

Open Microscopy Environment

Publisher-Subscriber
Software Design Document

June 2003

Andrea Falconi

Swedlow Lab  MSI/WTB Complex
University of Dundee

a.falconi@dundee.ac.uk

2

DISCLAIMER OF WARRANTY

This library is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the

Free Software Foundation, Inc.,
59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA�

3

1. Introduction ………………………………................................... 4
 1.1. Requirements ………………………………......................... 4
 1.2. Solution outline ……………………..................................... 4
 1.3. Document overview …..………………….............................. 5

2. Object Model ……………………………..................................... 6
 2.1. Structure …………………………..……………................ 6
 2.2. Dynamics …….…..………………...................................... 8

3. Usage ……………..……………………………........................... 11

References ……………………………….. 15

Contents

4

1. Introduction.

This document details the design of our implementation of the Publisher-Subscriber
design pattern [POSA1]. Relative test cases are described in a separate document.

Before diving into detailed design, let’s briefly outline the required functionality and
features. After that, we’ll also give an outline of the solution, which is fully described in
the next sections.

1.1. Requirements.

We need a general event-propagation mechanism so that:

� Objects can monitor the occurrence of selected events at a source object.
� The source object is not coupled to the identity and number of the monitoring objects,

which are only known at run-time.
� Explicit polling of the source object by monitoring objects is avoided.

1.2. Solution outline.

The solution of the above requirements is easily found in the Publisher-Subscriber design
pattern [POSA1], also known as Observer [GoF95]. In our implementation a base abstract
class, Publisher, provides the means for objects implementing the Subscriber interface 
the monitoring objects  to register interest in some given events. Those events are
specified by a concrete Publisher  which “publishes” the events. These published
events can be fired by the concrete Publisher itself or by another event source that is
connected to the concrete Publisher. When such an event is fired, the Publisher notifies
every Subscriber object that registered interest in that event type.

Subscriber objects are only notified of events that they selected among the published ones
and don’t have to poll the concrete Publisher to find out about such occurrences.
Moreover, the concrete Publisher doesn’t even get to know about Subscriber objects and
the abstract Publisher interacts with the monitoring objects only through the Subscriber
interface. The actual number of monitoring objects  which may dynamically change at
run-time as Subscriber objects register interest  is immaterial to the Publisher.

5

1.3. Document overview.

The following sections in this document will deal with:

� Object Model: The core of this document, depicting both the static and dynamic

model of the software in terms of objects.
� Usage: How to extend the Publisher-Subscriber built-in abstract classes in order to

get concrete Publisher and Subscriber objects to work together.

Readers that are not interested in design internals, should just read the Usage section,
which features a Perl API-doc perspective.

UML [OMG01] diagrams are extensively used throughout this document  with the
exception of the Usage section  to precisely depict design. Even though all presented
diagrams are commented out and many of them are quite self-explanatory, in order to
understand in full the semantics of the diagrams a certain familiarity with UML is
necessary. Those that are unfamiliar with UML may want to keep a reference at hand,
such as [BRJ00].

6

2. Object Model.

This section describes both the static and dynamic model of the software in terms of
objects. Classes and relationships are discussed in the static model. The dynamic model
addresses the collective behavior of those elements.

2.1. Structure.

We describe here the static structure, encompassing classes and relationships.
Responsibilities, roles and collaborators of each element are detailed.

The Publisher-Subscriber abstract classes  Publisher, Event and Subscriber  provide
the infrastructure to allow objects to monitor the occurrence of selected events at a source
object. A concrete Publisher specifies what events can be monitored by concrete
Subscriber objects.

The following UML class diagram presents the structure, which is then further detailed,
specifying the responsibilities, roles and collaborators of each element.

Publisher

+register(subscriber, evType1, ...) {leaf}
+remove(subscriber, evType1, ...) {leaf}
#fireEvent(event) {leaf}
#getPublishedEvents()

«interface»
Subscriber

eventFired(event)

Event
source

EventType
FQClassName

ConcretePublisher ConcreteSubscriber

ConcreteEvent_1 ConcreteEvent_2

MulticastTable1 *

dispatcher listener

1

1

className

class

Publishes

*

1..*

fires

is-notified-of

��������	
�����
	��
	�
�
�����	�

���
�����
�
������������
��������
�����������

�
�����	
���������

� ���������	�� !���������"�	
�	�!�#�"����������	
����$ 	���"	
�
���������

�"� !���������
�������

�	
�����
�	�������!�������	�	�
�	����	
����������� !���	�%	
����������& ��'��	�����
����(����)������'����

{ notified only of concrete
 events that registered for }

Fig 2-1: Static structure. The leaf constraint denotes non-polymorphic operations (no override).

7

The classes in the above diagram are detailed below.

Event

Abstract base class to generally represent an event. Its source field stores a reference to
the object that fired the concrete Event. That is usually a concrete Publisher, but could
also be another event source connected to the concrete Publisher.

Subscriber

This interface defines how monitoring objects can be notified of events at a source object.
A concrete Subscriber has to implement the eventFired callback method, which is
invoked to dispatch every occurrence of the events that the concrete Subscriber registered
for. This method has only one argument, a concrete Event.

Publisher

Abstract base class that frees concrete Publisher objects from having to maintain the
infrastructure for event notification. In fact, the Publisher already maintains a multicast
table, a set of couples:

 MCTable = { (className, listener) }

where className is the fully qualified name (Perl package) of a subclass of Event and
listener is a concrete Subscriber. When the fireEvent method is invoked, the Publisher
will dispatch the passed Event e to all the listeners in the event notification list of e:

 EvNotifList(e) = { (x, y) in MCTable | (fqn(e), y) }

where fqn(e) is the fully qualified class name of e.

A concrete Publisher has to implement the getPublishedEvents method to return a list of
fully qualified class names of the events that publishes. The Publisher uses this list to
build the multicast table. Concrete Subscriber objects can only register for events that are
in this list  through the register method. If a concrete Subscriber wants to be removed
from some event notification lists, then it has to call the remove method.

8

The following UML object diagram is a state snapshot after a concrete Publisher 
ConcretePublisher, which publishes ConcreteEvent_1 and ConcreteEvent_2  has been
created and two concrete Subscriber objects have registered for some of the published
events. Specifically, s1  an instance of ConcreteSubscriber  registered for both of the
above events, as s2  an instance of AnotherConcreteSubscriber  only registered for
ConcreteEvent_2.

: Publisher s1 : ConcreteSubscriber

s2 : AnotherConcreteSubscriber

: EventType

FQClassName = ConcreteEvent_1

: EventType

FQClassName = ConcreteEvent_2

: EventType

FQClassName = ConcreteEvent_2

: ConcretePublisher
«inheritance»

����������������	
��������	
��"��������� !���*+�
�"�

�������� !���*,-�
+���.	
����"����������������
���!���
��

�
,����'���.	
����"������������� !���*,�����
������

����	�

���
����	
�

������$
�

����������� !���*+��
+���

����������� !���*,��
+���

����������� !���*,��
,���

/
�
���
�����$ ������������ !���*,�	
��	��"�������
+�
�"

,�.������	�	�"��� ������������ !���*+�	
��	��"�����'�
+

.��
����	�	�"�

Fig 2-2: State snapshot. The inheritance stereotype means class inheritance.

2.2. Dynamics.

We now focus on the collective behavior of those elements described in the static model.
The Publisher-Subscriber classes have to collaborate in order to:

� Publish concrete events.
� Register/remove to/from event notification lists.
� Dispatch events.
� Monitor events.

9

Every concrete Publisher collaborates with its abstract parent to specify the published
events. The concrete Publisher implements the getPublishedEvents method to return a list
of fully qualified class names of the events that publishes. The Publisher uses this list to
build the multicast table at creation time.

Concrete Subscriber objects can only register for events that are in this list  through the
register method of Publisher. Moreover, a Subscriber may not register twice for the same
event  this would cause the Subscriber to be notified twice for every occurrence of that
event, so no matter how many times a Subscriber tries to register for an event, it will only
be added once to the corresponding event notification list.
If a concrete Subscriber wants to be removed from some event notification lists, then it
has to call the remove method of Publisher.

Event dispatching and monitoring are illustrated by the following interaction scenario:

e : ConcreteEvent_2
{transient}

s2
 : AnotherConcreteSubscriber

s1 : ConcreteSubscriber

: Publisher

: Subscriber

: Subscriber

: ConcretePublisher

«realization»

«realization»

2.2: eventFired(e)

2.1: eventFired(e)

«inheritance»

2: fireEvent(e)

«local»

«create»
1:

 !����"	
�
���	�.���"���	
����������'����

�����������	
�����0 ��
��	���
���
��1���
#��

����	��
����������"���	��$ �	�������

�!���
�
���"	
�
����"�

Fig 2-3: Dispatching and monitoring. Notice the use of stereotyped links. The realization stereotype is used
to mean the fact that concrete subscribers expose the methods defined by the Subscriber interface because
of the realization relationship. The inheritance stereotype means that Publisher is visible through class
inheritance. The local stereotype marks links that are method-scoped. Also notice the use of the transient
tagged value to denote objects that are in existence only for the duration of the interaction.

We assume that a concrete Publisher  ConcretePublisher, which publishes
ConcreteEvent_1 and ConcreteEvent_2  has been created and two concrete Subscriber
objects have registered for some of the published events. Specifically, s1  an instance
of ConcreteSubscriber  registered for both of the above events, as s2  an instance of
AnotherConcreteSubscriber  only registered for ConcreteEvent_2.

10

Thus, when the ConcretePublisher object fires ConcreteEvent_2, the Publisher
dispatches that event instance to all the listeners in the corresponding event notification
list, which, in this case, happens to contain s1 and s2. In contrast, if ConcreteEvent_1 was
fired, then only s1 would be notified.

Notice that the actual identity of the concrete Subscriber objects is immaterial to the
Publisher, as those objects are only known through the Subscriber interface. Their
number is irrelevant as well.

A final note. Some trivial issues (such as routine initialization code, constructors and
destructors, accessors and mutators or, in general, features that are required to write
working source code, but that can be trivially derived from this object model) haven‘t
been addressed by this object model explicitly. Those are routine programming tasks that
would add little to the semantics of this model  but would inflate this document quite a
bit, and for this reason are omitted.

11

3. Usage.

This section explains how to extend the Publisher-Subscriber built-in abstract classes 
Event, Publisher and Subscriber  in order to get concrete Publisher and Subscriber
objects to work together. We explain this through a general-purpose example in Perl API-
doc style.

So, say you have a given class that fires some interesting events that need to be
monitored. Then, all you have to do is:

� Represent events by sub-classing Event.
� Sub-class Publisher in order to “publish” those events.
� Have the monitoring classes implement the Subscriber interface.

At run-time, concrete Subscriber objects can register interest in some of the published
events  calling the register built-in method of Publisher. Whenever the concrete
subclass of Publisher fires one of the published events  calling the fireEvent built-in
method of Publisher  the abstract parent dispatches that event to all currently registered
Subscriber objects.

Now, let’s assume that the concrete Publisher fires two events, which we decided to
represent with the classes ConcreteEvent_1 and ConcreteEvent_2. Here’s how to code
ConcreteEvent_1:

package MyPkg::ConcreteEvent_1;

use OME::Util::PubSub::Event;
use base qw(OME::Util::PubSub::Event);

sub new {
 my $class = shift;
 my $self = OME::Util::PubSub::Event->new(); # inherit data

 # … add whatever needed …

 bless($self, $class); # bless as ConcreteEvent_1
 return $self;
}

… add whatever needed …

You could code up ConcreteEvent_2 pretty much the same as the above. Notice that
super-class data has to be explicitly inherited because Perl doesn’t do it for you. Concrete

12

Event classes inherit the setSource and getSource methods. You use the first one to set a
reference to the object that fired the event and the second one to retrieve that reference.

A concrete Publisher has to sub-class Publisher and implement the getPublishedEvents
protected class method to return a reference to a list of fully qualified class names (Perl
packages) of the events that publishes. Moreover, whenever the concrete Publisher
detects any published event, it has to create an instance of that event, set the event source
and invoke the fireEvent protected method (inherited from the abstract parent) passing the
event instance. So, in our case, we have:

package MyPkg::ConcretePublisher;

use MyPkg::ConcreteEvent_1;
use MyPkg::ConcreteEvent_2;
use OME::Util::PubSub::Publisher;
use base qw(OME::Util::PubSub::Publisher);

sub new {
 my $class = shift;
 my $self = OME::Util::PubSub::Publisher->new(); # inherit data

 # … add whatever needed …

 bless($self, $class); # bless as ConcretePublisher
 return $self;
}

sub getPublishedEvents {
 my $class = shift;
 my @ev = ('MyPkg::ConcreteEvent_1', 'MyPkg::ConcreteEvent_2');
 return \@ev;
}

sub someMethod_1 {
 my $self = shift;

 # we detected an occurrence of ConcreteEvent_1

 my $e = MyPkg::ConcreteEvent_1->new();
 $e->setSource($self); # source may well be some other object though
 $self->fireEvent($e);

 . . .
}

sub someMethod_2 {
 my $self = shift;
 my $e = MyPkg::ConcreteEvent_2->new();
 $e->setSource($self);
 $self->fireEvent($e);
 return;
}

13

Again, notice the explicit data inheritance. Also notice that the event source may well be
some other object connected to the concrete Publisher instance. In that case, the concrete
Publisher would set the event source to be that object (as opposite to the above example).

Now, the concrete Publisher will fire the published events whenever such occurrences are
detected. An event is lost if no concrete Subscriber registered interest in that event type.
So, let’s see how to code a concrete Subscriber and how to register interest in a published
event. A concrete Subscriber has to implement the Subscriber interface. This interface
has only one method, eventFired, which gets an Event as only argument. This method is a
callback that notifies the event to the monitoring object. Here’s an example:

package MyPkg::ConcreteSubscriber;

use base qw(OME::Util::PubSub::Subscriber);

 . . .

sub eventFired {
 my ($self, $event) = @_;
 # $event is a Event, you may need to cast…
 # OK, now do whatever needed
 . . .
}

At this point, you only need to register subscribers somewhere in your program, for
example:

my $p = MyPkg::ConcretePublisher->new();
my $s1 = MyPkg::ConcreteSubscriber->new();
my $s2 = MyPkg::AnotherConcreteSubscriber->new();

register $s1 for all published events
$p->register($s1);

register $s2 only for ConcreteEvent_2
$p->register($s2,'MyPkg::ConcreteEvent_2');

Now, when the ConcretePublisher object fires ConcreteEvent_2, the Publisher
dispatches that event instance to all the listeners (subscribers) in the corresponding event
notification list (the set of subscribers that registered interest in that event type), which, in
this case, happens to contain s1 and s2. In contrast, if ConcreteEvent_1 was fired, then
only s1 would be notified.

14

Naturally, subscribers can also dynamically be removed from any event notification list.
This is done through the remove method of Publisher. So, let’s conclude this section with
the details of the register and remove methods that concrete publishers inherit from their
abstract parent. These public methods are leaf methods, meaning that they’re not
polymorphic, that is, they may not be overridden in subclasses.

The register method:

$concretePublisher->register($subscriber [, $event1, $event2, ...]);

Adds a subscriber to the notification list of each specified event. If no event type is
specified, then the subscriber will be added to all event lists. The subscriber will be
notified of every occurrence of the specified event types - those have to be published
events. No matter how many times a subscriber tries to register for an event, it will only
be added once to the event notification list. This obviously means it will also be notified
once for every occurrence of that event.

Arguments:
$subscriber an instance of Subscriber.
$event1, $event2, ... fully qualified names (packages) of event classes.

Return:
True if $subscriber has been added to the notification list of all specified events, false
otherwise. False can be returned if one of the specified event types is not published or if
$subscriber has already registered for any of the specified event types.

The remove method:

$concretePublisher->remove($subscriber [, $event1, $event2, ...]);

Removes a subscriber from the notification list of each specified event. If no event type is
specified, then the subscriber will be removed from all event lists.

Arguments:
$subscriber an instance of Subscriber.
$event1, $event2, ... fully qualified names (packages) of event classes.

Return:
True if $subscriber has been removed from the notification list of all specified events,
false otherwise. False can be returned if one of the specified event types is not published
or if $subscriber wasn't registered for any of the specified event types.

15

References

[BRJ00] G. Booch, J. Rumbaugh, I. Jacobson:
 The Unified Modeling Language User Guide
 Addison-Wesley, 2000

[GoF95] E. Gamma, R. Helm, R. Johnson, J. Vlissides:
 Design Patterns  Elements of Reusable Object-Oriented Software
 Addison-Wesley, 1995

[OMG01] Object Management Group:
 Unified Modeling Language Specification v1.4
 Available from http://www.uml.org/

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal:
 Pattern-Oriented Software Architecture  A System of Patterns
 John Wiley & Sons, 1996

�

�

