), the Perl interpreter has to be 5.8 or greater and it must have
been compiled with ithreads support. This should be the default in most cases, however
run perl -V and make sure that the Platform section contains useithreads=define. Notice
that your Perl interpreter mustn’t be configured to support both the old threading model
(5.005 model, which is highly deprecated anyway) and ithreads. If you also see
use5005threads=define in the Platform section, then you should reconfigure the
interpreter in order to support only ithreads. Please refer to the ithreads man page for
further information.

49

6. Failure Model.

This section is devoted to seeking for ways in which failures can occur and to analyzing
such failures. The goal is to understand the effects and impact of failure in order to
determine a failure handling policy.

We grouped failures according to the layer where they arise: Transport, Distribution or
Application.

The Transport layer has to manage communication over UDP. In the general case of a
sender process connected to a receiver process across a network, the message
transmission can suffer from the following omission failures [HT94]:

� Send-omission failure: A message is lost between the sending process and the

outgoing operating system buffer, due to buffer overflow.
� Channel omission failure: A message is lost between the sending process and the

receiving process, because of a network transmission error (detected by a checksum)
or because of buffer overflow at any of the network nodes between the sender and the
receiver.

� Receive-omission failure: A message is lost between the receiving process and the
incoming operating system buffer, due to buffer overflow.

Moreover, messages can arrive to the receiver process out of sender order, generally
because of different paths followed by messages across the network nodes from the
sender to the receiver.

In our case, both the sending and receiving process are located in the same machine and
connected through the loopback interface. Thus, the operating system simply moves UDP
datagrams from the client socket to the server socket, in a single step. As a consequence,
we won‘t have to deal with channel omission failures. Also, datagrams cannot be
reordered and, as a log message is forced into an UDP datagram (TextMessage truncates
too long logs), log messages arrive to the server in the sender order.

Buffer space is not a problem on the client-side. In fact, the Forwarder will block until
space is available at the sending socket if the outgoing buffer is full  this has already
been discussed in the Process Model. This means no send-omission failures are possible.

Receive-omission failures are dealt with a large socket buffer on the server-side.
… (intensive testing proved this hypothesis correct on a large set of possible
configurations on different systems where the Log Service is likely to be run, please refer
to the test document.)

50

duplicated, or lost (the last is an idealization, since in actual systems the OS could drop
them for lack of space).
<
No data fragm => no ordering problems

A highly reliable comm cannel could be easily built…
A reliable delivery service may be constructed from one that suffers from omission
failures by the use of acknowledgments.
However, send/recv omission failures are very rare (show and discuss graph) and for this
reason it’s worth trading off improved performance (no wait for server reply) over msg
lost.
>

The Transport layer can suffer from failures related to the interaction with the UDP API.

<Say that communication channel is reliable (give CDK definition), however some minor
issues regarding access to sockets have to be considered. Those are described in the
following table.>

The following table summarizes the failures that can arise in the Transport layer, their
effects and impact as well as the relative failure handling policy.

Failure Context Effects / Impact Handling

1. Socket creation. Forwarder creation
by LogGateway.

Client objects can’t
access the service.
Impact depends on
client objects logging
policy.

Exception is thrown
and client objects
decide whether or not
to carry on without
logging support.

2. Socket creation. Forwarder creation
by ServerCtrl.

LogService script
can’t send shutdown
message.
Administrator might
have to kill server
process.

Exception is thrown
and LogService script
exits. Administrator
retries shutdown.

3. Socket creation. Receiver creation at
server start up.

No communication
end point available.
The Log Service can’t
be started.

Exception is thrown
and LogService script
exits. Administrator
retries start up.

51

Notice that for … we take no action. This is because the possibility that the socket file
descriptor fails to be released is very low. This means that the number of non-closed
sockets in any client process will be zero most of times or, at worst, always close to zero.
Thus, the resource wasting can be considered irrelevant.

Same consideration for message sending.

4. Socket binding. Receiver creation at
server start up.

Network address and
port can’t be bound to
socket. The Log
Service can’t be
started.

Exception is thrown
and LogService script
exits. Administrator
retries start up.

5. Message sending. Forwarder sends a
message on its socket
in client process.

Log message is not
received (and thus
recorded) by the
server.

No action.

6. Message sending. Forwarder sends
message on behalf of
ServerCtrl in process
running LogService
script.

LogService script
can’t send shutdown
message.
Administrator might
have to kill server
process.

No action.
Administrator retries
shutdown if server is
still on.

7. Message reception. Receiver invokes
recv() to collect
message from OS
buffer.

Message is lost. If
logging request, then
record is lost. If
shutdown request,
administrator might
have to kill server
process.

Error message is
output on server’s
STDERR and server
carries on with its
normal activity.

8. Socket release. Forwarder garbage
collection in client
process.

Client process will
still hold an unused
socket. Increased
system resources
consumption.

No action.

9. Socket release. Forwarder garbage
collection in process
running LogService
script.

Process running
LogService script will
exit shortly after
anyway (socket will
then be released).

No action.

10. Socket release. Receiver::exit() is
invoked.

Server process will
exit shortly after
anyway (socket will
then be released).

No action.

52

6. No exception, admin sees sever still on and retries shutdown
7. Shouldn’t happen b/c recv called after select.

General policy is that if likelihood is very low, then better keep design simple and manual
recovery instead.

Should necessity arise, we can provide a more robust failure handling.

< TO BE PUT into final considerations?

Some assumptions have been made in order to simplify design, decrease network
communication overhead and minimize the time that calls to local proxies need to
complete. As a result, the current implementation of the Log Service won’t deal with:

� Omission failures.
� Arbitrary failures.
� Data fragmentation.

Omission failures refer to cases when a process or communication channel fails to
perform actions that it is supposed to do [CDK01]. The Log Service transport layer
doesn’t check for server availability nor does it enforce reliable communication (UDP
doesn’t guarantee message delivery). As a result, the Log Service may fail to record a log
message for any of the following reasons:

1. The server side of

-- A log record will fit into UPD datagram (1Kb or 8Kb?), no fragmentation is needed.
Actually cut off on client side if msg > MAX_SIZE (=1 or 8Kb, depending on what found
out). Mention that msgs longer than 4kb = MAX_SIZE will be truncated. However, a log
string is usually in the range 50-500bytes.

-- Now explain that assuming LAN => lost msgs possibility ~0 (what if buffer
overflow?=>however could be dealt with fast dispatcher and no bounded queue), but still
electrical noise on network (if !checksum => datagram dropped), to eliminate this too =>
same machine. Notice that would be easy to make it run on LAN if added some ACK.

However design is such that future modifications due to accommodate… will only affect
the implementation of the transport layer  namely the Forwarder and Receiver classes.
Also notice that as those classes completely encapsulate the lower level communication
channel and end-points, it is relatively easy to replace the UDP transport with TCP.

53

Notice: the shutdown message has to be the last one sent to the server => last one on the
queue. How do we guarantee that? Log Service is shut after all other services (this
doesn‘t ensure shutdown last one, coz other messages might still be on their way to the
server). Messages that might come in between shutdown reception and socket release are
ignored. So admin must allow a reasonable amount of time after services shutdown
before issuing Log Service shutdown.

Recall what said in 3.2 (by the end): …This is because the shutdown request is the last
request that can be received  the system administrator will have to make sure that all
the other subsystems that use the Log Service have already terminated execution before
sending the shutdown request to the Log Service.

>

<Put the above into a separate section: FAILURE MODEL and refer to this section within
the above discussion>

54

References

[BBC+00] F. Bachmann, L. Bass, J. Carriere, P. Clements, D. Garlan, J. Ivers
 R. Nord, R. Little:
 Software Architecture Documentation in Practice: Documenting
 Architectural Layers
 Special Report CMU/SEI-2000-SR-004, available at
 http://www.sei.cmu.edu/publications/documents/00.reports/00sr004.html

[BRJ00] G. Booch, J. Rumbaugh, I. Jacobson:
 The Unified Modeling Language User Guide
 Addison-Wesley, 2000

[CDK01] G. Coulouris, J. Dollimore, T. Kindberg:
 Distributed Systems  Concepts and Design
 Addison-Wesley, 2001

[GoF95] E. Gamma, R. Helm, R. Johnson, J. Vlissides:
 Design Patterns  Elements of Reusable Object-Oriented Software
 Addison-Wesley, 1995

[HT94] V. Hadzilacos, S. Toueg:
 A Modular Approach to Fault-tolerant Broadcasts and Related Problems
 Technical report, Dept. of CS, University of Toronto, 1994

[Larm01] C. Larman:

55

 Protected Variations: The Importance of Being Closed
 Article on IEEE Software, May/June, 2001, available from
 http://www.craiglarman.com/

[L4J03] C. Gülcü, et al.:
 The Log4j Project
 Project page at http://jakarta.apache.org/log4j/

[L4P03] M. Schilli, K. Goess:
 The Log4perl Project  Log4j for Perl
 Project page at http://log4perl.sourceforge.net/

[OMG01] Object Management Group:
 Unified Modeling Language Specification v1.4
 Available from http://www.uml.org/

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal:
 Pattern-Oriented Software Architecture  A System of Patterns
 John Wiley & Sons, 1996

[POSA2] D. Schmidt, M. Stal, , H. Rohnert, F. Buschmann:
 Pattern-Oriented Software Architecture 
 Patterns for Concurrent and Networked Objects
 John Wiley & Sons, 2001

�

�

56

