Bio-Formats Documentation Release 5.0.1 **The Open Microscopy Environment** ## CONTENTS | I | About Bio-Formats | 2 | |----|---|----------------------| | 1 | Why Java? | 4 | | 2 | Bio-Formats metadata processing | 5 | | 3 | Help3.1Reporting a bug3.2Troubleshooting | 6
6
7 | | 4 | Bio-Formats versions 4.1 Version history | 9 | | II | User Information | 25 | | 5 | Using Bio-Formats with ImageJ and Fiji 5.1 ImageJ overview 5.2 Fiji overview 5.3 Bio-Formats features in ImageJ and Fiji 5.4 Installing Bio-Formats in ImageJ 5.5 Using Bio-Formats to load images into ImageJ 5.6 Managing memory in ImageJ/Fiji using Bio-Formats | 27
28
28
30 | | 6 | OMERO | 38 | | 7 | Image server applications7.1BISQUE7.2OME Server | | | 8 | Command line tools8.1Command line tools8.2Displaying images and metadata8.3Converting a file to different format8.4Validating XML in an OME-TIFF | 43
44 | | 9 | Libraries and scripting applications 9.1 FARSIGHT 9.2 i3dcore 9.3 ImgLib 9.4 ITK 9.5 Qu for MATLAB 9.6 Subimager | | | 10 | Numerical data processing applications | 49 | | | 10.1 IDL | | | 11 | Visua | The state of s | 51 | |----|-------|--|-----| | | 11.1 | Bitplane Imaris | | | | 11.2 | CellProfiler | | | | 11.3 | Comstat2 | | | | 11.4 | | | | | 11.5 | FocalPoint | | | | 11.6 | Graphic Converter | | | | | Icy | | | | | imago | | | | | Iqm | | | | | Macnification | | | | | MIPAV | | | | | 2 Vaa3D | | | | | 3 VisBio | | | | 11.14 | XuvTools | 55 | | Ш | I De | eveloper Documentation | 56 | | 12 | Using | g Bio-Formats | 57 | | | | An in-depth guide to using Bio-Formats | | | | | Generating test images | | | | 12.2 | Constituting test initiages | 57 | | 13 | Bio-F | Formats as a Java library | 61 | | | 13.1 | API documentation | 61 | | | 13.2 | Examples | 62 | | | | | | | 14 | | | 72 | | | | 8 | 72 | | | 14.2 | e e e e e e e e e e e e e e e e e e e | 72 | | | 14.3 | | 72 | | | 14.4 | 8 8 8 | 74 | | | | | 75 | | | 14.6 | Building C++ bindings in Linux | 76 | | 15 | Writi | ing new Bio-Formats file format readers | 77 | | | | Bio-Formats file format reader guide | 77 | | | ~ . | | | | 16 | | | 81 | | | 16.1 | 1 8 | 81 | | | 16.2 | | 82 | | | 16.3 | | 83 | | | 16.4 | Bio-Formats service and dependency infrastructure | | | | 16.5 | Code generation with xsd-fu | 88 | | IV | Fo | ormats | 92 | | 17 | Datas | set Structure Table | 94 | | 1/ | | | 97 | | | | | | | 18 | | | 98 | | | 18.1 | 3i SlideBook | | | | 18.2 | Andor Bio-Imaging Division (ABD) TIFF | | | | 18.3 | AIM | | | | 18.4 | Alicona 3D | | | | 18.5 | Amersham Biosciences Gel | | | | 18.6 | Amira Mesh | | | | 18.7 | Analyze 7.5 | | | | 18.8 | Animated PNG | | | | 18.9 | 1 | | | | 18.10 |) Aperio SVS TIFF | .09 | | 18.11 Applied Precision CellWorX | 110 | |--|-----| | 18.12 AVI (Audio Video Interleave) | 111 | | 18.13 Axon Raw Format | 112 | | 18.14 BD Pathway | 112 | | 18.15 Becker & Hickl SPCImage | | | 18.16 Bio-Rad Gel | | | 18.17 Bio-Rad PIC | | | 18.18 Bio-Rad SCN | | | 18.19 Bitplane Imaris | | | 18.20 Bruker MRI | | | 18.21 Burleigh | | | 18.22 Canon DNG | | | 18.23 Cellomics | | | 18.24 cellSens VSI | | | 18.25 CellVoyager | | | | | | 18.26 DeltaVision | | | 18.27 DICOM | | | 18.28 ECAT7 | | | 18.29 EPS (Encapsulated PostScript) | | | 18.30 Evotec/PerkinElmer Opera Flex | | | 18.31 FEI | | | 18.32 FEI TIFF | | | 18.33 FITS (Flexible Image Transport System) | 126 | | 18.34 Gatan Digital Micrograph | 127 | | 18.35 Gatan Digital Micrograph 2 | 127 | | 18.36 GIF (Graphics Interchange Format) | 128 | | 18.37 Hamamatsu Aquacosmos NAF | | | 18.38 Hamamatsu HIS | | | 18.39 Hamamatsu ndpi | | | 18.40 Hamamatsu VMS | | | 18.41 Hitachi S-4800 | | | 18.42 ICS (Image Cytometry Standard) | | | 18.43 Imacon | | | 18.44 ImagePro Sequence | | | | | | 18.45 ImagePro Workspace | | | 18.46 IMAGIC | | | 18.47 IMOD | | | 18.48 Improvision Openlab LIFF | | | 18.49 Improvision Openlab Raw | | | 18.50 Improvision TIFF | | | 18.51 Imspector OBF | | | 18.52 InCell 1000 | 140 | | 18.53 InCell 3000 | 141 | | 18.54 INR | 141 | | 18.55 Inveon | 142 | | 18.56 IPLab | 142 | | 18.57 IPLab-Mac | 143 | | 18.58 JEOL | | | 18.59 JPEG | | | 18.60 JPEG 2000 | | | 18.61 JPK | | | 18.62 JPX | | | 18.63 Khoros VIFF (Visualization Image File Format) Bitmap | | | 18.64 Kodak BIP | | | | | | 18.65 Lambert Instruments FLIM | | | 18.66 LaVision Imspector | | | 18.67 Leica LCS LEI | | | 18.68 Leica LAS AF LIF (Leica Image File Format) | | | 18.69 Leica SCN | | | 18.70 LEO | | | 18.71 Li-Cor L2D | 153 | | 18.72 LIM (Laboratory Imaging/Nikon) | 4 | |---|---| | 18.73 MetaMorph 7.5 TIFF | | | 18.74 MetaMorph Stack (STK) | | | 18.75 MIAS (Maia Scientific) | | | 18.76 Micro-Manager | | | 18.77 MINC MRI | | | 18.78 Minolta MRW | | | 18.79 MNG (Multiple-image Network Graphics) | | | | | | 18.80 Molecular Imaging | | | 18.81 MRC (Medical Research Council) | | | 18.82 NEF (Nikon Electronic Format) | | | 18.83 NIfTI | | | 18.84 Nikon Elements TIFF | | | 18.85 Nikon EZ-C1 TIFF | | | 18.86 Nikon NIS-Elements ND2 | | | 18.87 NRRD (Nearly Raw Raster Data) | | | 18.88 Olympus CellR/APL | 5 | | 18.89 Olympus FluoView FV1000 | 5 | | 18.90 Olympus FluoView TIFF | 7 | | 18.91 Olympus ScanR | 8 | | 18.92 Olympus SIS TIFF | | | 18.93 OME-TIFF | | | 18.94 OME-XML | | | 18.95 Oxford Instruments | | | 18.96 PCORAW | | | 18.97 PCX (PC Paintbrush) | | | 18.98 Perkin Elmer Densitometer | | | 18.99 PerkinElmer Operetta | | | 18.100PerkinElmer UltraView | | | | | | 18.101PGM (Portable Gray Map) | | | 18.102Adobe Photoshop PSD | | | 18.103Photoshop TIFF | | | 18.104PICT (Macintosh Picture) | | | 18.105PNG (Portable Network Graphics) | | | 18.106Prairie Technologies TIFF | | | 18.107Quesant | | | 18.108QuickTime Movie | | | 18.109RHK | | | 18.110SBIG | 2 | | 18.111 S eiko | 2 | | 18.11 2 SimplePCI & HCImage | 3 | | 18.113SimplePCI & HCImage TIFF | 4 | | 18.114SM Camera | 4 | | 18.11 <i>5</i> SPIDER | 5 | | 18.116Targa | 5 | | 18.117Text | | | 18.118TIFF (Tagged Image File Format) | | | 18.119TillPhotonics TillVision | | | 18.120Topometrix | | | 18.121Trestle | | | 18.122UBM | | | 18.123Unisoku | | | | | | 18.124Varian FDF | | | 18.125VG SAM | | | 18.126VisiTech XYS | | | 18.127Volocity | | | 18.128Volocity Library Clipping | | | 18.129WA-TOP | | | 18.130Windows Bitmap | | | 18.131Woolz | | | 18 1377eiss AxioVision TIFF | 5 | | | 18.13 | 33Zeiss AxioVision ZVI (Zeiss Vision Image) | | | |
 |
 |
 |
 |
. 198 | |-------|-------|---|--|--|--|------|------|------|------|-----------| | | 19.1 | mary of supported metadata fields Format readers | | | | | | | | | | Index | | | | | | | | | 424 | | | In | dex | | | | | | | | | 425 | The following documentation is split into four parts. *About Bio-Formats* explains the goal of the software, discusses how it processes metadata, and provides other useful information such as version history and how to report bugs. *User Information* focuses on how to use Bio-Formats as a plugin for ImageJ and Fiji, and also gives details of other software packages which can use Bio-Formats to read and write microscopy formats. *Developer Documentation* covers more indepth information on using Bio-Formats as a Java library and how to interface from non-Java codes. Finally, *Formats* is a guide to all the file formats currently supported by Bio-Formats. CONTENTS 1 # Part I About Bio-Formats Bio-Formats is a standalone Java library for reading and writing life sciences image file formats. It is capable of parsing both pixels and metadata for a large number of formats, as well as
writing to several formats. The primary goal of Bio-Formats is to facilitate the exchange of microscopy data between different software packages and organizations. It achieves this by converting proprietary microscopy data into an open standard called the OME data $model^1$, particularly into the OME- $TIFF^2$ file format. We believe the standardization of microscopy metadata to a common structure is of vital importance to the community. A brief article on the benefits of standardization³ from thinkstandards.net⁴ provides an excellent summary. See also LOCI's article on open source software in science⁵. ¹http://genomebiology.com/2005/6/5/R47 ²http://www.openmicroscopy.org/site/support/ome-model/ome-tiff ³http://www.thinkstandards.net/benefits.html ⁴http://www.thinkstandards.net/ ⁵http://loci.wisc.edu/software/oss **CHAPTER** **ONE** ## WHY JAVA? From a practical perspective, Bio-Formats is written in Java because it is cross-platform and widely used, with a vast array of libraries for handling common programming tasks. Java is one of the easiest languages from which to deploy cross-platform software. In contrast to C++, which has a large number of complex platform issues to consider, and Python, which leans heavily on C and C++ for many of its components (e.g., NumPy and SciPy), Java code is compiled one time into platform-independent byte code, which can be deployed as is to all supported platforms. And despite this enormous flexibility, Java manages to provide time performance nearly equal to C++, often better in the case of I/O operations (see further discussion on the comparative speed of Java on the LOCI site¹). There are also historical reasons associated with the fact that the project grew out of work on the VisAD Java component library². You can read more about the origins of Bio-Formats on the LOCI Bio-Formats homepage³. $^{^{1}}http://loci.wisc.edu/faq/isnt-java-too-slow\\$ ²http://visad.ssec.wisc.edu ³http://loci.wisc.edu/software/bio-formats ## **BIO-FORMATS METADATA PROCESSING** Pixels in microscopy are almost always very straightforward, stored on evenly spaced rectangular grids. It is the metadata (details about the acquisition, experiment, user, and other information) that can be complex. Using the OME data model enables applications to support a single metadata format, rather than the multitude of proprietary formats available today. Every file format has a distinct set of metadata, stored differently. Bio-Formats processes and converts each format's metadata structures into a standard form called the OME data model¹, according to the OME-XML² specification. We have defined an open exchange format called OME-TIFF³ that stores its metadata as OME-XML. Any software package that supports OME-TIFF is also compatible with the dozens of formats listed on the Bio-Formats page, because Bio-Formats can convert your files to OME-TIFF format. To facilitate support of OME-XML, we have created a library in Java⁴ for reading and writing OME-XML⁵ metadata. There are three types of metadata in Bio-Formats, which we call core metadata, original metadata, and OME metadata. - 1. **Core metadata** only includes things necessary to understand the basic structure of the pixels: image resolution; number of focal planes, time points, channels, and other dimensional axes; byte order; dimension order; color arrangement (RGB, indexed color or separate channels); and thumbnail resolution. - 2. **Original metadata** is information specific to a particular file format. These fields are key/value pairs in the original format, with no guarantee of cross-format naming consistency or compatibility. Nomenclature often differs between formats, as each vendor is free to use their own terminology. - 3. **OME metadata** is information from #1 and #2 converted by Bio-Formats into the OME data model. **Performing this conversion is the primary purpose of Bio-Formats.** Bio-Formats uses its ability to convert proprietary metadata into OME-XML as part of its integration with the OME and OMERO servers— essentially, they are able to populate their databases in a structured way because Bio-Formats sorts the metadata into the proper places. This conversion is nowhere near complete or bug free, but we are constantly working to improve it. We would greatly appreciate any and all input from users concerning missing or improperly converted metadata fields. ¹http://genomebiology.com/2005/6/5/R47 ²http://www.openmicroscopy.org/site/support/ome-model/ome-xml ³http://www.openmicroscopy.org/site/support/ome-model/ome-tiff ⁴http://www.openmicroscopy.org/site/support/ome-model/ome-xml/java-library.html ⁵http://www.openmicroscopy.org/site/support/ome-model/ome-xml ## **THREE** ## **HELP** For help, see the Bio-Formats¹, File Formats² and OME-XML and OME-TIFF³ sections of the OME FAQ⁴ for answers to some common questions. Please contact us⁵ if you have any questions or problems with Bio-Formats. There is a *guide for reporting bugs here*. For advanced users and developers, further information is available on the troubleshooting page. ## 3.1 Reporting a bug ## 3.1.1 Before filing a bug report If you think you have found a bug in Bio-Formats, the first thing to do is update your version of Bio-Formats to the latest trunk version. It is possible that the problem has already been addressed. For both Fiji and ImageJ users, select Update Bio-Formats Plugins under the Bio-Formats menu. Select Trunk Build. You can also download the newest version of Bio-Formats⁶. If you are not sure which version you need, select the Trunk Build under LOCI Tools complete bundle. ## 3.1.2 Sending a bug report If you can still reproduce the bug after updating to the newest version of Bio-Formats, please send us a bug report. To ensure that any inquiries you make are resolved promptly, please include the following information: - Exact error message. Copy and paste any error messages into the text of your email. Alternatively, attach a screenshot of the relevant windows. - Version information. Indicate which release of Bio-Formats, which operating system, and which version of Java you are using. - Non-working data. If possible, please send a non-working file. This helps us ensure that the problem is fixed for next release and will not reappear in later releases. We can provide you with an FTP server for uploading your file(s) if needed. Note that any data provided is used for internal testing only; we do not make images publicly available unless given explicit permission to do so. - Metadata and screenshots. If possible, include any additional information about your data. We are especially interested in the expected dimensions (width, height, number of channels, Z slices, and timepoints). Screenshots of the image being successfully opened in other software are also useful. - Format details. If you are requesting support for a new format, we ask that you send as much data as you have regarding this format (sample files, specifications, vendor/manufacturer information, etc.). This helps us to better support the format and ensures future versions of the format are also supported. $^{{}^{1}}http://www.openmicroscopy.org/site/support/faq/bio-formats\\$ ²http://www.openmicroscopy.org/site/support/faq/file-formats ³http://www.openmicroscopy.org/site/support/faq/ome-xml-and-ome-tiff ⁴http://www.openmicroscopy.org/site/support/faq ⁵http://www.openmicroscopy.org/site/community/mailing-lists ⁶http://downloads.openmicroscopy.org/latest/bio-formats5/ Once you have gathered all the relevant information, send it as an e-mail to the OME Users mailing list⁷. Please be patient - it may be a few days until you receive a response, but we reply to every email inquiry we receive. ## 3.2 Troubleshooting This page is aimed at anyone who is responsible for supporting Bio-Formats, but may also be useful for advanced users looking to troubleshoot their own problems. Eventually, it might be best to move some of this to the FAQ or other documentation. ## 3.2.1 General tips - Make sure to read the FAQ⁸, particularly the "File Formats", "Bio-Formats", and "OME-XML & OME-TIFF" sections - If this page doesn't help, it is worth quickly checking the following places where questions are commonly asked and/or bugs are reported: - OME Trac⁹ - Fiji Bugzilla (for ImageJ/Fiji issues)¹⁰ - ome-devel mailing list¹¹ (searchable using google with 'site:lists.openmicroscopy.org.uk') - ome-users mailing list¹² (searchable using google with 'site:lists.openmicroscopy.org.uk') - ImageJ mailing list (for ImageJ/Fiji issues)¹³ - Make sure to ask for a _specific_ error message or description of the unexpected behavior, if one is not provided ("it does not work" is obviously not adequate). - "My (12, 14, 16)-bit images look all black when I open them" is a common issue. In ImageJ/Fiji, this is almost always fixable by checking the "Autoscale" option; with the command line tools, the "-autoscale -fast" options should work. The problem is typically that the pixel values are very, very small relative to the maximum possible pixel value (4095, 16383, and 65535, respectively), so when displayed the pixels are effectively black. - If the file is very, very small (4096 bytes) and any exception is generated when reading the file, then make sure it is not a Mac OS X resource fork¹⁴. The 'file' command should tell you: ``` $ file /path/to/suspicious-file suspicious-file: AppleDouble encoded Macintosh file ``` ## 3.2.2 Tips for ImageJ/Fiji - The Bio-Formats version being used can be found by selecting "Help > About Plugins > Bio-Formats Plugins". - "How do I make the options window go away?" is a common question. There are a few ways to do this: - To disable the options window only for files in a specific format, select "Plugins > Bio-Formats > Bio-Formats Plugins Configuration", then pick the format from the list and make sure the "Windowless" option is checked. - To avoid the options window entirely, use the "Plugins > Bio-Formats >
Bio-Formats Windowless Importer" menu item to import files. - Open files by calling the Bio-Formats importer plugin from a macro. 3.2. Troubleshooting 7 ⁷http://lists.openmicroscopy.org.uk/mailman/listinfo/ome-users/ ⁸http://www.openmicroscopy.org/site/support/faq ⁹http://trac.openmicroscopy.org.uk/ome ¹⁰http://fiji.sc/cgi-bin/bugzilla/index.cgi ¹¹ http://lists.openmicroscopy.org.uk/pipermail/ome-devel ¹²http://lists.openmicroscopy.org.uk/pipermail/ome-users ¹³http://imagej.1557.n6.nabble.com/ ¹⁴http://en.wikipedia.org/wiki/Resource_fork#The_Macintosh_file_system • A not uncommon cause of problems is that the user has multiple copies of loci_tools.jar in their ImageJ plugins folder, or has a copy of loci_tools.jar and a copy of formats-gpl.jar. It is often difficult to determine for sure that this is the problem - the only error message that pretty much guarantees it is a "NoSuchMethodException". If the user maintains that they downloaded the latest version and whatever error message/odd behavior they are seeing looks like it was fixed already, then it is worth suggesting that they remove all copies of loci_tools.jar and download a fresh version. ## 3.2.3 Tips for command line tools - When run with no arguments, all of the command line tools will print information on usage. - When run with the '-version' argument, 'showinf' and 'bfconvert' will display the version of Bio-Formats that is being used (version number, build date, and Git commit reference). ## 3.2.4 Tips by format #### 3I/Olympus Slidebook (.sld) • Slidebook support is generally not great, despite a lot of effort. This is the one format for which it is recommended to just export to OME-TIFF from the acquisition software and work with the exported files. Happily, there is free software from 3I which can do the export post-acquisition: https://www.slidebook.com/reader.php #### **DICOM** • Health care or institutional regulations often prevent users from sending problematic files, so often we have to solve the problem blind. In these cases, it is important to get the exact error message, and inform the user that fixing the problem may be an iterative process (i.e. they might have to try a couple of trunk builds before we can finally fix the problem). #### ZVI • If the ZVI reader plugin is installed in ImageJ/Fiji, then it will be used instead of Bio-Formats to read ZVI files. To check if this is the cause of the problem, make sure that the file opens correctly using "Plugins > Bio-Formats > Bio-Formats Importer"; if that works, then just remove ZVI_Reader.class from the plugins folder. 3.2. Troubleshooting 8 ## **BIO-FORMATS VERSIONS** Bio-Formats is updated whenever a new version of OMERO¹ is released. The version number is three numbers separated by dots; e.g., 4.0.0. See the *version history* for a list of major changes in each release. # 4.1 Version history ## 4.1.1 5.0.1 (2014 Apr 7) - · Added image pyramid support for CellSens .vsi data - Several bug fixes, including: - Woolz import into OMERO - Cellomics file name parsing (thanks to Lee Kamentsky) - Olympus FV1000 timestamp support (thanks to Lewis Kraft and Patrick Riley) - (A)PNG large image support - Zeiss .czi dimension detection for SPIM datasets - Performance improvements for Becker & Hickl .sdt file reading (thanks to Ian Munro) - Performance improvements to directory listing over NFS - Update slf4j and logback versions (to 1.7.6 and 1.1.1 respectively) - Update jgoodies-forms version (to 1.7.2) ## 4.1.2 5.0.0 (2014 Feb 25) - New bundled 'bioformats package.jar' for ImageJ - Now uses logback as the slf4j binding by default - Updated component names, .jar file names, and Maven artifact names - Fixed support for Becker & Hickl .sdt files with multiple blocks - Fixed tiling support for TIFF, Hamamatsu .ndpi, JPEG, and Zeiss .czi files - Improved continuous integration testing - Updated command line documentation #### 4.1.3 5.0.0-RC1 (2013 Dec 19) - Updated Maven build system and launched new Artifactory repository (http://artifacts.openmicroscopy.org) - Added support for: - Bio-Rad SCN ¹http://www.openmicroscopy.org/site/support/omero5/ - Yokogawa CellVoyager (thanks to Jean-Yves Tinevez) - LaVision Imspector - PCORAW - Woolz (thanks to Bill Hill) - Added support for populating and parsing ModuloAlong{Z, C, T} annotations for FLIM/SPIM data - Updated netCDF and slf4j version requirements netCDF 4.3.19 and slf4j 1.7.2 are now required - Updated and improved MATLAB users and developers documentation - Many bug fixes including for Nikon ND2, Zeiss CZI, and CellWorX formats ## 4.1.4 5.0.0-beta1 (2013 June 20) - Updated to 2013-06 OME-XML schema² - Improved the performance in tiled formats - Added caching of Reader metadata using http://code.google.com/p/kryo/ - Added support for: - Aperio AFI - Inveon - MPI-BPC Imspector - Many bug fixes, including: - Add ZEN 2012/Lightsheet support to Zeiss CZI - Improved testing of autogenerated code - Moved OME-XML specification into Bio-Formats repository #### 4.1.5 4.4.10 (2014 Jan 15) - Bug fixes including CellWorx, Metamorph and Zeiss CZI - Updates to MATLAB documentation ## 4.1.6 4.4.9 (2013 Oct 16) - Many bug fixes including improvements to support for ND2 format - Java 1.6 is now the minimum supported version; Java 1.5 is no longer supported ## 4.1.7 4.4.8 (2013 May 2) • No changes - release to keep version numbers in sync with OMERO #### 4.1.8 4.4.7 (2013 April 25) - Many bug fixes to improve support for more than 20 formats - Improved export to multi-file datasets - Now uses slf4j for logging rather than using log4j directly, enabling other logging implementations to be used, for example when Bio-Formats is used as a component in other software using a different logging system. ²http://www.openmicroscopy.org/site/support/ome-model/ ## 4.1.9 4.4.6 (2013 February 11) - Many bug fixes - Further documentation improvements ## 4.1.10 4.4.5 (2012 November 13) - Restructured and improved documentation - Many bug fixes, including: - File grouping in many multi-file formats - Maven build fixes - ITK plugin fixes ## 4.1.11 4.4.4 (2012 September 24) · Many bug fixes ## 4.1.12 4.4.2 (2012 August 22) • Security fix for OMERO plugins for ImageJ ## 4.1.13 4.4.1 (2012 July 20) - Fix a bug that prevented BigTIFF files from being read - Fix a bug that prevented PerkinElmer .flex files from importing into OMERO #### 4.1.14 4.4.0 (2012 July 13) - Many, many bug fixes - Added support for: - .nd2 files from Nikon Elements version 4 - PerkinElmer Operetta data - MJPEG-compressed AVIs - MicroManager datasets with multiple positions - Zeiss CZI data - IMOD data ## 4.1.15 4.3.3 (2011 October 18) - Many bug fixes, including: - Speed improvements to HCImage/SimplePCI and Zeiss ZVI files - Reduce memory required by Leica LIF reader - More accurately populate metadata for Prairie TIFF datasets - Various fixes to improve the security of the OMERO plugin for ImageJ - Better dimension detection for Bruker MRI datasets - Better thumbnail generation for histology (SVS, NDPI) datasets - Fix stage position parsing for Metamorph TIFF datasets - Correctly populate the channel name for PerkinElmer Flex files ## 4.1.16 4.3.2 (2011 September 15) - Many bug fixes, including: - Better support for Volocity datasets that contain compressed data - More accurate parsing of ICS metadata - More accurate parsing of cellSens .vsi files - Added support for a few new formats - inr - Canon DNG - Hitachi S-4800 - Kodak .bip - JPX - Volocity Library Clipping (.acff) - Bruker MRI - Updated Zeiss LSM reader to parse application tags - Various performance improvements, particularly for reading/writing TIFFs - Updated OMERO ImageJ plugin to work with OMERO 4.3.x #### 4.1.17 4.3.1 (2011 July 8) - Several bug fixes, including: - Fixes for multi-position Deltavision files - Fixes for MicroManager 1.4 data - Fixes for 12 and 14-bit JPEG-2000 data - Various fixes for reading Volocity .mvd2 datasets - Added various options to the 'showinf' and 'bfconvert' command line tools - Added better tests for OME-XML backwards compatibility - Added the ability to roughly stitch tiles in a multi-position dataset #### 4.1.18 4.3.0 (2011 June 14) - Many bug fixes, including: - Many fixes for reading and writing sub-images - Fixes for stage position parsing in the Zeiss formats - File type detection fixes - Updated JPEG-2000 reading and writing support to be more flexible - Added support for 9 new formats: - InCell 3000 - Trestle - Hamamatsu .ndpi - Hamamatsu VMS - SPIDER - Volocity .mvd2 - Olympus SIS TIFF - IMAGIC - cellSens VSI - Updated to 2011-06 OME-XML schema - Minor speed improvements in many formats - Switched version control system from SVN to Git - Moved all Trac tickets into the OME Trac: http://trac.openmicroscopy.org.uk - · Improvements to testing frameworks - Added Maven build system as an alternative to the existing Ant build system - Added pre-compiled C++ bindings to the download page ## 4.1.19 4.2.2 (2010 December 6) - Several bug fixes, notably: - Metadata parsing fixes for Zeiss LSM, Metamorph STK, and FV1000 - Prevented leaked file handles when exporting to TIFF/OME-TIFF - Fixed how BufferedImages are converted to byte arrays - Proper support for OME-XML XML annotations - Added support for SCANCO Medical .aim files - Minor improvements to ImageJ plugins - Added support for reading JPEG-compressed AVI files #### 4.1.20 4.2.1 (2010 November 12) - Many, many bug fixes - Added support for 7 new formats: - CellWorX .pnl - ECAT7 - Varian FDF - Perkin Elmer Densitometer - FEI TIFF - Compix/SimplePCI TIFF - Nikon Elements TIFF - Updated Zeiss LSM metadata parsing, with generous assistance from Zeiss, FMI, and MPI-CBG - Lots of work to ensure that converted OME-XML validates - Improved file stitching functionality; non-numerical file patterns and limited regular expression-style patterns are now supported ## 4.1.21 4.2.0 (2010 July 9) - Fixed many, many bugs in all aspects of Bio-Formats - Reworked ImageJ plugins to
be more user- and developer-friendly - · Added many new unit tests - Added support for approximately 25 new file formats, primarily in the SPM domain - Rewrote underlying I/O infrastructure to be thread-safe and based on Java NIO - Rewrote OME-XML parsing/generation layer; OME-XML 2010-06 is now supported - Improved support for exporting large images - Improved support for exporting to multiple files - Updated logging infrastructure to use slf4j and log4j #### 4.1.22 4.1.1 (2009 December 3) • Fixed many bugs in popular file format readers #### 4.1 (2009 October 21): - Fixed many bugs in most file format readers - Significantly improved confocal and HCS metadata parsing - Improved C++ bindings - Eliminated references to Java AWT classes in core Bio-Formats packages - Added support for reading Flex datasets from multiple servers - Improved OME-XML generation; generated OME-XML is now valid - · Added support for Olympus ScanR data - · Added OSGi information to JARs - · Added support for Amira Mesh files - Added support for LI-FLIM files - Added more informative exceptions - Added support for various types of ICS lifetime data - Added support for Nikon EZ-C1 TIFFs - · Added support for Maia Scientific MIAS data ## 4.1.23 4.0.1 (2009 June 1) - · Lots of bug fixes in most format readers and writers - Added support for Analyze 7.1 files - Added support for Nifti files - Added support for Cellomics .c01 files - Refactored ImageJ plugins - Bio-Formats, the common package, and the ImageJ plugins now require Java 1.5 - Eliminated native library dependency for reading lossless JPEGs - Changed license from GPL v3 or later to GPL v2 or later - Updated Olympus FV1000, Zeiss LSM, Zeiss ZVI and Nikon ND2 readers to parse ROI data - · Added option to ImageJ plugin for displaying ROIs parsed from the chosen dataset • Fixed BufferedImage construction for signed data and unsigned int data ## 4.1.24 4.0.0 (2009 March 3) - Improved OME data model population for Olympus FV1000, Nikon ND2, Metamorph STK, Leica LEI, Leica LIF, InCell 1000 and MicroManager - Added TestNG tests for format writers - Added option to ImageJ plugin to specify custom colors when customizing channels - Added ability to upgrade the ImageJ plugin from within ImageJ - Fixed bugs in Nikon ND2, Leica LIF, BioRad PIC, TIFF, PSD, and OME-TIFF - Fixed bugs in Data Browser and Exporter plugins - Added support for Axon Raw Format (ARF), courtesy of Johannes Schindelin - Added preliminary support for IPLab-Mac file format #### 4.1.25 2008 December 29 - Improved metadata support for Deltavision, Zeiss LSM, MicroManager, and Leica LEI - Restructured code base/build system to be component-driven - Added support for JPEG and JPEG-2000 codecs within TIFF, OME-TIFF and OME-XML - Added support for 16-bit compressed Flex files - · Added support for writing JPEG-2000 files - · Added support for Minolta MRW format - Added support for the 2008-09 release of OME-XML - · Removed dependency on JMagick - Re-added caching support to data browser plugin - Updated loci.formats.Codec API to be more user-friendly - Expanded loci.formats.MetadataStore API to better represent the OME-XML model - Improved support for Nikon NEF - Improved support for TillVision files - Improved ImageJ import options dialog - Fixed bugs with Zeiss LSM files larger than 4 GB - Fixed minor bugs in most readers - Fixed bugs with exporting from an Image5D window - Fixed several problems with virtual stacks in ImageJ ## 4.1.26 2008 August 30 - Fixed bugs in many file format readers - Fixed several bugs with swapping dimensions - Added support for Olympus CellR/APL files - Added support for MINC MRI files - Added support for Aperio SVS files compressed with JPEG 2000 - Added support for writing OME-XML files - · Added support for writing APNG files - · Added faster LZW codec - · Added drag and drop support to ImageJ shortcut window - Re-integrated caching into the data browser plugin #### 4.1.27 2008 July 1 - Fixed bugs in most file format readers - Fixed bugs in OME and OMERO download functionality - Fixed bugs in OME server-side import - · Improved metadata storage/retrieval when uploading to and downloading from the OME Perl server - Improved Bio-Formats ImageJ macro extensions - Major updates to MetadataStore API - Updated OME-XML generation to use 2008-02 schema by default - · Addressed time and memory performance issues in many readers - Changed license from LGPL to GPL - Added support for the FEI file format - Added support for uncompressed Hamamatsu Aquacosmos NAF files - Added support for Animated PNG files - Added several new options to Bio-Formats ImageJ plugin - · Added support for writing ICS files ## 4.1.28 2008 April 17 - Fixed bugs in Slidebook, ND2, FV1000 OIB/OIF, Perkin Elmer, TIFF, Prairie, Openlab, Zeiss LSM, MNG, Molecular Dynamics GEL, and OME-TIFF - Fixed bugs in OME and OMERO download functionality - Fixed bugs in OME server-side import - Fixed bugs in Data Browser - Added support for downloading from OMERO 2.3 servers - Added configuration plugin - Updates to MetadataStore API - Updates to OME-XML generation 2007-06 schema used by default - Added support for Li-Cor L2D format - Major updates to TestNG testing framework - Added support for writing multi-series OME-TIFF files - Added support for writing BigTIFF files #### 4.1.29 2008 Feb 12 - Fixed bugs in QuickTime, SimplePCI and DICOM - Fixed a bug in channel splitting logic #### 4.1.30 2008 Feb 8 - · Many critical bugfixes in format readers and ImageJ plugins - Newly reborn Data Browser for 5D image visualization - some combinations of import options do not work yet #### 4.1.31 2008 Feb 1 - Fixed bugs in Zeiss LSM, Metamorph STK, FV1000 OIB/OIF, Leica LEI, TIFF, Zeiss ZVI, ICS, Prairie, Openlab LIFF, Gatan, DICOM, QuickTime - Fixed bug in OME-TIFF writer - Major changes to MetadataStore API - Added support for JPEG-compressed TIFF files - · Added basic support for Aperio SVS files - JPEG2000 compression is still not supported - Improved "crop on import" functionality - Improvements to bfconvert and bfview - Improved OME-XML population for several formats - Added support for JPEG2000-compressed DICOM files - EXIF data is now parsed from TIFF files #### 4.1.32 2007 Dec 28 - Fixed bugs in Leica LEI, Leica TCS, SDT, Leica LIF, Visitech, DICOM, Imaris 5.5 (HDF), and Slidebook readers - Better parsing of comments in TIFF files exported from ImageJ - Fixed problem with exporting 48-bit RGB data - · Added logic to read multi-series datasets spread across multiple files - Improved channel merging in ImageJ requires ImageJ 1.391 - Support for hyperstacks and virtual stacks in ImageJ requires ImageJ 1.391 - Added API for reading directly from a byte array or InputStream - Metadata key/value pairs are now stored in ImageJ's "Info" property - Improved OMERO download plugin it is now much faster - Added "open all series" option to ImageJ importer - ND2 reader based on Nikon's SDK now uses our own native bindings - Fixed metadata saving bug in ImageJ - Added sub-channel labels to ImageJ windows - Major updates to 4D Data Browser - · Minor updates to automated testing suite #### 4.1.33 2007 Dec 1 - Updated OME plugin for ImageJ to support downloading from OMERO - Fixed bug with floating point TIFFs - Fixed bugs in Visitech, Zeiss LSM, Imaris 5.5 (HDF) - Added alternate ND2 reader that uses Nikon's native libraries - · Fixed calibration and series name settings in importer - Added basic support for InCell 1000 datasets #### 4.1.34 2007 Nov 21 - Fixed bugs in ND2, Leica LIF, DICOM, Zeiss ZVI, Zeiss LSM, FV1000 OIB, FV1000 OIF, BMP, Evotec Flex, BioRad PIC, Slidebook, TIFF - Added new ImageJ plugins to slice stacks and do "smart" RGB merging - · Added "windowless" importer plugin - uses import parameters from IJ_Prefs.txt, without prompting the user - Improved stack slicing and colorizing logic in importer plugin - · Added support for DICOM files compressed with lossless JPEG - requires native libraries - Fixed bugs with signed pixel data - Added support for Imaris 5.5 (HDF) files - Added 4 channel merging to importer plugin - · Added API methods for reading subimages - Major updates to the 4D Data Browser #### 4.1.35 2007 Oct 17 - Critical OME-TIFF bugfixes - Fixed bugs in Leica LIF, Zeiss ZVI, TIFF, DICOM, and AVI readers - Added support for JPEG-compressed ZVI images - Added support for BigTIFF - · Added importer plugin option to open each plane in a new window - Added MS Video 1 codec for AVI #### 4.1.36 2007 Oct 1 - · Added support for compressed DICOM images - · Added support for uncompressed LIM files - Added support for Adobe Photoshop PSD files - Fixed bugs in DICOM, OME-TIFF, Leica LIF, Zeiss ZVI, Visitech, PerkinElmer and Metamorph - · Improved indexed color support - · Addressed several efficiency issues - Fixed how multiple series are handled in 4D data browser - Added option to reorder stacks in importer plugin - Added option to turn off autoscaling in importer plugin - · Additional metadata convenience methods ## 4.1.37 2007 Sept 11 - Major improvements to ND2 support; lossless compression now supported - Support for indexed color images - · Added support for Simple-PCI .cxd files - Command-line OME-XML validation - Bugfixes in most readers, especially Zeiss ZVI, Metamorph, PerkinElmer and Leica LEI - Initial version of Bio-Formats macro extensions for ImageJ ## 4.1.38 2007 Aug 1 - Added support for latest version of Leica LIF - Fixed several issues with Leica LIF, Zeiss ZVI - Better metadata mapping for Zeiss ZVI - · Added OME-TIFF writer - Added MetadataRetrieve API for retrieving data from a MetadataStore - · Miscellaneous bugfixes ## 4.1.39 2007 July 16 - Fixed several issues with ImageJ plugins - Better support for Improvision and Leica TCS TIFF files - Minor improvements to Leica LIF, ICS, QuickTime and Zeiss ZVI readers - · Added searchable metadata window to ImageJ importer #### 4.1.40 2007 July 2 - Fixed issues with ND2, Openlab LIFF
and Slidebook - Added support for Visitech XYS - Added composite stack support to ImageJ importer #### 4.1.41 2007 June 18 - Fixed issues with ICS, ND2, MicroManager, Leica LEI, and FV1000 OIF - Added support for large (> 2 GB) ND2 files - Added support for new version of ND2 - Minor enhancements to ImageJ importer - · Implemented more flexible logging - Updated automated testing framework to use TestNG - Added package for caching images produced by Bio-Formats #### 4.1.42 2007 June 6 - Fixed OME upload/download bugs - Fixed issues with ND2, EPS, Leica LIF, and OIF - Added support for Khoros XV - Minor improvements to the importer ## 4.1.43 2007 May 24 - Better Slidebook support - · Added support for Quicktime RPZA - Better Leica LIF metadata parsing - Added support for BioRad PIC companion files - Added support for bzip2-compressed files - Improved ImageJ plugins - · Native support for FITS and PGM ## 4.1.44 2007 May 2 - Added support for NRRD - Added support for Evotec Flex (requires LuraWave Java SDK with license code) - Added support for gzip-compressed files - · Added support for compressed QuickTime headers - Fixed QuickTime Motion JPEG-B support - Fixed some memory issues (repeated small array allocations) - Fixed issues reading large (> 2 GB) files - Removed "ignore color table" logic, and replaced with Leica-specific solution - Added status event reporting to readers - Added API to toggle metadata collection - Support for multiple dimensions rasterized into channels - Deprecated reader and writer methods that accept the 'id' parameter - Deprecated IFormatWriter.save in favor of saveImage and saveBytes - Moved dimension swapping and min/max calculation logic to delegates - Separate GUI logic into isolated loci.formats.gui package - Miscellaneous bugfixes and tweaks in most readers and writers - Many other bugfixes and improvements #### 4.1.45 2007 Mar 16 - Fixed calibration bugs in importer plugin - Enhanced metadata support for additional formats - Fixed LSM bug #### 4.1.46 2007 Mar 7 - Added support for Micro-Manager file format - Fixed several bugs Leica LIF, Leica LEI, ICS, ND2, and others - Enhanced metadata support for several formats - Load series preview thumbnails in the background - Better implementation of openBytes(String, int, byte[]) for most readers - Expanded unit testing framework #### 4.1.47 2007 Feb 28 - Better series preview thumbnails - Fixed bugs with multi-channel Leica LEI - Fixed bugs with "ignore color tables" option in ImageJ plugin #### 4.1.48 2007 Feb 26 - Many bugfixes: Leica LEI, ICS, FV1000 OIB, OME-XML and others - Better metadata parsing for BioRad PIC files - · Enhanced API for calculating channel minimum and maximum values - Expanded MetadataStore API to include more semantic types - Added thumbnails to series chooser in ImageJ plugin - Fixed plugins that upload and download from an OME server #### 4.1.49 2007 Feb 7 - Added plugin for downloading images from OME server - Improved HTTP import functionality - Added metadata filtering unreadable metadata is no longer shown - Better metadata table for multi-series datasets - Added support for calibration information in Gatan DM3 - Eliminated need to install JAI Image I/O Tools to read ND2 files - Fixed ZVI bugs: metadata truncation, and other problems - Fixed bugs in Leica LIF: incorrect calibration, first series labeling - Fixed memory bug in Zeiss LSM - Many bugfixes: PerkinElmer, Deltavision, Leica LEI, LSM, ND2, and others - IFormatReader.close(boolean) method to close files temporarily - Replaced Compression utility class with extensible Compressor interface - Improved testing framework to use .bioformats configuration files #### 4.1.50 2007 Jan 5 - Added support for Prairie TIFF - Fixed bugs in Zeiss LSM, OIB, OIF, and ND2 - Improved API for writing files - · Added feature to read files over HTTP - · Fixed bugs in automated testing framework - Miscellaneous bugfixes #### 4.1.51 2006 Dec 22 - Expanded ImageJ plugin to optionally use Image5D or View5D - Improved support for ND2 and JPEG-2000 files - · Added automated testing framework - Fixed bugs in Zeiss ZVI reader - · Miscellaneous bugfixes #### 4.1.52 2006 Nov 30 - Added support for ND2/JPEG-2000 - Added support for MRC - Added support for MNG - Improved support for floating-point images - Fixed problem with 2-channel Leica LIF data - · Minor tweaks and bugfixes in many readers - Improved file stitching logic - Allow ImageJ plugin to be called from a macro #### 4.1.53 2006 Nov 2 - Bugfixes and improvements for Leica LIF, Zeiss LSM, OIF and OIB - · Colorize channels when they are split into separate windows - Fixed a bug with 4-channel datasets #### 4.1.54 2006 Oct 31 - Added support for Imaris 5 files - Added support for RGB ICS images #### 4.1.55 2006 Oct 30 - · Added support for tiled TIFFs - Fixed bugs in ICS reader - Fixed importer plugin deadlock on some systems #### 4.1.56 2006 Oct 27 - · Multi-series support for Slidebook - Added support for Alicona AL3D - Fixed plane ordering issue with FV1000 OIB - Enhanced dimension detection in FV1000 OIF - · Added preliminary support for reading NEF images - Added option to ignore color tables - · Fixed ImageJ GUI problems - Fixed spatial calibration problem in ImageJ - Fixed some lingering bugs in Zeiss ZVI support - Fixed bugs in OME-XML reader - Tweaked ICS floating-point logic - · Fixed memory leaks in all readers - Better file stitching logic #### 4.1.57 2006 Oct 6 - Support for 3i SlideBook format (single series only for now) - Support for 16-bit RGB palette TIFF - Fixed bug preventing import of certain Metamorph STK files - Fixed some bugs in PerkinElmer UltraView support - Fixed some bugs in Leica LEI support - Fixed a bug in Zeiss ZVI support - Fixed bugs in Zeiss LSM support - Fixed a bug causing slow identification of Leica datasets - Fixed bugs in the channel merging logic - Fixed memory leak for OIB format - Better scaling of 48-bit RGB data to 24-bit RGB - Fixed duplicate channels bug in "open each channel in a separate window" - Fixed a bug preventing PICT import into ImageJ - Better integration with HandleExtraFileTypes - Better virtual stack support in Data Browser plugin - · Fixed bug in native QuickTime random access - · Keep aspect ratio for computed thumbnails - Much faster file stitching logic #### 4.1.58 2006 Sep 27 - PerkinElmer: support for PE UltraView - Openlab LIFF: support for Openlab v5 - Leica LEI: bugfixes, and support for multiple series - ZVI, OIB, IPW: more robust handling of these formats (eliminated custom OLE parsing logic in favor of Apache POI) - OIB: better metadata parsing (but maybe still not perfect?) - LSM: fixed a bug preventing import of certain LSMs - Metamorph STK: fixed a bug resulting in duplicate image planes - User interface: use of system look & feel for file chooser dialog when available - Better notification when JAR libraries are missing ## 4.1.59 2006 Sep 6 - Leica LIF: multiple distinct image series within a single file - Zeiss ZVI: fixes and improvements contributed by Michel Boudinot - Zeiss LSM: fixed bugs preventing the import of certain LSM files - TIFF: fixed a bug preventing import of TIFFs created with Bio-Rad software #### 4.1.60 2006 Mar 31 · First release # Part II User Information ## **USING BIO-FORMATS WITH IMAGEJ AND FIJI** The following sections explain the features of Bio-Formats and how to use it within ImageJ and Fiji: ## 5.1 ImageJ overview ImageJ¹ is an image processing and analysis application written in Java, widely used in the life sciences fields, with an extensible plugin infrastructure. You can use Bio-Formats as a plugin for ImageJ to read and write images in the formats it supports. #### 5.1.1 Installation Download bioformats_package.jar² and drop it into your **ImageJ/plugins** folder. Next time you run ImageJ, a new Bio-Formats submenu with several plugins will appear in the Plugins menu, including the Bio-Formats Importer and Bio-Formats Exporter. ## **5.1.2 Usage** The Bio-Formats Importer plugin can display image stacks in several ways: - In a standard ImageJ window (including as a hyperstack) - Using the LOCI Data Browser³ plugin (included) - With Joachim Walter's Image5D⁴ plugin (if installed) - With Rainer Heintzmann's View5D⁵ plugin (if installed) ImageJ v1.37 and later automatically (via HandleExtraFileTypes) calls the Bio-Formats logic, if installed, as needed when a file is opened within ImageJ, i.e. when using $File \rightarrow Open$ instead of explicitly choosing $Plugins \rightarrow Bio-Formats \rightarrow Bio-Formats$ Importer from the menu. For a more detailed description of each plugin, see the Bio-Formats page⁶ of the Fiji wiki. ## 5.1.3 Upgrading To upgrade, just overwrite the old **bioformats_package.jar** with the latest one⁷. You may want to download the latest version of ImageJ first, to take advantage of new features and bug-fixes. As of the 4.0.0 release, you can also upgrade the Bio-Formats plugin directly from ImageJ. Select $Plugins \rightarrow Bio\text{-}Formats \rightarrow Update\ Bio\text{-}Formats\ Plugins\ from\ the\ ImageJ\ menu,\ then\ select\ which\ release\ you\ would\ like\ to\ use.\ You\ will\ then\ need\ to\ restart\ ImageJ\ to\ complete\ the\ upgrade\ process.$ ¹http://rsb.info.nih.gov/ij/ ²http://downloads.openmicroscopy.org/latest/bio-formats5/ ³http://loci.wisc.edu/software/data-browser ⁴http://developer.imagej.net/plugins/image5d ⁵http://www.nanoimaging.de/View5D ⁶http://fiji.sc/Bio-Formats ⁷http://downloads.openmicroscopy.org/latest/bio-formats5/ ## 5.1.4 Macros and plugins Bio-Formats is fully scriptable in a macro, and callable from a plugin. To use in a macro, use the Macro Recorder to record a call to the Bio-Formats Importer with the desired options. You can also perform more targeted metadata queries using the Bio-Formats macro extensions. Here are some example ImageJ macros and plugins that use Bio-Formats to get you started: $basic Metadata.txt^8 - A \ macro \ that \ uses \
the \ Bio-Formats \ macro \ extensions \ to \ print \ the \ chosen \ file's \ basic \ dimensional \ parameters \ to \ the \ Log.$ planeTimings.txt9 - A macro that uses the Bio-Formats macro extensions to print the chosen file's plane timings to the Log. recursiveTiffConvert.txt¹⁰ - A macro for recursively converting files to TIFF using Bio-Formats. $bfOpenAsHyperstack.txt^{11} \ - This \ macro \ from \ Wayne \ Rasband \ opens \ a \ file \ as \ a \ hyperstack \ using \ only \ the \ Bio-Formats \ macro \ extensions (without calling the Bio-Formats Importer plugin).$ zvi2HyperStack.txt¹² - This macro from Sebastien Huart reads in a ZVI file using Bio-Formats, synthesizes the LUT using emission wavelength metadata, and displays the result as a hyperstack. dvSplitTimePoints.txt¹³ - This macro from Sebastien Huart splits timepoints/channels on all DV files in a folder. batchTiffConvert.txt¹⁴ - This macro converts all files in a directory to TIFF using the Bio-Formats macro extensions. Read_Image¹⁵ - A simple plugin that demonstrates how to use Bio-Formats to read files into ImageJ. Mass_Importer¹⁶ - A simple plugin that demonstrates how to open all image files in a directory using Bio-Formats, grouping files with similar names to avoiding opening the same dataset more than once. ## 5.2 Fiji overview Fiji¹⁷ is an image processing package. It can be described as a distribution of *ImageJ* together with Java, Java 3D and a lot of plugins organized into a coherent menu structure¹⁸. Fiji compares to ImageJ as Ubuntu compares to Linux. Fiji works with Bio-Formats out of the box, because it comes bundled with the Bio-Formats ImageJ plugins. ## 5.2.1 Upgrading Upgrading Bio-Formats within Fiji is as simple as invoking the "Update Fiji" command from the Help menu. By default, Fiji even automatically checks for updates every time it is launched, so you will always be notified when new versions of Bio-Formats (or any other bundled plugin) are available. **Note:** Fiji currently ships with the latest 4.4.x Bio-Formats release. Alternately, you can enable the "Bio-Formats 5" update site 19 to receive the latest Bio-Formats 5 bugfixes and updates. For further details on Bio-Formats in Fiji, see the Bio-Formats Fiji wiki page²⁰. 5.2. Fiji overview 27 $^{^8} https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/basicMetadata.txt$ $^{^9} https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/planeTimings.txt$ ¹⁰https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/recursiveTiffConvert.txt $^{^{11}} https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/bfOpenAsHyperstack.txt$ ¹²https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/zvi2HyperStack.txt $^{^{13}} https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/dvSplitTimePoints.txt$ ¹⁴ https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/macros/batchTiffConvert.txt ¹⁵https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Read_Image.java https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Mass_Importer.java ¹⁷http://fiji.sc/ ¹⁸http://fiji.sc/Plugins_Menu ¹⁹http://fiji.sc/Bio-Formats#Daily_builds ²⁰http://fiji.sc/Bio-Formats ## 5.3 Bio-Formats features in ImageJ and Fiji When you select Bio-Formats under the Plugin menu, you will see the following features: - The **Bio-Formats Importer** is a plugin for *loading images* into ImageJ or Fiji. It can read over 100 proprietary life sciences formats and standardizes their acquisition metadata into the common *OME data model*. It will also extract and set basic metadata values such as spatial calibration²¹ if they are available in the file. - The **Bio-Formats Exporter** is a plugin for exporting data to disk. It can save to the open OME-TIFF²² file format, as well as several movie formats (e.g. QuickTime, AVI) and graphics formats (e.g. PNG, JPEG). - The **Bio-Formats Remote Importer** is a plugin for importing data from a remote URL. It is likely to be less robust than working with files on disk, so we recommend downloading your data to disk and using the regular Bio-Formats Importer whenever possible. - The **Bio-Formats Windowless Importer** is a version of the Bio-Formats Importer plugin that runs with the last used settings to avoid any additional dialogs beyond the file chooser. If you always use the same import settings, you may wish to use the windowless importer to save time (Learn more *here*). - The **Bio-Formats Macro Extensions** plugin prints out the set of commands that can be used to create macro extensions. The commands and the instructions for using them are printed to the ImageJ log window. - The **Stack Slicer** plugin is a helper plugin used by the Bio-Formats Importer. It can also be used to split a stack across channels, focal planes or time points. - The **Bio-Formats Plugins Configuration** dialog is a useful way to configure the behavior of each file format. The Formats tab lists supported file formats and toggles each format on or off, which is useful if your file is detected as the wrong format. It also toggles whether each format bypasses the importer options dialog through the "Windowless" checkbox. You can also configure any specific option for each format. The Libraries tab provides a list of available helper libraries used by Bio-Formats. - The **Bio-Formats Plugins Shortcut Window** opens a small window with a quick-launch button for each plugin. Dragging and dropping files onto the shortcut window opens them quickly using the **Bio-Formats Importer** plugin. - The **Update Bio-Formats Plugins** command will check for Bio-Formats Plugins updates. We recommend you update to the latest build as soon as you think you may have *discovered a bug*. # 5.4 Installing Bio-Formats in ImageJ **Note:** Since FIJI is essentially ImageJ with plugins like Bio-Formats already built in, people who install Fiji can skip this section. If you are also using the OMERO plugin for ImageJ, you may find the set-up guide on the new user help site²³ useful for getting you started with both plugins at the same time. Once you download²⁴ and install ImageJ, you can install the Bio-Formats plugin by going to the Bio-Formats download page²⁵. For most end-users, we recommend downloading the **bioformats_package.jar** complete bundle. However, you must decide which version of it you want to install. There are three primary versions of Bio-Formats: the latest builds, the daily builds, and the release versions. Which version you should download depends on your needs: - The **latest build** is automatically updated every time any change is made to the source code on the main "dev_5_0" branch in Git, Bio-Formats' software version control system. This build has the latest bug fixes, but it is not well tested and may have also introduced new bugs. - The **daily build** is a compilation of that day's changes that occurs daily around midnight. It is not any better tested than the latest build; but if you download it multiple times in a day, you can be sure you will get the same version each time. - The **release** is thoroughly tested and has documentation to match. The list of supported formats on the Bio-Formats site corresponds to the most recent release. We do not add new formats to the list until a release containing support for that format has been completed. The release is less likely to contain bugs. ²¹http://fiji.sc/SpatialCalibration ²²http://www.openmicroscopy.org/site/support/ome-model/ome-tiff ²³http://help.openmicroscopy.org/imagej.html $^{^{24}} http://rsbweb.nih.gov/ij/download.html\\$ ²⁵http://downloads.openmicroscopy.org/latest/bio-formats5/ The release version is also more useful to programmers because they can link their software to a known, fixed version of Bio-Formats. Bio-Formats' behavior will not be changing "out from under them" as they continue developing their own programs. **Note:** There are currently **two** release version of Bio-Formats as we are maintaining support for the 4.4.x series while only actively developing the new 5.x series. Unless you are using Bio-Formats with the OMERO ImageJ plugin and an OMERO 4.4.x server, we recommend you use Bio-Formats 5. A new 4.4.x version will only be released if a major bug fix is required. We often **recommend that most people simply use the latest build** for two reasons. First, it may contain bug-fixes or new features you want anyway; secondly, you will have to reproduce any bug you encounter in Bio-Formats against the latest build before submitting a bug report. Rather than using the release until you find a bug that requires you to upgrade and reproduce it, why not just use the latest build to begin with? Once you decide which version you need, go to the Bio-Formats download page²⁶ and save the appropriate **bioformats_package.jar** to the Plugins directory within ImageJ. Figure 5.1: Plugin Directory for ImageJ: Where in ImageJ's file structure you should place the file once you downloaded it. You may have to quit and restart ImageJ. Once you restart it, you will find Bio-Formats in the Bio-Formats option under the Plugins menu: ²⁶http://downloads.openmicroscopy.org/latest/bio-formats5/ You are now ready to start using Bio-Formats. # 5.5 Using Bio-Formats to load images into ImageJ This section will explain how to use Bio-Formats to import files into ImageJ and how to use the settings on the Bio-Formats Import Options screen. # 5.5.1 Opening files There are three ways you can open a file using Bio-Formats: - 1. Select the Bio-Formats Importer under the Bio-Formats plugins menu. - 2. Drag and drop it onto the Bio-Formats Plugins Shortcut window. - 3. Use the Open
command in the File menu. Unless you used the Bio-Formats Plugins Configuration dialog to open the file type windowlessly, you know you used Bio-Formats to open a file when you see a screen like this: If you used the File > Open command and did not see the Bio-Formats Import Options screen, ImageJ/Fiji probably used another plugin instead of Bio-Formats to open the file. If this happens and you want to open a file using Bio-Formats, use one of the other two methods instead. # 5.5.2 Opening files windowlessly When you open a file with Bio-Formats, the Import Options Screen automatically recalls the settings you last used to open a file with that specific format (e.g. JPG, TIF, LSM, etc.). If you always choose the same options whenever you open files in a specific file format, you can save yourself time by bypassing the Bio-Formats Import Options screen. You can accomplish this two ways: - 1. You can select the **Bio-Formats Windowless Importer**, located in the Bio-Formats menu under ImageJ's Plugin menu. When you select this option, Bio-Formats will import the file using the same settings you used the last time you imported a file with the same format. - 2. If you invariably use the same settings when you open files in a specific format, you can always bypass the Import Options Screen by changing the settings in the **Bio-Formats Plugins Configuration** option, which is also located in the Bio-Formats menu under ImageJ's Plugin menu. Once you select this option, select the file format you are interested in from the list on the left side of the screen. Check both the **Enabled** and **Windowless** boxes. Once you do this, whenever you open a file using the **Bio-Formats Windowless Importer**, the **Bio-Formats Importer**, or the drag-and-drop method described in the previous section, the file will always open the same way using the last setting used. Please note that if you want to change any of the import settings once you enable this windowless option, you will have to go back to the **Bio-Formats Plugins Configuration** screen, unselect the windowless option, open a file using the regular **Bio-Formats Importer**, select your settings, and re-select the windowless option. # 5.5.3 Group files with similar names One of the most important features of Bio-Formats is to combine multiple files from a data set into one coherent, multi-dimensional image. To demonstrate how to use the **Group files with similar names** feature, you can use the dub^{27} data set available under LOCI's Sample Data²⁸ page. You will notice that it is a large dataset: each of the 85 files shows the specimen at 33 optical sections along the z-plane at a specific time. ²⁷http://www.loci.wisc.edu/sample-data/dub $^{^{28}} http://www.loci.wisc.edu/software/sample-data\\$ If you open just one file in ImageJ/Fiji using the **Bio-Formats Importer**, you will get an image incorporating three dimensions (x, y, z). However, if you select **Group files with similar names** from the Bio-Formats Import Options screen, you will be able to create a 4-D image (x, y, z, and t) incorporating the 85 files. After clicking OK, you will see a screen like this: | The list of files to be grouped can be specified in one of three ways: | | | | | | | | |--|-------------------------|---|--|--|--|--|--| | | Axis 1 number of images | 85 | | | | | | | | Axis 1 axis first image | 1 | | | | | | | | Axis 1 axis increment | 1 | | | | | | | | File name contains: | | | | | | | | R | Pattern: | sers/JasonPalmer/Desktop/Sample Data/dub/dub<01-85>.pic | | | | | | | OK Cancel | | | | | | | | This screen allows you to select which files within the 85-file cluster to use to create that 4-D image. Some information will be pre-populated in the fields. Unless you want to change the settings in that field, there is no need to change or delete it. If you click OK at this point, you will load all 85 files. However, you can specify which files you want to open by adjusting the "axis information", the file "name contains", or the "pattern" sections. Even though there are three options, you only need to need to make changes to one of them. Since Bio-Format's precedence for processing data is from top to bottom, only the uppermost section that you made changes to will be used. If you change multiple boxes, any information you enter into lower boxes will be ignored. To return to the example involving the dub data set, suppose you want to open the first image and only every fifth image afterwards (i.e. dub01, dub06, dub11... dub81). This would give you 17 images. There are different ways to accomplish this: You can use the **Axis Settings** only when your files are numbered in sequential order and you want to open only a subset of the files that have similar names. Since the dub data set is numbered sequentially, you can use this feature. **Axis 1 number of images** refers to the total number of images you want to open. Since you want to view 17 images, enter 17. **Axis 1 axis first image** specifies which image in the set you want to be the first. Since you want to start with dub01, enter 1 in that box. You also want to view only every fifth image, so enter 5 in the **Axis 1 axis increment** box. The **File name contains** box should be used if all of the files that you want to open have common text. This is especially useful when the files are not numbered. For example, if you have "Image_Red.tif", "Image_Green.tif", and "Image_Blue.tif" you could enter "Image_" in the box to group them all. To continue the example involving the dub data set, you cannot use the **file name contains** box to open every fifth image. However, if you only wanted to open dub10 thorough dub19, you could enter "dub1" in the **file name contains** box. The **pattern** box can be used to do either of the options listed above or much more. This box can accept a single file name like "dub01.pic". It can also contain a pattern that use "<" and ">" to specify what numbers or text the file names contain. There are three basic forms to the "< >" blocks: - \bullet Text enumeration "Image_<Red,Green,Blue>.tif" is the pattern for Image_Red.tif, Image_Green.tif, Image_Blue.tif. (Note that the order you in which you enter the file names is the order in which they will be loaded.) - Number range "dub<1-85>.pic" is the pattern for "dub1.pic", "dub2.pic", "dub3.pic"... "dub85.pic". - Number range with step "dub<1-85:5>.pic" is the pattern for "dub1.pic", "dub6.pic", "dub11.pic", "dub11.pic". . . . "dub85.pic". It can also accept a Java regular expression²⁹. ²⁹http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html ## 5.5.4 Autoscale **Autoscale** helps increase the brightness and contrast of an image by adjusting the range of light intensity within an image to match the range of possible display values. Note that Autoscale does not change your data. It just changes how it is displayed. Each pixel in an image has a numerical value ascribed to it to describe its intensity. The bit depth—the number of possible values—depends on the number of bits used in the image. Eight bits, for example, gives 256 values to express intensity where 0 is completely black, 255 is completely white, and 1 through 254 display increasingly lighter shades of grey. ImageJ can collect the intensity information about each pixel from an image or stack and create a histogram (you can see it by selecting Histogram under the Analyze menu). Here is the histogram of a one particular image: Notice that the histogram heavily skews right. Even though there are 256 possible values, only 0 thorough 125 are being used. Autoscale adjusts the image so the smallest and largest number in that image or stack's histogram become the darkest and brightest settings. For this image, pixels with the intensity of 125 will be displayed in pure white. The other values will be adjusted too to help show contrast between values that were too insignificant to see before. Here is one image Bio-Formats imported with and without using Autoscale: Autoscale readjusts the image based on the highest value in the entire data set. This means if the highest value in your dataset is close to maximum display value, Autoscale's adjusting may be undetectable to the eye. ImageJ/Fiji also has its own tools for adjusting the image, which are available by selecting Brightness/Contrast, which is under the Adjust option in the Image menu. # 5.6 Managing memory in ImageJ/Fiji using Bio-Formats When dealing with a large stack of images, you may receive a warning like this: This means the allotted memory is less than what Bio-Formats needs to load all the images. If you have a very large data set, you may have to: - View your stack with Data Browser - · Crop the view area - Open only a subset of images - · Use Virtual Stack - Increase ImageJ/Fiji's memory. If your files contain JPEG or JPEG-2000 images, you may see this memory warning even if your file size is smaller than the amount of allocated memory. This is because compressed images like JPEG need to be decompressed into memory before being displayed and require more memory than their file size suggests. If you are having this issue, try utilizing one of the memory management tools below. ## 5.6.1 View your stack with Data Browser **Data Browser** is another part of Bio-Formats that enables users to view large 3, 4, or 5-D datasets by caching a subset of all the images available. This enables users to view a stack that is bigger than the computer's memory. You can select Data Browser as an option for **View stack with,** the leftmost, uppermost option in the **Bio-Formats Import Options** screen. Note that when you use Data Browser, other features like cropping and specifying range are not available. You can, however, adjust the size of the image cache in the Data Browser after you open the files. You can
read more about it on LOCI's Data Browser page³⁰. # 5.6.2 Cropping the view area **Crop on Import** is useful if your images are very large and you are only interested in one specific section of the stack you are importing. If you select this feature, you will see a screen where you can enter the height and width (in pixels) of the part of image you want to see. Note that these measurements are from the top left corner of the image. # 5.6.3 Opening only a subset of images The **Specify Range for Each Series** option is useful for viewing a portion of a data set where all the plane images are encapsulated into one file (e.g. the Zeiss LSM format). If your file has a large quantity of images, you can specify which channels, Z-planes, and times you want to load. ## 5.6.4 Use Virtual Stack **Virtual Stack** conserves memory by not loading specific images until necessary. Note that unlike Data Browser, Virtual Stack does not contain a buffer and may produce choppy animations. # 5.6.5 Increasing ImageJ/Fiji's memory Finally, you can also increase the amount of the computer memory devoted to ImageJ/Fiji by selecting **Memory & Threads** under the **Edit** menu. $^{^{30}} http://www.loci.wisc.edu/software/data-browser$ Generally, allocating more than 75% of the computer's total memory will cause ImageJ/Fiji to become slow and unstable. **Please note** that unlike the other three features, ImageJ/Fiji itself provides this feature and not Bio-Formats. You can find out more about this feature by looking at ImageJ's documentation³¹. ³¹http://rsbweb.nih.gov/ij/docs/menus/edit.html#options SIX # **OMERO** OMERO.importer uses Bio-Formats to read image pixels and propagate metadata into the OMERO.server system. Please refer to the OMERO documentation of further information. $^{^{1}}http://www.openmicroscopy.org/site/support/omero5/\\$ # **IMAGE SERVER APPLICATIONS** # 7.1 BISQUE The BISQUE¹ (Bio-Image Semantic Query User Environment) Database, developed at the Center for Bio-Image Informatics at UCSB, was developed for the exchange and exploration of biological images. The Bisque system supports several areas useful for imaging researchers from image capture to image analysis and querying. The bisque system is centered around a database of images and metadata. Search and comparison of datasets by image data and content is supported. Novel semantic analyses are integrated into the system allowing high level semantic queries and comparison of image content. Bisque integrates with Bio-Formats by calling the *showinf command line tool*. ## 7.2 OME Server OME² is a set of software that interacts with a database to manage images, image metadata, image analysis and analysis results. The OME system is capable of leveraging Bio-Formats to import files. **Please note** - the OME server is no longer maintained and has now been superseded by the OMERO server³. Support for the OME server has been entirely removed in the 5.0.0 version of Bio-Formats; the following instructions can still be used with the 4.4 x versions. ## 7.2.1 Installation For OME Perl v2.6.1⁴ and later, the command line installer automatically downloads the latest **loci_tools.jar** and places it in the proper location. This location is configurable, but is **/OME/java/loci_tools.jar** by default. For a list of what was recognized for a particular import into the OME server, go to the Image details page in the web interface, and click the "Image import" link in the upper right hand box. Bio-Formats is capable of parsing original metadata for supported formats, and standardizes what it can into the OME data model. For the rest, it expresses the metadata in OME terms as key/value pairs using an OriginalMetadata custom semantic type. However, this latter method of metadata representation is of limited utility, as it is not a full conversion into the OME data model. Bio-Formats is enabled in OME v2.6.1 for all formats except: - OME-TIFF - · Metamorph HTD - Deltavision DV - · Metamorph STK - Bio-Rad PIC - Zeiss LSM - TIFF ¹ http://www.bioimage.ucsb.edu/bisque ²http://openmicroscopy.org/site/support/legacy/ome-server ³http://www.openmicroscopy.org/site/support/omero5/ ⁴http://cvs.openmicroscopy.org.uk/ - BMP - DICOM - OME-XML The above formats have their own Perl importers that override Bio-Formats, meaning that Bio-Formats is not used to process them by default. However, you can override this behavior (except for Metamorph HTD, which Bio-Formats does not support) by editing an OME database configuration value: ``` % psql ome ``` To see the current file format reader list: ``` ome=# select value from configuration where name='import_formats'; value ['OME::ImportEngine::OMETIFFreader','OME::ImportEngine::MetamorphHTDFormat', 'OME::ImportEngine::DVreader','OME::ImportEngine::STKreader', 'OME::ImportEngine::BioradReader','OME::ImportEngine::LSMreader', 'OME::ImportEngine::TIFFreader','OME::ImportEngine::BMPreader', 'OME::ImportEngine::DICOMreader','OME::ImportEngine::XMLreader', 'OME::ImportEngine::BioFormats'] (1 row) ``` To remove extraneous readers from the list: To reset things back to how they were: ``` ome=# update configuration set value='[\'OME::ImportEngine::OMETIFFreader\', \'OME::ImportEngine::MetamorphHTDFormat\',\'OME::ImportEngine::DVreader\', \'OME::ImportEngine::STKreader\',\'OME::ImportEngine::BioradReader\', \'OME::ImportEngine::LSMreader\',\'OME::ImportEngine::TIFFreader\', \'OME::ImportEngine::BMPreader\',\'OME::ImportEngine::DICOMreader\', \'OME::ImportEngine::XMLreader\',\'OME::ImportEngine::BioFormats\']' where name='import_formats'; ``` Lastly, please note that Li-Cor L2D files cannot be imported into an OME server (see this Trac ticket⁵ for details). Since the OME perl server has been discontinued, we have no plans to fix this limitation. # 7.2.2 Upgrading You can upgrade your OME server installation to take advantage of a new Bio-Formats release⁶ by overwriting the old **loci_tools.jar** with the new one. 7.2. OME Server 40 ⁵http://dev.loci.wisc.edu/trac/software/ticket/266 ⁶http://downloads.openmicroscopy.org/latest/bio-formats5/ # 7.2.3 Source Code The source code for the Bio-Formats integration with OME server spans three languages, using piped system calls in both directions to communicate, with imported pixels written to OMEIS pixels files. The relevant source files are: - OmeisImporter.java⁷ omebf Java command line tool - BioFormats.pm⁸ Perl module for OME Bio-Formats importer - omeis.c9 OMEIS C functions for Bio-Formats (search for "bioformats" case insensitively to find relevant sections) 7.2. OME Server 41 ⁷http://github.com/openmicroscopy/bioformats/tree/v4.4.10/components/scifio/src/loci/formats/ome/OmeisImporter.java ⁸http://svn.openmicroscopy.org.uk/svn/ome/trunk/src/perl2/OME/ImportEngine/BioFormats.pm ⁹http://svn.openmicroscopy.org.uk/svn/ome/trunk/src/C/omeis/omeis.c # **COMMAND LINE TOOLS** # 8.1 Command line tools There are several scripts for using Bio-Formats on the command line. #### 8.1.1 Installation Download bftools.zip¹, unzip it into a new folder. **Note:** As of Bio-Formats 5.0.0, this zip now contains the bundled jar and you no longer need to download loci_tools.jar or the new bioformats_package.jar separately. The zip file contains both Unix scripts and Windows batch files. Currently available tools include: showinf Prints information about a given image file to the console, and displays the image itself in the Bio-Formats image viewer. ijview Displays the given image file in ImageJ using the Bio-Formats Importer plugin (requires ij.jar). **bfconvert** Converts an image file from one format to another. Bio-Formats must support writing to the output file (determined by extension; see the *Supported Formats*). formatlist Displays a list of supported file formats in HTML, plaintext or XML. **xmlindent** A simple XML prettifier similar to xmllint —format but more robust in that it attempts to produce output regardless of syntax errors in the XML. **xmlvalid** A command-line XML validation tool, useful for checking an OME-XML document for compliance with the OME-XML schema. **tiffcomment** Dumps the comment from the given TIFF file's first IFD entry; useful for examining the OME-XML block in an OME-TIFF file. All scripts require **bioformats_package.jar** in the same directory as the command line tools. ## 8.1.2 Tutorials - · Displaying images and metadata - Converting a file - Validating XML in an OME-TIFF ## 8.1.3 Using the tools directly from source If you have *checked out the source from the Git repository* you already have the command line tools in the tools directory. You can configure the scripts to use your source tree instead of **bioformats_package.jar** in the same directory by following these steps: 1. Point your CLASSPATH to the checked-out directory and the JAR files in the jar folder. $^{^{1}} http:\!/\!downloads.openmicroscopy.org/latest/bio\text{-}formats5/$ - E.g. on Windows with Java 1.6 or later, if you have checked out the source at C:\code\bio-formats, set your CLASSPATH environment variable to the value C:\code\bio-formats\jar*; C:\code\bio-formats. You can access the environment variable configuration area by right-clicking on My Computer, choosing Properties, Advanced tab, Environment Variables button. - 2. Compile the source with ant compile. - 3. Set the BF_DEVEL environment variable to any value (the variable just needs to be defined). #### 8.1.4 Version checker If you run bftools outside of the OMERO environment, you may encounter an issue with the automatic version checker causing a tool to crash when trying to connect to upgrade.openmicroscopy.org.uk. The error message will look something like this: ``` Failed to compare version numbers java.io.IOException: Server returned HTTP response code: 400 for URL: http://upgrade.openmicroscopy.org.uk?version=4.4.8;os.name=Linux;os.
version=2.6.32-358.6.2.el6.x86_64;os.arch=amd64;java.runtime.version=1.6.0_24-b24;java.vm.vendor=Sun+Microsystems+Inc.;bioformats.caller=Bio-Formats+utilities ``` To avoid this issue, call the tool with the -no-upgrade parameter. # 8.2 Displaying images and metadata The showinf command line tool can be used to show the images and metadata contained in a file. If no options are specified, showinf displays a summary of available options. To simply display images: ``` showinf /path/to/file ``` All of the images in the first 'series' (or 5 dimensional stack) will be opened and displayed in a simple image viewer. The number of series, image dimensions, and other basic metadata will be printed to the console. To display a different series, for example the second one: ``` showinf -series 1 /path/to/file ``` Note that series numbers begin with 0. To display the OME-XML metadata for a file on the console: ``` showinf -omexml /path/to/file ``` Image reading can be suppressed if only the metadata is needed: ``` showinf -nopix /path/to/file ``` A subset of images can also be opened instead of the entire stack, by specifying the start and end plane indices (inclusive): ``` showinf -range 0 0 /path/to/file ``` That opens only the first image in first series in the file. For very large images, it may also be useful to open a small tile from the image instead of reading everything into memory. To open the upper-left-most 512x512 tile from the images: ``` showinf -crop 0,0,512,512 /path/to/file ``` The parameter to -crop is of the format x, y, width, height. The (x, y) coordinate (0, 0) is the upper-left corner of the image; x + width must be less than or equal to the image width and y + height must be less than or equal to the image height. By default, showinf will check for a new version of Bio-Formats. This can take several seconds (especially on a slow internet connection); to save time, the update check can be disabled: ``` showinf -no-update /path/to/file ``` Similarly, if OME-XML is displayed then it will automatically be validated. On slow or missing internet connections, this can take some time, and so can be disabled: ``` showinf -novalid /path/to/file ``` # 8.3 Converting a file to different format The bfconvert command line tool can be used to convert files between supported formats. bfconvert with no options displays a summary of available options. To convert a file to single output file (e.g. TIFF): ``` bfconvert /path/to/input output.tiff ``` The output file format is determined by the extension of the output file, e.g. .tiff for TIFF files, .ome.tiff for OME-TIFF, .png for PNG. All images in the input file are converted by default. To convert only one series: ``` bfconvert -series 0 /path/to/input output-first-series.tiff ``` To convert only one timepoint: ``` bfconvert -timepoint 0 /path/to/input output-first-timepoint.tiff ``` To convert only one channel: ``` bfconvert -channel 0 /path/to/input output-first-channel.tiff ``` To convert only one Z section: ``` bfconvert -z 0 /path/to/input output-first-z.tiff ``` To convert images between certain indices (inclusive): ``` bfconvert -range 0 2 /path/to/input output-first-3-images.tiff ``` Images can also be written to multiple files by specifying a pattern string in the output file. For example, to write one series, timepoint, channel, and Z section per file: ``` bfconvert /path/to/input output_series_%s_Z%z_C%c_T%t.tiff ``` %s is the series index, %z is the Z section index, %c is the channel index, and %t is the timepoint index (all indices begin at 0). By default, all images will be written uncompressed. Supported compression modes vary based upon the output format, but when multiple modes are available the compression can be changed using the <code>-compression</code> option. For example, to use LZW compression in a TIFF file: ``` bfconvert -compression LZW /path/to/input output-lzw.tiff ``` # 8.4 Validating XML in an OME-TIFF The XML stored in an OME-TIFF file can be validated using the *command line tools*. Both the tiffcomment and xmlvalid commands are used; tiffcomment extracts the XML from the file and xmlvalid validates the XML and prints any errors to the console. For example: ``` tiffcomment /path/to/file.ome.tiff | xmlvalid - ``` will perform the extraction and validation all at once. If the XML is found to have validation errors, the tiffcomment command can be used to overwrite the XML in the OME-TIFF file with corrected XML. The XML can be displayed in an editor window: ``` tiffcomment -edit /path/to/file.ome.tiff ``` or the new XML can be read from a file: ``` tiffcomment -set new-comment.xml /path/to/file.ome.tiff ``` # LIBRARIES AND SCRIPTING APPLICATIONS # 9.1 FARSIGHT FARSIGHT¹ is a collection of modules for image analysis created by LOCI's collaborators at the University of Houston². These open source modules are built on the *ITK* library and thus can take advantage of ITK's support for Bio-Formats to process otherwise unsupported image formats. The principal FARSIGHT module that benefits from Bio-Formats is the Nucleus Editor³, though in principle any FARSIGHT-based code that reads image formats via the standard ITK mechanism will be able to leverage Bio-Formats. #### See also: FARSIGHT Downloads page⁴ FARSIGHT HowToBuild tutorial⁵ # 9.2 i3dcore i3dcore⁶, also known as the CBIA 3D image representation library, is a 3D image processing library developed at the Centre for Biomedical Image Analysis⁷. Together with i3dalgo⁸ and i4dcore⁹, i3dcore forms a continuously developed templated cross-platform C++ suite of libraries for multidimensional image processing and analysis. i3dcore is capable of reading images with Bio-Formats using Java for C++¹⁰ (java4cpp). #### See also: Download i3dcore¹¹ CBIA Software Development¹² # 9.3 ImgLib $ImgLib2^{13}$ is a multidimensional image processing library. It provides a general mechanism for writing image analysis algorithms, without writing case logic for bit depth¹⁴, or worrying about the source of the pixel data (arrays in memory, files on disk, etc.). ¹http://www.farsight-toolkit.org/ ²http://www.uh.edu/ ³http://www.farsight-toolkit.org/wiki/NucleusEditor ⁴http://www.farsight-toolkit.org/wiki/Special:FarsightDownloads $^{^5} http://www.farsight-toolkit.org/wiki/FARSIGHT_HowToBuild$ ⁶http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html ⁷http://cbia.fi.muni.cz/software-development.html ⁸http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dalgo/index.html ⁹http://cbia.fi.muni.cz/user_dirs/of_doc/libi4d.html ¹⁰http://java4cpp.kapott.org/ ¹¹http://cbia.fi.muni.cz/user_dirs/i3dlib_doc/i3dcore/index.html#download ¹²http://cbia.fi.muni.cz/software-development.html ¹³ http://imglib2.net/ ¹⁴http://en.wikipedia.org/wiki/Color_depth The SCIFIO¹⁵ project provides an ImgOpener¹⁶ utility class for reading data into ImgLib2 data structures using Bio-Formats. # 9.4 ITK The Insight Toolkit¹⁷ (ITK) is an open-source, cross-platform system that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional data. ITK provides an ImageIO plug-in structure that works via discovery through a dependency injection scheme. This allows a program built on ITK to load plug-ins for reading and writing different image types without actually linking to the ImageIO libraries required for those types. Such encapsulation automatically grants two major boons: firstly, programs can be easily extended just by virtue of using ITK (developers do not have to specifically accommodate or anticipate what plug-ins may be used). Secondly, the architecture provides a distribution method for open source software, like Bio-Formats, which have licenses that might otherwise exclude them from being used with other software suites. The SCIFIO ImageIO¹⁸ plugin provides an for ITK imageIO base that uses Bio-Formats¹⁹ to read and write supported life sciences file formats. This plugin allows any program built on ITK to read any of the image types supported by Bio-Formats. # 9.4.1 Prerequisites You should have CMake²⁰ installed, to allow the configuration of ITK builds. If you want the latest ITK development build, you will need Git²¹ as well. #### 9.4.2 Installation Simply download ITK from the Kitware software page²². Using CMake, set the following configuration flag: $Module_SCIFIO = ON$ Note: This flag is only visible in "advanced" mode within CMake If you would like to use the utility classes included with the SCIFIO imageIO, also set the flag: BUILD_TESTING = ON Then build ITK as normal. It will automatically download and build the latest SCIFIO imageIO plugin. # 9.4.3 Usage Applications using the installed ITK should automatically defer to the SCIFIO ImageIO, and thus Bio-Formats, when reading or saving images not natively supported by ITK. To use the SCIFIO test utility, run: SCIFIOTestDriver 9.4. ITK 47 ¹⁵http://scif.io/ ¹⁶https://github.com/scifio/scifio/blob/master/scifio/src/main/java/io/scif/img/ImgOpener.java ¹⁷http://itk.org/ ¹⁸https://github.com/scifio/scifio-imageio ¹⁹http://farsight-toolkit.org/wiki/Bio-Formats ²⁰http://www.cmake.org/ ²¹http://git-scm.com/ ²²http://www.itk.org/ITK/resources/software.html from your $\{ITK_BUILD\}/bin$ directory. This program has four separate applications that can be directly invoked using the syntax: ``` SCIFIOTestDriver [Program to run] [Program arguments] ``` The programs are as follows: itkSCIFIOImageInfoTest Displays basic information to verify the SCIFIO imageIO works, using .fake images. itkSCIFIOImageIOTest Reads an input image, and writes it out as a specified type itkRGBSCIFIOImageTest Same as itkSCIFIOImageIOTest but for RGB²³ types itkVectorImageSCIFIOImageIOTest Same as itkSCIFIOImageIOTest but for VectorImage²⁴ type For example, to convert a .czi image to a .tif, you would use: SCIFIOTestDriver itkSCIFIOImageIOTest in.czi out.tif ##
9.4.4 Troubleshooting Please send any issues, suggestions or requests to the insight users mailing list²⁵. # 9.5 Qu for MATLAB Qu for MATLAB²⁶ is a MATLAB toolbox for the visualization and analysis of N-dimensional datasets targeted to the field of biomedical imaging, developed by Aaron Ponti. - Uses Bio-Formats to read files - Open source software available under the Mozilla Public License #### See also: Qu for MATLAB download page²⁷ # 9.6 Subimager Subimager²⁸, the SUBprocess IMAGE servER, is an HTTP server that uses Bio-Formats as a back-end to serve .TIF images. Subimager is designed to be run as a subprocess of CellProfiler to provide CellProfiler with the capability to read and write a variety of image formats. It can be used as a stand-alone image server. It was developed by the Broad Institute²⁹ to facilitate integration with their CellProfiler³⁰ image analysis application. 9.5. Qu for MATLAB ²³http://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html ²⁴http://www.itk.org/Doxygen/html/classitk_1_1VectorImage.html ²⁵http://www.itk.org/ITK/help/mailing.html $^{^{26}} http://www.scs2.net/home/index.php?option=com_content\&view=article\&id=46\%3Aqu-for-matlab\&catid=34\%3Aqu\&Itemid=55\%3Aqu+for-matlab\&catid=34\%3Aqu&Itemid=55\%3Aqu+for-matlab\&catid=34\%3Aqu+for-matlab&catid=34\%3Aqu+for-matlab&catid=34\%3Aqu+for-matlab&catid=34\%3Aqu+for-matlab&catid=34\%3Aqu+for-matlab&catid=34\%3Aqu+for-matlab&catid=34\%3Aqu+for-matlab&catid=34\%3Aqu+for-m$ $^{^{27}} http://www.scs2.net/home/index.php?option=com_content\&view=article\&id=46\%3Aqu-for-matlab\&catid=34\%3Aqu\&Itemid=55\&limitstart=34\%3Aqu\&Itemid=54\%3Aqu\&Itemid=55\&limitstart=34\%3Aqu\&Itemid=55\&limitstart=34\%3Aqu\&Itemid=55\&limitstart=34\%3Aqu\&Itemid=55\&limitstart=34\%3Aqu\&Itemid=55\&limitstart=34\%3Aqu\&Itemid=55\&limitstart=34\%3Aqu\&Itemid=55\&limitstart=34\%3Aqu\&Itemid=55\&limitstart=34\%3Aqu\&Itemid=55\&limitstart=34\%3Aqu\&Itemid=54\%3Aqu\&Itemid=54\%3Aqu\&Itemid=54\%3Aqu\&Itemid=54\%3Aqu\&Itemid=54\%3Aqu\&Itemid=54\%3Aqu\&Itemid=54\%3Aqu\&Itemid=54\%3Aqu\&Itemid=54\%3Aqu\&Itemid=54\%3Aqu\&Itemid=54\%3Aqu\&Itemid=54\%3Aqu\&$ ²⁸https://github.com/CellProfiler/subimager ²⁹http://www.broadinstitute.org/ ³⁰http://www.cellprofiler.org/ # NUMERICAL DATA PROCESSING APPLICATIONS # 10.1 IDL IDL¹ (Interactive Data Language) is a popular data visualization and analysis platform used for interactive processing of large amounts of data including images. IDL possesses the ability to interact with Java applications via its IDL-Java bridge. Karsten Rodenacker has written a script that uses Bio-Formats to read in image files to IDL. ## 10.1.1 Installation Download the $ij_read_bio_formats.pro^2$ script from Karsten Rodenacker's IDL goodies $(?)^3$ web site. See the comments at the top of the script for installation instructions and caveats. # 10.1.2 Upgrading To use a newer version of Bio-Formats, overwrite the requisite JAR files with the newer version⁴ and restart IDL. ## **10.2 KNIME** KNIME⁵ (Konstanz Information Miner) is a user-friendly and comprehensive open-source data integration, processing, analysis, and exploration platform. KNIME supports image import using Bio-Formats using the KNIME Image Processing⁶ (a.k.a. KNIP) plugin. ## 10.3 MATLAB MATLAB⁷ is a high-level language and interactive environment that facilitates rapid development of algorithms for performing computationally intensive tasks. Calling Bio-Formats from MATLAB is fairly straightforward, since MATLAB has built-in interoperability with Java. We have created a set of scripts⁸ for reading image files. Note the minimum supported MATLAB version is R2007b (7.5). ¹http://www.exelisvis.com/ProductsServices/IDL.aspx ²http://karo03.bplaced.net/karo/IDL/_pro/ij_read_bio_formats.pro ³http://karo03.bplaced.net/karo/ro_embed.php?file=IDL/index.html ⁴http://downloads.openmicroscopy.org/latest/bio-formats5/ ⁵http://knime.org/ ⁶http://tech.knime.org/community/image-processing ⁷http://www.mathworks.com/products/matlab/ $^{^{8}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlabules/properties/formats-gpl/matlabules/properties$ ## 10.3.1 Installation Download the MATLAB toolbox from the Bio-Formats downloads page⁹. Unzip bfmatlab.zip and add the unzipped bfmatlab folder to your MATLAB path. **Note:** As of Bio-Formats 5.0.0, this zip now contains the bundled jar and you no longer need to download loci_tools.jar or the new bioformats_package.jar separately. ## 10.3.2 Usage Please see *Using Bio-Formats in MATLAB* for usage instructions. If you intend to extend the existing .m files, please also see the *developer page* for more information on how to
use Bio-Formats in general. ## 10.3.3 Performance In our tests (MATLAB R14 vs. java 1.6.0_20), the script executes at approximately half the speed of our *showinf command line tool*, due to overhead from copying arrays. # 10.3.4 Upgrading To use a newer version of Bio-Formats, overwrite the content of the bfmatlab folder with the newer version 10 of the toolbox and restart MATLAB. # 10.3.5 Alternative scripts Several other groups have developed their own MATLAB scripts that use Bio-Formats, including the following: - https://github.com/prakatmac/bf-tools/ - imread for multiple life science image file formats¹¹ ## 10.4 VisAD The VisAD¹² visualization toolkit is a Java component library for interactive and collaborative visualization and analysis of numerical data. VisAD uses Bio-Formats to read many image formats, notably TIFF. ## 10.4.1 Installation The visad.jar file has Bio-Formats bundled inside, so no further installation is necessary. ## 10.4.2 Upgrading It should be possible to use a newer version of Bio-Formats by putting the latest bioformats_package.jar¹³ or formats-gpl.jar¹⁴ before **visad.jar** in the class path. Alternately, you can create a "VisAD Lite" using the make lite command from VisAD source, and use the resultant **visad-lite.jar**, which is a stripped down version of VisAD without sample applications or Bio-Formats bundled in. 10.4. VisAD 50 ⁹http://downloads.openmicroscopy.org/latest/bio-formats5/ ¹⁰ http://downloads.openmicroscopy.org/latest/bio-formats5/ ¹¹ http://www.mathworks.com/matlabcentral/fileexchange/32920-imread-for-multiple-life-science-image-file-formats ¹²http://www.ssec.wisc.edu/%7Ebillh/visad.html ¹³http://downloads.openmicroscopy.org/latest/bio-formats5/ ¹⁴http://downloads.openmicroscopy.org/latest/bio-formats5/ # **VISUALIZATION AND ANALYSIS APPLICATIONS** # 11.1 Bitplane Imaris Imaris¹ is Bitplane's core scientific software module that delivers all the necessary functionality for data visualization, analysis, segmentation and interpretation of 3D and 4D microscopy datasets. Combining speed, precision and ease-of-use, Imaris provides a complete set of features for working with three- and four-dimensional multi-channel images of any size, from a few megabytes to multiple gigabytes in size. As of version 7.2², Imaris integrates with *Fiji overview*, which includes Bio-Formats. See this page³ for a detailed list of Imaris' features. # 11.2 CellProfiler CellProfiler⁴—developed by the Broad Institute⁵ 's Imaging Platform⁶—is free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automatically. CellProfiler uses Bio-Formats to read images from disk, as well as write movies. ## 11.2.1 Installation The CellProfiler distribution comes with Bio-Formats included, so no further installation is necessary. # 11.2.2 Upgrading It should be possible to use a newer version of Bio-Formats by replacing the bundled loci_tools.jar with a newer version. - For example, on Mac OS X, Ctrl+click the CellProfiler icon, choose Show Package Contents, and replace the following files: - Contents/Resources/bioformats/loci_tools.jar - Contents/Resources/lib/python2.5/bioformats/loci_tools.jar ## See also: CellProfiler web site⁷ ¹http://www.bitplane.com/ ²http://www.bitplane.com/go/releasenotes?product=Imaris&version=7.2&patch=0 ³http://www.bitplane.com/imaris/imaris ⁴http://www.cellprofiler.org/ ⁵http://www.broadinstitute.org/ ⁶http://www.broadinstitute.org/science/platforms/imaging/imaging-platform ⁷http://www.cellprofiler.org/ # 11.3 Comstat2 Comstat2 is a Java-based computer program for the analysis and treatment of biofilm images in 3D. It is the Master's project of Martin Vorregaard⁸. Comstat2 uses the Bio-Formats Importer plugin for ImageJ to read files in TIFF and Leica LIF formats. #### See also: Comstat2 - a modern 3D image analysis environment for biofilms⁹ ## 11.4 Endrov Endrov¹⁰ (or http://www.endrov.net) (EV) is a multi-purpose image analysis program developed by the Thomas Burglin group¹¹ at Karolinska Institute¹², Department of Biosciences and Nutrition. # 11.4.1 Installation The EV distribution comes bundled with the core Bio-Formats library (bio-formats.jar), so no further installation is necessary. ## 11.4.2 Upgrading It should be possible to use a newer version of Bio-Formats by downloading the latest formats-gpl.jar 13 and putting it into the libs folder of the EV distribution, overwriting the old file. You could also include some optional libraries, to add support for additional formats, if desired. # 11.5 FocalPoint FocalPoint¹⁴ is an image browser, similar to Windows Explorer¹⁵ or other file manager¹⁶ application, specifically designed to work with more complex image types. FocalPoint uses Bio-Formats to generate thumbnails for some formats. #### 11.5.1 Installation FocalPoint is bundled with Bio-Formats, so no further installation is necessary. # 11.5.2 Upgrading It should be possible to use a newer version of Bio-Formats¹⁷ by overwriting the old **loci_tools.jar** within the FocalPoint distribution. For Mac OS X, you will have to control click the FocalPoint program icon, choose "Show Package Contents" and navigate into Contents/Resources/Java to find the **loci_tools.jar** file. 11.3. Comstat2 52 ⁸http://www.comstat.dk/ ⁹http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=5628 ¹⁰ https://github.com/mahogny/Endrov ¹¹http://www.biosci.ki.se/groups/tbu ¹²http://www.ki.se/ ¹³http://downloads.openmicroscopy.org/latest/bio-formats5/ ¹⁴http://www.bioinformatics.bbsrc.ac.uk/projects/focalpoint/ ¹⁵http://en.wikipedia.org/wiki/Windows_Explorer ¹⁶http://en.wikipedia.org/wiki/File_manager ¹⁷http://downloads.openmicroscopy.org/latest/bio-formats5/ # 11.6 Graphic Converter Graphic Converter¹⁸ is a Mac OS application for opening, editing, and organizing photos. Versions 6.4.1 and later use Bio-Formats to open all file formats supported by Bio-Formats. # 11.7 lcy Icy¹⁹ is an open-source image analysis and visualization software package that combines a user-friendly graphical interface with the ability to write scripts and plugins that can be uploaded to a centralized website. It uses Bio-Formats internally to read images and acquisition metadata, so no further installation is necessary. # 11.8 imago Mayachitra imago²⁰ is an advanced desktop image management package that enables scientists to easily store, manage, search, and analyze 5D biological images and their analysis results. imago integrates flexible annotation and metadata management with advanced image analysis tools. imago uses Bio-Formats to read files in some formats, including Bio-Rad PIC, Image-Pro Workspace, Metamorph TIFF, Leica LCS LEI, Olympus FluoView FV1000, Nikon NIS-Elements ND2, and Zeiss LSM. A free 30-day trial version of imago is available here²¹. # 11.9 lqm Iqm²² is an image processing application written in Java. It is mainly constructed around the Java JAI library and furthermore it incorporates the functionality of the popular ImageJ image processing software. Because iqm integrates with ImageJ, it can take advantage of the Bio-Formats ImageJ plugin to read image data. # 11.10 Macnification Macnification²³ is a Mac OS X application for organizing, editing, analyzing and annotating microscopic images, designed for ease of use. It is being developed by $Orbicule^{24}$. Macnification uses Bio-Formats to read files in some formats, including Gatan DM3, ICS, ImagePro SEQ, ImagePro IPW, Metamorph STK, OME-TIFF and Zeiss LSM. #### See also: Free trial download²⁵ ## 11.11 MIPAV The MIPAV²⁶ (Medical Image Processing, Analysis, and Visualization) application—developed at the Center for Information Technology²⁷ at the National Institutes of Health²⁸—enables quantitative analysis and visualization of medical images of numerous ¹⁸http://www.lemkesoft.com ¹⁹http://icy.bioimageanalysis.org/ ²⁰http://mayachitra.com/imago/index.html ²¹http://mayachitra.com/imago/download-trial.php ²²http://code.google.com/p/iqm/ ²³http://www.orbicule.com/macnification/ ²⁴http://www.orbicule.com ²⁵http://www.orbicule.com/macnification/download ²⁶http://mipav.cit.nih.gov/ ²⁷http://cit.nih.gov/ ²⁸http://nih.gov/ modalities such as PET, MRI, CT, or microscopy. You can use Bio-Formats as a plugin for MIPAV to read images in the formats it supports. #### 11.11.1 Installation Follow these steps to install the Bio-Formats plugin for MIPAV: - 1. Download bioformats_package.jar²⁹ and drop it into your MIPAV folder. - 2. Download the plugin source code³⁰ into your user mipav/plugins folder. - 3. From the command line, compile the plugin with: ``` cd mipav/plugins javac -cp $MIPAV:$MIPAV/bioformats_package.jar \\ PlugInBioFormatsImporter.java ``` - 4. where \$MIPAV is the location of your MIPAV installation. - 5. Add bioformats_package.jar to MIPAV's class path: - How to do so depends on your platform. - E.g., in Mac OS X, edit the mipav.app/Contents/Info.plist file. - 6. Run MIPAV and a new "BioFormatsImporter read image" menu item will appear in the Plugins > File submenu. See the readme file³¹ for more information. To upgrade, just overwrite the old **bioformats_package.jar** with the latest one³². You may want to download the latest version of MIPAV first, to take advantage of new features and bug-fixes. ## 11.12 Vaa3D Vaa3D³³, developed by the Peng Lab³⁴ at the HHMI Janelia Farm Research Campus³⁵, is a handy, fast, and versatile 3D/4D/5D Image Visualization & Analysis System for Bioimages & Surface Objects. Vaa3D can use Bio-Formats via the Bio-Formats C++ bindings³⁶ to read images. ## 11.13 VisBio VisBio³⁷ is a biological visualization tool designed for easy visualization and analysis of multidimensional image data. VisBio uses Bio-Formats to import files as the Bio-Formats library originally grew out of our efforts to continually expand the file format support within VisBio. ## 11.13.1 Installation VisBio is bundled with
Bio-Formats, so no further installation is necessary. 11.12. Vaa3D 54 ²⁹http://downloads.openmicroscopy.org/latest/bio-formats5/ ³⁰ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/utils/mipav/PlugInBioFormatsImporter.java $^{^{31}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/utils/mipav/readme.txt$ ³²http://downloads.openmicroscopy.org/latest/bio-formats5/ ³³http://vaa3d.org ³⁴http://penglab.janelia.org/ ³⁵http://www.hhmi.org/janelia/ ³⁶ http://www.farsight-toolkit.org/wiki/FARSIGHT_Tutorials/Building_Software/Bio-Formats/Building_C%2B%2B_Bindings ³⁷http://www.loci.wisc.edu/visbio/ # 11.13.2 Upgrading It should be possible to use a newer version of Bio-Formats³⁸ by overwriting the old **bio-formats.jar** and optional libraries within the VisBio distribution. For Mac OS X, you'll have to control click the VisBio program icon, choose "Show Package Contents" and navigate into Contents/Resources/Java to find the JAR files. # 11.14 XuvTools $XuvTools^{39}$ is automated 3D stitching software for biomedical image data. As of release 1.8.0, XuvTools uses Bio-Formats to read image data. 11.14. XuvTools 55 ³⁸http://downloads.openmicroscopy.org/latest/bio-formats5/ ³⁹http://www.xuvtools.org # Part III Developer Documentation # **USING BIO-FORMATS** # 12.1 An in-depth guide to using Bio-Formats #### 12.1.1 Overview This document describes various things that are useful to know when working with Bio-Formats. It is recommended that you obtain the Bio-Formats source by following the directions on the *source code page*, rather than using an official release. It is also recommended that you have a copy of the Javadocs¹ nearby - the notes that follow will make more sense when you see the API. For a complete list of supported formats, see the Bio-Formats *supported formats table*. For a few working examples of how to use Bio-Formats, see these Github pages². ## 12.1.2 Basic file reading Bio-Formats provides several methods for retrieving data from files in an arbitrary (supported) format. These methods fall into three categories: raw pixels, core metadata, and format-specific metadata. All methods described here are present and documented in loci.formats.IFormatReader³- it is advised that you take a look at the source and/or the Javadocs. In general, it is recommended that you read files using an instance of ImageReader⁴. While it is possible to work with readers for a specific format, ImageReader contains additional logic to automatically detect the format of a file and delegate subsequent calls to the appropriate reader. Prior to retrieving pixels or metadata, it is necessary to call setId(String)⁵ on the reader instance, passing in the name of the file to read. Some formats allow multiple series (5D image stacks) per file; in this case you may wish to call setSeries(int)⁶ to change which series is being read. Raw pixels are always retrieved one plane at a time. Planes are returned as raw byte arrays, using one of the openBytes methods. Core metadata is the general term for anything that might be needed to work with the planes in a file. A list of core metadata fields is given below, with the appropriate accessor method in parentheses: - image width (getSizeX()⁷) - image height (getSizeY()⁸) - number of series per file (getSeriesCount()⁹) - total number of images per series (getImageCount()¹⁰) - number of slices in the current series (getSizeZ()¹¹) - number of timepoints in the current series (getSizeT()¹²) ¹http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/ ²https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/utils ³https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/IFormatReader.java $^{^4} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/ImageReader.java$ ⁵http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatHandler.html#setId(java.lang.String) ⁶http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#setSeries(int) ⁷http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#getSizeX() ⁸ http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#getSizeY() ⁹http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#getSeriesCount() ¹⁰http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#getImageCount() ¹¹ http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#getSizeZ() ¹²http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#getSizeT() - number of actual channels in the current series (getSizeC()¹³) - number of channels per image (getRGBChannelCount()¹⁴) - the ordering of the images within the current series (getDimensionOrder()¹⁵) - whether each image is RGB (isRGB()¹⁶) - whether the pixel bytes are in little-endian order (isLittleEndian()¹⁷) - whether the channels in an image are interleaved (isInterleaved()¹⁸) - the type of pixel data in this file (getPixelType()¹⁹) All file formats are guaranteed to accurately report core metadata. Format-specific metadata refers to any other data specified in the file - this includes acquisition and hardware parameters, among other things. This data is stored internally in a **java.util.Hashtable**, and can be accessed in one of two ways: individual values can be retrieved by calling getMetadataValue(String)²⁰, which gets the value of the specified key. Note that the keys in this Hashtable are different for each format, hence the name "format-specific metadata". See Bio-Formats metadata processing for more information on the metadata capabilities that Bio-Formats provides. ## 12.1.3 File reading extras The previous section described how to read pixels as they are stored in the file. However, the native format is not necessarily convenient, so Bio-Formats provides a few extras to make file reading more flexible. - There are a few "wrapper" readers (that implement IFormatReader) that take a reader in the constructor, and manipulate the results somehow, for convenience. Using them is similar to the java.io InputStream/OutputStream model: just layer whichever functionality you need by nesting the wrappers. - BufferedImageReader²¹ extends IFormatReader, and allows pixel data to be returned as BufferedImages instead of raw byte arrays. - FileStitcher²² extends IFormatReader, and uses advanced pattern matching heuristics to group files that belong to the same dataset. - ChannelSeparator²³ extends IFormatReader, and makes sure that all planes are grayscale RGB images are split into 3 separate grayscale images. - ChannelMerger²⁴ extends IFormatReader, and merges grayscale images to RGB if the number of channels is greater than 1. - ChannelFiller²⁵ extends IFormatReader, and converts indexed color images to RGB images. - MinMaxCalculator²⁶ extends IFormatReader, and provides an API for retrieving the minimum and maximum pixel values for each channel. - DimensionSwapper²⁷ extends IFormatReader, and provides an API for changing the dimension order of a file. - ImageTools²⁸ and loci.formats.gui.AWTImageTools²⁹ provide a number of methods for manipulating BufferedImages and primitive type arrays. In particular, there are methods to split and merge channels in a BufferedImage/array, as well as converting to a specific data type (e.g. convert short data to byte data). ¹³ http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#getSizeC() ¹⁴http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#getRGBChannelCount() ¹⁵ http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#getDimensionOrder() ¹⁶http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#isRGB() $^{^{17}} http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html \# is Little Endian () and the contract of contract$ ¹⁸ http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#isInterleaved() ¹⁹http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#getPixelType() ²⁰http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#getMetadataValue(java.lang.String) ²¹https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/gui/BufferedImageReader.java $^{{}^{22}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/FileStitcher.java$ $^{{}^{23}}https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/ChannelSeparator.java$ $^{^{24}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/Channel Merger.java$ ²⁵https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/ChannelFiller.java $^{{}^{26}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/MinMaxCalculator.java$ ²⁷https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/DimensionSwapper.java $^{{\}color{blue} 28
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats/ImageTools.javantas-bsd/src/loci/formats-bsd/src/loci/forma$ $^{^{29}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/gui/AWTImageTools.java$ # 12.1.4 Writing files The following file formats can be written using Bio-Formats: - TIFF (uncompressed, LZW, JPEG, or JPEG-2000) - OME-TIFF (uncompressed, LZW, JPEG, or JPEG-2000) - JPEG - PNG - AVI (uncompressed) - QuickTime (uncompressed is supported natively; additional codecs use QTJava) - Encapsulated PostScript (EPS) - OME-XML (not recommended) The writer API (see loci.formats.IFormatWriter³⁰) is very similar to the reader API, in that files are written one plane at time (rather than all at once). All writers allow the output file to be changed before the last plane has been written. This allows you to write to any number of output files using the same writer and output settings (compression, frames per second, etc.), and is especially useful for formats that do not support multiple images per file. Please see loci.formats.tools.ImageConverter³¹ and this guide to exporting to OME-TIFF files for examples of how to write files. # 12.1.5 Arcane notes and implementation details Known oddities: - Importing multi-file formats (Leica LEI, PerkinElmer, FV1000 OIF, ICS, and Prairie TIFF, to name a few) can fail if any of the files are renamed. There are "best guess" heuristics in these readers, but they are not guaranteed to work in general. So please do not rename files in these formats. - If you are working on a Macintosh, make sure that the data and resource forks of your image files are stored together. Bio-Formats does not handle separated forks (the native QuickTime reader tries, but usually fails). # 12.2 Generating test images Sometimes it is nice to have a file of a specific size or pixel type for testing. To generate a file (that contains gradient images): ``` touch "my-special-test-file&pixelType=uint8&sizeX=8192&sizeY=8192.fake" ``` Whatever is before the & is the image name; remaining key value pairs should be pretty self-explanatory. Just replace the values with whatever you need for testing. There are a few other keys that can be added as well: ³⁰ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/IFormatWriter.java $^{^{31}} https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-tools/src/loci/formats/tools/ImageConverter.javanta-tools/src/loci/formats/tools/ImageConverter.javanta-tools/src/loci/formats/tools/ImageConverter.javanta-tools/src/loci/formats/tools/ImageConverter.javanta-tools/src/loci/formats/tools/src/loci/formats/tools/src/loci/formats/tools/src/loci/formats/src/loci$ | Key | Value | |--------------|--| | sizeZ | number of Z sections | | sizeC | number of channels | | sizeT | number of timepoints | | bitsPerPixel | number of valid bits (<= number of bits implied by pixel type) | | rgb | number of channels that are merged together | | dimOrder | dimension order (e.g. XYZCT) | | little | whether or not the pixel data should be little-endian | | interleaved | whether or not merged channels are interleaved | | indexed | whether or not a color lookup table is present | | falseColor | whether or not the color lookup table is just for making the image look pretty | | series | number of series (Images) | | lutLength | number of entries in the color lookup table | You can often work with the .fake file directly, but in some cases support for those files is disabled and so you will need to convert the file to something else. Make sure that you have Bio-Formats built and the JARs in your CLASSPATH (individual JARs or just bioformats_package.jar): bfconvert test&pixelType=uint8&sizeX=8192&sizeY=8192.fake test.tiff If you do not have the command line tools installed, substitute loci.formats.tools.ImageConverter 32 for bfconvert. ³²https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-tools/src/loci/formats/tools/ImageConverter.java # **BIO-FORMATS AS A JAVA LIBRARY** # 13.1 API documentation # 13.1.1 Using Bio-Formats as a Java library If you wish to make use of Bio-Formats within your own software, you can download formats-gpl.jar 1 to use it as a library. Just add **formats-gpl.jar** to your CLASSPATH or build path. You will also need **common.jar** for common I/O functions, **ome-xml.jar** for metadata standardization, and SLF4J 2 for logging. There are also certain packages that if present will be utilized to provide additional functionality. To include one, just place it in the same folder. | Package | Filename | License | Notes | |---|---------------------------------|------------|----------------------------------| | Apache Jakarta POI ¹² library, OME | ome-poi.jar ¹³ | Apache | For OLE-based formats (zvi, oib, | | fork | | | ipw, cxd) | | MDB Tools project ¹⁴ Java port, | mdbtools-java.jar ¹⁵ | LGPL | For Olympus CellR and Zeiss LSM | | OME fork | | | metadata (mdb) | | JAI Image I/O Tools ¹⁶ pure Java im- | jai_imageio.jar ¹⁷ | BSD | For JPEG2000-based formats (nd2, | | plementation, OME fork | | | jp2) | | NetCDF Java library ¹⁸ | netcdf-4.3.19.jar ¹⁹ | LGPL | For HDF5-based formats (Imaris | | | | | 5.5, MINC MRI) | | QuickTime for Java ²⁰ | QTJava.zip | Commercial | For additional QuickTime codecs | See the list in the Bio-Formats toplevel build file 21 for a complete and up-to-date list of all optional libraries, which can all be found in our Git repository 22 . # **Examples of usage** ImageConverter²³ - A simple command line tool for converting between formats. ¹http://downloads.openmicroscopy.org/latest/bio-formats5/ ²http://slf4j.org/ ³http://jakarta.apache.org/poi/ ⁴http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/lastSuccessfulBuild/artifact/artifacts/ome-poi.jar ⁵http://sourceforge.net/projects/mdbtools ⁶http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/lastSuccessfulBuild/artifact/artifacts/mdbtools-java.jar ⁷http://java.net/projects/jai-imageio $^{{}^{8}}http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/lastSuccessfulBuild/artifact/artifacts/jai_imageio.jar$ ⁹http://www.unidata.ucar.edu/software/netcdf-java/ $^{^{10}}
http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/lastSuccessfulBuild/artifact/artifacts/netcdf-4.3.19. jarroughted to the control of contr$ ¹¹http://www.apple.com/quicktime/download/standalone.html ¹²http://jakarta.apache.org/poi/ ¹³http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/lastSuccessfulBuild/artifact/artifacts/ome-poi.jar ¹⁴http://sourceforge.net/projects/mdbtools $^{{}^{15}}http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/lastSuccessfulBuild/artifact/artifacts/mdbtools-java.jar.}$ ¹⁶ http://java.net/projects/jai-imageio ¹⁷http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/lastSuccessfulBuild/artifact/artifacts/jai_imageio.jar ¹⁸http://www.unidata.ucar.edu/software/netcdf-java/ ¹⁹http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/lastSuccessfulBuild/artifact/artifacts/netcdf-4.3.19.jar ²⁰http://www.apple.com/quicktime/download/standalone.html ²¹https://github.com/openmicroscopy/bioformats/blob/develop/build.xml ²²https://github.com/openmicroscopy/bioformats/blob/develop/jar ²³https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-tools/src/loci/formats/tools/ImageConverter.java ImageInfo²⁴ - A more involved command line utility for thoroughly reading an input file, printing some information about it, and displaying the pixels onscreen using the Bio-Formats viewer. MinimumWriter²⁵ - A command line utility demonstrating the minimum amount of metadata needed to write a file. PrintTimestamps²⁶ - A command line example demonstrating how to extract timestamps from a file. Simple_Read²⁷ - A simple ImageJ plugin demonstrating how to use Bio-Formats to read files into ImageJ (see *ImageJ overview*). Read_Image²⁸ - An ImageJ plugin that uses Bio-Formats to build up an image stack, reading image planes one by one (see *ImageJ overview*). Mass_Importer²⁹ - A simple plugin for ImageJ that demonstrates how to open all image files in a directory using Bio-Formats, grouping files with similar names to avoiding opening the same dataset more than once (see *ImageJ overview*). # A Note on Java Web Start (bioformats_package.jar vs. formats-gpl.jar) To use Bio-Formats with your Java Web Start application, we recommend using **formats-gpl.jar** rather than **bioformats-package.jar**—the latter is merely a bundle of **formats-gpl.jar** plus all its optional dependencies. The **bioformats_package.jar** bundle is intended as a convenience (e.g. to simplify installation as an ImageJ plugin), but is by no means the only solution for developers. We recommend using **formats-gpl.jar** as a separate entity depending on your needs as a developer. The bundle is quite large because we have added support for several formats that need large helper libraries (e.g. Imaris' HDF-based format). However, these additional libraries are optional; Bio-Formats has been coded using reflection so that it can both compile and run without them. When deploying a JNLP-based application, using **bioformats_package.jar** directly is not the best approach, since every time Bio-Formats is updated, the server would need to feed another 15+ MB JAR file to the client. Rather, Web Start is a case where you should keep the JARs separate, since JNLP was designed to make management of JAR dependencies trivial for the end user. By keeping **formats-gpl.jar** and the optional dependencies separate, only a <1 MB JAR needs to be updated when **formats-gpl.jar** changes. As a developer, you have the option of packaging **formats-gpl.jar** with as many or as few optional libraries as you wish, to cut down on file size as needed. You are free to make whatever kind of "stripped down" version you require. You could even build a custom **formats-gpl.jar** that excludes certain classes, if you like. For an explicit enumeration of all the optional libraries included in **bioformats_package.jar**, see the package.libraries variable of the ant/toplevel.properties 30 file of the distribution. You can also read our notes about each in the source distribution's Ant build.xml 31 script. Also see Bio-Formats Javadocs³² # 13.2 Examples # 13.2.1 Exporting files using Bio-Formats This guide pertains to version 4.2 and later. #### **Basic conversion** The first thing we need to do is set up a reader: ²⁴https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-tools/src/loci/formats/tools/ImageInfo.java $^{^{25}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/utils/MinimumWriter.java$ ²⁶https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/utils/PrintTimestamps.java ²⁷https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Simple_Read.java ²⁸https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Read_Image.java ²⁹https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-plugins/utils/Mass_Importer.java ³⁰https://github.com/openmicroscopy/bioformats/blob/develop/ant/toplevel.properties ³¹https://github.com/openmicroscopy/bioformats/blob/develop/build.xml#L240 ³²http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/ ``` // create a reader that will automatically handle any supported format IFormatReader reader = new ImageReader(); // tell the reader where to store the metadata from the dataset MetadataStore metadata; try { ServiceFactory factory = new ServiceFactory(); OMEXMLService service = factory.getInstance(OMEXMLService.class); metadata = service.createOMEXMLMetadata(); catch (DependencyException exc) { throw new FormatException("Could not create OME-XML store.", exc); catch (ServiceException exc) { throw new FormatException("Could not create OME-XML store.", exc); reader.setMetadataStore(metadata); // initialize the dataset reader.setId("/path/to/file"); Now, we set up our writer: // create a writer that will automatically handle any supported output format IFormatWriter writer = new ImageWriter(); // give the writer a MetadataRetrieve object, which encapsulates all of the // dimension information for the dataset (among many other things) writer.setMetadataRetrieve(MetadataTools.asRetrieve(reader.getMetadataStore())); // initialize the writer writer.setId("/path/to/output/file"); ``` Note that the extension of the file name passed to 'writer.setId(...)' determines the file format of the exported file. Now that everything is set up, we can start writing planes: ``` for (int series=0; series<reader.getSeriesCount(); series++) { reader.setSeries(series); writer.setSeries(series); for (int image=0; image<reader.getImageCount(); image++) { writer.saveBytes(image, reader.openBytes(image)); } }</pre> ``` Finally, make sure to close both the reader and the writer. Failure to do so can cause: - file handle leaks - · memory leaks - · truncated output files Fortunately, closing the files is very easy: ``` reader.close(); writer.close(); ``` ## **Converting large images** The flaw in the previous example is that it requires an image plane to be fully read into memory before it can be saved. In many cases this is fine, but if you are working with very large images (especially > 4 GB) this is problematic. The solution is to break each image plane into a set of reasonably-sized tiles and save each tile separately - thus substantially reducing the amount of memory required for conversion. For now, we'll assume that your tile size is 1024 x 1024, though in practice you will likely want to adjust this. Assuming you have an IFormatReader and IFormatWriter set up as in the previous example, let's start writing planes: ``` int tileWidth = 1024; int tileHeight = 1024; for (int series=0; series<reader.getSeriesCount(); series++) {</pre> reader.setSeries(series); writer.setSeries(series); // determine how many tiles are in each image plane // for simplicity, we'll assume that the image width and height are // multiples of 1024 int tileRows = reader.getSizeY() / tileHeight; int tileColumns = reader.getSizeX() / tileWidth; for (int image=0; image<reader.getImageCount(); image++) {</pre> for (int row=0; row<tileRows; row++) {</pre> for (int col=0; col<tileColumns; col++) {</pre> // open a tile - in addition to the image index, we need to specify // the (x, y) coordinate of the upper left corner of the tile, // along with the width and height of the tile int xCoordinate = col * tileWidth; int yCoordinate = row * tileHeight; byte[] tile = reader.openBytes(image, xCoordinate, yCoordinate, tileWidth, tileHeight); writer.saveBytes(image, tile, xCoordinate, yCoordinate, tileWidth, tileHeight); } } } ``` As noted, the example assumes that the width and height of the image are multiples of the tile dimensions. Be careful, as this is not always the case; the last column and/or row may be smaller than preceding columns/rows. An exception will be thrown if you attempt to read or write a tile that is not completely contained by the original image plane. Most writers perform best if the tile width is equal to the image width, although specifying any valid width should work. As before, you need to close the reader and writer. ## Converting to multiple files The recommended method of converting to multiple files is to use a single IFormatWriter, like so: ``` // you should have set up a reader as in the first example ImageWriter writer = new ImageWriter(); writer.setMetadataRetrieve(MetadataTools.asRetrieve(reader.getMetadataStore())); // replace this with your own filename definitions // in this example, we're going to write half of the planes to one file // and half of the planes to another file String[] outputFiles = new String[] {"/path/to/file/1.tiff", "/path/to/file/2.tiff"}; writer.setId(outputFiles[0]); int planesPerFile = reader.getImageCount() / outputFiles.length; for (int file=0; file<outputFiles.length; file++) { writer.changeOutputFile(outputFiles[file]);</pre> ``` ``` for (int image=0; image<planesPerFile; image++) { int index = file * planesPerFile + image;
writer.saveBytes(image, reader.openBytes(index)); } } reader.close(); writer.close();</pre> ``` The advantage here is that the relationship between the files is preserved when converting to formats that support multi-file datasets internally (namely OME-TIFF). If you are only converting to graphics formats (e.g. JPEG, AVI, MOV), then you could also use a separate IFormatWriter for each file, like this: ``` // again, you should have set up a reader already String[] outputFiles = new String[] {"/path/to/file/1.avi", "/path/to/file/2.avi"}; int planesPerFile = reader.getImageCount() / outputFiles.length; for (int file=0; file<outputFiles.length; file++) { ImageWriter writer = new ImageWriter(); writer.setMetadataRetrieve(MetadataTools.asRetrieve(reader.getMetadataStore())); writer.setId(outputFiles[file]); for (int image=0; image<planesPerFile; image++) { int index = file * planesPerFile + image; writer.saveBytes(image, reader.openBytes(index)); } writer.close(); }</pre> ``` #### **Known issues** List of Trac tickets³³ ## 13.2.2 Further details on exporting raw pixel data to OME-TIFF files This document explains how to export pixel data to OME-TIFF using Bio-Formats version 4.2 and later. The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows: ``` ServiceFactory factory = new ServiceFactory(); OMEXMLService service = factory.getInstance(OMEXMLService.class); IMetadata omexml = service.createOMEXMLMetadata(); ``` The 'omexml' object can now be used in our code to store OME-XML metadata, and by the file format writer to retrieve OME-XML metadata. Now that we have somewhere to put metadata, we need to populate as much metadata as we can. The minimum amount of metadata required is: - endianness of the pixel data - · the order in which dimensions are stored - the bit depth of the pixel data - the number of channels - the number of timepoints - the number of Z sections export&component=Bio- $^{^{33}} http://trac.openmicroscopy.org.uk/ome/query?status=accepted\&status=new\&status=reopened\&keywords=Formats\&col=id\&col=summary\&col=status\&col=type\&col=priority\&col=milestone\&col=component\&order=priority&col=milestone&col=component&col=status&col=type&col=priority&col=milestone&col=component&col=status&col=type&col=priority&col=milestone&col=component&col=status&col=type&col=priority&col=milestone&col=component&col=status&col=type&col=priority&col=milestone&col=component&col=status&col=type&col=priority&col=milestone&col=component&col=status&col=type&col=priority&col=milestone&col=component&col=status&col=type&col=priority&col=milestone&col=component&col=status&col=type&col=priority&col=milestone&col=component&col=status&col=type&col=priority&col=milestone&col=component&col=status&col=type&col=priority&col=milestone&col=component&col=status&col=type&col=priority&col=milestone&col=component&col=type&col=priority&col=milestone&col=component&col=type&col=priority&col=milestone&col=type&c$ - the width (in pixels) of an image - the height (in pixels) of an image - the number of samples per channel (3 for RGB images, 1 otherwise) We populate that metadata as follows: ``` omexml.setImageID("Image:0", 0); omexml.setPixelsID("Pixels:0", 0); // specify that the pixel data is stored in big-endian order // replace 'TRUE' with 'FALSE' to specify little-endian order omexml.setPixelsBinDataBigEndian(Boolean.TRUE, 0, 0); omexml.setPixelsDimensionOrder(DimensionOrder.XYCZT, 0); omexml.setPixelsType(PixelType.UINT16, 0); omexml.setPixelsSizeX(new PositiveInteger(width), 0); omexml.setPixelsSizeY(new PositiveInteger(height), 0); omexml.setPixelsSizeZ(new PositiveInteger(zSectionCount), 0); omexml.setPixelsSizeC(new PositiveInteger(channelCount ' samplesPerChannel), 0); omexml.setPixelsSizeT(new PositiveInteger(timepointCount), 0); for (int channel=0; channel<channelCount; channel++) {</pre> omexml.setChannelID("Channel:0:" + channel, 0, channel); omexml.setChannelSamplesPerPixel(new PositiveInteger(samplesPerChannel), 0, channel); ``` There is much more metadata that can be stored; please see the Javadoc for loci.formats.meta.MetadataStore for a complete list. Now that we have defined all of the metadata, we need to create a file writer: ``` ImageWriter writer = new ImageWriter(); ``` Now we must associate the 'omexml' object with the file writer: ``` writer.setMetadataRetrieve(omexml); ``` The writer now knows to retrieve any metadata that it needs from 'omexml'. We now tell the writer which file it should write to: ``` writer.setId("output-file.ome.tiff"); ``` It is critical that the file name given to the writer ends with ".ome.tiff" or ".ome.tiff", as it is the file name extension that determines which format will be written. Now that everything is set up, we can save the image data. This is done plane by plane, and we assume that the pixel data is stored in a 2D byte array 'pixelData': ``` int sizeC = omexml.getPixelsSizeC(0).getValue(); int sizeZ = omexml.getPixelsSizeZ(0).getValue(); int sizeT = omexml.getPixelsSizeT(0).getValue(); int samplesPerChannel = omexml.getChannelSamplesPerPixel(0).getValue(); sizeC /= samplesPerChannel; int imageCount = sizeC * sizeZ * sizeT; for (int image=0; image<imageCount; image++) {</pre> ``` ``` writer.saveBytes(image, pixelData[image]); } ``` Finally, we must tell the writer that we are finished, so that the output file can be properly closed: ``` writer.close(); ``` There should now be a complete OME-TIFF file at whichever path was specified above. ## 13.2.3 Converting files from FV1000 OIB/OIF to OME-TIFF This document explains how to convert a file from FV1000 OIB/OIF to OME-TIFF using Bio-Formats version 4.2 and later. The first thing that must happen is we must create the object that stores OME-XML metadata. This is done as follows: ``` ServiceFactory factory = new ServiceFactory(); OMEXMLService service = factory.getInstance(OMEXMLService.class); IMetadata omexml = service.createOMEXMLMetadata(); ``` The 'omexml' object can now be used by both a file format reader and a file format writer for storing and retrieving OME-XML metadata. Now that have somewhere to put metadata, we need to create a file reader and writer: ``` ImageReader reader = new ImageReader(); ImageWriter writer = new ImageWriter(); ``` Now we must associate the 'omexml' object with the file reader and writer: ``` reader.setMetadataStore(omexml); writer.setMetadataRetrieve(omexml); ``` The reader now knows to store all of the metadata that it parses into 'omexml', and the writer knows to retrieve any metadata that it needs from 'omexml'. We now tell the reader and writer which files will be read from and written to, respectively: ``` reader.setId("input-file.oib"); writer.setId("output-file.ome.tiff"); ``` It is critical that the file name given to the writer ends with ".ome.tiff" or ".ome.tiff", as it is the file name extension that determines which format will be written. Now that everything is set up, we can convert the image data. This is done plane by plane: ``` for (int series=0; series<reader.getSeriesCount(); series++) { reader.setSeries(series); writer.setSeries(series); byte[] plane = new byte[FormatTools.getPlaneSize(reader)]; for (int image=0; image<reader.getImageCount(); image++) { reader.openBytes(image, plane); writer.saveBytes(image, plane); } }</pre> ``` The body of the outer 'for' loop may also be replaced with the following: ``` reader.setSeries(series); writer.setSeries(series); for (int image=0; image<reader.getImageCount(); image++) { byte[] plane = reader.openBytes(image); writer.saveBytes(image, plane); }</pre> ``` But note that this will be a little slower. Finally, we must tell the reader and writer that we are finished, so that the input and output files can be properly closed: ``` reader.close(); writer.close(); ``` There should now be a complete OME-TIFF file at whichever path was specified above. ## 13.2.4 Using Bio-Formats in MATLAB This section assumes that you have installed the MATLAB toolbox as instructed in the *MATLAB user information page*. Note the minimum supported MATLAB version is R2007b (7.5). #### **Increasing JVM memory settings** The default JVM settings in MATLAB can result in java.lang.OutOfMemoryError: Java heap space exceptions when opening large image files using Bio-Formats. Information about the Java heap space usage in MATLAB can be retrieved using: ``` java.lang.Runtime.getRuntime.maxMemory ``` Default JVM settings can be increased by creating a java.opts file in the startup directory and overriding the default memory settings. We recommend using -Xmx512m in your java.opts file. #### See also: http://www.mathworks.com/matlabcentral/answers/92813 How do I increase the heap space for the Java VM in MATLAB 6.0 (R12) and later versions? #### Opening an image file The first thing to do is initialize a file with the bfopen³⁴ function: ``` data = bfopen('/path/to/data/file'); ``` This
function returns an n-by-4 cell array, where n is the number of series in the dataset. If s is the series index between 1 and n: - The data{s, 1} element is an m-by-2 cell array, where m is the number of planes in the s-th series. If t is the plane index between 1 and m: - The data $\{s, 1\}\{t, 1\}$ element contains the pixel data for the t-th plane in the s-th series. - The data $\{s, 1\}\{t, 2\}$ element contains the label for the t-th plane in the s-th series. - The data{s, 2} element contains original metadata key/value pairs that apply to the s-th series. - The data{s, 3} element contains color lookup tables for each plane in the s-th series. ³⁴https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfopen.m • The data{s, 4} element contains a standardized OME metadata structure, which is the same regardless of the input file format, and contains common metadata values such as physical pixel sizes - see *OME metadata* below for examples. #### **Accessing planes** Here is an example of how to unwrap specific image planes for easy access: ``` data = bfopen('/path/to/data/file'); seriesCount = size(data, 1); series1 = data{1, 1}; series2 = data{2, 1}; series3 = data{3, 1}; metadataList = data{1, 2}; % ...etc. series1_planeCount = size(series1, 1); series1_plane1 = series1{1, 1}; series1_label1 = series1{1, 2}; series1_plane2 = series1{2, 1}; series1_label2 = series1{2, 2}; series1_plane3 = series1{3, 1}; series1_label3 = series1{3, 2}; % ...etc. ``` #### **Displaying images** If you want to display one of the images, you can do so as follows: ``` data = bfopen('/path/to/data/file'); % plot the 1st series's 1st image plane in a new figure series1 = data{1, 1}; series1_plane1 = series1{1, 1}; series1_label1 = series1{1, 2}; series1_colorMaps = data{1, 3}; figure('Name', series1_label1); if (isempty(series1_colorMaps{1})) colormap(gray); else colormap(series1_colorMaps{1}); end imagesc(series1_plane1); ``` This will display the first image of the first series with its associated color map (if present). If you would prefer not to apply the color maps associated with each image, simply comment out the calls to colormap. If you have the image processing toolbox, you could instead use: ``` imshow(series1_plane1, []); ``` You can also create an animated movie (assumes 8-bit unsigned data): ``` v = linspace(0, 1, 256)'; cmap = [v v v]; for p = 1 : size(series1, 1) M(p) = im2frame(uint8(series1{p, 1}), cmap); end movie(M); ``` #### Retrieving metadata There are two kinds of metadata: - Original metadata is a set of key/value pairs specific to the input format of the data. It is stored in the data{s, 2} element of the data structure returned by bfopen. - **OME metadata** is a standardized metadata structure, which is the same regardless of input file format. It is stored in the data {s, 4} element of the data structure returned by bfopen, and contains common metadata values such as physical pixel sizes, instrument settings, and much more. See the OME Model and Formats³⁵ documentation for full details. **Original metadata** To retrieve the metadata value for specific keys: ``` data = bfopen('/path/to/data/file'); % Query some metadata fields (keys are format-dependent) metadata = data{1, 2}; subject = metadata.get('Subject'); title = metadata.get('Title'); ``` To print out all of the metadata key/value pairs for the first series: ``` data = bfopen('/path/to/data/file'); metadata = data{1, 2}; metadataKeys = metadata.keySet().iterator(); for i=1:metadata.size() key = metadataKeys.nextElement(); value = metadata.get(key); fprintf('%s = %s\n', key, value) end ``` **OME metadata** Conversion of metadata to the OME standard is one of Bio-Formats' primary features. The OME metadata is always stored the same way, regardless of input file format. To access physical voxel and stack sizes of the data: ``` data = bfopen('/path/to/data/file'); omeMeta = data{1, 4}; stackSizeX = omeMeta.getPixelsSizeX(0).getValue(); % image width, pixels stackSizeY = omeMeta.getPixelsSizeY(0).getValue(); % image height, pixels stackSizeZ = omeMeta.getPixelsSizeZ(0).getValue(); % number of Z slices voxelSizeX = omeMeta.getPixelsPhysicalSizeX(0).getValue(); % in µm voxelSizeY = omeMeta.getPixelsPhysicalSizeY(0).getValue(); % in µm voxelSizeZ = omeMeta.getPixelsPhysicalSizeZ(0).getValue(); % in µm ``` For more information about the methods to retrieve the metadata, see the MetadataRetrieve³⁶ Javadoc page. To convert the OME metadata into a string, use the dumpXML () method: ``` omeXML = char(omeMeta.dumpXML()); ``` #### Reading from an image file The main inconvenience of the bfopen.m³⁷ function is that it loads all the content of an image regardless of its size. ³⁵http://www.openmicroscopy.org/site/support/ome-model/ $^{^{36}} http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/meta/MetadataRetrieve.html$ $^{^{37}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfopen.m$ To access the file reader without loading all the data, use the low-level bfGetReader.m³⁸ function: ``` reader = bfGetReader('path/to/data/file'); ``` You can then access the OME metadata using the <code>getMetadataStore()</code> method: ``` omeMeta = reader.getMetadataStore(); ``` Individual planes can be queried using the bfGetPlane.m³⁹ function: ``` series1_plane1 = bfGetPlane(reader, 1); ``` #### Saving files The basic code for saving a 5D array into an OME-TIFF file is located in the bfsave.m⁴⁰ function. For instance, the following code will save a single image of 64 pixels by 64 pixels with 8 unsigned bits per pixels: ``` plane = zeros(64, 64, 'uint8'); bfsave(plane, 'my-file.ome.tiff'); ``` And the following code snippet will produce an image of 64 pixels by 64 pixels with 2 channels and 2 timepoints: ``` plane = zeros(64, 64, 1, 2, 2, 'uint8'); bfsave(plane, 'my-file.ome.tiff'); ``` For more information about the methods to store the metadata, see the MetadataStore⁴¹ Javadoc page. ## 13.2.5 Source code If you are interested in the latest Bio-Formats source code from our Git⁴² repository, you can access it using the repository path: ``` git@github.com:openmicroscopy/bioformats.git ``` You can also browse the Bio-Formats source on GitHub⁴³ To build the code, you can use our Ant build script—try "ant -p" for a list of targets. In general, "ant jars" or "ant tools" is the correct command. Lastly, you can browse the Bio-Formats Javadocs online⁴⁴, or generate them yourself using the "docs" Ant target. $^{^{38}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfGetReader.m$ ³⁹https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfGetPlane.m $^{^{40}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/matlab/bfsave.m$ $^{^{41}} http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/meta/MetadataStore.html\\$ ⁴²http://git-scm.com/ ⁴³https://github.com/openmicroscopy/bioformats ⁴⁴http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/ ## INTERFACING FROM NON-JAVA CODE # 14.1 Interfacing with Bio-Formats from non-Java code Bio-Formats is written in Java, and is easiest to use with other Java code. However, it is possible to call Bio-Formats from a program written in another language. But how to do so depends on your program's needs. Technologically, there are two broad categories of solutions: **in-process** approaches, and **inter-process** communication. For details, see LOCI's article Interfacing from non-Java code¹. Recommended **in-process solution**: *Bio-Formats C++ bindings* Recommended inter-process solution: Subimager ## 14.2 Bio-Formats C++ bindings To make Bio-Formats accessible to software written in C++, we have created a Bio-Formats C++ interface (BF-CPP for short). It uses LOCI's jar2lib² program to generate a C++ proxy class for each equivalent Bio-Formats Java class. The resulting proxies are then compiled into a library, which represents the actual interface from C++ to Bio-Formats. Using this library in your projects gives you access to the image support of Bio-Formats. BF-CPP comes with some standalone examples which you can use as a starting point in your own project: - showinf³ - minimum writer⁴ Other projects using BF-CPP include: - WiscScan⁵ which uses BF-CPP to write OME-TIFF⁶ files. - XuvTools which uses an adapted version of BF-CPP called BlitzBioFormats⁷. See the *build instructions* (*Windows*, *Mac OS X*, *Linux*) for details on compiling BF-CPP from source. Once this is done, simply include it in your project as you would any other external library. # 14.3 Build instructions for C++ bindings This package provides language bindings for calling into the Bio-Formats Java library from C++ in a cross-platform manner. As of this writing the bindings are functional with GCC on Linux and Mac OS X systems, as well as with Visual C++ 2005 and Visual C++ 2008 on Windows. ¹http://loci.wisc.edu/software/interfacing-non-java-code ²http://loci.wisc.edu/software/jar2lib $^{^3} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/cppwrap/showinf.cpp which is a superscript of the property proper$ $^{^4} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/cppwrap/minimum_writer.cpp$ ⁵http://loci.wisc.edu/software/wiscscan ⁶http://www.openmicroscopy.org/site/support/ome-model/ome-tiff ⁷http://www.xuvtools.org/devel:libblitzbioformats ## 14.3.1 Compile-time dependencies To build the Bio-Formats C++ bindings from source, the following modules are required: - Apache Maven⁸ Maven is a software project management and comprehension tool. Along with Ant, it is one of the supported build systems for the Bio-Formats Java library, and is used to generate the Bio-Formats C++ bindings. - CMake⁹ CMake is a cross-platform, open source build system generator, commonly used to build C++ projects in a
platform-independent manner. CMake supports GNU make as well as Microsoft Visual Studio, allowing the Bio-Formats C++ bindings to be compiled on Windows, Mac OS X, Linux and potentially other platforms. - Boost Thread¹⁰ Boost is a project providing open source portable C++ source libraries. It has become a suite of de facto standard libraries for C++. The Bio-Formats C++ bindings require the Boost Thread module in order to handle C++ threads in a platform independent way. - Java Development Kit¹¹ At runtime, only the Java Runtime Environment (JRE) is necessary to execute the Bio-Formats code. However, the full J2SE development kit is required at compile time on some platforms (Windows in particular), since it comes bundled with the JVM shared library (jvm.lib) necessary to link with Java. For information on installing these dependencies, refer to the page for your specific platform: Windows, Mac OS X, Linux. #### 14.3.2 How to build The process of building the Bio-Formats C++ bindings is divided into two steps: - 1. Generate a C++ project consisting of "proxies" which wrap the Java code. This step utilizes the Maven project management tool, specifically a Maven plugin called cppwrap. - 2. Compile this generated C++ project. This step utilizes the cross-platform CMake build system. For details on executing these build steps, refer to the page for your specific platform: Windows, Mac OS X, Linux. #### 14.3.3 Build results If all goes well, the build system will: - 1. Generate the Bio-Formats C++ proxy classes; - 2. Build the Jace C++ library; - 3. Build the Java Tools C++ library; - 4. Build the Bio-Formats C++ shared library; - 5. Build the showinf and minimum_writer command line tools, for testing the functionality. Please be patient, as the build may require several minutes to complete. Afterwards, the dist/formats-bsd subdirectory will contain the following files: - 1. libjace.so / libjace.jnilib / jace.dll: Jace shared library - 2. libformats-bsd.so / libformats-bsd.dylib / formats-bsd.dll: C++ shared library for BSD-licensed readers and writers - 3. jace-runtime.jar: Jace Java classes needed at runtime - 4. bioformats_package.jar: Bio-Formats Java library needed at runtime - 5. libjtools.so / libjtools.jnilib / jtools.dll: Java Tools shared library - 6. **showinf / showinf.exe**: Example command line application - 7. minimum writer / minimum writer.exe: Example command line application Items 1-4 are necessary and required to deploy Bio-Formats with your C++ application. Item 5 (jtools) is a useful helper library for managing the Java virtual machine from C++, but is not strictly necessary to use Bio-Formats. All other files, including the example programs and various build files generated by CMake, are not needed. If you prefer, instead of using the bioformats_package.jar bundle, you can provide individual JAR files as appropriate for your application. For details, see *using Bio-Formats as a Java library*. Please direct any questions to the OME team on the forums¹² or mailing lists¹³. ## 14.4 Building C++ bindings in Windows ## 14.4.1 Compile-time dependencies – Windows Windows users will need to visit the appropriate web sites and download and install the relevant binaries for all the dependencies. To configure the tools, you will need to edit or create several environment variables on your system. Access them by clicking the "Environment Variables" button from Control Panel, System, Advanced tab. Use semicolons to separate multiple directories in the PATH variable. ## 14.4.2 Compile-time dependencies – Windows – Maven Download Mayen¹⁴. Unpack the Maven archive into your Program Files, then add the folder's bin subdirectory to your PATH environment variable; e.g.: C:\Program Files\apache-maven-3.0.4\bin Once set, new Command Prompts will recognize "mvn" as a valid command. ## 14.4.3 Compile-time dependencies – Windows – CMake Download and run the CMake installer¹⁵. During installation, select the "Add CMake to the system PATH for all users" option to ensure that Bio-Formats build system can find your CMake executable. Once installed, new Command Prompts will recognize "cmake" and "cmake-gui" as valid commands. #### 14.4.4 Compile-time dependencies – Windows – Boost The easiest way to install the Boost Thread library on Windows is to use the free installer from BoostPro¹⁶. When running the installer: - Under "Compilers," check the version of Visual C++ matching your system. - Under "Variants," check all eight boxes. - When choosing components, check "Boost DateTime" and "Boost Thread." ## 14.4.5 Compile-time dependencies – Windows – Java Development Kit Download and install the JDK¹⁷. After the installation is complete, create a new environment variable called JAVA_HOME pointing to your Java installation; e.g.: C:\Program Files\Java\jdk1.6.0_25 Setting JAVA_HOME is the easiest way to ensure that Maven can locate Java. You will also need to append your JDK's client or server VM folder to the PATH; e.g.: %JAVA_HOME%\jre\bin\client ¹²http://www.openmicroscopy.org/community/ ¹³ http://lists.openmicroscopy.org.uk/mailman/listinfo/ ¹⁴http://maven.apache.org/ ¹⁵ http://cmake.org/ ¹⁶http://www.boostpro.com/download/ ¹⁷http://www.oracle.com/technetwork/java/javase/downloads/ This step ensures that a directory containing jvm.dll is present in the PATH. If you do not perform this step, you will receive a runtime error when attempting to initialize a JVM from native code. Optionally, you can add the bin subdirectory to the PATH; e.g.: ``` %JAVA HOME%\bin ``` Once set, new Command Prompts will recognize (e.g.) "javac" as a valid command. ## 14.4.6 Compile-time dependencies – Windows – Visual C++ In addition to the other prerequisites, you will also need a working copy of Visual C++. We have tested compilation with Visual C++ 2005 Professional and Visual C++ 2008 Express; other versions may or may not work. You can download Visual C++ Express for free¹⁸. You must launch the environment at least once before you will be able to compile the Bio-Formats C++ bindings. #### 14.4.7 How to build - Windows Run Command Prompt and change to your Bio-Formats working copy. Then run: ``` # generate the Bio-Formats C++ bindings cd components\formats-bsd mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap # build the Bio-Formats C++ bindings cd target\cppwrap mkdir build cd build cmake-gui .. ``` The CMake GUI will open. Click the Configure button, and a dialog will appear. Select your installed version of Visual Studio, and click Finish. When configuring, you can use the J2L_WIN_BUILD_DEBUG flag to indicate if this will be a Debug or Release build. If the flag is checked it will build as Debug, unchecked will build as Release. Once configuration is complete, click Configure again, repeating as necessary until the Generate button becomes available. Then click Generate. Once generation is complete, close the CMake window. Back at the Command Prompt, type: ``` start jace.sln ``` The solution will then open in Visual Studio. Select Release or Debug as appropriate from the drop-down menu. Press F7 to compile (or select Build Solution from the Build menu). # 14.5 Building C++ bindings in Mac OS X ### 14.5.1 Compile-time dependencies – Mac OS X To install dependencies on Mac OS X, we advise using Homebrew¹⁹: brew install maven cmake boost Unless otherwise configured, this will install binaries into /usr/local/. ¹⁸ http://www.microsoft.com/express/ ¹⁹https://github.com/mxcl/homebrew/ #### 14.5.2 How to build - Mac OS X The following commands will generate and build the Bio-Formats C++ bindings: ``` # generate the C++ bindings cd components/formats-bsd mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap # compile the C++ bindings cd target/cppwrap mkdir build cd build cmake .. make ``` # 14.6 Building C++ bindings in Linux ## 14.6.1 Compile-time dependencies – Linux The following directions are specific to Ubuntu Linux. Other Linux distributions may have similar packages available; check your package manager. To install dependencies on Ubuntu Linux, execute: ``` # install code generation prerequisites sudo aptitude install maven2 # install build prerequisites sudo aptitude install build-essential cmake libboost-thread-dev # install Java Development Kit sudo aptitude install sun-java6-jdk sudo update-alternatives --config java ``` Then select Sun's Java implementation as the system default. It may be possible to use a different Java compiler (i.e., omit the sun-java6-jdk package and update-alternatives step), but we have only tested the compilation process with Sun's Java compiler. #### 14.6.2 How to build - Linux The following commands will generate and build the Bio-Formats C++ bindings: ``` # generate the Bio-Formats C++ bindings cd components/formats-bsd mvn -DskipTests package dependency:copy-dependencies cppwrap:wrap # build the Bio-Formats C++ bindings cd target/cppwrap mkdir build cd build cmake .. make ``` ## WRITING NEW BIO-FORMATS FILE FORMAT READERS # 15.1 Bio-Formats file format reader guide This document is a brief guide to writing new Bio-Formats file format readers. All format readers should extend either loci.formats.FormatReader¹ or a reader in loci.formats.in². #### 15.1.1 Methods to override - boolean isSingleFile(String id)³ Whether or not the named file is expected to be the only file in the dataset. This only needs to be overridden for formats whose datasets can contain more than one file. - boolean isThisType(RandomAccessInputStream)⁴ Check the first few bytes of a file to determine if the file can be read by this reader. You can assume that index 0 in the stream corresponds to the index 0 in the file. Return true if the file can be read; false if not (or if there is no way of checking). - int fileGroupOption(String id)⁵ Returns an indication of whether or not the files in a multi-file dataset can be handled individually. The return value should be one of the following: -
FormatTools.MUST_GROUP: the files cannot be handled separately - FormatTools.CAN_GROUP: the files may be handled separately or as a single unit - Format Tools. CANNOT GROUP: the files must be handled separately This method only needs to be overridden for formats whose datasets can contain more than one file. - String[] getSeriesUsedFiles(boolean noPixels)⁶ You only need to override this if your format uses multiple files in a single dataset. This method should return a list of all files associated with the given file name and the current series (i.e. every file needed to display the current series). If the noPixels flag is set, then none of the files returned should contain pixel data. For an example of how this works, see loci.formats.in.PerkinElmerReader⁷. It is recommended that the first line of this method be FormatTools.assertId(currentId, true, 1) this ensures that the file name is non-null. - byte[] openBytes(int, byte[], int, int, int, int) Returns a byte array containing the pixel data for a subimage specified image from the given file. The dimensions of the subimage (upper left X coordinate, upper left Y coordinate, width, and height) are specified in the final four int parameters. This should throw a FormatException if the image number is invalid (less than 0 or >= the number of images). The ordering of the array returned by openBytes should correspond to the values returned by isLittleEndian() and isInterleaved(). Also, the length of the byte array should be [image width* image height* bytes per pixel]. Extra bytes will generally be truncated. It is recommended that the first line of this method be FormatTools.checkPlaneParameters(this, no, buf.length, x, y, w, h) this ensures that all of the parameters are valid. $^{{}^{1}}https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/FormatReader.javants-api/src/loci/formats/fo$ ²https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ ³http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#isSingleFile(java.lang.String) ⁴http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#isThisType(loci.common.RandomAccessInputStream) ⁵http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#fileGroupOption(java.lang.String) ⁶http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#getSeriesUsedFiles(boolean) ⁷https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/PerkinElmerReader.java ⁸ http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#openBytes(int, byte[], int, int, int, int, int) • protected void initFile(String)⁹ The majority of the file parsing logic should be placed in this method. The idea is to call this method once (and only once!) when the file is first opened. Generally, you will want to start by calling super.initFile(String). You will also need to set up the stream for reading the file, as well as initializing any dimension information and metadata. Most of this logic is up to you; however, you should populate the 'core' variable (see loci.formats.CoreMetadata¹⁰). Note that each variable is initialized to 0 or null when super.initFile(String) is called. Also, super.initFile(String) constructs a Hashtable called "metadata" where you should store any relevant metadata. • public void close(boolean fileOnly)¹¹ Cleans up any resources used by the reader. Global variables should be reset to their initial state, and any open files or delegate readers should be closed. Note that if the new format is a variant of a format currently supported by Bio-Formats, it is more efficient to make the new reader a subclass of the existing reader (rather than subclassing FormatReader¹²). In this case, it is usually sufficient to override initFile(String) and isThisType(byte[]). Every reader also has an instance of loci.formats.CoreMetadata¹³. All readers should populate the fields in CoreMetadata, which are essential to reading image planes. If you read from a file using something other than RandomAccessInputStream 14 or Location 15, you *must* use the file name returned by Location.getMappedId(String), not the file name passed to the reader. Thus, a stub for initFile(String) might look like this: ``` protected void initFile(String id) throws FormatException, IOException { super.initFile(id); RandomAccessInputStream in = new RandomAccessInputStream(id); // alternatively, //FileInputStream in = new FileInputStream(Location.getMappedId(id)); // read basic file structure and metadata from stream } ``` For more details, see the Bio-Formats Javadocs¹⁶ for Location.mapId(String, String) and Location.getMappedId(String). #### 15.1.2 Variables to populate There are a number of global variables defined in loci.formats.FormatReader¹⁷ that should be populated in the constructor of any implemented reader. These variables are: - boolean suffixNecessary Indicates whether or not a file name suffix is required; true by default - boolean suffixSufficient Indicates whether or not a specific file name suffix guarantees that this reader can open a particular file; true by default - boolean hasCompanionFiles Indicates whether or not there is at least one file in a dataset of this format that contains only metadata (no images); false by default - String datasetDescription A brief description of the layout of files in datasets of this format; only necessary for multi-file datasets - \bullet String[] domains An array of imaging domains for which this format is used. Domains are defined in loci.formats.FormatTools 18 . ⁹http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/FormatReader.html#initFile(java.lang.String) $^{^{10}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/CoreMetadata.java$ ¹¹ http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/loci/formats/IFormatReader.html#close(boolean) ¹²https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/FormatReader.java ¹³https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/CoreMetadata.java ¹⁴ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-common/src/loci/common/RandomAccessInputStream.java ¹⁵ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-common/src/loci/common/Location.java ¹⁶http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/ ¹⁷https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/FormatReader.java ¹⁸ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/FormatTools.java ## 15.1.3 Other useful things - loci.common.RandomAccessInputStream¹⁹ is a hybrid RandomAccessFile/InputStream class that is generally more efficient than either RandomAccessFile or InputStream, and implements the DataInput interface. It is recommended that you use this for reading files. - loci.common.Location²⁰ provides an API similar to java.io.File, and supports File-like operations on URLs. It is highly recommended that you use this instead of File. See the Javadocs²¹ for additional information. - loci.common.DataTools²² provides a number of methods for converting bytes to shorts, ints, longs, etc. It also supports reading most primitive types directly from a RandomAccessInputStream (or other DataInput implementation). - loci.formats.ImageTools²³ provides several methods for manipulating primitive type arrays that represent images. Consult the source or Javadocs for more information. - If your reader relies on third-party code which may not be available to all users, it is strongly suggested that you make a corresponding service class that interfaces with the third-party code. Please see *Bio-Formats service and dependency infrastructure* for a description of
the service infrastructure, as well as the loci.formats.services package²⁴. - Several common image compression types are supported through subclasses of loci.formats.codec.BaseCodec²⁵. These include JPEG, LZW, LZO, Base64, ZIP and RLE (PackBits). - If you wish to convert a file's metadata to OME-XML (strongly encouraged), please see *Bio-Formats metadata processing* for further information. - Utility methods for reading and writing individual bits from a byte array can be found in loci.formats.codec.BitBuffer²⁶ and loci.formats.codec.BitWriter²⁷. - Once you have written your file format reader, add a line to the readers.txt²⁸ file with the fully qualified name of the reader, followed by a '#' and the file extensions associated with the file format. Note that ImageReader²⁹, the master file format reader, tries to identify which format reader to use according to the order given in readers.txt³⁰, so be sure to place your reader in an appropriate position within the list. - The easiest way to test your new reader is by calling "java loci.formats.tools.ImageInfo <file name>". If all goes well, you should see all of the metadata and dimension information, along with a window showing the images in the file. ImageReader³¹ can take additional parameters; a brief listing is provided below for reference, but it is recommended that you take a look at the contents of loci.formats.tools.ImageInfo³² to see exactly what each one does. ¹⁹https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-common/src/loci/common/RandomAccessInputStream.java ²⁰https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-common/src/loci/common/Location.java ²¹http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/ ²²https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-common/src/loci/common/DataTools.java ²³https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/ImageTools.java ntips://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/services/ ²⁵ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/codec/BaseCodec.java ²⁶https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/codec/BitBuffer.java ²⁷https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/codec/BitWriter.java ²⁸https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/readers.txt ²⁹https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/ImageReader.java ³⁰https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/readers.txt $^{^{31}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-api/src/loci/formats/ImageReader.java$ ³²https://github.com/openmicroscopy/bioformats/blob/develop/components/bio-formats-tools/src/loci/formats/tools/ImageInfo.java | Argument | Action | |------------|---| | -version | print the library version and exit | | file | the image file to read | | -nopix | read metadata only, not pixels | | -nocore | do not output core metadata | | -nometa | do not parse format-specific metadata table | | -nofilter | do not filter metadata fields | | -thumbs | read thumbnails instead of normal pixels | | -minmax | compute min/max statistics | | -merge | combine separate channels into RGB image | | -nogroup | force multi-file datasets to be read as individual files | | -stitch | stitch files with similar names | | -separate | split RGB image into separate channels | | -expand | expand indexed color to RGB | | -omexml | populate OME-XML metadata | | -normalize | normalize floating point images* | | -fast | paint RGB images as quickly as possible* | | -debug | turn on debugging output | | -range | specify range of planes to read (inclusive) | | -series | specify which image series to read | | -swap | override the default input dimension order | | -shuffle | override the default output dimension order | | -map | specify file on disk to which name should be mapped | | -preload | pre-read entire file into a buffer; significantly reduces the time required to read the images, but requires more | | | memory | | -crop | crop images before displaying; argument is 'x,y,w,h' | | -autoscale | used in combination with '-fast' to automatically adjust brightness and contrast | | -novalid | do not perform validation of OME-XML | | -omexml- | only output the generated OME-XML | | only | | | -format | read file with a particular reader (e.g., ZeissZVI) | ^{* =} may result in loss of precision - If you wish to test using TestNG, loci.tests.testng.FormatReaderTest³³ provides several basic tests that work with all Bio-Formats readers. See the FormatReaderTest source code for additional information. - For more details, please look at the source code and Javadocs³⁴. Studying existing readers is probably the best way to get a feel for the API; we would recommend first looking at loci.formats.in.ImarisReader³⁵ (this is the most straightforward one). loci.formats.in.LIFReader³⁶ and InCellReader³⁷ are also good references that show off some of the nicer features of Bio-Formats. If you have questions about Bio-Formats, please contact the OME team³⁸. ³³ https://github.com/openmicroscopy/bioformats/blob/develop/components/test-suite/src/loci/tests/testng/FormatReaderTest.java ³⁴http://ci.openmicroscopy.org/job/BIOFORMATS-5.0-latest/javadoc/ ³⁵ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ImarisReader.java ³⁶https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/LIFReader.java $^{^{37}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/InCellReader.java$ ³⁸http://www.openmicroscopy.org/site/community ## **CONTRIBUTING TO BIO-FORMATS** # 16.1 Developing Bio-Formats If you are interested in working on the Bio-Formats source code itself, you can load it into your favorite IDE, or develop with your favorite text editor. The Bio-Formats code is divided into several projects. Core components are located in subfolders of the components¹ folder, with some components further classified into components/forks² or components/stubs³, depending on the nature of the project. Each project has a corresponding Maven POM file, which can be used to work with the project in your favorite IDE, or from the command line, once you have cloned the source. Instructions for several popular options follow. #### 16.1.1 NetBeans NetBeans comes with Maven support built in. To import the Bio-Formats source, perform the following steps: - 1. Choose $File \rightarrow Open \ Project$ from the menu - 2. Select the top-level folder of your Bio-Formats working copy - 3. Expand the Modules folder and double-click desired project(s) to work with them Alternately, you can clone the source directly from NetBeans into a project by selecting $Team \rightarrow Git \rightarrow Clone\ Other...$ from the menu. ### **16.1.2 Eclipse** Eclipse uses the "Maven Integration for Eclipse" (m2e) plugin to work with Maven projects. It is more flexible than Eclipse's built-in project management because m2e transparently converts between project dependencies and JAR dependencies (stored in the Maven repository in $\sim/.m2/repository$) on the build path, depending on which projects are currently open. We recommend using Eclipse 4.3 (Kepler), specifically - "Eclipse IDE for Java developers". It comes with m2e installed (http://eclipse.org/downloads/compare.php?release=kepler). You can then import the Bio-Formats source by choosing $File \to Import \to Existing\ Maven\ Projects$ from the menu and browsing to the top-level folder of your Bio-Formats working copy. #### 16.1.3 Command line If you prefer developing code with a text editor such as vim or emacs, you can use the Ant or Maven command line tools to compile Bio-Formats. The Bio-Formats source tree provides parallel build systems for both Ant and Maven, so you can use either one to build the code. For a list of Ant targets, run: ant -p ¹https://github.com/openmicroscopy/bioformats/blob/develop/components/ ²https://github.com/openmicroscopy/bioformats/blob/develop/components/forks/ ³https://github.com/openmicroscopy/bioformats/blob/develop/components/stubs/ When using Maven, Bio-Formats is configured to run the "install" target by default, so all JARs will be copied into your local Maven repository in ~/.m2/repository. Simply run: mvn With either Ant or Maven, you can use similar commands in any subproject folder to build just that component. # 16.2 Testing individual commits (internal developers) At the bottom of many commit messages in https://github.com/openmicroscopy/bioformats, you will find a few lines similar to this: ``` To test, please run: ant -Dtestng.directory=$DATA/metamorph test-automated ``` This shows the command(s) necessary to run automated tests against the files likely to be affected by that commit. If you want to run these tests, you will need to do the following: Clone bioformats.git and checkout the appropriate branch (by following the directions on the Git usage⁴ page). Run this command to build all of the JAR files: ``` $ ant clean jars ``` Switch to the test-suite component: ``` $ cd components/test-suite ``` Run the tests, where \$DATA is the path to the full data repository: ``` $ ant -Dtestng.directory=$DATA/metamorph test-automated ``` By default, 512 MB of memory are allocated to the JVM. You can increase this by adding the '-Dtestng.memory=XXXm' option. You should now see output similar to this: ⁴http://www.openmicroscopy.org/site/support/contributing/using-git.html ## and then eventually: Each
of the dots represents a single passed test; a '-' is a skipped test, and an 'F' is a failed test. This is mostly just for your amusement if you happen to be staring at the console while the tests run, as a more detailed report is logged to bio-formats-software-test-\$DATE.log (where "\$DATE" is the date on which the tests started in "yyyy-MM-dd_hh-mm-ss" format). If Ant reports that the build was successful, then there is nothing that you need to do. Otherwise, it is helpful if you can provide the command, branch name, number of failures at the bottom of the Ant output, and the bio-formats-software-test-*.log file. ## 16.3 Public test data Most of the data-driven tests would benefit from having a comprehensive set of public sample data (see also #4086⁵). Formats for which we already have public sample data: A '*' indicates that we could generate more public data in this format. - ICS (*) - Leica LEI - IPLab - BMP (*) - Image-Pro SEQ - QuickTime (*) - Bio-Rad PIC - Image-Pro Workspace - Fluoview/ABD TIFF (*) - Perkin Elmer Ultraview - Gatan DM3 - Zeiss LSM - Openlab LIFF (*) - Leica LIF (*) - TIFF (*) - Khoros (http://netghost.narod.ru/gff/sample/images/viff/index.htm) - MNG (Download⁶) (*) 16.3. Public test data 83 ⁵http://trac.openmicroscopy.org.uk/ome/ticket/4086 Formats for which we can definitely generate public sample data: - PNG/APNG - JPEG - PGM - FITS - PCX - GIF - · Openlab Raw - OME-XML - OME-TIFF - AVI - PICT - LIM - PSD - Targa - Bio-Rad Gel - Fake - ECAT-7 (minctoecat) - NRRD - JPEG-2000 - Micromanager - Text - DICOM - MINC (rawtominc) - NIfTI (dicomnifti) - Analyze 7.5 (medcon) - SDT - FV1000 .oib/.oif - Zeiss ZVI - Leica TCS - Aperio SVS - Imaris (raw) Formats for which I need to check whether or not we can generate public sample data: - IPLab Mac (Ivision) - Deltavision - MRC - Gatan DM2 - Imaris (HDF) - EPS - · Alicona AL3D - Visitech 16.3. Public test data 84 - InCell - L2D - FEI - NAF - MRW - ARF - LI-FLIM - Oxford Instruments - VG-SAM - Hamamatsu HIS - WA-TOP - Seiko - TopoMetrix - UBM - Quesant - RHK - Molecular Imaging - JEOL - Amira - Unisoku - Perkin Elmer Densitometer - Nikon ND2 - SimplePCI .cxd - Imaris (TIFF) - Molecular Devices Gel - Imacon .fff - LEO - JPK - Nikon NEF - Nikon TIFF - Prairie - Metamorph TIFF/STK/ND - Improvision TIFF - Photoshop TIFF - FEI TIFF - SimplePCI TIFF - Burleigh - SM-Camera - SBIG Formats for which we definitely cannot generate public sample data: • TillVision 16.3. Public test data 85 - Olympus CellR/APL - Slidebook - · Cellomics - CellWorX - · Olympus ScanR - · BD Pathway - · Opera Flex - MIAS # 16.4 Bio-Formats service and dependency infrastructure ## 16.4.1 Description The Bio-Formats service infrastructure is an interface driven pattern for dealing with external and internal dependencies. The design goal was mainly to avoid the cumbersome usage of ReflectedUniverse where possible and to clearly define both service dependency and interface between components. This is generally referred to as dependency injection⁷, dependency inversion⁸ or component based design⁹. It was decided, at this point, to forgo the usage of potentially more powerful but also more complicated solutions such as: - Spring (http://spring.io) - Guice (http://code.google.com/p/google-guice/) - .. The Wikipedia page for dependency injection 10 contains many other implementations in many languages. An added benefit is the potential code reuse possibilities as a result of decoupling of dependency and usage in Bio-Formats readers. Implementations of the initial Bio-Formats services were completed as part of BioFormatsCleanup and tickets #463¹¹ and #464¹². ## 16.4.2 Writing a service • Interface — The basic form of a service is an interface which inherits from loci.common.services.Service¹³. Here is a very basic example using the (now removed) OMENotesService ``` public interface OMENotesService extends Service { /** * Creates a new OME Notes instance. * @param filename Path to the file to create a Notes instance for. */ public void newNotes(String filename); } ``` • Implementation – This service then has an implementation, which is usually located in the Bio-Formats component or package which imports classes from an external, dynamic or other dependency. Again looking at the OMENotesService: ⁷http://en.wikipedia.org/wiki/Dependency_injection ⁸http://en.wikipedia.org/wiki/Dependency_inversion_principle ⁹http://en.wikipedia.org/wiki/Component-based_software_engineering ¹⁰ http://en.wikipedia.org/wiki/Dependency_injection ¹¹ http://trac.openmicroscopy.org.uk/ome/ticket/463 ¹²http://trac.openmicroscopy.org.uk/ome/ticket/464 ¹³https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-common/src/loci/common/services/Service.java ``` public class OMENotesServiceImpl extends AbstractService implements OMENotesService { /** * Default constructor. */ public OMENotesServiceImpl() { checkClassDependency(Notes.class); } /* (non-Javadoc) * @see loci.formats.dependency.OMENotesService#newNotes() */ public void newNotes(String filename) { new Notes(null, filename); } } ``` #### Style - Extension of AbstractService to enable uniform runtime dependency checking is recommended. Java does not check class dependencies until classes are first instantiated so if you do not do this, you may end up with Class-NotFound or the like exceptions being emitted from your service methods. This is to be **strongly** discouraged. If a service has unresolvable classes on its CLASSPATH instantiation should fail, not service method invocation. - Service methods should not burden the implementer with numerous checked exceptions. Also external dependency exception instances should not be allowed to directly leak from a service interface. Please wrap these using a ServiceException. - By convention both the interface and implementation are expected to be in a package named loci.*.services. This is not a hard requirement but should be followed where possible. - Registration A service's interface and implementation must finally be registered with the loci.common.services.ServiceFactory 14 via the services.properties 15 file. Following the OMENotesService again, here is an example registration: ``` # OME notes service (implementation in legacy ome-notes component) loci.common.services.OMENotesService=loci.ome.notes.services.OMENotesServiceImpl ``` ### 16.4.3 Using a service ``` OMENotesService service = null; try { ServiceFactory factory = new ServiceFactory(); service = factory.getInstance(OMENotesService.class); } catch (DependencyException de) { LOGGER.info("", de); } ``` $^{^{14}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-common/src/loci/common/services/ServiceFactory.javanta-common/services/Services-common/services/Services-common/serv$ $^{^{15}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-common/src/loci/common/services/Service.java$ # 16.5 Code generation with xsd-fu XSD Fu is a Python application designed to digest OME XML schema and produce an object oriented Java infrastructure to ease work with an XML DOM tree. Requirements: - Python¹⁶ 2.4+ - Genshi¹⁷ 0.5 - Complete checkout of the Bio-Formats repository¹⁸ **Note:** Genshi 0.5^{19} was released on June 9th 2008. You can either install from source or download a compatible .egg for your system on the Genshi download page²⁰. ## 16.5.1 Checking out the source This will get the entire source tree. xsd-fu is in components/xsd-fu ``` git clone https://github.com/openmicroscopy/bioformats ``` ## 16.5.2 Running the code generator If you do have Genshi already installed, you can run xsd-fu script with no arguments to examine the syntax: ``` $./xsd-fu -o ../../ Missing subcommand! Usage: ./xsd-fu <subcommand> ... Executes an OME-XML Schema definition parsing and code generation subcommand. Available subcommands: java_classes omexml_metadata omero_metadata omero_model metadata_store metadata_retrieve metadata_aggregate dummy_metadata filter_metadata enum_types enum_handlers doc_gen tab_gen debug Report bugs to OME Devel <me-devel@lists.openmicroscopy.org.uk> ``` If you do not
have Genshi installed you can use a downloaded Python .egg for your platform as follows: ``` $ export PYTHONPATH=Genshi-0.5-py2.4-linux-i686.egg $./xsd-fu -o ../../ Missing subcommand! Usage: ./xsd-fu <subcommand> ... ``` ¹⁶http://python.org ¹⁷http://genshi.edgewall.org ¹⁸http://github.com/openmicroscopy/bioformats ¹⁹http://genshi.edgewall.org/milestone/0.5 ²⁰http://genshi.edgewall.org/wiki/Download Executes an OME-XML Schema definition parsing and code generation subcommand. ``` Available subcommands: java_classes omexml_metadata omero_metadata omero_model metadata_store metadata_retrieve metadata_aggregate dummy_metadata filter_metadata enum_types enum_handlers doc gen tab_gen debug Report bugs to OME Devel ome-devel@lists.openmicroscopy.org.uk> ``` **Note:** XsdFu is now used for many different types of code generation tasks (mostly targeted at the OMERO and Bio-Formats 4.2.0 releases) as outlined by the subcommand structure above. ## 16.5.3 Generating the OME-XML Java toolchain The following sections outline how to generate parts of the OME-XML Java toolchain which are composed of: - · OME model objects - Enumerations for OME model properties - Enumeration handlers for regular expression matching of enumeration strings - Metadata store and Metadata retrieve interfaces for all OME model properties - Various implementations of Metadata store and/or Metadata retrieve interfaces All of the above can be generated by this Ant command: ``` $ cd components/ome-xml $ ant generate-source ``` These commands internally call xsd-fu as follows: #### Java classes for OME model objects ``` $./xsd-fu java_classes -p 'ome.xml.model' -o \ ../ome-xml/target/generated-sources/ \ ../specification/released-schema/2013-06/ome.xsd \ ../specification/released-schema/2013-06/BinaryFile.xsd \ ../specification/released-schema/2013-06/ROI.xsd \ ../specification/released-schema/2013-06/SA.xsd \ ../specification/released-schema/2013-06/SPW.xsd ``` #### **Enumeration classes for OME model properties** ``` $./xsd-fu enum_types -p 'ome.xml.model.enums' -o \ ../ome-xml/target/generated-sources/ \ ../specification/released-schema/2013-06/ome.xsd \ ../specification/released-schema/2013-06/BinaryFile.xsd \ ../specification/released-schema/2013-06/ROI.xsd \ ../specification/released-schema/2013-06/SA.xsd \ ../specification/released-schema/2013-06/SPW.xsd ``` #### **Enumeration handlers for OME model properties** ``` $./xsd-fu enum_handlers -p 'ome.xml.model.enums.handlers' -o \ ../ome-xml/target/generated-sources/ \ ../specification/released-schema/2013-06/ome.xsd \ ../specification/released-schema/2013-06/BinaryFile.xsd \ ../specification/released-schema/2013-06/ROI.xsd \ ../specification/released-schema/2013-06/SA.xsd \ ../specification/released-schema/2013-06/SPW.xsd ``` #### Metadata store and Metadata retrieve interfaces ``` $./xsd-fu metadata -o ../ome-xml/target/generated-sources/\ ../specification/released-schema/2013-06/ome.xsd \ ../specification/released-schema/2013-06/BinaryFile.xsd \ ../specification/released-schema/2013-06/ROI.xsd \ ../specification/released-schema/2013-06/SA.xsd \ ../specification/released-schema/2013-06/SPW.xsd ``` #### OMEXMLMetadatalmpl Metadata store and Metadata retrieve implementation ``` $./xsd-fu omexml_metadata -o ../ome-xml/target/generated-sources/ \ ../specification/released-schema/2013-06/ome.xsd \ ../specification/released-schema/2013-06/BinaryFile.xsd \ ../specification/released-schema/2013-06/ROI.xsd \ ../specification/released-schema/2013-06/SA.xsd \ ../specification/released-schema/2013-06/SPW.xsd ``` ### 16.5.4 Working with Enumerations and Enumeration Handlers XsdFu code generates enumeration regular expressions using a flexible configuration file²¹. Each enumeration has a key-value listing of regular expression to exact enumeration value matches. For example: ``` [Correction] ".*Pl.*Apo.*" = "PlanApo" ".*Pl.*Flu.*" = "PlanFluor" "^\\s*Vio.*Corr.*" = "VioletCorrected" ".*S.*Flu.*" = "SuperFluor" ".*Neo.*flu.*" = "Neofluar" ``` ²¹https://github.com/openmicroscopy/bioformats/blob/develop/components/xsd-fu/cfg/enum_handler.cfg ``` ".*Flu.*tar.*" = "Fluotar" ".*Fluo.*" = "Fluor" ".*Flua.*" = "Fluar" "^\\s*Apo.*" = "Apo" ``` ## 16.5.5 Generate OMERO model specification files This work was completed as part of the Update XsdFu (#8086²²) story. ``` $ cd components/xsd-fu $./xsd-fu omero_model -o where/to/place/output/ \ ../specification/inprogress/ome.xsd ../specification/inprogress/SPW.xsd \ ../specification/inprogress/SA.xsd ../specification/inprogress/ROI.xsd ``` # 16.5.6 Special Thanks A special thanks goes out to Dave Kuhlman 23 for his fabulous work on generateDS 24 which XSD Fu makes heavy use of internally. See open Trac tickets for Bio-Formats 25 for information on work currently planned or in progress. For more general guidance about how to contribute to OME projects, see the Contributing developers documentation²⁶. ²²http://trac.openmicroscopy.org.uk/ome/ticket/8086 ²³http://www.rexx.com/ dkuhlman/ ²⁴http://www.rexx.com/ dkuhlman/generateDS.html ²⁵https://trac.openmicroscopy.org.uk/ome/report/44 ²⁶http://www.openmicroscopy.org/site/support/contributing/index.html Part IV **Formats** Bio-Formats supports over 120 different file formats. The *Dataset Structure Table* explains the file extension you should choose to open/import a dataset in any of these formats, while the *Supported Formats* table lists all of the formats and gives an indication of how well they are supported and whether Bio-Formats can write, as well as read, each format. The *Summary of supported metadata fields* table shows an overview of the *OME data model* fields populated for each format. We are always looking for examples of files to help us provide better support for different formats. If you would like to help, you can upload files using our QA system uploader²⁷. If you have any questions, or would prefer not to use QA, please email the ome-users mailing list²⁸. If your format is already supported, please refer to the 'we would like to have' section on the individual page for that format, to see if your dataset would be useful to us. ²⁷http://qa.openmicroscopy.org.uk/qa/upload/ ²⁸http://www.openmicroscopy.org/site/community/mailing-lists # **DATASET STRUCTURE TABLE** This table shows the extension of the file that you should choose if you want to open/import a dataset in a particular format. | Format name | File to choose | Structure of files | |---------------------------|---------------------------|---| | AIM | .aim | Single file | | ARF | .arf | Single file | | Adobe Photoshop | .psd | Single file | | Adobe Photoshop TIFF | .tif, .tiff | Single file | | Alicona AL3D | .al3d | Single file | | Amersham Biosciences | .gel | Single file | | GEL | | | | Amira | .am, .amiramesh, | Single file | | | .grey, .hx, .labels | | | Analyze 7.5 | .img, .hdr | One .img file and one similarly-named .hdr file | | Andor SIF | .sif | Single file | | Animated PNG | .png | Single file | | Aperio SVS | .svs | Single file | | Audio Video Interleave | .avi | Single file | | BD Pathway | .exp, .tif | Multiple files (.exp, .dye, .ltp,) plus one or more direc- | | | 1, | tories containing .tif and .bmp files | | Bio-Rad GEL | .1sc | Single file | | Bio-Rad PIC | .pic, .xml, .raw | One or more .pic files and an optional lse.xml file | | Bitplane Imaris | .ims | Single file | | Bitplane Imaris 3 (TIFF) | .ims | Single file | | Bitplane Imaris 5.5 (HDF) | .ims | Single file | | Bruker | (no extension) | One 'fid' and one 'acqp' plus several other metadata files | | | | and a 'pdata' directory | | Burleigh | .img | Single file | | Canon RAW | .cr2, .crw, .jpg, .thm, | Single file | | | .wav | | | CellSens VSI | .vsi, .ets | One .vsi file and an optional directory with a similar name | | | | that contains at least one subdirectory with .ets files | | CellWorx | .pnl, .htd, .log | One .htd file plus one or more .pnl or .tif files and option- | | | | ally one or more .log files | | Cellomics C01 | .c01, .dib | One or more .c01 files | | Compix Simple-PCI | .cxd | Single file | | DICOM | .dic, .dcm, .dicom, | One or more .dcm or .dicom files | | | .jp2, .j2ki, .j2kr, .raw, | | | | .ima | | | DNG | .cr2, .crw, .jpg, .thm, | Single file | | | .wav, .tif, .tiff | | | Deltavision | .dv, .r3d, .r3d_d3d, | One .dv, .r3d, or .d3d file and up to two optional .log files | | | .dv.log, .r3d.log | | | ECAT7 | .V | Single file | | Encapsulated PostScript | .eps, .epsi, .ps | Single file | | | | Continued on next page | Table 17.1 – continued from previous page | | | ued from previous page | |---------------------------|---------------------------|---| | Format name | File to choose | Structure of files | | Evotec Flex | .flex, .mea, .res | One directory containing one or more .flex files, and an | | | | optional directory containing an .mea and .res file. The | | | | .mea and .res files may also be in the same directory as | | | | the .flex file(s). | | FEI TIFF | .tif, .tiff | Single file | | FEI/Philips | .img | Single file | | Flexible Image Transport | .fits, .fts | Single file | | System | | | | Fuji LAS 3000 | .img, .inf | Single file | | Gatan DM2 | .dm2 | Single file | | Gatan Digital Micrograph | .dm3 | Single file | | Graphics Interchange For- | .gif | Single file | | mat | .8 | 3-1-6-1 | | Hamamatsu Aquacosmos | .naf | Single file | | Hamamatsu HIS | .his | Single file | | Hamamatsu NDPI | .ndpi | Single file | | Hamamatsu NDPIS | 1 - | One .ndpis file and at least one .ndpi file | | Hamamatsu VMS | .ndpis | One .vms file plus several .jpg files | | | .vms | | | Hitachi | .txt | One .txt file plus one similarly-named .tif, .bmp, or .jpg file | | IMACIC | had in | | | IMAGIC | .hed, .img | One .hed file plus one similarly-named .img file | | IMOD | .mod | Single file | | INR | .inr | Single file | | IPLab | .ipl | Single
file | | IVision | .ipm | Single file | | Imacon | .fff | Single file | | Image Cytometry Standard | .ics, .ids | One .ics and possibly one .ids with a similar name | | Image-Pro Sequence | .seq | Single file | | Image-Pro Workspace | .ipw | Single file | | Improvision TIFF | .tif, .tiff | Single file | | InCell 1000/2000 | .xdce, .xml, .tiff, .tif, | One .xdce file with at least one .tif/.tiff or .im file | | | .xlog | | | InCell 3000 | .frm | Single file | | JEOL | .dat, .img, .par | A single .dat file or an .img file with a similarly-named | | | 8, 1 | .par file | | JPEG | .jpg, .jpeg, .jpe | Single file | | JPEG-2000 | .jp2, .j2k, .jpf | Single file | | JPK Instruments | .jpk | Single file | | JPX | .jpx | Single file | | Khoros XV | .XV | Single file | | | | • | | Kodak Molecular Imaging | .bip | Single file | | LEO
LI-FLIM | .sxm, .tif, .tiff | Single file | | | .fli | Single file | | Laboratory Imaging | .lim | Single file | | Leica | .lei, .tif, .tiff, .raw | One .lei file with at least one .tif/.tiff file and an optional | | | 1.0 | .txt file | | Leica Image File Format | lif .lif | Single file | | Leica SCN | .scn | Single file | | Leica TCS TIFF | .tif, .tiff, .xml | Single file | | Li-Cor L2D | .12d, .scn, .tif | One .12d file with one or more directories containing | | | | .tif/.tiff files | | MIAS | .tif, .tiff, .txt | One directory per plate containing one directory per well, | | | | each with one or more .tif/.tiff files | | MINC MRI | .mnc | Single file | | Medical Research Council | .mrc, .st, .ali, .map, | Single file | | | .rec | | | Metamorph STK | .stk, .nd, .tif, .tiff | One or more .stk or .tif/.tiff files plus an optional .nd file | | Metamorph TIFF | .tif, .tiff | One or more .tif/.tiff files | | | | TOTAL OF HIGH AND | Table 17.1 – continued from previous page | | | ued from previous page | |---------------------------|--------------------------------|--| | Format name | File to choose | Structure of files | | Micro-Manager | .tif, .tiff, .txt, .xml | A 'metadata.txt' file plus or or more .tif files | | Minolta MRW | .mrw | Single file | | Molecular Imaging | .stp | Single file | | Multiple Network Graphics | .mng | Single file | | NIfTI | .nii, .img, .hdr | A single .nii file or one .img file and a similarly-named | | | 3 , 3 , 3 | .hdr file | | NOAA-HRD Gridded Data | (no extension) | Single file | | Format | (| 3-1-6-1 | | NRRD | .nrrd, .nhdr | A single .nrrd file or one .nhdr file and one other file con- | | | initia, initia | taining the pixels | | Nikon Elements TIFF | .tif, .tiff | Single file | | Nikon ND2 | .nd2 | Single file | | Nikon NEF | .nef, .tif, .tiff | Single file | | Nikon TIFF | .tif, .tiff | Single file | | OME-TIFF | .ome.tif, .ome.tiff | One or more .ome.tiff files | | OME-XML | .ome | Single file | | | .apl, .tnb, .mtb, .tif | | | Olympus APL | .api, .uio, .iiito, .ui | One apl file, one .mtb file, one .tnb file, and a directory | | Olympus EV1000 | aib aif are 1 | containing one or more .tif files | | Olympus FV1000 | .oib, .oif, .pty, .lut | Single .oib file or one .oif file and a similarly-named di- | | 01 | ur ur | rectory containing .tif/.tiff files | | Olympus Fluoview/ABD | .tif, .tiff | One or more .tif/.tiff files, and an optional .txt file | | TIFF | ccr | G: 1 G1 | | Olympus SIS TIFF | .tif, .tiff | Single file | | Olympus ScanR | .dat, .xml, .tif | One .xml file, one 'data' directory containing .tif/.tiff files, | | | | and optionally two .dat files | | Olympus Slidebook | .sld, .spl | Single file | | Openlab LIFF | .liff | Single file | | Openlab RAW | .raw | Single file | | Oxford Instruments | .top | Single file | | PCX | .pcx | Single file | | PICT | .pict, .pct | Single file | | POV-Ray | .df3 | Single file | | Perkin Elmer Densitometer | .hdr, .img | One .hdr file and a similarly-named .img file | | PerkinElmer | .ano, .cfg, .csv, .htm, | One .htm file, several other metadata files (.tim, .ano, .csv, | | | .rec, .tim, .zpo, .tif |) and either .tif files or .2, .3, .4, etc. files | | PerkinElmer Operetta | .tif, .tiff, .xml | Directory with XML file and one .tif/.tiff file per plane | | Portable Gray Map | .pgm | Single file | | Prairie TIFF | .tif, .tiff, .cfg, .xml | One .xml file, one .cfg file, and one or more .tif/.tiff files | | Pyramid TIFF | .tif, .tiff | Single file | | Quesant AFM | .afm | Single file | | QuickTime | .mov | Single file | | RHK Technologies | .sm2, .sm3 | Single file | | SBIG | (no extension) | Single file | | SM Camera | (no extension) | Single file | | SPCImage Data | .sdt | Single file | | SPIDER | .spi | Single file | | Seiko | .xqd, .xqf | Single file | | SimplePCI TIFF | .tif, .tiff | Single file | | Simulated data | .fake | Single file | | Tagged Image File Format | .tif, .tiff, .tf2, .tf8, .btf | Single file | | Text | | Single file | | TillVision | .txt, .csv
.vws, .pst, .inf | | | | _ | One .vws file and possibly one similarly-named directory | | TopoMetrix Tractle | .tfr, .ffr, .zfr, .zfp, .2fl | Single file | | Trestle | .tif | One .tif file plus several other similarly-named files (e.g. | | The section The sec | | .FocalPlane-, .sld, .slx, .ROI) | | Truevision Targa | .tga | Single file | | UBM | .pr3 | Single file | | Unisoku STM | .hdr, .dat | One .HDR file plus one similarly-named .DAT file | | | | Continued on next page | Table 17.1 – continued from previous page | Format name | File to choose | Structure of files | |---------------------------|----------------------|---| | VG SAM | .dti | Single file | | Varian FDF | .fdf | Single file | | Visitech XYS | .xys, .html | One .html file plus one or more .xys files | | Volocity Library | .mvd2, .aisf, .aiix, | One .mvd2 file plus a 'Data' directory | | | .dat, .atsf | | | Volocity Library Clipping | .acff | Single file | | WA Technology TOP | .wat | Single file | | Windows Bitmap | .bmp | Single file | | Zeiss AxioVision TIFF | .tif, .xml | Single file | | Zeiss CZI | .czi | Single file | | Zeiss Laser-Scanning Mi- | .lsm, .mdb | One or more .lsm files; if multiple .lsm files are present, | | croscopy | | an .mdb file should also be present | | Zeiss Vision Image (ZVI) | .zvi | Single file | | Zip | .zip | Single file | # 17.1 Flex Support OMERO.importer supports importing analyzed Flex files from an Opera system. Basic configuration is done via the importer.ini. Once the user has run the Importer once, this file will be in the following location: • C:\Documents and Settings\<username>\omero\importer.ini The user will need to modify or add the [FlexReaderServerMaps] section of the INI file as follows: ``` ... [FlexReaderServerMaps] CIA-1 = \\\hostname1\\mount;\\\archivehost1\\mount CIA-2 = \\\hostname2\\mount;\\\\archivehost2\\mount ``` where the key of the INI file line is the value of the "Host" tag in the .mea measurement XML file (here: <Host name="CIA-1">) and the value is a semicolon-separated list of escaped UNC path names to the Opera workstations where the Flex files reside. Once this resolution has been encoded in the configuration file **and** you have restarted the importer, you will be able to select the .mea measurement XML file from the Importer user interface as the import target. 17.1. Flex Support 97 ## **CHAPTER** # **EIGHTEEN** # **SUPPORTED FORMATS** # Ratings legend and definitions | | | els | tadata | Openness | Presence | lity | ort | | |--|--|----------|----------|----------|----------|-------------|----------|----------| | Format | Extensions | Pixel | Me | o | Pre | Uti | Exp | BSD | | 3i SlideBook | .sld | <u> </u> | V | V | A | ₩ | × | × | | Andor Bio-Imaging
Division (ABD) TIFF | .tif | _ | _ | | _ | | × | × | | AIM | .aim | | <u> </u> | V | ₩ | V | × | × | | Alicona 3D | .al3d | A | <u> </u> | _ | ₩ | The same of | × | × | | Amersham Bio-
sciences Gel | .gel | _ | _ | | • | • | × | × | | Amira Mesh | .am, .ami-
ramesh, .grey,
.hx, .labels | | | • | • | • | * | * | | Analyze 7.5 | .img, .hdr | A | | A | | V | * | × | | Animated PNG | .png | A | A | A | | ₩ | * | * | | Aperio AFI | .afi, .svs | A | <u> </u> | A | | The same of | × | × | | Aperio SVS TIFF | .svs | <u> </u> | _ | _ | | | × | × | | Applied Precision
CellWorX | .htd, .pnl | _ | | | • | • | × | × | | AVI (Audio Video Interleave) | .avi | | | w | | ₩ | ~ | ~ | | Axon Raw Format | .arf | A | V | A | ₩ | V | × | × | | BD Pathway | .exp, .tif | <u> </u> | A | - | V | - | × | × | | Becker & Hickl
SPCImage | .sdt | _ | _ | | ₩ | v | * | × | | Bio-Rad Gel | .1sc | | V | V | ₩ | V | × | × | | Bio-Rad PIC | .pic, .raw, | | _ | _ | _ | _ | × | × | | Bio-Rad SCN | .scn | A | V | W | ₩ | W | × | × | | Bitplane Imaris | .ims | A | <u> </u> | | V | W | × | × | | Bruker MRI | .ims | | A | V | | V | × | × | | Burleigh | .img | | V | V | V | V | × | × | | Canon DNG | .cr2, .crw | | | W | W | V | × | × | | Cellomics | .c01 | A | ₩ | W | ₩ | ₩ | on nex | × | Table 18.1 – continued from previous page | T | Table 18.1 – continued from previous page | | | | | | | | |---|---|----------|-------------|----------|----------|---------|----------|----------| | Format | Extensions | Pixels | Metadata | Openness | Presence | Utility | Export | BSD | | Format | Extensions . | _ | The same of | | _ | _ | _ | ₩
₩ | | cellSens VSI | .vsi | Ä | | | - | | S | | | CellVoyager | .xml, .tif | <u></u> | | | | | S | | | DeltaVision | .dv, .r3d | A | _ | | | | S | - | | DICOM | .dcm, .dicom | | | _ | | - | <u> </u> | ě | | ECAT7 | .v | | | | l 👗 | * | | - | | EPS (Encapsulated PostScript) |
.eps, .epsi, .ps | _ | | | | Ľ | | | | Evotec/PerkinElmer
Opera Flex | .flex, .mea, .res | * | _ | * | * | • | × | × | | FEI | .img | W | ₩ | ₩ | V | V | × | × | | FEI TIFF | .tiff | <u> </u> | 1 | | W | V | × | × | | FITS (Flexible Image
Transport System) | .fits | _ | v | _ | | • | × | * | | Gatan Digital Micrograph | .dm3 | <u> </u> | | • | W | • | × | × | | Gatan Digital Micrograph 2 | .dm2 | | w | v | W | | * | × | | GIF (Graphics Inter- | .gif | <u> </u> | A | W | A | ₹ | × | * | | change Format) | | | | | | | | | | Hamamatsu Aqua-
cosmos NAF | .naf | | • | ₩ | • | • | * | × | | Hamamatsu HIS | .his | | V | W | V | V | × | × | | Hamamatsu ndpi | .ndpi | V | | | V | V | × | × | | Hamamatsu VMS | .vms | | | V | V | V | × | × | | Hitachi S-4800 | .txt, .tif, .bmp, | <u> </u> | A | A | V | V | × | × | | | .jpg | | | | | | | | | ICS (Image Cytome-
try Standard) | .ics, .ids | = | | * | | | ~ | | | Imacon | .fff | ₩ | | _ | * | | * | × | | ImagePro Sequence | .seq | <u> </u> | <u> </u> | | | | × | × | | ImagePro Workspace | .ipw | <u> </u> | <u> </u> | ₩ | ₩. | ₩ | × | × | | IMAGIC | .hed, .img | 4 | 4 | 4 | | | * | × | | IMOD | .mod | | | # | _ | _ | * | × | | Improvision Openlab
LIFF | .liff | | | _ | | _ | × | × | | Improvision Openlab
Raw | .raw | | | _ | ₩ | _ | * | × | | Improvision TIFF | .tif | A | A | A | T | | × | × | | Imspector OBF | .obf, .msr | A | | _ | ₹ | W | × | * | | InCell 1000 | .xdce, .tif | _ | A | | W | | × | × | | InCell 3000 | .frm | | V | W | V | ₹ | × | × | | INR | .inr | <u> </u> | | W | ₩ | W | × | × | | | | | | | Con | tinued | on nex | t page | Table 18.1 – continued from previous page | I | Table 18.1 – continued from previous page | | | | | | | | |--|---|-------------|-------------|----------------|-------------|-------------|----------|----------| | Format | Extensions | Pixels | Metadata | Openness | Presence | Utility | Export | BSD | | Inveon | .hdr | <u> </u> | A . | 1 | ¥ | V | × | * | | IPLab | .ipl | 4 | _ | <u></u> | w w | V | × | × | | IPLab-Mac | .ipm | <u></u> | The same of | _ | ₩ | V | × | × | | JEOL | .dat, .img, .par | - | v | V | · · | V | × | × | | JPEG JPEG | .jpg | _ | V | 4 | 4 | ₩ | <i>•</i> | <i>•</i> | | JPEG 2000 | .jp2 | _ | ₩ | • | The same of | ŧ | | | | JPK | .jpk | The same of | w. | v | v | w | × | × | | JPX | | _ | À | • | | v | * | * | | Khoros VIFF (Visualization Image File Format) Bitmap | .jpx
.xv | | ₩ | ₹ | ₹ | ₹ | × | × | | Kodak BIP | .bip | <u> </u> | The same of | v | ₩ | V | × | × | | Lambert Instruments FLIM | .fli | A | _ | A | w | | × | × | | LaVision Imspector | .msr | V | V | ₩ | ₩ | V | × | × | | Leica LCS LEI | .lei, .tif | A | A | <u> </u> | A | <u> </u> | × | × | | Leica LAS AF LIF
(Leica Image File
Format) | .lif | A | _ | A | | A | × | × | | Leica SCN | .scn | The same of | - | Marine Control | V | - | × | × | | LEO | .sxm | The same | V | The same of | V | V | × | × | | Li-Cor L2D | .12d, .tif, .scn | A | V | The same of | | The same of | × | × | | LIM (Laboratory Imaging/Nikon) | .lim | | ₩ | ₩ | ₩ | ₩ | * | × | | MetaMorph 7.5 TIFF | .tiff | A | A | A | V | The same of | × | × | | MetaMorph Stack
(STK) | .stk, .nd | A | <u> </u> | _ | <u> </u> | | × | × | | MIAS (Maia Scientific) | .tif | | ₩ | ₩. | ₩ | ₩ | * | × | | Micro-Manager | .tif, .txt, .xml | A | <u> </u> | A | W | The same of | × | * | | MINC MRI | .mnc | A | | | | W | × | × | | Minolta MRW | .mrw | _ | 1 | v | W | | × | × | | MNG (Multiple-
image Network
Graphics) | .mng | | | A | • | * | × | ~ | | Molecular Imaging | .stp | | V | V | V | V | × | × | | MRC (Medical Research Council) | .mrc | | A | A | | | × | × | | NEF (Nikon Electronic Format) | .nef, .tif | A | <u> </u> | ₹ | ₩ | ₩ | × | × | | NIfTI | .img, .hdr | A | | A | | W | × | × | | Nikon Elements TIFF | .tiff | | | V | V | V | × | × | | Nikon EZ-C1 TIFF | .tiff | A | A | | ₩ | V | × | × | | | • | • | • | • | Con | tinued | on nex | t page | Table 18.1 – continued from previous page | I | able 18.1 – con | ınuea | ποιτιρ | | s page | ; | 1 | 1 | |--------------------------------------|--------------------------------------|----------|----------|----------|----------|----------|----------|----------| | Format | Extensions | Pixels | Metadata | Openness | Presence | Utility | Export | BSD | | | | _ | _ | W | _ | _ | _ | 99D | | Nikon NIS-Elements
ND2 | .nd2 | _ | _ | | | - | • | ^ | | NRRD (Nearly Raw
Raster Data) | .nrrd, .nhdr, .raw, .txt | _ | _ | * | _ | _ | × | * | | Olympus CellR/APL | .apl, .mtb,
.tnb, .tif,
.obsep | | • | • | ₩ | • | × | × | | Olympus FluoView
FV1000 | .oib, .oif | _ | _ | | | _ | × | × | | Olympus FluoView
TIFF | .tif | _ | _ | _ | | | × | × | | Olympus ScanR | .xml, .dat, .tif | <u> </u> | | No. | ₩ | V | × | × | | Olympus SIS TIFF | .tiff | | | | V | | * | × | | OME-TIFF | .ome.tiff | A | A | A | W | A | * | * | | OME-XML | .ome | A | A | A | V | A | * | * | | Oxford Instruments | .top | | V | V | V | V | × | × | | PCORAW | .pcoraw, .rec | A | | A | V | | * | × | | PCX (PC Paint-
brush) | .pcx | | ₩ | ₩ | ₩ | • | × | * | | Perkin Elmer Densit-
ometer | .pds | | | | ₩ | • | × | × | | PerkinElmer Op-
eretta | .tiff, .xml | _ | | | W | | × | × | | PerkinElmer Ultra-
View | .tif, .2, .3, .4 | _ | | • | W | • | × | × | | PGM (Portable Gray
Map) | .pgm | <u> </u> | | | | ₩ | × | ✓ | | Adobe Photoshop
PSD | .psd | | | | | W | × | × | | Photoshop TIFF | .tif, .tiff | | | | 1 | | × | × | | PICT (Macintosh
Picture) | .pict | <u> </u> | w | • | _ | ₩ | × | ✓ | | PNG (Portable Net-
work Graphics) | .png | _ | | | | ₩ | * | ✓ | | Prairie Technologies TIFF | .tif, .xml, .cfg | A | | | V | | × | × | | Quesant | .afm | - | V | W | W | W | × | × | | QuickTime Movie | .mov | | A | V | | ₩ | * | * | | RHK | .sm2, .sm3 | | V | V | V | V | × | × | | SBIG | .sm2, .sm3 | <u> </u> | | A | V | V | × | × | | Seiko | .xqd, .xqf | | V | W | V | W | × | × | | SimplePCI & HCIm-age | .cxd | | | _ | ₩ | • | × | × | | <u> </u> | I. | I | I | 1 | Con | tinued | on nex | t page | Metadata Opennes Presence Export **BSD Format** Extensions SimplePCI & HCIm-.tiff age TIFF SM Camera .tiff **SPIDER** .spi, .stk Targa .tga **Text** .txt TIFF (Tagged Image .tif *File Format)* TillPhotonics TillVi-.vws sion .tfr, .ffr, .zfr, **Topometrix** .zfp, .2fl **Trestle** .tif, .sld, .jpg UBM.pr3 Unisoku .dat, .hdr Varian FDF .fdf VG SAM .dti VisiTech XYS .xys, .html Volocity .mvd2 Volocity Library .acff Clipping WA-TOP .wat Windows Bitmap .bmp A. .wlz Woolz. Zeiss AxioVision .xml, .tiff **TIFF** Zeiss AxioVision ZVI .zvi (Zeiss Vision Image) Zeiss CZI .czi Zeiss LSM (Laser .lsm, .mdb Scanning Microscope) 510/710 Table 18.1 – continued from previous page Bio-Formats currently supports 135 formats **Pixels** Our estimation of Bio-Formats' ability to reliably extract complete and accurate pixel values from files in that format. The better this score, the more confident we are that Bio-Formats will successfully read your file without displaying an error message or displaying an erroneous image. Metadata Our certainty in the thoroughness and correctness of Bio-Formats' metadata extraction and conversion from files of that format into standard OME-XML. The better this score, the more confident we are that all meaningful metadata will be parsed and populated as OME-XML. **Openness** This is not a direct expression of Bio-Formats' performance, but rather indicates the level of cooperation the format's controlling interest has demonstrated toward the scientific community with respect to the format. The better this score, the more tools (specification documents, source code, sample files, etc.) have been made available. **Presence** This is also not directly related to Bio-Formats, but instead represents our understanding of the format's popularity, and is also as a measure of compatibility between applications. The better this score, the more common the format and the more software packages include support for it. Utility Our opinion of the format's suitability for storing metadata-rich microscopy image data. The better this score, the wider the variety of information that can be effectively stored in the format. **Export** This indicates whether Bio-Formats is capable of writing the format (Bio-Formats can read every format on this list). BSD This indicates whether format is BSD-licensed. By default, format readers and writers are GPL-licensed. ## 18.1 3i SlideBook Extensions: .sld Developer: Intelligent Imaging Innovations¹ Owner: Intelligent Imaging Innovations² #### **Support** BSD-licensed: ** Export: 👅 Officially Supported Versions: 4.1, 4.2 Supported Metadata Fields: 3i SlideBook We currently have: • Numerous SlideBook datasets We would like to have: - A SlideBook specification document - More SlideBook datasets (preferably acquired with the most recent SlideBook software) #### **Ratings** Pixels: 📤 Metadata: Openness: Utility: 🔻 ## **Additional Information** Source Code: SlidebookReader.java³ Notes: We strongly encourage users to export their .sld files to OME-TIFF using the SlideBook software. Bio-Formats is not likely to support the full range of metadata that is included in .sld files, and so exporting to OME-TIFF from SlideBook is the best way to ensure that all metadata is preserved. 18.1. 3i SlideBook 103 ¹http://www.intelligent-imaging.com/
²http://www.intelligent-imaging.com/ $^{^3} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/SlidebookReader.java$ #### See also: Slidebook software overview⁴ # 18.2 Andor Bio-Imaging Division (ABD) TIFF Extensions: .tif Developer: Andor Bioimaging Department Owner: Andor Technology⁵ #### **Support** BSD-licensed: X Officially Supported Versions: Supported Metadata Fields: Andor Bio-Imaging Division (ABD) TIFF We currently have: - an ABD-TIFF specification document (from 2005 November, in PDF) - · a few ABD-TIFF datasets We would like to have: #### **Ratings** Pixels: 📤 Metadata: 📤 Presence: ** ## **Additional Information** Source Code: FluoviewReader.java⁶ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. With a few minor exceptions, the ABD-TIFF format is identical to the Fluoview TIFF format. ## 18.3 AIM Extensions: .aim Developer: SCANCO Medical AG⁷ #### **Support** BSD-licensed: 💢 Export: 👅 Officially Supported Versions: ⁴https://www.slidebook.com ⁵http://www.andor.com/ $^{^6} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/FluoviewReader.java$ ⁷http://www.scanco.ch Supported Metadata Fields: AIM We currently have: • one .aim file We would like to have: - an .aim specification document - · more .aim files ## **Ratings** Pixels: Metadata: 📤 Openness: Presence: Utility: ** #### **Additional Information** Source Code: AIMReader.java⁸ Notes: ## 18.4 Alicona 3D Extensions: .al3d Owner: Alicona Imaging⁹ ## **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: 1.0 Supported Metadata Fields: Alicona 3D We currently have: - an AL3D specification document¹⁰ (v1.0, from 2003, in PDF) - a few AL3D datasets We would like to have: • more AL3D datasets (Z series, T series, 16-bit) ## **Ratings** Pixels: 📤 ## **Additional Information** 18.4. Alicona 3D 105 ⁸https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/AIMReader.java ⁹http://www.alicona.com/ ¹⁰ http://www.alicona.com/home/fileadmin/alicona/downloads/AL3DFormat.pdf Source Code: AliconaReader.java¹¹ Notes: Known deficiencies: - Support for 16-bit AL3D images is present, but has never been tested. - Texture data is currently ignored. ## 18.5 Amersham Biosciences Gel Extensions: .gel Developer: Molecular Dynamics Owner: GE Healthcare Life Sciences¹² **Support** BSD-licensed: 🟋 Officially Supported Versions: Supported Metadata Fields: Amersham Biosciences Gel We currently have: - a GEL specification document (Revision 2, from 2001 Mar 15, in PDF) - · a few GEL datasets We would like to have: #### **Ratings** Pixels: 📤 Openness: #### **Additional Information** Source Code: GelReader.java¹³ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. #### See also: GEL Technical Overview¹⁴ ## 18.6 Amira Mesh Extensions: .am, .amiramesh, .grey, .hx, .labels Developer: Visage Imaging¹⁵ ¹¹ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/AliconaReader.java ¹²http://www.gelifesciences.com/ $^{^{13}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/GelReader.java$ ¹⁴http://www.awaresystems.be/imaging/tiff/tifftags/docs/gel.html ¹⁵ http://www.amiravis.com/ #### **Support** BSD-licensed: 🟋 Export: 👅 Officially Supported Versions: Supported Metadata Fields: Amira Mesh We currently have: • a few Amira Mesh datasets We would like to have: • more Amira Mesh datasets ## **Ratings** Pixels: 📤 Metadata: Presence: Utility: ** **Additional Information** Source Code: AmiraReader.java¹⁶ Notes: # 18.7 Analyze 7.5 Extensions: .img, .hdr Developer: Mayo Foundation Biomedical Imaging Resource¹⁷ **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Analyze 7.5 We currently have: - an Analyze 7.5 specification document¹⁸ - several Analyze 7.5 datasets We would like to have: ### **Ratings** Pixels: [^] Metadata: Presence: 18.7. Analyze 7.5 107 $^{^{16}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/AmiraReader.java$ ¹⁷http://www.mayo.edu/bir ¹⁸http://analyzedirect.com/support/10.0Documents/Analyze_Resource_01.pdf Utility: 🔻 #### **Additional Information** Source Code: AnalyzeReader.java¹⁹ Notes: ## 18.8 Animated PNG Extensions: .png Developer: The Animated PNG Project²⁰ **Support** BSD-licensed: ** Export: 🎺 Officially Supported Versions: Supported Metadata Fields: Animated PNG Freely Available Software: - Firefox 3+²¹ - Opera 9.5+²² - KSquirrel²³ We currently have: - a specification document²⁴ - several APNG files We would like to have: ## **Ratings** Pixels: 📤 Metadata: 📤 Openness: 📤 Presence: ## **Additional Information** Source Code: APNGReader.java²⁵ ### Notes: 18.8. Animated PNG 108 $^{^{19}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/AnalyzeReader.java$ ²⁰http://www.animatedpng.com/ ²¹http://www.mozilla.com/firefox ²²http://www.opera.com/download ²³http://ksquirrel.sourceforge.net/download.php ²⁴http://wiki.mozilla.org/APNG_Specification ²⁵https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/APNGReader.java ## 18.9 Aperio AFI Extensions: .afi, .svs Owner: Aperio²⁶ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Aperio AFI We currently have: • several AFI datasets We would like to have: **Ratings** Pixels: Metadata: 📤 Openness: 📤 Presence: Utility: **Additional Information** Source Code: AFIReader.java²⁷ Notes: See also: Aperio ImageScope²⁸ # 18.10 Aperio SVS TIFF Extensions: .svs Owner: Aperio²⁹ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: 8.0, 8.2, 9.0 Supported Metadata Fields: *Aperio SVS TIFF* We currently have: - · many SVS datasets - an SVS specification document - the ability to generate additional SVS datasets 18.9. Aperio AFI 109 ²⁶http://www.aperio.com/ $^{^{27}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/AFIReader.javants-gpl/src/loci/formats/in/AFIReader.javants-gpl/src/loci/formats/in/AFIReader.javants-gpl/src/loci/formats/in/AFIReader.javants-gpl/src/loci/formats/in/AFIReader.javants-gpl/src/loci/formats/in/AFIReader.javants-gpl/src/loci/formats/in/AFIReader.javants-gpl/src/loci/formats/in/AFIReader.javants-gpl/src/loci/formats/in/AFIReader.javants-gpl/src/loci/formats/in/AFIReader.javants-gpl/src/loci/formats/in/AFIReader.javants-gpl/src/loci/formats-gpl/src/$ ²⁸http://www.leicabiosystems.com/index.php?id=8991 ²⁹http://www.aperio.com/ We would like to have: ## **Ratings** Pixels: 📤 Openness: 📤 Presence: Utility: #### **Additional Information** Source Code: SVSReader.java³⁰ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. #### See also: Aperio ImageScope³¹ ## 18.11 Applied Precision CellWorX Extensions: .htd, .pnl Developer: Applied Precision³² **Support** BSD-licensed: 🟋 Officially Supported Versions: Supported Metadata Fields: Applied Precision CellWorX We currently have: • a few CellWorX datasets We would like to have: - a CellWorX specification document - more CellWorX datasets #### **Ratings** Pixels: ___ ## **Additional Information** Source Code: CellWorxReader.java³³ Notes: $^{^{30}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/SVSReader.java$ ³¹ http://www.leicabiosystems.com/index.php?id=8991 ²http://www.api.com $^{^{33}}
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/CellWorxReader.javants-gpl/src/loci/formats/in/CellWorxReader.javants-gpl/src/loci/formats/in/CellWorxReader.javants-gpl/src/loci/formats/in/CellWorxReader.javants-gpl/src/loci/formats/in/CellWorxReader.javants-gpl/src/loci/formats/in/CellWorxReader.javants-gpl/src/loci/formats$ ## 18.12 AVI (Audio Video Interleave) Extensions: .avi Developer: Microsoft³⁴ **Support** BSD-licensed: ** Export: 🎺 Officially Supported Versions: Supported Metadata Fields: AVI (Audio Video Interleave) Freely Available Software: - AVI Reader plugin for ImageJ³⁵ - AVI Writer plugin for ImageJ³⁶ We currently have: • several AVI datasets We would like to have: - more AVI datasets, including: - files with audio tracks and/or multiple video tracks - files compressed with a common unsupported codec - 2+ GB files ## **Ratings** Pixels: Metadata: Openness: Presence: Utility: 🔻 #### **Additional Information** Source Code: AVIReader.java³⁷ Notes: - Bio-Formats can save image stacks as AVI (uncompressed). - The following codecs are supported for reading: - Microsoft Run-Length Encoding (MSRLE) - Microsoft Video (MSV1) - Raw (uncompressed) - JPEG #### See also: AVI RIFF File Reference³⁸ AVI on Wikipedia³⁹ ³⁴http://www.microsoft.com/ ³⁵http://rsb.info.nih.gov/ij/plugins/avi-reader.html ³⁶http://rsb.info.nih.gov/ij/plugins/avi.html $^{^{37}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/AVIReader.java$ ³⁸ http://msdn2.microsoft.com/en-us/library/ms779636.aspx ³⁹http://en.wikipedia.org/wiki/Audio_Video_Interleave ## 18.13 Axon Raw Format Extensions: .arf Owner: INDEC BioSystems⁴⁰ **Support** BSD-licensed: 🟋 Export: 👅 Officially Supported Versions: Supported Metadata Fields: Axon Raw Format We currently have: · one ARF dataset • a specification document⁴¹ We would like to have: • more ARF datasets ## **Ratings** Pixels: [^] Metadata: Openness: Presence: Utility: ** **Additional Information** Source Code: ARFReader.java⁴² Notes: # 18.14 BD Pathway Extensions: .exp, .tif Owner: BD Biosciences⁴³ **Support** BSD-licensed: 👅 Export: 👅 Officially Supported Versions: Supported Metadata Fields: BD Pathway We currently have: • a few BD Pathway datasets We would like to have: • more BD Pathway datasets ⁴⁰http://www.indecbiosystems.com/ $^{^{41}} http://www.indecbiosystems.com/imagingworkbench/ApplicationNotes/IWAppNote11-ARF_File_Format.pdf$ $^{^{42}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ARFR eader.java$ ⁴³http://www.bdbiosciences.com #### **Ratings** Pixels: Openness: Presence: Utility: #### **Additional Information** Source Code: BDReader.java⁴⁴ Notes: # 18.15 Becker & Hickl SPCImage Extensions: .sdt Owner: Becker-Hickl⁴⁵ #### **Support** BSD-licensed: 🟋 Officially Supported Versions: Supported Metadata Fields: Becker & Hickl SPCImage We currently have: - an SDT specification document (from 2008 April, in PDF) - an SDT specification document (from 2006 June, in PDF) - Becker & Hickl's SPCImage⁴⁶ software - a large number of SDT datasets - the ability to produce new datasets We would like to have: #### **Ratings** Pixels: Metadata: 📤 Presence: Utility: ## **Additional Information** Source Code: SDTReader.java⁴⁷ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. ⁴⁴https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/BDReader.java ⁴⁵http://www.becker-hickl.de/ ⁴⁶http://www.becker-hickl.de/software/tcspc/softwaretcspcspecial.htm ## 18.16 Bio-Rad Gel Extensions: .1sc Owner: Bio-Rad⁴⁸ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Bio-Rad Gel We currently have: - software that can read Bio-Rad Gel files - several Bio-Rad Gel files We would like to have: - a Bio-Rad Gel specification - · more Bio-Rad Gel files #### **Ratings** Pixels: Metadata: Openness: Presence: Utility: ** **Additional Information** Source Code: BioRadGelReader.java⁴⁹ Notes: ## 18.17 Bio-Rad PIC Extensions: .pic, .raw, .xml Developer: Bio-Rad Owner: Carl Zeiss, Inc.⁵⁰ **Support** BSD-licensed: 🟋 Export: ** Officially Supported Versions: Supported Metadata Fields: Bio-Rad PIC Freely Available Software: • Bio-Rad PIC reader plugin for ImageJ⁵¹ 18.16. Bio-Rad Gel 114 ⁴⁸http://www.bio-rad.com $^{^{49}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/BioRadGelReader.java$ ⁵⁰http://www.zeiss.com/ $^{^{51}} http://rsb.info.nih.gov/ij/plugins/biorad.html$ #### We currently have: - a PIC specification document (v4.5, in PDF) - an older PIC specification document (v4.2, from 1996 December 16, in DOC) - a large number of PIC datasets - the ability to produce new datasets We would like to have: ### **Ratings** Pixels: 🃤 Metadata: 📤 Openness: 📤 Presence: Utility: 📤 #### **Additional Information** Source Code: BioRadReader.java⁵² Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. - Commercial applications that support this format include: - Bitplane Imaris⁵³ - SVI Huygens⁵⁴ ## 18.18 Bio-Rad SCN Extensions: .scn Developer: Bio-Rad Owner: Bio-Rad⁵⁵ **Support** BSD-licensed: 💢 Export: 👅 Officially Supported Versions: Supported Metadata Fields: Bio-Rad SCN We currently have: • a few Bio-Rad .scn files We would like to have: #### **Ratings** Pixels: Metadata: Openness: 18.18. Bio-Rad SCN 115 ⁵² https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/BioRadReader.java ⁵³http://www.bitplane.com/ ⁵⁴http://svi.nl/ ⁵⁵http://www.bio-rad.com Presence: V #### **Additional Information** Source Code: BioRadSCNReader.java⁵⁶ Notes: ## 18.19 Bitplane Imaris Extensions: .ims Owner: Bitplane⁵⁷ ## **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: 2.7, 3.0, 5.5 Supported Metadata Fields: *Bitplane Imaris* #### We currently have: - an Imaris (RAW) specification document⁵⁸ (from no later than 1997 November 11, in HTML) - an Imaris 5.5 (HDF) specification document - Bitplane's bfFileReaderImaris3N code (from no later than 2005, in C++) - several older Imaris (RAW) datasets - one Imaris 3 (TIFF) dataset - several Imaris 5.5 (HDF) datasets #### We would like to have: - an Imaris 3 (TIFF) specification document - more Imaris 3 (TIFF) datasets #### **Ratings** Pixels: Utility: 🔻 #### **Additional Information** Source Code: ImarisHDFReader.java⁵⁹, ImarisTiffReader.java⁶⁰, ImarisReader.java⁶¹ Notes: #### • There are three distinct Imaris formats: 1. the old binary format (introduced in Imaris version 2.7) ⁵⁶ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/BioRadSCNReader.java 57 http://www.bitplane.com/ ⁵⁸ http://flash.bitplane.com/support/faqs/faqsview.cfm?inCat=6&inQuestionID=104 ⁵⁹ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ImarisHDFReader.java $^{^{60}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ImarisTiffReader.java$ ⁶¹ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ImarisReader.java - 2. Imaris 3, a TIFF variant (introduced in Imaris version 3.0) - 3. Imaris 5.5, an HDF variant (introduced in Imaris version 5.5) ## 18.20 Bruker MRI Developer: Bruker⁶² **Support** BSD-licensed: 💢 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Bruker MRI Freely Available Software: • Bruker plugin for ImageJ⁶³ We currently have: • a few Bruker MRI datasets We would like to have: • an official specification document ## **Ratings** Pixels: Metadata: 📤 Openness: Presence: Utility: 🔻 Ctiffty. #### **Additional Information** Source Code: BrukerReader.java⁶⁴ Notes: # 18.21 Burleigh Extensions: .img Owner: Burleigh Instruments **Support** BSD-licensed: 🟋 cu Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Burleigh We currently have: • Pascal code that can read Burleigh files (from ImageSXM) 18.20. Bruker MRI 117 ⁶²http://www.bruker.com/ ⁶³ http://rsbweb.nih.gov/ij/plugins/bruker.html
$^{^{64}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/BrukerReader.java$ · a few Burleigh files We would like to have: - a Burleigh file format specification - · more Burleigh files ## **Ratings** Pixels: Metadata: Openness: Presence: Utility: ** ## **Additional Information** Source Code: BurleighReader.java⁶⁵ Notes: ## 18.22 Canon DNG Extensions: .cr2, .crw Developer: Canon⁶⁶ #### **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Canon DNG Freely Available Software: • IrfanView⁶⁷ We currently have: • a few example datasets We would like to have: • an official specification document ## **Ratings** Pixels: Metadata: Utility: \(\bar{\psi}\) #### **Additional Information** Source Code: DNGReader.java⁶⁸ 18.22. Canon DNG 118 $^{^{65}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/BurleighReader.java$ ⁶⁶http://canon.com ⁶⁷ http://www.irfanview.com/ ⁶⁸https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/DNGReader.java Notes: ## 18.23 Cellomics Extensions: .c01 Developer: Thermo Fisher Scientific⁶⁹ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Cellomics We currently have: • a few Cellomics .c01 datasets We would like to have: - a Cellomics .c01 specification document - more Cellomics .c01 datasets ## **Ratings** Pixels: 📤 Metadata: Openness: Presence: Utility: **Additional Information** Source Code: CellomicsReader.java⁷⁰ Notes: ## 18.24 cellSens VSI Extensions: .vsi Developer: Olympus⁷¹ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: cellSens VSI We currently have: · a few example datasets We would like to have: 18.23. Cellomics 119 ⁶⁹http://www.thermofisher.com/ $^{^{70}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/CellomicsReader.java$ ⁷¹ http://www.olympus.com/ • an official specification document ## Ratings Pixels: \(\forall \) Metadata: Openness: Presence: Utility: ** ## **Additional Information** Source Code: CellSensReader.java⁷² Notes: # 18.25 CellVoyager Extensions: .xml, .tif Owner: Yokogawa⁷³ **Support** BSD-licensed: ** Officially Supported Versions: Supported Metadata Fields: CellVoyager We currently have: • a few example datasets We would like to have: #### **Ratings** Pixels: ## **Additional Information** Source Code: CellVoyagerReader.java⁷⁴ Notes: ## 18.26 DeltaVision Extensions: .dv, .r3d Owner: Applied Precision⁷⁵ 120 18.25. CellVoyager $^{^{72}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/CellSensReader.java$ $^{^{74}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/CellVoyagerReader.java$ ⁷⁵http://www.api.com/ #### **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: DeltaVision Freely Available Software: • DeltaVision Opener plugin for ImageJ⁷⁶ Sample Datasets: • Applied Precision Datasets⁷⁷ We currently have: - a DV specification document (v2.10 or newer, in HTML) - numerous DV datasets We would like to have: ## **Ratings** Pixels: 🃤 Metadata: Openness: Presence: r resence. Utility: #### **Additional Information** Source Code: DeltavisionReader.java⁷⁸ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. - The Deltavision format is based on the Medical Research Council (MRC) file format. - Commercial applications that support DeltaVision include: - Bitplane Imaris⁷⁹ - SVI Huygens⁸⁰ - Image-Pro Plus⁸¹ #### See also: DeltaVision system description⁸² ## 18.27 **DICOM** Extensions: .dcm, .dicom Developer: National Electrical Manufacturers Association⁸³ 18.27. DICOM 121 ⁷⁶http://rsb.info.nih.gov/ij/plugins/track/delta.html $^{^{77}} http://www.api.com/downloads/software/softworxexplorer 2.0/Sample Images.zip$ $^{^{78}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/DeltavisionReader.java$ ⁷⁹http://www.bitplane.com/ ⁸⁰http://svi.nl/ ⁸¹ http://www.mediacy.com/ ⁸²http://api.com/deltavision.asp ⁸³ http://www.nema.org/ #### **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: DICOM Freely Available Software: - OsiriX Medical Imaging Software⁸⁴ - ezDICOM⁸⁵ - Wikipedia's list of freeware health software 86 #### Sample Datasets: - MRI Chest from FreeVol-3D web site⁸⁷ - Medical Image Samples from Sebastien Barre's Medical Imaging page⁸⁸ - DICOM sample image sets from OsiriX web site⁸⁹ #### We currently have: - DICOM specification documents⁹⁰ (PS 3 2007, from 2006 December 28, in DOC and PDF) - numerous DICOM datasets We would like to have: #### **Ratings** Pixels: Metadata: 📤 Openness: 📤 #### **Additional Information** Source Code: DicomReader.java⁹¹ #### Notes: - DICOM stands for "Digital Imaging and Communication in Medicine". - Bio-Formats supports both compressed and uncompressed DICOM files. #### See also: DICOM homepage⁹² 18.27. DICOM 122 ⁸⁴http://www.osirix-viewer.com/ ⁸⁵ http://www.sph.sc.edu/comd/rorden/ezdicom.html ⁸⁶http://en.wikipedia.org/wiki/List_of_freeware_health_software#Imaging.2FVisualization ⁸⁷http://members.tripod.com/%7Eclunis_immensus/free3d/hk-40.zip ⁸⁸ http://www.barre.nom.fr/medical/samples/ ⁸⁹http://osirix-viewer.com/datasets/ ⁹⁰ http://medical.nema.org/dicom/2007/ ⁹¹ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/DicomReader.java ⁹²http://medical.nema.org/ ## 18.28 ECAT7 Extensions: .v Developer: Siemens⁹³ **Support** BSD-licensed: ** Export: 🗱 Officially Supported Versions: Supported Metadata Fields: ECAT7 We currently have: • a few ECAT7 files We would like to have: - an ECAT7 specification document - more ECAT7 files ## **Ratings** Pixels: Metadata: Openness: Presence: ** Utility: ** **Additional Information** Source Code: Ecat7Reader.java⁹⁴ Notes: # 18.29 EPS (Encapsulated PostScript) Extensions: .eps, .epsi, .ps Developer: Adobe⁹⁵ **Support** BSD-licensed: ** Export: 💜 Officially Supported Versions: Supported Metadata Fields: EPS (Encapsulated PostScript) Freely Available Software: • EPS Writer plugin for ImageJ⁹⁶ We currently have: • a few EPS datasets 18.28. ECAT7 123 ⁹³http://www.siemens.com $^{^{94}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/Ecat7Reader.java$ ⁹⁵http://www.adobe.com/ ⁹⁶ http://rsb.info.nih.gov/ij/plugins/eps-writer.html • the ability to produce new datasets We would like to have: #### **Ratings** Pixels: Metadata: Openness: Presence: Utility: 🔻 #### **Additional Information** Source Code: EPSReader.java⁹⁷ Source Code: EPSWriter.java⁹⁸ Notes: - Bio-Formats can save individual planes as EPS. - Certain types of compressed EPS files are not supported. ## 18.30 Evotec/PerkinElmer Opera Flex Extensions: .flex, .mea, .res Developer: Evotec Technologies, now PerkinElmer⁹⁹ **Support** BSD-licensed: ** Export: 👅 Officially Supported Versions: Supported Metadata Fields: Evotec/PerkinElmer Opera Flex We currently have: · many Flex datasets We would like to have: • a freely redistributable LuraWave LWF decoder #### **Ratings** Pixels: #### **Additional Information** Source Code: FlexReader.java¹⁰⁰ Notes: The LuraWave LWF decoder library (i.e. lwf_jsdk2.6.jar) with license code is required to decode wavelet-compressed Flex files. $^{^{97}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/EPSR eader.java$ $^{^{98}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/out/EPSWriter.java$ ⁹⁹http://www.perkinelmer.com/ $^{^{100}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/FlexReader.java$ #### See also: LuraTech (developers of the proprietary LuraWave LWF compression used for Flex image planes)¹⁰¹ ## 18.31 FEI Extensions: .img Developer: FEI¹⁰² ## **Support** BSD-licensed: 🟋 Officially Supported Versions: Supported Metadata Fields: *FEI* We currently have: · a few FEI files We would like to have: - a specification document - · more FEI files ## **Ratings** Pixels: ** victadata. Presence: Utility: ** ## **Additional Information** Source Code: FEIReader.java¹⁰³ Notes: ## **18.32 FEI TIFF** Extensions: .tiff Developer: FEI¹⁰⁴ **Support** BSD-licensed: 🔻 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: FEI TIFF We currently have: 18.31. FEI 125 ¹⁰¹ http://www.luratech.com/ ¹⁰² http://www.fei.com/ ¹⁰³ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/FEIReader.java ¹⁰⁴http://www.fei.com · a few FEI TIFF datasets We would like to have: ## **Ratings** Pixels: [^] Metadata: Openness: Presence: ** Utility: ** #### **Additional Information** Source Code: FEITiffReader.java¹⁰⁵ Notes: # 18.33 FITS (Flexible Image Transport System) Extensions: .fits Developer: National Radio Astronomy Observatory 106 #### **Support** BSD-licensed: ** Export: 👅 Officially Supported Versions: Supported Metadata Fields: FITS (Flexible Image Transport System) We currently have: - a FITS specification document 107 (NOST 100-2.0, from 1999 March 29, in HTML) - · several FITS datasets We would like to have: #### **Ratings** Pixels: ^ Metadata: Presence: Utility: ** ### **Additional Information** Source Code: FitsReader.java¹⁰⁸ Notes: #### See also: MAST:FITS homepage¹⁰⁹ FITS Support Office¹¹⁰ $^{^{105}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/FEITiffReader.java$ ¹⁰⁶http://www.nrao.edu/ ¹⁰⁷ http://archive.stsci.edu/fits/fits_standard/ $^{^{108}}
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/FitsReader.java$ ¹⁰⁹ http://archive.stsci.edu/fits/ ¹¹⁰ http://fits.gsfc.nasa.gov/ # 18.34 Gatan Digital Micrograph Extensions: .dm3 Owner: Gatan¹¹¹ #### **Support** BSD-licensed: 🟋 Export: 👅 Officially Supported Versions: 3 Supported Metadata Fields: Gatan Digital Micrograph Freely Available Software: - DM3 Reader plugin for ImageJ¹¹² - EMAN¹¹³ We currently have: - Gatan's ImageReader2003 code (from 2003, in C++) - numerous DM3 datasets We would like to have: • a DM3 specification document ## **Ratings** Pixels: Metadata: Presence: ## **Additional Information** Source Code: GatanReader.java¹¹⁴ Notes: $Commercial\ applications\ that\ support\ .dm3\ files\ include\ Datasqueeze^{115}.$ # 18.35 Gatan Digital Micrograph 2 Extensions: .dm2 Developer: Gatan¹¹⁶ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: 2 ¹¹¹ http://www.gatan.com/ ¹¹²http://rsb.info.nih.gov/ij/plugins/DM3_Reader.html ¹¹³ http://blake.bcm.edu/EMAN/ $^{^{114}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/GatanReader.java$ ¹¹⁵ http://www.datasqueezesoftware.com/ ¹¹⁶http://www.gatan.com Supported Metadata Fields: Gatan Digital Micrograph 2 We currently have: - Pascal code that can read DM2 files (from ImageSXM) - a few DM2 files We would like to have: - an official DM2 specification document - more DM2 files ### **Ratings** Pixels: Metadata: ** Openness: Presence: resence: Utility: #### **Additional Information** Source Code: GatanDM2Reader.java¹¹⁷ Notes: # **18.36 GIF (Graphics Interchange Format)** Extensions: .gif Developer: CompuServe¹¹⁸ Owner: Unisys¹¹⁹ #### **Support** BSD-licensed: ** Officially Supported Versions: Supported Metadata Fields: GIF (Graphics Interchange Format) Freely Available Software: - Animated GIF Reader plugin for ImageJ¹²⁰ - GIF Stack Writer plugin for ImageJ¹²¹ We currently have: - a GIF specification document¹²² (Version 89a, from 1990, in HTML) - numerous GIF datasets - the ability to produce new datasets $^{^{117}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/GatanDM2Reader.java$ ¹¹⁸http://www.compuserve.com/ ¹¹⁹ http://www.unisys.com/ ¹²⁰http://rsb.info.nih.gov/ij/plugins/agr.html ¹²¹ http://rsb.info.nih.gov/ij/plugins/gif-stack-writer.html ¹²²http://tronche.com/computer-graphics/gif/ We would like to have: ## **Ratings** Pixels: 📤 Metadata: 📤 Utility: 🔻 ## **Additional Information** Source Code: GIFReader.java¹²³ Notes: # 18.37 Hamamatsu Aquacosmos NAF Extensions: .naf Developer: Hamamatsu¹²⁴ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Hamamatsu Aquacosmos NAF We currently have: • a few NAF files We would like to have: - · a specification document - more NAF files ## **Ratings** Pixels: Openness: Utility: ** ### **Additional Information** Source Code: NAFReader.java¹²⁵ Notes: $[\]overline{}^{123} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/GIFReader.java$ ¹²⁴http://www.hamamatsu.com/ $^{^{125}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/NAFReader.java$ ## 18.38 Hamamatsu HIS Extensions: .his Owner: Hamamatsu¹²⁶ **Support** BSD-licensed: 👅 Export: 👅 Officially Supported Versions: Supported Metadata Fields: Hamamatsu HIS We currently have: - Pascal code that can read HIS files (from ImageSXM) - · several HIS files We would like to have: - · an HIS specification - · more HIS files ### **Ratings** Pixels: Metadata: Openness: Presence: Utility: ** **Additional Information** Source Code: HISReader.java¹²⁷ Notes: # 18.39 Hamamatsu ndpi Extensions: .ndpi Developer: Hamamatsu¹²⁸ **Support** BSD-licensed: 💢 Export: 👅 Officially Supported Versions: Supported Metadata Fields: Hamamatsu ndpi Freely Available Software: • NDP.view¹²⁹ Sample Datasets: 18.38. Hamamatsu HIS 130 ¹²⁶http://www.hamamatsu.com ¹²⁷ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/HISReader.java ¹²⁸ http://www.hamamatsu.com ¹²⁹ http://www.olympusamerica.com/seg_section/seg_vm_downloads.asp • OpenSlide¹³⁰ We currently have: • many example datasets We would like to have: • an official specification document ### **Ratings** Pixels: ** Metadata: Openness: Presence: Utility: **Additional Information** Source Code: NDPIReader.java¹³¹ Notes: ## 18.40 Hamamatsu VMS Extensions: .vms Developer: Hamamatsu¹³² **Support** BSD-licensed: 🗱 Export: 👅 Officially Supported Versions: Supported Metadata Fields: Hamamatsu VMS Sample Datasets: • OpenSlide¹³³ We currently have: - a few example datasets - developer documentation from the OpenSlide project¹³⁴ We would like to have: - an official specification document - more example datasets #### **Ratings** Pixels: Metadata: Openness: 18.40. Hamamatsu VMS 131 ¹³⁰ http://openslide.cs.cmu.edu/download/openslide-testdata/Hamamatsu/ $^{^{131}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/NDPIReader.java$ ¹³²http://www.hamamatsu.com ¹³³http://openslide.cs.cmu.edu/download/openslide-testdata/Hamamatsu-vms/ $^{^{134}} http://openslide.org/Hamamatsu\% 20 format/$ Presence: Villity: Vi ## **Additional Information** Source Code: HamamatsuVMSReader.java¹³⁵ Notes: ## 18.41 Hitachi S-4800 Extensions: .txt, .tif, .bmp, .jpg Developer: Hitachi¹³⁶ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Hitachi S-4800 We currently have: • several Hitachi S-4800 datasets We would like to have: **Ratings** Pixels: Metadata: 📤 vietadata: Openness: 📤 Presence: ** Utility: 🔻 #### **Additional Information** Source Code: HitachiReader.java¹³⁷ Notes: # 18.42 ICS (Image Cytometry Standard) Extensions: .ics, .ids Developer: P. Dean et al. **Support** BSD-licensed: ** Export: 💜 Officially Supported Versions: 1.0, 2.0 Supported Metadata Fields: ICS (Image Cytometry Standard) Freely Available Software: 18.41. Hitachi S-4800 132 ¹³⁶ http://www.hitachi-hta.com/sites/default/files/technotes/Hitachi_4800_STEM.pdf ¹³⁷ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/HitachiReader.java - Libics (ICS reference library)¹³⁸ - ICS Opener plugin for ImageJ¹³⁹ - IrfanView¹⁴⁰ We currently have: · numerous ICS datasets We would like to have: #### **Ratings** Pixels: Metadata: 📤 Openness: 🃤 Presence: Utility: 📤 #### **Additional Information** Source Code: ICSReader.java¹⁴¹ Source Code: ICSWriter.java¹⁴² #### Notes: - ICS version 1.0 datasets have two files an .ics file that contains all of the metadata in plain-text format, and an .ids file that contains all of the pixel data. - ICS version 2.0 datasets are a single .ics file that contains both pixels and metadata. Commercial applications that can support ICS include: - Bitplane Imaris¹⁴³ - SVI Huygens¹⁴⁴ ## 18.43 Imacon Extensions: .fff Owner: Hasselblad¹⁴⁵ #### **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Imacon We currently have: · one Imacon file We would like to have: · more Imacon files 133 18.43. Imacon ¹³⁸ http://libics.sourceforge.net/ ¹³⁹ http://valelab.ucsf.edu/%7Enstuurman/IJplugins/Ics_Opener.html ¹⁴⁰ http://www.irfanview.com/ ¹⁴¹ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/ICSReader.java $^{^{142}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/out/ICSW riter.java$ ¹⁴³ http://www.bitplane.com/ ¹⁴⁴http://svi.nl/ ¹⁴⁵ http://www.hasselbladusa.com/ ## **Ratings** Pixels: ***** Metadata: Openness: ** Presence: Utility: #### **Additional Information** Source Code: ImaconReader.java¹⁴⁶ Notes: # 18.44 ImagePro Sequence Extensions: .seq Owner: Media Cybernetics¹⁴⁷ ### **Support** BSD-licensed: 💢 Officially Supported Versions: Supported Metadata Fields: ImagePro Sequence We currently have: - the Image-Pro Plus¹⁴⁸ software - · a few SEQ datasets - the ability to produce more datasets We would like to have: • an official SEQ specification document ## **Ratings** Pixels: ___ Metadata: 📤 Openness: ** Utility: 🔻 #### **Additional Information** Source Code: SEQReader.java¹⁴⁹ Notes: ¹⁴⁷ http://www.mediacy.com/ ¹⁴⁸ http://www.mediacy.com/index.aspx?page=IPP ¹⁴⁹https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/SEQReader.java ## 18.45 ImagePro Workspace Extensions: .ipw Owner: Media Cybernetics¹⁵⁰ **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: ImagePro Workspace We currently have: - the Image-Pro Plus¹⁵¹ software - a few IPW datasets - the ability to produce more datasets We would like to have: - an official IPW specification document - more IPW datasets: - multiple datasets in one file - 2+ GB files #### **Ratings** Pixels: 📤 Metadata: 📤 Openness: Presence: Utility: 🔻 #### **Additional Information** Source Code: IPWReader.java¹⁵² Notes: Bio-Formats uses a modified version of the Apache Jakarta POI¹⁵³ library to read IPW files. ## **18.46 IMAGIC** Extensions: .hed, .img Developer: Image Science¹⁵⁴ **Support** BSD-licensed: ** ŀ Export: 🟋 Officially Supported Versions: ¹⁵⁰ http://www.mediacy.com/ ¹⁵¹ http://www.mediacy.com/index.aspx?page=IPP $^{^{152}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/IPWReader.java$ ¹⁵³ http://jakarta.apache.org/poi/ ¹⁵⁴http://www.imagescience.de Supported Metadata Fields: IMAGIC Freely Available Software: • em2em¹⁵⁵ We currently have: - one example dataset - · official file format documentation We would like to have: • more example datasets #### **Ratings** Pixels: 📤 Metadata: 📤 . Utility: #### **Additional Information** Source Code: ImagicReader.java¹⁵⁶ Notes: See also: IMAGIC specification¹⁵⁷ ##
18.47 IMOD Extensions: .mod **Developer:** Boulder Laboratory for 3-Dimensional Electron Microscopy of Cells¹⁵⁸ **Owner:** Boulder Laboratory for 3-Dimensional Electron Microscopy of Cells¹⁵⁹ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: IMOD Freely Available Software: • IMOD¹⁶⁰ We currently have: - a few sample datasets - official documentation¹⁶¹ 18.47. IMOD 136 ¹⁵⁵http://www.imagescience.de/em2em.html $^{^{156}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ImagicReader.java$ ¹⁵⁷http://www.imagescience.de/em2em.html ¹⁵⁸ http://bio3d.colorado.edu ¹⁵⁹http://bio3d.colorado.edu ¹⁶⁰ http://bio3d.colorado.edu/imod/ ¹⁶¹ http://bio3d.colorado.edu/imod/doc/binspec.html We would like to have: #### **Ratings** Pixels: Metadata: Openness: 📤 Presence: Utility: ** #### **Additional Information** Source Code: IMODReader.java¹⁶² Notes: # 18.48 Improvision Openlab LIFF Extensions: .liff Developer: Improvision¹⁶³ Owner: PerkinElmer¹⁶⁴ #### **Support** BSD-licensed: 🟋 Export: 👅 Officially Supported Versions: 2.0, 5.0 Supported Metadata Fields: Improvision Openlab LIFF We currently have: - an Openlab specification document (from 2000 February 8, in DOC) - Improvision's XLIFFFileImporter code for reading Openlab LIFF v5 files (from 2006, in C++) - several Openlab datasets We would like to have: • more Openlab datasets (preferably with 32-bit integer data) ## **Ratings** Pixels: Metadata: Presence: #### **Additional Information** Source Code: OpenlabReader.java¹⁶⁵ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. $^{{}^{162}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/IMODReader.javants-gpl/src/loci/formats/in/IMODReader.javants-gpl/src/loci/formats/in/IMODReader.javants-gpl/src/loci/formats/in/IMODReader.javants-gpl/src/loci/formats/in/IMODReader.javants-gpl/src/loci/formats/in/IMODReader.javants-gpl/src/loci/formats/in/IMODReader.javants-gpl/src/loci/format$ ¹⁶³ http://www.improvision.com/ ¹⁶⁴ http://www.perkinelmer.com/ ¹⁶⁵ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/OpenlabReader.java #### See also: Openlab software review¹⁶⁶ # 18.49 Improvision Openlab Raw Extensions: .raw Developer: Improvision¹⁶⁷ Owner: PerkinElmer¹⁶⁸ ## **Support** BSD-licensed: 🟋 Officially Supported Versions: Supported Metadata Fields: Improvision Openlab Raw We currently have: - an Openlab Raw specification document 169 (from 2004 November 09, in HTML) - a few Openlab Raw datasets We would like to have: ## **Ratings** Pixels: . Utility: ** ## **Additional Information** Source Code: OpenlabRawReader.java¹⁷⁰ Notes: See also: Openlab software review¹⁷¹ # 18.50 Improvision TIFF Extensions: .tif Developer: Improvision¹⁷² Owner: PerkinElmer¹⁷³ #### **Support** ¹⁶⁶http://www.improvision.com/products/openlab/ ¹⁶⁷ http://www.improvision.com/ ¹⁶⁸ http://www.perkinelmer.com/ ¹⁶⁹ http://cellularimaging.perkinelmer.com/support/technical_notes/detail.php?id=344 ¹⁷⁰ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/OpenlabRawReader.java ¹⁷¹ http://www.improvision.com/products/openlab/ ¹⁷² http://www.improvision.com/ ¹⁷³ http://www.perkinelmer.com/ BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Improvision TIFF We currently have: - an Improvision TIFF specification document - a few Improvision TIFF datasets We would like to have: ## **Ratings** Pixels: 📤 Metadata: 🃤 Presence: ** Utility: #### **Additional Information** Source Code: ImprovisionTiffReader.java¹⁷⁴ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. See also: Openlab software overview¹⁷⁵ # 18.51 Imspector OBF Extensions: .obf, .msr Developer: Department of NanoBiophotonics, MPI-BPC¹⁷⁶ Owner: MPI-BPC¹⁷⁷ **Support** BSD-licensed: ** Export: 🐺 Officially Supported Versions: Supported Metadata Fields: Imspector OBF We currently have: - · a few .msr datasets - a specification document¹⁷⁸ $^{^{174}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ImprovisionTiffReader.java$ ¹⁷⁵ http://www.improvision.com/products/openlab/ ¹⁷⁶https://imspector.mpibpc.mpg.de/index.html ¹⁷⁷http://www.mpibpc.mpg.de/ ¹⁷⁸https://imspector.mpibpc.mpg.de/documentation/fileformat.html #### We would like to have: ## **Ratings** Pixels: 📤 Metadata: Openness: 📤 Presence: ** Utility: ** ## **Additional Information** Source Code: OBFReader.java¹⁷⁹ Notes: ## 18.52 InCell 1000 Extensions: .xdce, .tif Developer: GE¹⁸⁰ ## **Support** BSD-licensed: 🟋 Officially Supported Versions: Supported Metadata Fields: InCell 1000 We currently have: • a few InCell 1000 datasets We would like to have: - an InCell 1000 specification document - more InCell 1000 datasets ## **Ratings** Pixels: Metadata: 📤 Openness: Utility: ## **Additional Information** Source Code: InCellReader.java¹⁸¹ #### Notes: 140 18.52. InCell 1000 $[\]overline{\ ^{179} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/OBFReader.java}$ 180 http://gelifesciences.com/ $^{^{181}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/InCellReader.java$ ## 18.53 InCell 3000 Extensions: .frm Developer: GE¹⁸² **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: InCell 3000 Sample Datasets: • Broad Bioimage Benchmark Collection 183 We currently have: • a few example datasets We would like to have: • an official specification document ## **Ratings** Pixels: Metadata: Openness: Presence: Utility: **Additional Information** Source Code: InCell3000Reader.java¹⁸⁴ Notes: ## 18.54 INR Extensions: .inr **Support** BSD-licensed: 👅 Export: 👅 Officially Supported Versions: Supported Metadata Fields: INR We currently have: • several sample .inr datasets We would like to have: ## **Ratings** Pixels: 📤 18.53. InCell 3000 141 ¹⁸² http://gelifesciences.com/ ¹⁸³http://www.broadinstitute.org/bbbc/BBBC013/ $^{^{184}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/InCell3000Reader.java$ Openness: Utility: ** #### **Additional Information** Source Code: INRReader.java¹⁸⁵ Notes: ## 18.55 Inveon Extensions: .hdr ## **Support** BSD-licensed: ** Officially Supported Versions: Supported Metadata Fields: Inveon We currently have: a few Inveon datasets We would like to have: #### **Ratings** Pixels: Openness: Utility: 🔻 #### **Additional Information** Source Code: InveonReader.java¹⁸⁶ Notes: ## 18.56 IPLab Extensions: .ipl Developer: Scanalytics Owner: was BD Biosystems 187, now BioVision Technologies 188 #### **Support** BSD-licensed: 🟋 $^{^{185}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/INRReader.java$ 142 18.55. Inveon ¹⁸⁶ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/InveonReader.java ¹⁸⁷ http://www.bdbiosciences.com/ ¹⁸⁸ http://www.biovis.com/iplab.htm Officially Supported Versions: Supported Metadata Fields: IPLab Freely Available Software: • IPLab Reader plugin for ImageJ¹⁸⁹ We currently have: - an IPLab specification document (v3.6.5, from 2004 December 1, in PDF) - · several IPLab datasets We would like to have: • more IPLab datasets (preferably with 32-bit integer or floating point data) #### **Ratings** Pixels: Presence: Utility: \(\bar{\psi}\) #### **Additional Information** Source Code: IPLabReader.java¹⁹⁰ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. Commercial applications that support IPLab include: - Bitplane Imaris¹⁹¹ - SVI Huygens¹⁹² #### See also: IPLab software review¹⁹³ ## 18.57 IPLab-Mac Extensions: .ipm Owner: BioVision Technologies 194 #### **Support** BSD-licensed: ** Export: 👅 Officially Supported Versions: Supported Metadata Fields: IPLab-Mac We currently have: • a few IPLab-Mac datasets 143 18.57. IPLab-Mac $^{^{189}} http://rsb.info.nih.gov/ij/plugins/iplab-reader.html\\$ $^{^{190}}
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/IPLabReader.java$ ¹⁹¹ http://www.bitplane.com/ ¹⁹²http://svi.nl/ ¹⁹³http://www.biovis.com/iplab.htm ¹⁹⁴http://biovis.com/ · a specification document We would like to have: • more IPLab-Mac datasets ## **Ratings** Pixels: 📤 Metadata: Openness: 📤 Presence: ** Utility: 🔻 ### **Additional Information** Source Code: IvisionReader.java¹⁹⁵ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. ## 18.58 **JEOL** Extensions: .dat, .img, .par Owner: JEOL¹⁹⁶ #### **Support** BSD-licensed: 💢 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: JEOL We currently have: - Pascal code that reads JEOL files (from ImageSXM) - · a few JEOL files We would like to have: - · an official specification document - · more JEOL files #### **Ratings** Pixels: Metadata: Presence: ** #### **Additional Information** Source Code: JEOLReader.java¹⁹⁷ 18.58. JEOL 144 $^{^{195}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/IvisionReader.java$ ¹⁹⁶http://www.jeol.com $^{^{197}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/JEOLReader.java$ Notes: ## 18.59 JPEG Extensions: .jpg Developer: Independent JPEG Group 198 **Support** BSD-licensed: ** Export: ** Officially Supported Versions: Supported Metadata Fields: JPEG We currently have: - a JPEG specification document¹⁹⁹ (v1.04, from 1992 September 1, in PDF) - numerous JPEG datasets - the ability to produce more datasets We would like to have: ## **Ratings** Pixels: 📤 Metadata: Openness: 1 Presence: Utility: #### **Additional Information** Source Code: JPEGReader.java²⁰⁰ Source Code: JPEGWriter.java²⁰¹ Bio-Formats can save individual planes as JPEG. Bio-Formats uses the Java Image I/O²⁰² API to read and write JPEG files. JPEG stands for "Joint Photographic Experts Group". ## See also: JPEG homepage²⁰³ ## 18.60 JPEG 2000 Extensions: .jp2 Developer: Independent JPEG Group²⁰⁴ **Support** BSD-licensed: ** ¹⁹⁸ http://www.ijg.org/ 18.59. JPEG 145 ¹⁹⁹http://www.w3.org/Graphics/JPEG/jfif3.pdf ²⁰⁰https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/JPEGReader.java ²⁰¹ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/out/JPEGWriter.java ²⁰² http://docs.oracle.com/javase/6/docs/technotes/guides/imageio/ ²⁰³http://www.jpeg.org/jpeg/index.html ²⁰⁴http://www.ijg.org/ Export: 🏏 Officially Supported Versions: Supported Metadata Fields: JPEG 2000 Freely Available Software: • JJ2000 (JPEG 2000 library for Java)²⁰⁵ We currently have: - a JPEG 2000 specification document ²⁰⁶ (final draft, from 2000, in PDF) - a few .jp2 files We would like to have: #### **Ratings** Pixels: 📤 Openness: 1 Utility: **\(\)** #### **Additional Information** Source Code: JPEG2000Reader.java²⁰⁷ Source Code: JPEG2000Writer.java²⁰⁸ Notes: Bio-Formats uses the JAI Image I/O Tools²⁰⁹ library to read JP2 files. JPEG stands for "Joint Photographic Experts Group". ## 18.61 JPK Extensions: .jpk Developer: JPK Instruments²¹⁰ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: JPK We currently have: - Pascal code that can read JPK files (from ImageSXM) - a few JPK files We would like to have: - an official specification document - more JPK files 18.61. JPK 146 ²⁰⁵ http://code.google.com/p/jj2000/ ²⁰⁶http://www.jpeg.org/jpeg2000/CDs15444.html ²⁰⁷https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/JPEG2000Reader.java ²⁰⁸https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/out/JPEG2000Writer.java ²⁰⁹https://java.net/projects/jai-imageio ²¹⁰http://www.jpk.com #### **Ratings** Pixels: Metadata: Openness: Presence: Utility: ** ## **Additional Information** Source Code: JPKReader.java²¹¹ Notes: ## 18.62 JPX Extensions: .jpx Developer: JPEG Committee²¹² **Support** BSD-licensed: 💢 Export: 👅 Officially Supported Versions: Supported Metadata Fields: JPX We currently have: • a few .jpx files We would like to have: ## **Ratings** Pixels: Metadata: 📤 Presence: #### **Additional Information** Source Code: JPXReader.java²¹³ Notes: # 18.63 Khoros VIFF (Visualization Image File Format) Bitmap Extensions: .xv Developer: Khoral²¹⁴ Owner: AccuSoft²¹⁵ 18.62. JPX 147 $^{^{211}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/JPKReader.java$ ²¹²http://www.jpeg.org/jpeg2000/ ²¹³https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/JPXReader.java ²¹⁴http://www.khoral.com/company/ ²¹⁵http://www.accusoft.com/company/ #### **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Khoros VIFF (Visualization Image File Format) Bitmap Sample Datasets: • VIFF Images²¹⁶ We currently have: • several VIFF datasets We would like to have: ## **Ratings** Pixels: Metadata: Openness: Presence: Utility: #### **Additional Information** Source Code: KhorosReader.java²¹⁷ Notes: See also: VisiQuest software overview (formerly known as KhorosPro)²¹⁸ ## 18.64 Kodak BIP Extensions: .bip Developer: Kodak/Carestream²¹⁹ **Support** BSD-licensed: ** Export: 👅 Officially Supported Versions: Supported Metadata Fields: Kodak BIP We currently have: · a few .bip datasets We would like to have: • an official specification document 18.64. Kodak BIP 148 ²¹⁶http://netghost.narod.ru/gff/sample/images/viff/index.htm $^{^{217}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/KhorosReader.java$ ²¹⁸http://www.accusoft.com/products/visiquest/ ²¹⁹http://carestream.com #### **Ratings** Pixels: Metadata: Openness: ** Presence: Utility: ** **Additional Information** Source Code: KodakReader.java²²⁰ Notes: See also: Information on Image Station systems²²¹ ## 18.65 Lambert Instruments FLIM Extensions: .fli Developer: Lambert Instruments²²² **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Lambert Instruments FLIM We currently have: - an LI-FLIM specification document - several example LI-FLIM datasets We would like to have: #### **Ratings** Pixels: Metadata: 📤 Openness: 📤 Utility: ## **Additional Information** Source Code: LiFlimReader.java²²³ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. $^{{}^{220}}https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/KodakReader.java$ ²²¹http://carestream.com/PublicContent.aspx?langType=1033&id=448953 ²²²http://www.lambert-instruments.com $^{{}^{223}}https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/LiFlimReader.java$ # 18.66 LaVision Imspector Extensions: .msr Developer: LaVision BioTec²²⁴ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: LaVision Imspector We currently have: • a few .msr files We would like to have: **Ratings** Pixels: Metadata: Openness: Presence: Utility: ** **Additional Information** Source Code: ImspectorReader.java²²⁵ Notes: ## 18.67 Leica LCS LEI Extensions: .lei, .tif Developer: Leica Microsystems CMS GmbH²²⁶ Owner: Leica²²⁷ **Support** BSD-licensed: 🟋 Officially Supported Versions: Supported Metadata Fields: Leica LCS LEI Freely Available Software: • Leica LCS Lite²²⁸ We currently have: - an LEI specification document (beta 2.000, from no later than 2004 February 17, in PDF) - · many LEI datasets ²²⁴http://www.lavisionbiotec.com/ $^{{}^{225}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ImspectorReader.java$ ²²⁶http://www.leica-microsystems.com/ ²²⁷ http://www.leica.com/ ²²⁸ftp://ftp.llt.de/softlib/LCSLite/LCSLite2611537.exe We would like to have: #### **Ratings** Pixels: Metadata: 📤 Openness: 📤 Presence: ^ Utility: 📤 #### **Additional Information** Source Code: LeicaReader.java²²⁹ Please note that while we have specification documents for this format, we are not able to distribute them to third parties. LCS stands for "Leica Confocal Software". LEI presumably stands for "Leica Experimental Information". Commercial applications that support LEI include: - Bitplane Imaris²³⁰ - SVI Huygens²³¹ - Image-Pro Plus²³² ## 18.68 Leica LAS AF LIF (Leica Image File Format) Extensions: .lif Developer: Leica Microsystems CMS GmbH²³³ Owner: Leica²³⁴ #### **Support** BSD-licensed: 🟋 Officially Supported Versions: 1.0, 2.0 Supported Metadata Fields: Leica LAS AF LIF (Leica Image File Format) Freely Available Software: • Leica LAS AF Lite²³⁵ (links at bottom of page) We currently have: - a LIF specification document (version 2, from no later than 2007 July 26, in PDF) - a LIF specification document (version 1, from no later than 206 April 3, in PDF) - · numerous LIF datasets We would like to have: #### **Ratings** Pixels: $^{^{229}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/LeicaReader.java$ ²³⁰ http://www.bitplane.com/ ²³¹ http://svi.nl/ ²³²http://www.mediacy.com/ ²³³ http://www.leica-microsystems.com/ ²³⁴http://www.leica.com/ ²³⁵http://www.leica-microsystems.com/products/microscope-imaging-software/life-sciences/las-af-advanced-fluorescence/ Metadata: 📤 Openness: 📤 Presence: Utility: 📤 ## **Additional Information** Source Code: LIFReader.java²³⁶ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. LAS stands for "Leica Application Suite". AF stands for "Advanced Fluorescence". Commercial applications that support LIF include: - Bitplane Imaris²³⁷ - SVI Huygens²³⁸ - Amira²³⁹ ## 18.69 Leica SCN
Extensions: .scn Developer: Leica Microsystems²⁴⁰ **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: 2012-03-10 Supported Metadata Fields: Leica SCN We currently have: • a few sample datasets We would like to have: - an official specification document - sample datasets that cannot be opened ### **Ratings** Pixels: Openness: Presence: ** ## **Additional Information** Source Code: LeicaSCNReader.java²⁴¹ 18.69. Leica SCN 152 $^{{\}color{blue}{}^{236}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/LIFReader.java$ ²³⁷ http://www.bitplane.com/ ²³⁸http://svi.nl/ ²³⁹ http://www.amira.com/ ²⁴⁰http://www.leica-microsystems.com/ $^{^{241}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/LeicaSCNReader.java$ Notes: ## 18.70 LEO Extensions: .sxm Owner: Zeiss²⁴² ## **Support** BSD-licensed: 🟋 Officially Supported Versions: Supported Metadata Fields: LEO We currently have: - Pascal code that can read LEO files (from ImageSXM) - · a few LEO files We would like to have: - an official specification document - more LEO files ## **Ratings** Pixels: Openness: Presence: Utility: ** ## **Additional Information** Source Code: LEOReader.java²⁴³ Notes: ## 18.71 Li-Cor L2D Extensions: .12d, .tif, .scn Owner: LiCor Biosciences²⁴⁴ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: *Li-Cor L2D* We currently have: • a few L2D datasets 18.70. LEO 153 ²⁴²http://www.zeiss.de $^{^{243}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/LEOReader.java$ ²⁴⁴http://www.licor.com/ We would like to have: - an official specification document - more L2D datasets ### **Ratings** Pixels: 📤 Metadata: Openness: Presence: Utility: #### **Additional Information** Source Code: L2DReader.java²⁴⁵ Notes: L2D datasets cannot be imported into OME using server-side import. They can, however, be imported from ImageJ, or using the omeul utility. # 18.72 LIM (Laboratory Imaging/Nikon) Extensions: .lim Owner: Laboratory Imaging²⁴⁶ **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: LIM (Laboratory Imaging/Nikon) We currently have: - several LIM files - the ability to produce more LIM files We would like to have: • an official specification document ## **Ratings** Pixels: Metadata: Openness: Utility: ## **Additional Information** Source Code: LIMReader.java²⁴⁷ Notes: $^{^{245}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/L2DReader.java$ ²⁴⁷https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/LIMReader.java Bio-Formats only supports uncompressed LIM files. Commercial applications that support LIM include: • NIS Elements²⁴⁸ # 18.73 MetaMorph 7.5 TIFF Extensions: .tiff Owner: Molecular Devices²⁴⁹ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: MetaMorph 7.5 TIFF We currently have: • a few Metamorph 7.5 TIFF datasets We would like to have: **Ratings** Pixels: 📤 Metadata: 📤 Openness: 📤 _ Presence: ** Utility: **Additional Information** Source Code: MetamorphTiffReader.java²⁵⁰ Notes: # 18.74 MetaMorph Stack (STK) Extensions: .stk, .nd Owner: Molecular Devices²⁵¹ **Support** BSD-licensed: 🗱 nsea: Export: 👅 Officially Supported Versions: Supported Metadata Fields: MetaMorph Stack (STK) We currently have: • an STK specification document (from 2006 November 21, in DOC) ²⁴⁸http://www.nis-elements.com/ ²⁴⁹http://www.moleculardevices.com/ $^{{}^{250}}https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/MetamorphTiffReader.java$ ²⁵¹http://www.moleculardevices.com/ - an older STK specification document (from 2005 March 25, in DOC) - an ND specification document (from 2002 January 24, in PDF) - a large number of datasets We would like to have: ## **Ratings** Pixels: Metadata: Openness: 📤 Presence: Utility: ## **Additional Information** Source Code: MetamorphReader.java²⁵² Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. Commercial applications that support STK include: - Bitplane Imaris²⁵³ - SVI Huygens²⁵⁴ - DIMIN²⁵⁵ #### See also: Metamorph imaging system overview²⁵⁶ # 18.75 MIAS (Maia Scientific) Extensions: .tif Developer: Maia Scientific²⁵⁷ **Support** BSD-licensed: 🟋 Export: 👅 Officially Supported Versions: Supported Metadata Fields: MIAS (Maia Scientific) We currently have: · several MIAS datasets We would like to have: ## **Ratings** Pixels: Metadata: $^{{}^{252}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/MetamorphReader.java$ ²⁵³ http://www.bitplane.com/ ²⁵⁴http://svi.nl/ ²⁵⁵ http://dimin.net/ ²⁵⁶http://www.metamorph.com/ ²⁵⁷http://www.selectscience.net/supplier/maia-scientific/?compID=6088 Openness: V Utility: **Additional Information** Source Code: MIASReader.java²⁵⁸ Notes: # 18.76 Micro-Manager Extensions: .tif, .txt, .xml Developer: Vale Lab²⁵⁹ **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Micro-Manager Freely Available Software: • Micro-Manager²⁶⁰ We currently have: • many Micro-manager datasets We would like to have: **Ratings** Pixels: 📤 Metadata: 📤 Openness: 📤 Presence: ** Utility: ## **Additional Information** Source Code: MicromanagerReader.java²⁶¹ Notes: ## **18.77 MINC MRI** Extensions: .mnc Developer: McGill University²⁶² **Support** BSD-licensed: ** $^{^{258}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/MIASReader.java$ ²⁵⁹http://valelab.ucsf.edu/ ²⁶⁰ http://micro-manager.org/ $^{^{261}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/MicromanagerReader.java$ ²⁶²http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC Export: 👅 Officially Supported Versions: Supported Metadata Fields: MINC MRI Freely Available Software: • MINC²⁶³ We currently have: • a few MINC files We would like to have: **Ratings** Pixels: [^] Metadata: Openness: Presence: Utility: ** **Additional Information** Source Code: MINCReader.java²⁶⁴ Notes: ## 18.78 Minolta MRW Extensions: .mrw Developer: Minolta²⁶⁵ **Support** BSD-licensed: 💢 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Minolta MRW Freely Available Software: • dcraw²⁶⁶ We currently have: · several .mrw files We would like to have: **Ratings** Pixels: Metadata: Presence: ²⁶³http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC 18.78. Minolta MRW 158 $^{^{264}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/MINCReader.java$ ²⁶⁵ http://www.konicaminolta.com/ ²⁶⁶http://www.cybercom.net/%7Edcoffin/dcraw/ Utility: \(\bar{\psi}\) #### **Additional Information** Source Code: MRWReader.java²⁶⁷ Notes: See also: Description of MRW format²⁶⁸ # 18.79 MNG (Multiple-image Network Graphics) Extensions: .mng Developer: MNG Development Group²⁶⁹ **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: MNG (Multiple-image Network Graphics) Freely Available Software: • libmng (MNG reference library)²⁷⁰ Sample Datasets: • MNG sample files²⁷¹ We currently have: - the libmng-testsuites²⁷² package (from 2003 March 05, in C) - a large number of MNG datasets We would like to have: #### **Ratings** Pixels: Metadata: Openness: 1 Utility: ** ## **Additional Information** Source Code: MNGReader.java²⁷³ Notes: See also: MNG homepage²⁷⁴ MNG specification²⁷⁵ $^{^{267}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/MRWReader.java$ ²⁶⁸http://www.dalibor.cz/files/MRW%20File%20Format.txt ²⁶⁹http://www.libpng.org/pub/mng/mngnews.html ²⁷⁰http://sourceforge.net/projects/libmng/ ²⁷¹http://sourceforge.net/projects/libmng/files/libmng-testsuites/MNGsuite-1.0/MNGsuite.zip/download ²⁷²http://downloads.sourceforge.net/libmng/MNGsuite-20030305.zip ²⁷³https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/MNGReader.java ²⁷⁴http://www.libpng.org/pub/mng/ ²⁷⁵http://www.libpng.org/pub/mng/spec # 18.80 Molecular Imaging Extensions: .stp Owner: Molecular Imaging Corp, San Diego CA (closed) **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Molecular Imaging We currently have: - Pascal code that reads Molecular Imaging files (from ImageSXM) - a few Molecular Imaging files We would like to have: - an official specification document - more Molecular Imaging files ## **Ratings** Pixels: Metadata: Openness: Presence: ** Utility: **Additional Information** Source Code: MolecularImagingReader.java²⁷⁶ Notes: # 18.81 MRC (Medical Research Council) Extensions: .mrc Developer: MRC Laboratory of Molecular Biology²⁷⁷ **Support** BSD-licensed: 🟋 Export: ** Officially Supported Versions: Supported Metadata Fields: MRC (Medical Research Council) Sample Datasets: • golgi.mrc²⁷⁸ We currently have: • an MRC specification document²⁷⁹ (in HTML) $[\]overline{^{276}}
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/MolecularImagingReader.javanta-gpl/src/loci/formats/in/Molecula$ ²⁷⁷http://www2.mrc-lmb.cam.ac.uk/ ²⁷⁸http://bio3d.colorado.edu/imod/files/imod_data.tar.gz ²⁷⁹http://ami.scripps.edu/software/mrctools/mrc_specification.php - another MRC specification document²⁸⁰ (in TXT) - a few MRC datasets We would like to have: ### **Ratings** Pixels: Metadata: 🃤 Openness: 📤 Presence: Utility: #### **Additional Information** Source Code: MRCReader.java²⁸¹ Notes: Commercial applications that support MRC include: • Bitplane Imaris²⁸² #### See also: MRC on Wikipedia²⁸³ # **18.82 NEF (Nikon Electronic Format)** Extensions: .nef, .tif Developer: Nikon²⁸⁴ ## **Support** BSD-licensed: 🟋 Officially Supported Versions: Supported Metadata Fields: NEF (Nikon Electronic Format) #### Sample Datasets: - neffile1.zip²⁸⁵ - Sample NEF images²⁸⁶ ## We currently have: - a NEF specification document (v0.1, from 2003, in PDF) - several NEF datasets We would like to have: ## **Ratings** Pixels: Metadata: 📤 $^{^{280}} http://bio3d.colorado.edu/imod/doc/mrc_format.txt$ ²⁸¹https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/MRCReader.java ²⁸²http://www.bitplane.com/ ²⁸³http://en.wikipedia.org/wiki/MRC_%28file_format%29 ²⁸⁴ http://www.nikon.com/ ²⁸⁵http://www.outbackphoto.com/workshop/NEF_conversion/neffile1.zip ²⁸⁶http://www.nikondigital.org/articles/library/nikon_d2x_first_impressions.htm Openness: ** Presence: ** Utility: #### **Additional Information** Source Code: NikonReader.java²⁸⁷ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. NEF Conversion²⁸⁸ ## 18.83 NIfTI Extensions: .img, .hdr Developer: National Institutes of Health²⁸⁹ **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: NIfTI Sample Datasets: • Official test data²⁹⁰ We currently have: - NIfTI specification documents²⁹¹ - several NIfTI datasets We would like to have: ## **Ratings** Pixels: 📤 Metadata: Openness: 📤 Utility: ** ## **Additional Information** Source Code: NiftiReader.java²⁹² Notes: 18.83. NIfTI 162 $^{{}^{287}}https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/NikonReader.javanta-gpl/src/loci/formats/in$ ²⁸⁸ http://www.outbackphoto.com/workshop/NEF_conversion/nefconversion.html ²⁸⁹http://www.nih.gov/ ²⁹⁰http://nifti.nimh.nih.gov/nifti-1/data ²⁹¹http://nifti.nimh.nih.gov/nifti-1/ ²⁹²https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/NiftiReader.java ## 18.84 Nikon Elements TIFF Extensions: .tiff Developer: Nikon²⁹³ **Support** BSD-licensed: 🟋 Export: 👅 Officially Supported Versions: Supported Metadata Fields: Nikon Elements TIFF We currently have: • a few Nikon Elements TIFF files We would like to have: • more Nikon Elements TIFF files **Ratings** Pixels: Metadata: Openness: Presence: Utility: ** **Additional Information** Source Code: NikonElementsTiffReader.java²⁹⁴ Notes: ## 18.85 Nikon EZ-C1 TIFF Extensions: .tiff Developer: Nikon²⁹⁵ **Support** BSD-licensed: ** Officially Supported Versions: Supported Metadata Fields: Nikon EZ-C1 TIFF We currently have: • a few Nikon EZ-C1 TIFF files We would like to have: **Ratings** Pixels: 📤 Metadata: 📤 ²⁹⁴https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/NikonElementsTiffReader.java ²⁹⁵http://www.nikon.com/ Openness: Presence: ** #### **Additional Information** Source Code: NikonTiffReader.java²⁹⁶ Notes: ## 18.86 Nikon NIS-Elements ND2 Extensions: .nd2 Developer: Nikon USA²⁹⁷ **Support** BSD-licensed: X Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Nikon NIS-Elements ND2 Freely Available Software: • NIS-Elements Viewer from Nikon²⁹⁸ We currently have: · many ND2 datasets We would like to have: · an official specification document #### **Ratings** Pixels: 📤 ## **Additional Information** Source Code: NativeND2Reader.java²⁹⁹ Notes: There are two distinct versions of ND2: an old version, which uses JPEG-2000 compression, and a new version which is either uncompressed or Zip-compressed. We are not aware of the version number or release date for either format. Bio-Formats uses the JAI Image I/O Tools³⁰⁰ library to read ND2 files compressed with JPEG-2000. There is also an ND2 reader that uses Nikon's native libraries. To use it, you must be using Windows and have Nikon's ND2 reader plugin for ImageJ³⁰¹ installed. Additionally, you will need to download LegacyND2Reader.dll³⁰² and place it in your ImageJ plugin folder. $^{^{296}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/NikonTiffReader.java$ ²⁹⁷http://www.nikonusa.com/ ²⁹⁸http://www.nis-elements.com/resources-downloads.html $^{^{299}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/NativeND2Reader.java$ ³⁰⁰http://java.net/projects/jai-imageio ³⁰¹ http://rsb.info.nih.gov/ij/plugins/nd2-reader.html ³⁰²https://github.com/openmicroscopy/bioformats/blob/develop/lib/LegacyND2Reader.dll?raw=true ## 18.87 NRRD (Nearly Raw Raster Data) Extensions: .nrrd, .nhdr, .raw, .txt Developer: Teem developers³⁰³ **Support** BSD-licensed: ** Export: 👅 Officially Supported Versions: Supported Metadata Fields: NRRD (Nearly Raw Raster Data) Freely Available Software: • nrrd (NRRD reference library)³⁰⁴ Sample Datasets: • Diffusion tensor MRI datasets³⁰⁵ We currently have: - an nrrd specification document³⁰⁶ (v1.9, from 2005 December 24, in HTML) - · a few nrrd datasets We would like to have: ## **Ratings** Pixels: Metadata: 📤 Openness: 📤 Presence: Utility: 📤 ## **Additional Information** Source Code: NRRDReader.java³⁰⁷ Notes: # 18.88 Olympus CellR/APL Extensions: .apl, .mtb, .tnb, .tif, .obsep Owner: Olympus³⁰⁸ **Support** BSD-licensed: ** Export: 👅 Officially Supported Versions: Supported Metadata Fields: Olympus CellR/APL ³⁰³ http://teem.sourceforge.net/ ³⁰⁴http://teem.sourceforge.net/nrrd/ ³⁰⁵ http://www.sci.utah.edu/%7Egk/DTI-data/
³⁰⁶http://teem.sourceforge.net/nrrd/format.html ³⁰⁷ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/NRRDReader.java ³⁰⁸ http://www.olympus.com/ #### We currently have: • a few CellR datasets We would like to have: - · more Cellr datasets - an official specification document #### **Ratings** Pixels: Metadata: Openness: Presence: Utility: #### **Additional Information** Source Code: APLReader.java³⁰⁹ Notes: # 18.89 Olympus FluoView FV1000 Extensions: .oib, .oif Owner: Olympus³¹⁰ **Support** BSD-licensed: 🟋 Export: 👅 Officially Supported Versions: 1.0, 2.0 Supported Metadata Fields: Olympus FluoView FV1000 Freely Available Software: • FV-Viewer from Olympus³¹¹ We currently have: - an OIF specification document (v2.0.0.0, from 2008, in PDF) - an FV1000 specification document (v1.0.0.0, from 2004 June 22, in PDF) - older FV1000 specification documents (draft, in DOC and XLS) - many FV1000 datasets We would like to have: - more OIB datasets (especially 2+ GB files) - more FV1000 version 2 datasets #### **Ratings** Pixels: Metadata: Openness: $^{^{309}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/APLReader.javanter. \\$ ³¹⁰http://www.olympus.com/ ³¹¹http://www.olympus.co.uk/microscopy/22_FluoView_FV1000__Confocal_Microscope.htm Presence: Utility: 📤 #### **Additional Information** Source Code: FV1000Reader.java³¹² Notes: #### Please note that while we have specification documents for this format, we are not able to distribute them to third parties. Bio-Formats uses a modified version of the Apache Jakarta POI³¹³ library to read OIB files. OIF stands for "Original Imaging Format". OIB stands for "Olympus Image Binary". OIF is a multi-file format that includes an .oif file and a directory of .tif, .roi, .pty, .lut, and .bmp files. OIB is a single file format. Commercial applications that support this format include: - Bitplane Imaris³¹⁴ - SVI Huygens³¹⁵ #### See also: Olympus FluoView Resource Center³¹⁶ ## 18.90 Olympus FluoView TIFF Extensions: .tif Owner: Olympus³¹⁷ **Support** BSD-licensed: 🟋 Officially Supported Versions: Supported Metadata Fields: Olympus FluoView TIFF Freely Available Software: • DIMIN³¹⁸ We currently have: - a FluoView specification document (from 2002 November 14, in DOC) - Olympus' FluoView Image File Reference Suite (from 2002 March 1, in DOC) - several FluoView datasets We would like to have: #### **Ratings** Pixels: $^{^{312}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/FV1000Reader.java$ ³¹³ http://jakarta.apache.org/poi/ ³¹⁴http://www.bitplane.com/ ³¹⁵http://svi.nl/ ³¹⁶http://www.olympusfluoview.com ³¹⁷ http://www.olympus.com/ ³¹⁸http://www.dimin.net/ Utility: #### **Additional Information** Source Code: FluoviewReader.java³¹⁹ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. Commercial applications that support this format include: - Bitplane Imaris³²⁰ - SVI Huygens³²¹ # 18.91 Olympus ScanR Extensions: .xml, .dat, .tif Developer: Olympus³²² Owner: Olympus³²³ **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Olympus ScanR We currently have: · several ScanR datasets We would like to have: **Ratings** Pixels: 📤 Metadata: Openness: Presence: Utility: ** ## **Additional Information** Source Code: ScanrReader.java³²⁴ Notes: # 18.92 Olympus SIS TIFF Extensions: .tiff Developer: Olympus³²⁵ $^{^{319}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/FluoviewReader.javants-gpl/src/loci/formats/in/FluoviewReader.javants-gpl/src/loci/formats/in/FluoviewReader.javants-gpl/src/loci/formats/in/FluoviewReader.javants-gpl/src/loci/formats/in/FluoviewReader.javants-gpl/src/loci/formats/in/FluoviewReader.javants-gpl/src/loci/formats/in/FluoviewReader.javants-gpl/src/loci/formats-gpl/src/loci/f$ ³²⁰http://www.bitplane.com/ ³²¹ http://svi.nl/ ³²²http://www.olympus.com/ ³²³ http://www.olympus.com/ $^{^{324}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ScanrReader.java$ ³²⁵ http://www.olympus-sis.com/ #### **Support** BSD-licensed: 🟋 Export: 👅 Officially Supported Versions: Supported Metadata Fields: Olympus SIS TIFF We currently have: • a few example SIS TIFF files We would like to have: ## **Ratings** Pixels: Metadata: Openness: Presence: Utility: #### **Additional Information** Source Code: SISReader.java³²⁶ Notes: ## **18.93 OME-TIFF** Extensions: .ome.tiff Developer: Open Microscopy Environment³²⁷ ## **Support** BSD-licensed: ** Export: 💜 Officially Supported Versions: 2003FC, 2007-06, 2008-02, 2008-09, 2009-09, 2010-04, 2010-06, 2011-06, 2012-06, 2013-06 Supported Metadata Fields: OME-TIFF We currently have: - an OME-TIFF specification document³²⁸ (from 2006 October 19, in HTML) - many OME-TIFF datasets - the ability to produce additional datasets We would like to have: ## **Ratings** Pixels: Metadata: Openness: Presence: 18.93. OME-TIFF 169 $[\]overline{^{326}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/SISReader.java-graduate/formats/blob/develop/components/formats-gpl/src/loci/formats/in/SISReader.java-graduate/formats-gpl/src/loci/formats/in/SISReader.java-graduate/formats-gpl/src/loci/f$ ³²⁷ http://www.openmicroscopy.org/ ³²⁸ http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/specification.html Utility: 🃤 #### **Additional Information** Source Code: OMETiffReader.java³²⁹ Source Code: OMETiffWriter.java³³⁰ Notes: Bio-Formats can save image stacks as OME-TIFF. Commercial applications that support OME-TIFF include: - Bitplane Imaris³³¹ - SVI Huygens³³² #### See also: OME-TIFF technical overview³³³ ## 18.94 **OME-XML** Extensions: .ome Developer: Open Microscopy Environment³³⁴ **Support** BSD-licensed: ** Export: 🏏 Officially Supported Versions: 2003FC, 2007-06, 2008-02, 2008-09, 2009-09, 2010-04, 2010-06, 2011-06, 2012-06, 2013-06 Supported Metadata Fields: OME-XML We currently have: - OME-XML specification documents³³⁵ - many OME-XML datasets - the ability to produce more datasets We would like to have: ### **Ratings** Pixels: Metadata: Openness: 4 Utility: 🃤 #### **Additional Information** Source Code: OMEXMLReader.java³³⁶ Source Code: OMEXMLWriter.java³³⁷ Notes: 18.94. OME-XML 170 $[\]overline{^{329}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/OMETiffReader.java$ ³³⁰
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/out/OMETiffWriter.java ³³²http://svi.nl/ ³³³ http://www.openmicroscopy.org/site/support/ome-model/ome-tiff/index.html ³³⁴http://www.openmicroscopy.org/ ³³⁵ http://www.openmicroscopy.org/Schemas/ ³³⁶https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/OMEXMLReader.java $^{^{337}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/out/OMEXMLWriter.java$ Bio-Formats uses the OME-XML Java library³³⁸ to read OME-XML files. Commercial applications that support OME-XML include: - Bitplane Imaris³³⁹ - SVI Huygens³⁴⁰ ## 18.95 Oxford Instruments Extensions: .top Owner: Oxford Instruments³⁴¹ **Support** BSD-licensed: 💢 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Oxford Instruments We currently have: - Pascal code that can read Oxford Instruments files (from ImageSXM) - a few Oxford Instruments files We would like to have: - an official specification document - more Oxford Instruments files ## **Ratings** Pixels: Metadata: Openness: Utility: \(\forall \) #### **Additional Information** Source Code: OxfordInstrumentsReader.java³⁴² Notes: ## **18.96 PCORAW** Extensions: .pcoraw, .rec Developer: PCO³⁴³ **Support** BSD-licensed: 👅 $[\]overline{^{338}\text{http://www.openmicroscopy.org/site/support/ome-model/ome-xml/java-library.html}}$ ³³⁹ http://www.bitplane.com/ ³⁴⁰http://svi.nl/ ³⁴¹ http://www.oxinst.com $^{^{342}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/OxfordInstrumentsReader.java$ ³⁴³ http://www.pco.de/ Export: 🟋 Officially Supported Versions: Supported Metadata Fields: PCORAW We currently have: • a few example datasets We would like to have: **Ratings** Pixels: 📤 17015. Metadata: Openness: 📤 Presence: ** Utility: **Additional Information** Source Code: PCORAWReader.java³⁴⁴ Notes: # 18.97 PCX (PC Paintbrush) Extensions: .pcx Developer: ZSoft Corporation **Support** BSD-licensed: ** Export: ** Officially Supported Versions: Supported Metadata Fields: PCX (PC Paintbrush) We currently have: - · several .pcx files - the ability to generate additional .pcx filse We would like to have: **Ratings** Pixels: xeis: == Metadata: 🔻 Openness: Presence: \(\bar{\psi} \) Utility: ** ## **Additional Information** Source Code: PCXReader.java³⁴⁵ Notes: $^{^{344}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/PCORAWReader.java$ $^{^{345}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/PCXReader.java$ Commercial applications that support PCX include Zeiss LSM Image Browser³⁴⁶. ## 18.98 Perkin Elmer Densitometer Extensions: .pds Developer: Perkin Elmer³⁴⁷ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Perkin Elmer Densitometer We currently have: • a few PDS datasets We would like to have: - an official specification document - · more PDS datasets ## **Ratings** Pixels: Metadata: Openness: Presence: ***** Same a Utility: ** #### **Additional Information** Source Code: PDSReader.java³⁴⁸ Notes: # 18.99 PerkinElmer Operetta Extensions: .tiff, .xml Developer: PerkinElmer³⁴⁹ **Support** BSD-licensed: 🗱 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: PerkinElmer Operetta We currently have: • a few sample datasets $^{{}^{346}} http://www.zeiss.com.au/microscopy/en_au/downloads/lsm-5-series.html$ ³⁴⁷ http://www.perkinelmer.com ³⁴⁸ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/PDSReader.java ³⁴⁹ http://www.perkinelmer.com/ We would like to have: - an official specification document - more sample datasets ## **Ratings** Pixels: 📤 Metadata: Openness: Presence: ** Utility: ### **Additional Information** Source Code: OperettaReader.java³⁵⁰ Notes: # 18.100 PerkinElmer UltraView Extensions: .tif, .2, .3, .4, etc. Owner: PerkinElmer³⁵¹ ## **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: PerkinElmer UltraView We currently have: • several UltraView datasets We would like to have: ### **Ratings** Pixels: Metadata: Openness: Utility: ** ## **Additional Information** Source Code: PerkinElmerReader.java³⁵² Notes: Other associated extensions include: .tim, .zpo, .csv, .htm, .cfg, .ano, .rec Commercial applications that support this format include: • Bitplane Imaris³⁵³ ³⁵¹ http://www.perkinelmer.com/ $^{^{352}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/PerkinElmerReader.java$ ³⁵³ http://www.bitplane.com/ • Image-Pro Plus³⁵⁴ #### See also: PerkinElmer UltraView system overview³⁵⁵ # **18.101 PGM (Portable Gray Map)** Extensions: .pgm Developer: Netpbm developers **Support** BSD-licensed: ** Export: 👅 Officially Supported Versions: Supported Metadata Fields: PGM (Portable Gray Map) Freely Available Software: • Netpbm graphics filter³⁵⁶ We currently have: - a PGM specification document³⁵⁷ (from 2003 October 3, in HTML) - a few PGM files We would like to have: ### **Ratings** Pixels: [^] Metadata: Openness: 🃤 Presence: Utility: 🔻 **Additional Information** Source Code: PGMReader.java³⁵⁸ Notes: # 18.102 Adobe Photoshop PSD Extensions: .psd Developer: Adobe³⁵⁹ **Support** Export: 👅 BSD-licensed: 💢 354http://www.mediacy.com/ ³⁵⁵http://www.perkinelmer.com/pages/020/cellularimaging/products/ultraviewvoxsystemsoverview.xhtml ³⁵⁶http://netpbm.sourceforge.net/ ³⁵⁷ http://netpbm.sourceforge.net/doc/pgm.html $^{^{358}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/PGMReader.java$ ³⁵⁹http://www.adobe.com/ Officially Supported Versions: 1.0 Supported Metadata Fields: Adobe Photoshop PSD We currently have: - a PSD specification document (v3.0.4, 16 July 1995) - a few PSD files We would like to have: • more PSD files # **Ratings** Pixels: Metadata: Openness: Presence: Utility: ** ### **Additional Information** Source Code: PSDReader.java³⁶⁰ Notes: # 18.103 Photoshop TIFF Extensions: .tif, .tiff Developer: Adobe³⁶¹ # Support BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Photoshop TIFF We currently have: - a Photoshop TIFF specification document - a few Photoshop TIFF files We would like to have: ### **Ratings** Pixels: Metadata: Openness: Presence: Utility: # **Additional Information** $^{^{360}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/PSDReader.java$ ³⁶¹ http://www.adobe.com Source Code: PhotoshopTiffReader.java³⁶² Notes: # **18.104 PICT (Macintosh Picture)** Extensions: .pict Developer: Apple Computer³⁶³ **Support** BSD-licensed: ** Export: 👅 Officially Supported Versions: Supported Metadata Fields: PICT (Macintosh Picture) We currently have: · many PICT datasets We would like to have: #### **Ratings** Pixels: 📤 Metadata: Openness: Presence: 📤 Utility: 🔻 # **Additional Information** Source Code: PictReader.java³⁶⁴ Notes: QuickTime for Java³⁶⁵ is required for reading vector files and some compressed files. See also: PICT technical overview³⁶⁶ Another PICT technical overview³⁶⁷ # **18.105 PNG (Portable Network Graphics)** Extensions: .png Developer: PNG Development Group³⁶⁸ **Support** BSD-licensed: ** Export: 🎺 Officially Supported Versions: ³⁶³ http://www.apple.com ³⁶⁴https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/PictReader.java ³⁶⁵http://www.apple.com/quicktime/download/standalone.html ³⁶⁶http://www.faqs.org/faqs/graphics/fileformats-faq/part3/section-107.html ³⁶⁷http://www.prepressure.com/formats/pict/fileformat.htm ³⁶⁸http://www.libpng.org/pub/png/pngnews.html Supported Metadata Fields: PNG (Portable Network Graphics) Freely Available Software: • PNG Writer plugin for ImageJ³⁶⁹ We currently have: - a PNG specification document³⁷⁰ (W3C/ISO/IEC version, from 2003 November 10, in HTML) - several PNG datasets We would like to have: ## **Ratings** Pixels: Metadata: Openness: 📤 Presence: Utility: ** ### **Additional Information** Source Code: APNGReader.java³⁷¹ Notes: Bio-Formats uses the Java Image I/O³⁷² API to read and write PNG files. See also: PNG technical overview³⁷³ # 18.106 Prairie Technologies TIFF Extensions: .tif, .xml, .cfg Developer: Prairie Technologies³⁷⁴ **Support** BSD-licensed: 🟋 Export: 👯 Officially Supported Versions: Supported Metadata Fields: Prairie Technologies TIFF We currently have: • many Prairie datasets We would like to have: ### **Ratings** Pixels: 📤 Metadata: 369http://rsb.info.nih.gov/ij/plugins/png-writer.html ³⁷⁰http://www.libpng.org/pub/png/spec/iso/ $^{^{371}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/APNGReader.java$ ³⁷²http://docs.oracle.com/javase/6/docs/technotes/guides/imageio/ ³⁷³http://www.libpng.org/pub/png/ ³⁷⁴http://www.prairie-technologies.com/ Presence: Utility: ### **Additional Information** Source Code: PrairieReader.java³⁷⁵ Notes: # 18.107 Quesant Extensions: .afm Developer: Quesant Instrument Corporation Owner: KLA-Tencor Corporation³⁷⁶ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Quesant We currently have: - Pascal code that can read Quesant files (from ImageSXM) - several Quesant files We would like to have: - an official specification document - · more Quesant files # **Ratings** Pixels: TACIS. Openness: Presence: ### **Additional Information** Source Code: QuesantReader.java³⁷⁷ Notes: # 18.108 QuickTime Movie Extensions: .mov Owner: Apple Computer³⁷⁸ # Support 18.107. Quesant 179 $^{^{375}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/PrairieReader.java$ ³⁷⁶http://www.kla-tencor.com/surface-profilometry-and-metrology.html ³⁷⁷
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/QuesantReader.java ³⁷⁸ http://www.apple.com/ BSD-licensed: ** Export: ** Officially Supported Versions: Supported Metadata Fields: QuickTime Movie Freely Available Software: • QuickTime Player³⁷⁹ We currently have: - a QuickTime specification document³⁸⁰ (from 2001 March 1, in HTML) - several QuickTime datasets - the ability to produce more datasets We would like to have: - more QuickTime datasets, including: - files compressed with a common, unsupported codec - files with audio tracks and/or multiple video tracks # **Ratings** Pixels: Metadata: Utility: 🔻 #### **Additional Information** Source Code: NativeQTReader.java³⁸¹ Source Code: QTWriter.java³⁸² Notes: Bio-Formats has two modes of operation for QuickTime: - QTJava mode requires QuickTime³⁸³ to be installed. - Native mode works on systems with no QuickTime (e.g. Linux). Bio-Formats can save image stacks as QuickTime movies. The following table shows supported codecs: ³⁷⁹ http://www.apple.com/quicktime/download/ ³⁸⁰ http://developer.apple.com/documentation/Quicktime/QTFF/ ³⁸¹ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/NativeQTReader.java $^{^{382}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/out/QTW riter.java$ ³⁸³ http://www.apple.com/quicktime/download/ | Codec | Description | Native | QTJava | |-------|----------------------------|---------------------|--------------| | raw | Full Frames (Uncompressed) | read & write | read & write | | iraw | Intel YUV Uncompressed | read only | read & write | | rle | Animation (run length en- | read only | read & write | | | coded RGB) | | | | jpeg | Still Image JPEG DIB | read only | read only | | rpza | Apple Video 16 bit "road | read only (partial) | read only | | | pizza" | | | | mjpb | Motion JPEG codec | read only | read only | | cvid | Cinepak | • | read & write | | | | | | | svq1 | Sorenson Video | _ | read & write | | | | • | | | svq3 | Sorenson Video 3 | | read & write | | svq5 | Solchson video 3 | • | read & write | | | | | | | mp4v | MPEG-4 | • | read & write | | | | | | | h263 | H.263 | • | read & write | | | | | | | | | | | ### See also: QuickTime software overview³⁸⁴ # 18.109 RHK Extensions: .sm2, .sm3 Owner: RHK Technologies³⁸⁵ Support BSD-licensed: 🟋 Export: 👅 Officially Supported Versions: Supported Metadata Fields: RHK We currently have: - Pascal code that can read RHK files (from ImageSXM) - a few RHK files We would like to have: - an official specification document - more RHK files # **Ratings** Pixels: Metadata: ** Utility: 18.109. RHK 181 ³⁸⁴http://www.apple.com/quicktime/ ³⁸⁵ http://www.rhk-tech.com #### **Additional Information** Source Code: RHKReader.java³⁸⁶ Notes: # 18.110 SBIG Owner: Santa Barbara Instrument Group (SBIG)387 ## **Support** BSD-licensed: 💢 Officially Supported Versions: Supported Metadata Fields: SBIG We currently have: - an official SBIG specification document³⁸⁸ - · a few SBIG files We would like to have: · more SBIG files # **Ratings** Pixels: ___ Openness: 📤 Presence: #### **Additional Information** Source Code: SBIGReader.java³⁸⁹ Notes: # 18.111 Seiko Extensions: .xqd, .xqf Owner: Seiko³⁹⁰ ## **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Seiko We currently have: 18.110. SBIG 182 $^{^{386}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/RHKReader.java$ ³⁸⁷ http://www.sbig.com 388http://sbig.impulse.net/pdffiles/file.format.pdf ³⁸⁹ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/SBIGReader.java ³⁹⁰ http://www.seiko.co.jp/en/index.php - Pascal code that can read Seiko files (from ImageSXM) - · a few Seiko files We would like to have: - an official specification document - · more Seiko files ### **Ratings** Pixels: Metadata: Openness: Presence: Utility: ### **Additional Information** Source Code: SeikoReader.java³⁹¹ Notes: # 18.112 SimplePCI & HCImage Extensions: .cxd Developer: Compix³⁹² **Support** BSD-licensed: 🟋 Export: 👅 Officially Supported Versions: Supported Metadata Fields: SimplePCI & HCImage We currently have: • several SimplePCI files We would like to have: ## **Ratings** Pixels: Metadata: #### **Additional Information** Source Code: PCIReader.java³⁹³ Notes: Bio-Formats uses a modified version of the Apache Jakarta POI library³⁹⁴ to read CXD files. $^{{\}color{blue}^{391}https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/SeikoReader.java}$ ³⁹² http://hcimage.com ³⁹³ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/PCIReader.java ³⁹⁴http://jakarta.apache.org/poi/ #### See also: SimplePCI software overview³⁹⁵ # 18.113 SimplePCI & HCImage TIFF Extensions: .tiff Developer: Hamamatsu³⁹⁶ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: SimplePCI & HCImage TIFF We currently have: • a few SimplePCI TIFF datasets We would like to have: • more SimplePCI TIFF datasets # **Ratings** Pixels: 📤 Metadata: Presence: ** Utility: #### **Additional Information** Source Code: SimplePCITiffReader.java³⁹⁷ Notes: # 18.114 SM Camera ### **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: SM Camera We currently have: - Pascal code that can read SM-Camera files (from ImageSXM) - a few SM-Camera files We would like to have: • an official specification document ³⁹⁵http://hcimage.com/simple-pci-legacy/ ³⁹⁶http://hcimage.com/simple-pci-legacy/ $^{^{397}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/SimplePCITiffReader.javanta. \\$ • more SM-Camera files ### **Ratings** Pixels: Metadata: Openness: Presence: Utility: ** # **Additional Information** Source Code: SMCameraReader.java³⁹⁸ Notes: # **18.115 SPIDER** Extensions: .spi, .stk Developer: Wadsworth Center³⁹⁹ ### **Support** BSD-licensed: ** Officially Supported Versions: Supported Metadata Fields: SPIDER Freely Available Software: • SPIDER⁴⁰⁰ We currently have: - a few example datasets - official file format documentation 401 We would like to have: ### **Ratings** Pixels: Metadata: 📤 Openness: 📤 Utility: # **Additional Information** Source Code: SpiderReader.java⁴⁰² ### Notes: 18.115. SPIDER 185 $^{^{398}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/SMC amera Reader. java$ http://www.wadsworth.org/spider_doc/spider/docs/spider.html ⁴⁰⁰ http://www.wadsworth.org/spider_doc/spider/docs/spider.html ⁴⁰¹ http://www.wadsworth.org/spider_doc/spider/docs/image_doc.html ⁴⁰² https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/SpiderReader.java # 18.116 Targa Extensions: .tga Developer: Truevision⁴⁰³ **Support** BSD-licensed: 💢 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Targa We currently have: - a Targa specification document - · a few Targa files We would like to have: **Ratings** Pixels: 📤 Metadata: 📤 Openness: 📤 Presence: Utility: 🔻 **Additional Information** Source Code: TargaReader.java⁴⁰⁴ Notes: # 18.117 Text Extensions: .txt **Support** BSD-licensed: ** Officially Supported Versions: Supported Metadata Fields: Text We currently have: We would like to have: **Ratings** Pixels: Metadata: Presence: 186 18.116. Targa $^{^{404}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/TargaReader.java$ Utility: ** #### **Additional Information** Source Code: TextReader.java⁴⁰⁵ Notes: Reads tabular pixel data produced by a variety of software. # **18.118 TIFF (Tagged Image File Format)** Extensions: .tif Developer: Aldus and Microsoft Owner: Adobe⁴⁰⁶ **Support** BSD-licensed: ** Export: ** Officially Supported Versions: Supported Metadata Fields: TIFF (Tagged Image File Format) Sample Datasets: - LZW TIFF data gallery⁴⁰⁷ - Big TIFF⁴⁰⁸ We currently have: - a TIFF specification document (v6.0, from 1992 June 3, in PDF) - many TIFF datasets - a few BigTIFF datasets We would like to have: ### **Ratings** Pixels: 📤 Metadata: 📤 Openness: 📤 Presence: ## **Additional Information** Source Code: TiffReader.java⁴¹⁰ Source Code: TiffWriter.java⁴¹¹ Notes: Bio-Formats can also read BigTIFF files (TIFF files larger than 4 GB). Bio-Formats can save image stacks as TIFF or BigTIFF. ## See also: $^{^{405}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/TextReader.java$ ⁴⁰⁶http://www.adobe.com ⁴⁰⁷http://marlin.life.utsa.edu/Data_Gallery.html ⁴⁰⁸ http://tiffcentral.com/ ⁴⁰⁹http://partners.adobe.com/asn/developer/PDFS/TN/TIFF6.pdf ⁴¹⁰https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/TiffReader.java ⁴¹¹https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/out/TiffWriter.java TIFF technical overview⁴¹² BigTIFF technical overview⁴¹³ # 18.119 TillPhotonics TillVision Extensions: .vws Developer: TILL Photonics⁴¹⁴ **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: TillPhotonics TillVision We currently have: • several TillVision datasets We would like to have: · an official specification document ## **Ratings** Pixels: Metadata: Openness: Presence: 500 Utility: ### **Additional Information** Source Code: TillVisionReader.java⁴¹⁵ Notes: # 18.120 Topometrix Extensions: .tfr, .ffr, .zfr, .zfp, .2fl Owner: TopoMetrix (now Veeco)⁴¹⁶ **Support** BSD-licensed: 🟋 nsea: Export: 🐺 Officially Supported Versions: Supported Metadata Fields: Topometrix We currently have: - Pascal code that reads Topometrix files (from ImageSXM) - a few Topometrix files $^{^{412}} http://www.awaresystems.be/imaging/tiff/faq.html\#q3$
⁴¹³http://www.awaresystems.be/imaging/tiff/bigtiff.html ⁴¹⁴http://www.till-photonics.com/ $^{^{415}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/TillVisionReader.java$ ⁴¹⁶http://www.veeco.com/ #### We would like to have: - an official specification document - more Topometrix files ## **Ratings** Pixels: Metadata: Openness: Presence: Utility: 🔻 ### **Additional Information** Source Code: TopometrixReader.java⁴¹⁷ Notes: # **18.121 Trestle** Extensions: .tif, .sld, .jpg # **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Trestle ### Sample Datasets: • OpenSlide⁴¹⁸ ### We currently have: - a few example datasets - developer documentation from the OpenSlide project⁴¹⁹ We would like to have: # **Ratings** Pixels: Metadata: Openness: Utility: ** #### **Additional Information** Source Code: TrestleReader.java⁴²⁰ # Notes: 189 18.121. Trestle $[\]overline{^{417}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/TopometrixReader.java$ ⁴¹⁸ http://openslide.cs.cmu.edu/download/openslide-testdata/Trestle/ ⁴¹⁹ http://openslide.org/Trestle%20format/ ⁴²⁰ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/TrestleReader.java # 18.122 UBM Extensions: .pr3 **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: UBM We currently have: - Pascal code that can read UBM files (from ImageSXM) - one UBM file We would like to have: - · an official specification document - more UBM files # **Ratings** Pixels: Metadata: Openness: . Presence: Utility: 🔻 **Additional Information** Source Code: UBMReader.java⁴²¹ Notes: # 18.123 Unisoku Extensions: .dat, .hdr Owner: Unisoku⁴²² **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Unisoku We currently have: - Pascal code that can read Unisoku files (from ImageSXM) - a few Unisoku files We would like to have: • an official specification document 18.122. UBM 190 $^{{\}color{blue}^{421}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/UBMReader.java$ ⁴²²http://www.unisoku.com · more Unisoku files # **Ratings** Pixels: Openness: Presence: Utility: ** # **Additional Information** Source Code: UnisokuReader.java⁴²³ Notes: # 18.124 Varian FDF Extensions: .fdf Developer: Varian, Inc. 424 # **Support** BSD-licensed: 🟋 Officially Supported Versions: Supported Metadata Fields: Varian FDF We currently have: • a few Varian FDF datasets We would like to have: - an official specification document - more Varian FDF datasets # **Ratings** Pixels: ## **Additional Information** Source Code: VarianFDFReader.java⁴²⁵ Notes: 18.124. Varian FDF 191 $[\]overline{^{423}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/UnisokuReader.java$ ⁴²⁴http://www.varianinc.com $^{^{425}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/VarianFDFReader.java$ # 18.125 VG SAM Extensions: .dti **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: VG SAM We currently have: • a few VG-SAM files We would like to have: - an official specification document - more VG-SAM files # **Ratings** Pixels: Metadata: ** Openness: Presence: Utility: ** **Additional Information** Source Code: VGSAMReader.java⁴²⁶ Notes: # 18.126 VisiTech XYS Extensions: .xys, .html Developer: VisiTech International⁴²⁷ **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: VisiTech XYS We currently have: • several VisiTech datasets We would like to have: • an official specification document 18.125. VG SAM 192 $^{^{426}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/VGSAMReader.java$ ⁴²⁷ http://www.visitech.co.uk/ #### **Ratings** Pixels: Metadata: Openness: Presence: Utility: ## **Additional Information** Source Code: VisitechReader.java⁴²⁸ Notes: # **18.127 Volocity** Extensions: .mvd2 Developer: PerkinElmer⁴²⁹ #### **Support** BSD-licensed: 🟋 Export: 👅 Officially Supported Versions: Supported Metadata Fields: Volocity Sample Datasets: • Volocity Demo⁴³⁰ We currently have: • many example Volocity datasets We would like to have: - an official specification document - any Volocity datasets that do not open correctly ### **Ratings** Pixels: Metadata: Openness: Utility: ** # **Additional Information** Source Code: VolocityReader.java⁴³¹ Notes: .mvd2 files are Metakit database files⁴³². 18.127. Volocity 193 $[\]overline{^{428} \text{https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/VisitechReader.java}$ ⁴²⁹ http://www.perkinelmer.com/pages/020/cellularimaging/products/volocity.xhtml ⁴³⁰ http://www.perkinelmer.com/pages/020/cellularimaging/products/volocitydemo.xhtml $^{{}^{431}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/VolocityReader.java$ ⁴³² http://equi4.com/metakit/ # 18.128 Volocity Library Clipping Extensions: .acff Developer: PerkinElmer⁴³³ **Support** BSD-licensed: ** Export: 👅 Officially Supported Versions: Supported Metadata Fields: Volocity Library Clipping We currently have: • several Volocity library clipping datasets We would like to have: - any datasets that do not open correctly - an official specification document # **Ratings** Pixels: Metadata: Openness: Presence: Utility: **Additional Information** Source Code: VolocityClippingReader.java⁴³⁴ Notes: RGB .acff files are not yet supported. See $\#6413^{435}$. # 18.129 WA-TOP Extensions: .wat Developer: WA Technology Owner: Oxford Instruments⁴³⁶ **Support** BSD-licensed: ** Export: 🟋 Officially Supported Versions: Supported Metadata Fields: WA-TOP We currently have: • Pascal code that can read WA-TOP files (from ImageSXM) ⁴³³ http://www.perkinelmer.com/pages/020/cellularimaging/products/volocity.xhtml $^{{}^{434}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/VolocityClippingReader.java$ ⁴³⁵ http://trac.openmicroscopy.org.uk/ome/ticket/6413 ⁴³⁶http://www.oxinst.com • a few WA-TOP files We would like to have: - an official specification document - more WA-TOP files # **Ratings** Pixels: Metadata: Openness: . Presence: Utility: 🔻 # **Additional Information** Source Code: WATOPReader.java⁴³⁷ Notes: # 18.130 Windows Bitmap Extensions: .bmp Developer: Microsoft and IBM **Support** BSD-licensed: ** Export: 👅 Officially Supported Versions: Supported Metadata Fields: Windows Bitmap Freely Available Software: • BMP Writer plugin for Image J^{438} We currently have: • many BMP datasets We would like to have: # **Ratings** Pixels: ___ # **Additional Information** Source Code: BMPReader.java⁴³⁹ Notes: $^{{\}color{blue} 437} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/WATOPReader.java$ $^{^{438}} http://rsb.info.nih.gov/ij/plugins/bmp-writer.html\\$ $^{^{439}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-bsd/src/loci/formats/in/BMPR eader.java$ Compressed BMP files are currently not supported. #### See also: Technical Overview⁴⁴⁰ General Resources⁴⁴¹ # 18.131 Woolz Extensions: .wlz Developer: MRC Human Genetics Unit⁴⁴² **Support** BSD-licensed: 🟋 Export: 🎺 Officially Supported Versions: Supported Metadata Fields: Woolz Freely Available Software: Woolz⁴⁴³ We currently have: • a few Woolz datasets We would like to have: # **Ratings** Pixels: Metadata: Openness: 📤 openiiess. Presence: \(\bar{\psi} \) Utility: 🔻 ### **Additional Information** Source Code: WlzReader.java⁴⁴⁴ Source Code: WlzWriter.java⁴⁴⁵ Notes: # 18.132 Zeiss AxioVision TIFF Extensions: .xml, .tiff Developer: Carl Zeiss MicroImaging GmbH⁴⁴⁶ Owner: Carl Zeiss MicroImaging GmbH⁴⁴⁷ #### **Support** BSD-licensed: 🟋 $^{^{440}} http://www.faqs.org/faqs/graphics/file for mats-faq/part 3/section-18.html\\$ 18.131. Woolz 196 ⁴⁴¹http://people.sc.fsu.edu/ burkardt/data/bmp/bmp.html http://www.emouseatlas.org/emap/analysis_tools_resources/software/woolz.html ⁴⁴³ http://www.emouseatlas.org/emap/analysis_tools_resources/software/woolz.html $^{{\}it 444} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/WlzReader.java$ ⁴⁴⁵ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/out/WlzWriter.java ⁴⁴⁶http://www.zeiss.com/micro ⁴⁴⁷ http://www.zeiss.com/micro Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Zeiss AxioVision TIFF Freely Available Software: • Zeiss ZEN Lite⁴⁴⁸ We currently have: · many example datasets We would like to have: · an official specification document # **Ratings** Pixels: 📤 Metadata: 📤 Openness: Presence: Utility: ** #### **Additional Information** Source Code: ZeissTIFFReader.java⁴⁴⁹ Notes: # 18.133 Zeiss AxioVision ZVI (Zeiss Vision Image) Extensions: .zvi Developer: Carl Zeiss MicroImaging GmbH (AxioVision)⁴⁵⁰ Owner: Carl Zeiss MicroImaging GmbH⁴⁵¹ ## **Support** BSD-licensed: ** Export: 👅 Officially Supported Versions: 1.0, 2.0 Supported Metadata Fields: Zeiss AxioVision ZVI (Zeiss Vision Image) Freely Available Software: • Zeiss Axiovision LE⁴⁵² We currently have: - a ZVI specification document (v2.0.5, from 2010 August, in PDF) - an older ZVI specification document (v2.0.2, from 2006 August 23, in PDF) - an older ZVI specification document (v2.0.1, from 2005 April 21, in PDF) - an older ZVI specification document (v1.0.26.01.01, from 2001 January 29, in DOC) - Zeiss' ZvImageReader code (v1.0, from 2001 January 25, in C++) $^{^{448}} http://microscopy.zeiss.com/microscopy/en_de/downloads/zen.html\\$ ⁴⁴⁹
https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ZeissTIFFReader.java ⁴⁵⁰http://www.zeiss.com/axiovision ⁴⁵¹ http://www.zeiss.com/micro ⁴⁵²http://www.zeiss.de/c12567be0045acf1/Contents-Frame/cbe917247da02a1cc1256e0000491172 • many ZVI datasets We would like to have: ## **Ratings** Pixels: 🃤 Metadata: 📤 Openness: 📤 Presence: Utility: ### **Additional Information** Source Code: ZeissZVIReader.java⁴⁵³ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. Bio-Formats uses a modified version of the Apache Jakarta POI library 454 to read ZVI files. Commercial applications that support ZVI include Bitplane Imaris⁴⁵⁵. #### See also: Axiovision software overview⁴⁵⁶ # 18.134 Zeiss CZI Extensions: .czi Developer: Carl Zeiss MicroImaging GmbH⁴⁵⁷ # **Support** BSD-licensed: 🟋 Export: 🟋 Officially Supported Versions: Supported Metadata Fields: Zeiss CZI Freely Available Software: Zeiss ZEN 2011⁴⁵⁸ We currently have: - · many example datasets - official specification documents We would like to have: ### **Ratings** Pixels: ixeis. 🚈 Metadata: 🃤 Openness: 🐣 18.134. Zeiss CZI 198 $[\]frac{453}{https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ZeissZVIReader.java}$ ⁴⁵⁴http://jakarta.apache.org/poi/ ⁴⁵⁵ http://www.bitplane.com/ ⁴⁵⁶http://www.zeiss.com/C12567BE0045ACF1/ContentsWWWIntern/668C9FDCBB18C6E2412568C10045A72E ⁴⁵⁷ http://www.zeiss.com/micro ⁴⁵⁸ http://www.zeiss.de/C12567BE0045ACF1/Contents-Frame/A57B6AE510CE8FF1C12578FE002A725D Presence: Utility: #### **Additional Information** Source Code: ZeissCZIReader.java⁴⁵⁹ Notes: Please note that while we have specification documents for this format, we are not able to distribute them to third parties. # 18.135 Zeiss LSM (Laser Scanning Microscope) 510/710 Extensions: .lsm, .mdb Owner: Carl Zeiss MicroImaging GmbH⁴⁶⁰ **Support** BSD-licensed: ** Export: 💢 Officially Supported Versions: Supported Metadata Fields: Zeiss LSM (Laser Scanning Microscope) 510/710 Freely Available Software: - Zeiss LSM Image Browser⁴⁶¹ - LSM Toolbox plugin for ImageJ⁴⁶² - LSM Reader plugin for ImageJ⁴⁶³ - DIMIN⁴⁶⁴ We currently have: - LSM specification v3.2, from 2003 March 12, in PDF - LSM specification v5.5, from 2009 November 23, in PDF - LSM specification v6.0, from 2010 September 28, in PDF - · many LSM datasets We would like to have: ## **Ratings** Pixels: Metadata: 📤 Presence: ### **Additional Information** Source Code: ZeissLSMReader.java⁴⁶⁵ Notes: $^{^{459}} https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ZeissCZIReader.java$ ⁴⁶⁰http://www.zeiss.com/micro ⁴⁶¹ http://www.zeiss.com.au/microscopy/en_au/downloads/lsm-5-series.html ⁴⁶² http://imagejdocu.tudor.lu/Members/ppirrotte/Ismtoolbox ⁴⁶³ http://rsb.info.nih.gov/ij/plugins/lsm-reader.html ⁴⁶⁴ http://www.dimin.net/ ⁴⁶⁵ https://github.com/openmicroscopy/bioformats/blob/develop/components/formats-gpl/src/loci/formats/in/ZeissLSMReader.java Please note that while we have specification documents for this format, we are not able to distribute them to third parties. Bio-Formats uses the MDB Tools Java port⁴⁶⁶ Commercial applications that support this format include: - SVI Huygens⁴⁶⁷ - Bitplane Imaris⁴⁶⁸ - Amira⁴⁶⁹ - Image-Pro Plus⁴⁷⁰ ⁴⁶⁶http://mdbtools.sourceforge.net/ ⁴⁶⁷ http://www2.svi.nl/ ⁴⁶⁸ http://www.bitplane.com/ ⁴⁶⁹ http://www.amira.com/ ⁴⁷⁰http://www.mediacy.com/ # **SUMMARY OF SUPPORTED METADATA FIELDS** # 19.1 Format readers | Format | Supported | Unsupported | Partial | Unknown/Missing | |-------------------|-----------|-------------|---------|--------------------| | AFIReader | 23 | 0 | 0 | 452 | | AIMReader | 22 | 0 | 0 | 453 | | APLReader | 21 | 0 | 0 | 454 | | APNGReader | 19 | 0 | 0 | 456 | | ARFReader | 19 | 0 | 0 | 456 | | AVIReader | 19 | 0 | 0 | 456 | | AliconaReader | 33 | 0 | 0 | 442 | | AmiraReader | 22 | 0 | 0 | 453 | | AnalyzeReader | 24 | 0 | 0 | 451 | | BDReader | 57 | 0 | 0 | 418 | | BIFormatReader | 19 | 0 | 0 | 456 | | BMPReader | 21 | 0 | 0 | 454 | | BaseTiffReader | 28 | 0 | 0 | 447 | | BaseZeissReader | 83 | 0 | 0 | 392 | | BioRadGelReader | 21 | 0 | 0 | 454 | | BioRadReader | 40 | 0 | 0 | 435 | | BioRadSCNReader | 29 | 0 | 0 | 446 | | BrukerReader | 23 | 0 | 0 | 452 | | BurleighReader | 22 | 0 | 0 | 453 | | CanonRawReader | 19 | 0 | 0 | 456 | | CellSensReader | 19 | 0 | 0 | 456 | | CellVoyagerReader | 34 | 0 | 0 | 441 | | CellWorxReader | 45 | 0 | 0 | 430 | | CellomicsReader | 31 | 0 | 0 | 444 | | DNGReader | 19 | 0 | 0 | 456 | | DeltavisionReader | 52 | 0 | 0 | 423 | | DicomReader | 23 | 0 | 0 | 452 | | EPSReader | 19 | 0 | 0 | 456 | | Ecat7Reader | 23 | 0 | 0 | 452 | | FEIReader | 19 | 0 | 0 | 456 | | FEITiffReader | 39 | 0 | 0 | 436 | | FV1000Reader | 109 | 0 | 0 | 366 | | FakeReader | 21 | 0 | 0 | 454 | | FitsReader | 19 | 0 | 0 | 456 | | FlexReader | 69 | 0 | 0 | 406 | | FluoviewReader | 49 | 0 | 0 | 426 | | FujiReader | 23 | 0 | 0 | 452 | | GIFReader | 19 | 0 | 0 | 456 | | GatanDM2Reader | 30 | 0 | 0 | 445 | | GatanReader | 36 | 0 | 0 | 439 | | GelReader | 21 | 0 | 0 | 454 | | HISReader | 27 | 0 | 0 | 448 | | | | | Cont | inued on next page | Table 19.1 – continued from previous page | | | ntinued from prev | Partial | | |---------------------------|-----------|-------------------|---------|--------------------| | Format | Supported | Unsupported | | Unknown/Missing | | HRDGDFReader | 21 | 0 | 0 | 454 | | HamamatsuVMSReade | | 0 | 0 | 449 | | HitachiReader | 31 | 0 | 0 | 444 | | ICSReader | 72 | 0 | 0 | 403 | | IMODReader | 44 | 0 | 0 | 431 | | INRReader | 22 | 0 | 0 | 453 | | <i>IPLabReader</i> | 31 | 0 | 0 | 444 | | IPWReader | 20 | 0 | 0 | 455 | | ImaconReader | 23 | 0 | 0 | 452 | | <i>ImageIOReader</i> | 19 | 0 | 0 | 456 | | <i>ImagicReader</i> | 22 | 0 | 0 | 453 | | ImarisHDFReader | 23 | 0 | 0 | 452 | | ImarisReader | 32 | 0 | 0 | 443 | | <i>ImarisTiffReader</i> | 23 | 0 | 0 | 452 | | ImprovisionTiffReader | 25 | 0 | 0 | 450 | | ImspectorReader | 19 | 0 | 0 | 456 | | InCell3000Reader | 19 | 0 | 0 | 456 | | InCellReader | 67 | 0 | 0 | 408 | | InveonReader | 30 | 0 | 0 | 445 | | IvisionReader | 34 | 0 | 0 | 441 | | JEOLReader | 19 | 0 | 0 | 456 | | JPEG2000Reader | 19 | 0 | 0 | 456 | | JPEGReader | 19 | 0 | 0 | 456 | | JPKReader | 19 | 0 | 0 | 456 | | JPXReader | 19 | 0 | 0 | 456 | | | | | | | | KhorosReader | 19
26 | 0 | 0 | 456 | | KodakReader | 26 | 0 | 0 | 449 | | L2DReader | 29 | 0 | 0 | 446 | | LEOReader | 27 | 0 | 0 | 448 | | LIFReader | 85 | 0 | 0 | 390 | | LIMReader | 19 | 0 | 0 | 456 | | LegacyND2Reader | 19 | 0 | 0 | 456 | | LegacyQTReader | 19 | 0 | 0 | 456 | | LeicaReader | 56 | 0 | 0 | 419 | | LeicaSCNReader | 33 | 0 | 0 | 442 | | LiFlimReader | 25 | 0 | 0 | 450 | | MIASReader | 64 | 0 | 0 | 411 | | MINCReader | 23 | 0 | 0 | 452 | | MNGReader | 19 | 0 | 0 | 456 | | MRCReader | 22 | 0 | 0 | 453 | | MRWReader | 19 | 0 | 0 | 456 | | MetamorphReader | 43 | 0 | 0 | 432 | | MetamorphTiffReader | 38 | 0 | 0 | 437 | | MicromanagerReader | 38 | 0 | 0 | 437 | | MinimalTiffReader | 19 | 0 | 0 | 456 | | MolecularImagingRead | | 0 | 0 | 454 | | NAFReader | 19 | 0 | 0 | 456 | | ND2Reader | 19 | 0 | 0 | 456 | | ND2Reader
NDPIReader | 21 | 0 | 0 | 454 | | NDPIKeaaer
NDPISReader | 19 | 0 | 0 | 454
456 | | NBPISKeaaer
NRRDReader | 22 | | 0 | 450
453 | | | | 0 | | | | NativeND2Reader | 52 | 0 | 0 | 423 | | NativeQTReader | 19 | 0 | 0 | 456
451 | | NiftiReader | 24 | 0 | 0 | 451
425 | | NikonElementsTiffRead | | 0 | 0 | 425 | | NikonReader | 19 | 0 | 0 | 456 | | NikonTiffReader | 47 | 0 | 0 | 428 | | OBFReader | 19 | 0 | 0 | 456 | | | | | Cont | inued on next page | 19.1. Format readers 202 Table 19.1 – continued from previous page | | | ntinued from prev | | | |------------------------------------|-----------|-------------------|---------|-----------------| | Format | Supported | Unsupported | Partial | Unknown/Missing | | OMETiffReader | 19 | 0 | 0 | 456 | | OMEXMLReader | 19 | 0 | 0 | 456 | | <i>OpenlabRawReader</i> | 19 | 0 | 0 | 456 | | <i>OpenlabReader</i> | 32 | 0 | 0 | 443 | | OperettaReader | 43 | 0 | 0 | 432 | | OxfordInstrumentsRead | | 0 | 0 | 453 | | PCIReader | 29 | 0 | 0 | 446 | | PCORAWReader | 26 | 0 | 0 | 449 | | PCXReader | 19 | 0 | 0 | 456 | | PDSReader | 23 | 0 | 0 | 452 | | PGMReader | 19 | 0 | 0 | 456 | | PSDReader | 19 | 0 | 0 | 456 | | PerkinElmerReader | 30 | 0 | 0 | 445 | | PhotoshopTiffReader | 19 | 0 | 0 | 456 | | PictReader | 19 | 0 | 0 | 456 | | PovrayReader | 19 | 0 | 0 | 456 | | PrairieReader | 45 | 0 | 0 | 430 | | PyramidTiffReader | 19 | 0 | 0 | 456 | | QTReader | 19 | 0 | 0 | 456 | | Q1 Keaaer
QuesantReader | 22 | 0 | 0 | 453 | | ~ | 22 | | | | | RHKReader | | 0 | 0 | 453
453 | | SBIGReader | 22 | 0 | 0 | 453 | | SDTReader | 19 | 0 | 0 | 456 | | SEQReader | 19 | 0 | 0 | 456 | | SIFReader | 20 | 0 | 0 | 455 | | SISReader | 33 | 0 | 0 | 442 | | SMCameraReader | 19 | 0 | 0 | 456 | | SVSReader | 22 | 0 | 0 | 453 | | ScanrReader | 43 | 0 | 0 | 432 | | ScreenReader | 34 | 0 | 0 | 441 | | SeikoReader | 22 | 0 | 0 | 453 | | SimplePCITiffReader | 33 | 0 | 0 | 442 | | SlidebookReader | 34 | 0 | 0 | 441 | | SlidebookTiffReader | 30 | 0 | 0 | 445 | | SpiderReader | 21 | 0 | 0 | 454 | | TCSReader | 22 | 0 | 0 | 453 | | TargaReader | 20 | 0 | 0 | 455 | | TextReader | 19 | 0 | 0 | 456 | | TiffDelegateReader | 19 | 0 | 0 | 456 | | TiffJAIReader | 19 | 0 | 0 | 456 | | TiffReader | 22 | 0 | 0 | 453 | | Tijskeader
TileJPEGReader | 19 | 0 | 0 | 456 | | TillVisionReader | 22 | 0 | 0 | 453 | | | 22 | | 0 | 453 | | TopometrixReader | | 0 | | | | TrestleReader | 26 | 0 | 0 | 449 | | UBMReader | 19 | 0 | 0 | 456 | | UnisokuReader | 22 | 0 | 0 | 453 | | VGSAMReader | 19 | 0 | 0 | 456 | | VarianFDFReader | 25 | 0 | 0 | 450 | | VisitechReader | 19 | 0 | 0 | 456 | | VolocityClippingReade | | 0 | 0 | 456 | | VolocityReader | 37 | 0 | 0 | 438 |
| WATOPReader | 22 | 0 | 0 | 453 | | WlzReader | 26 | 0 | 0 | 449 | | ZeissCZIReader | 157 | 0 | 0 | 318 | | ZeissLSMReader | 101 | 0 | 0 | 374 | | ZeissTIFFReader | | | | | | Zeissiii i Keaaei | 19 | 0 | 0 | 456 | | ZeissTITT Kedder
ZeissZVIReader | | 0
0 | 0 | 456
456 | 19.1. Format readers 203 Table 19.1 – continued from previous page | Format | Supported | Unsupported | Partial | Unknown/Missing | |-----------|-----------|-------------|---------|-----------------| | ZipReader | 19 | 0 | 0 | 456 | # 19.2 Metadata fields | Field | Supported | Unsupported | Partial | Unknown/Missing | |---------------------------------|-----------|-------------|---------|--------------------| | Arc - ID ¹ | 0 | 0 | 0 | 159 | | Arc - LotNumber ² | 1 | 0 | 0 | 158 | | Arc - Manufacturer ³ | 1 | 0 | 0 | 158 | | Arc - Model ⁴ | 1 | 0 | 0 | 158 | | Arc - Power ⁵ | 1 | 0 | 0 | 158 | | Arc - SerialNumber ⁶ | 1 | 0 | 0 | 158 | | Arc - Type ⁷ | 0 | 0 | 0 | 159 | | BooleanAnnotation - | 0 | 0 | 0 | 159 | | AnnotationRef ⁸ | | | | | | BooleanAnnotation - | 0 | 0 | 0 | 159 | | Description ⁹ | | | | | | BooleanAnnotation - | 0 | 0 | 0 | 159 | | ID^{10} | | | | | | BooleanAnnotation - | 0 | 0 | 0 | 159 | | Namespace ¹¹ | | | | | | BooleanAnnotation - | 0 | 0 | 0 | 159 | | Value ¹² | | | | | | Channel - Acquisi- | 4 | 0 | 0 | 155 | | tionMode ¹³ | | | | | | Channel - Annota- | 0 | 0 | 0 | 159 | | tionRef ¹⁴ | | | | | | Channel - Color ¹⁵ | 8 | 0 | 0 | 151 | | Channel - Contrast- | 0 | 0 | 0 | 159 | | Method ¹⁶ | | | | | | Channel - Emission- | 16 | 0 | 0 | 143 | | Wavelength ¹⁷ | | | | | | Channel - Excitation- | 17 | 0 | 0 | 142 | | Wavelength ¹⁸ | | | | | | Channel - FilterSe- | 0 | 0 | 0 | 159 | | tRef ¹⁹ | | | | | | Channel - Fluor ²⁰ | 1 | 0 | 0 | 158 | | Channel - ID ²¹ | 159 | 0 | 0 | 0 | | | | | Cont | inued on next page | ¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID ²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber ³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer ⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_Power ⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber ⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Arc_Type ⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Description ¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_ID ¹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace ¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#BooleanAnnotation_Value 13 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_AcquisitionMode ¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Color ¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ContrastMethod ¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength ¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength ¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterSetRef_ID ²⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Fluor ²¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID Table 19.2 – continued from previous page | Field | Supported | ntinued from prev
Unsupported | Partial | Unknown/Missing | |----------------------------------|---|----------------------------------|---------|--------------------| | Channel - Illumina- | 3 | 0) | () | 156 | | tionType ²² | 3 | 0 | U | 130 | | Channel - Light- | 1 | 0 | 0 | 158 | | SourceSettingsAtten- | 1 | 0 | | 136 | | uation ²³ | | | | | | Channel - Light- | 5 | 0 | 0 | 154 | | SourceSettingsID ²⁴ | 3 | 0 | U | 134 | | Channel - Light- | 2 | 0 | 0 | 157 | | SourceSettingsWave- | 2 | 0 | | 137 | | length ²⁵ | | | | | | Channel - NDFilter ²⁶ | 2 | 0 | 0 | 157 | | Channel - Name ²⁷ | 31 | 0 | 0 | 128 | | Channel - Pinhole- | 10 | 0 | 0 | 149 | | Size ²⁸ | 10 | | | 147 | | Channel - Pockel- | 0 | 0 | 0 | 159 | | CellSetting ²⁹ | 0 | 0 | | 139 | | Channel - Samples- | 159 | 0 | 0 | 0 | | PerPixel ³⁰ | 139 | | | U | | CommentAnnotation | 0 | 0 | 0 | 159 | | - AnnotationRef ³¹ | 0 | | | 139 | | CommentAnnotation | 0 | 0 | 0 | 159 | | - Description ³² | 0 | | | 139 | | CommentAnnotation | 0 | 0 | 0 | 159 | | - ID ³³ | 0 | | | 139 | | CommentAnnotation | 0 | 0 | 0 | 159 | | - Namespace ³⁴ | 0 | | | 139 | | CommentAnnotation | 0 | 0 | 0 | 159 | | - Value ³⁵ | | | | 137 | | Dataset - Annotation- | 0 | 0 | 0 | 159 | | Ref ³⁶ | | | | | | Dataset - Descrip- | 0 | 0 | 0 | 159 | | tion ³⁷ | | | | | | Dataset - Experi- | 0 | 0 | 0 | 159 | | menterGroupRef ³⁸ | | | | | | Dataset - Experi- | 0 | 0 | 0 | 159 | | menterRef ³⁹ | | | | | | Dataset - ID ⁴⁰ | 0 | 0 | 0 | 159 | | Dataset - ImageRef ⁴¹ | 0 | 0 | 0 | 159 | | Dataset - Name ⁴² | 0 | 0 | 0 | 159 | | 1199444 | ı , , , , , , , , , , , , , , , , , , , | <u> </u> | | inued on next page | ²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_IlluminationType ²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_Attenuation ²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_ID ²⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_Wavelength ²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_NDFilter ²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name $^{^{28}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_PinholeSize$ ²⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_PockelCellSetting ³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel $^{^{31}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html \# AnnotationRef_ID$ $^{^{32}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html\#Annotation_Description$ $^{^{33}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html\#Annotation_ID$ ³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace $^{^{35}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html \# CommentAnnotation_Value + (2013-06/SA_xsd.html) \#$ ³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dataset_Description ³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterGroupRef_ID ³⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID ⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dataset_ID ⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImageRef_ID ⁴²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dataset_Name Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |--|-----------|-------------|---------|--------------------| | Detector - Amplifica- | 2 | 0 | 0 | 157 | | tionGain ⁴³ | | | | | | Detector - Gain ⁴⁴ | 5 | 0 | 0 | 154 | | Detector - ID ⁴⁵ | 34 | 0 | 0 | 125 | | Detector - LotNum- | 1 | 0 | 0 | 158 | | ber ⁴⁶ | | | | | | Detector - Manufac- | 4 | 0 | 0 | 155 | | turer ⁴⁷ | | | | | | Detector - Model ⁴⁸ | 13 | 0 | 0 | 146 | | Detector - Offset ⁴⁹ | 5 | 0 | 0 | 154 | | Detector - Serial- | 3 | 0 | 0 | 156 | | Number ⁵⁰ | | | | | | Detector - Type ⁵¹ | 27 | 0 | 0 | 132 | | Detector - Voltage ⁵² | 2 | 0 | 0 | 157 | | Detector - Zoom ⁵³ | 4 | 0 | 0 | 155 | | DetectorSettings - | 17 | 0 | 0 | 142 | | Binning ⁵⁴ | | | | | | DetectorSettings - | 19 | 0 | 0 | 140 | | Gain ⁵⁵ | | _ | _ | | | DetectorSettings - | 32 | 0 | 0 | 127 | | ID ⁵⁶ | | | | 151 | | DetectorSettings - | 8 | 0 | 0 | 151 | | Offset ⁵⁷ | 5 | | 0 | 154 | | DetectorSettings - ReadOutRate ⁵⁸ | 3 | 0 | 0 | 154 | | 1 | 6 | 0 | 0 | 153 | | DetectorSettings - Voltage ⁵⁹ | 0 | 0 | U | 133 | | Dichroic - ID ⁶⁰ | 6 | 0 | 0 | 153 | | Dichroic - LotNum- | 1 | 0 | 0 | 158 | | ber ⁶¹ | 1 | | | 130 | | Dichroic - Manufac- | 1 | 0 | 0 | 158 | | turer ⁶² | _ | | | | | Dichroic - Model ⁶³ | 6 | 0 | 0 | 153 | | Dichroic - Serial- | 1 | 0 | 0 | 158 | | Number ⁶⁴ | | | | | | DoubleAnnotation - | 0 | 0 | 0 | 159 | | AnnotationRef ⁶⁵ | | | | | | | ı | | Cont | inued on next page | 43 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_AmplificationGain
⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Gain ⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID $^{^{46}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#ManufacturerSpec_LotNumber$ ⁴⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer $^{{}^{48}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Manufacturer Spec_Model Manufactur$ ⁴⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Offset $^{^{50}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Manufacturer Spec_Serial Number 1999 and 1999 are also as a contract of the c$ ⁵²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Voltage ⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Zoom ⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning ⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain $^{^{56}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Detector Settings_ID$ ⁵⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Offset $^{^{58}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# DetectorSettings_ReadOutRate$ ⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Voltage $^{^{60}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Dichroic_ID$ ⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber ⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer ⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber ⁶⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |-----------------------------------|-----------|-------------|---------|--------------------| | DoubleAnnotation - | 0 | 0 | 0 | 159 | | Description ⁶⁶ | | | | | | DoubleAnnotation - | 0 | 0 | 0 | 159 | | ID^{67} | | | | | | DoubleAnnotation - | 0 | 0 | 0 | 159 | | Namespace ⁶⁸ | | | | | | DoubleAnnotation - | 0 | 0 | 0 | 159 | | Value ⁶⁹ | | | | | | Ellipse - FillColor ⁷⁰ | 0 | 0 | 0 | 159 | | Ellipse - FillRule ⁷¹ | 0 | 0 | 0 | 159 | | Ellipse - FontFam- | 0 | 0 | 0 | 159 | | ily ⁷² | | | | | | Ellipse - FontSize ⁷³ | 2 | 0 | 0 | 157 | | Ellipse - FontStyle ⁷⁴ | 0 | 0 | 0 | 159 | | Ellipse - ID ⁷⁵ | 5 | 0 | 0 | 154 | | Ellipse - LineCap ⁷⁶ | 0 | 0 | 0 | 159 | | Ellipse - Locked ⁷⁷ | 0 | 0 | 0 | 159 | | Ellipse - RadiusX ⁷⁸ | 5 | 0 | 0 | 154 | | Ellipse - RadiusY ⁷⁹ | 5 | 0 | 0 | 154 | | Ellipse - Stroke- | 0 | 0 | 0 | 159 | | Color ⁸⁰ | | | | 13) | | Ellipse - | 0 | 0 | 0 | 159 | | StrokeDashArray ⁸¹ | | | | 137 | | Ellipse - | 2 | 0 | 0 | 157 | | StrokeWidth ⁸² | | | | 137 | | Ellipse - Text ⁸³ | 3 | 0 | 0 | 156 | | Ellipse - TheC ⁸⁴ | 0 | 0 | 0 | 159 | | Ellipse - TheT ⁸⁵ | 2 | 0 | 0 | 157 | | Ellipse - TheZ ⁸⁶ | 2 | 0 | 0 | 157 | | Ellipse - Transform ⁸⁷ | 2 | 0 | 0 | 157 | | Ellipse - Visible ⁸⁸ | 0 | 0 | 0 | 159 | | Ellipse - X ⁸⁹ | 5 | 0 | 0 | 154 | | Ellipse - Y ⁹⁰ | 5 | 0 | 0 | 154 | | Experiment - De- | 1 | 0 | 0 | | | | 1 | 0 | 0 | 158 | | scription ⁹¹ | | | 000 | inuad on northogra | | Continued on next page | | | | | 66 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Description ⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_ID ⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace ⁶⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#DoubleAnnotation_Value ⁷⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillColor ⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillRule ⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontFamily ⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize ⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontStyle ⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_LineCap ⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Locked ⁷⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_RadiusX ⁷⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_RadiusY ⁸⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Shape StrokeColor ⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeDashArray ⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth ⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text ⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheC ⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT ⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ ⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform ⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Visible ⁸⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_X ⁹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_Y ⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_Description Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |---|-----------|-------------|---------|--------------------| | Experiment - Experi- | 0 | 0 | 0 | 159 | | menterRef ⁹² | | | | | | Experiment - ID ⁹³ | 5 | 0 | 0 | 154 | | Experiment - Type ⁹⁴ | 5 | 0 | 0 | 154 | | Experimenter - An- | 0 | 0 | 0 | 159 | | notationRef ⁹⁵ | _ | _ | _ | | | Experimenter - | 2 | 0 | 0 | 157 | | Email ⁹⁶ | _ | _ | _ | | | Experimenter - First- | 5 | 0 | 0 | 154 | | Name ⁹⁷ | | | | | | Experimenter - ID ⁹⁸ | 11 | 0 | 0 | 148 | | Experimenter - Insti- | 4 | 0 | 0 | 155 | | tution ⁹⁹ | 0 | | | 150 | | Experimenter - Last- | 9 | 0 | 0 | 150 | | Name ¹⁰⁰ | 1 | | | 150 | | Experimenter - Mid-
dleName ¹⁰¹ | 1 | 0 | 0 | 158 | | | 3 | 0 | 0 | 156 | | Experimenter - User-
Name ¹⁰² | 3 | 0 | 0 | 130 | | ExperimenterGroup - | 0 | 0 | 0 | 159 | | AnnotationRef ¹⁰³ | U | 0 | 0 | 139 | | ExperimenterGroup - | 0 | 0 | 0 | 159 | | Description ¹⁰⁴ | U | | | 139 | | ExperimenterGroup - | 0 | 0 | 0 | 159 | | ExperimenterRef ¹⁰⁵ | U | | | 137 | | ExperimenterGroup - | 0 | 0 | 0 | 159 | | ID ¹⁰⁶ | · · | | | | | ExperimenterGroup - | 0 | 0 | 0 | 159 | | Leader ¹⁰⁷ | - | - | | | | ExperimenterGroup - | 0 | 0 | 0 | 159 | | Name ¹⁰⁸ | | | | | | Filament - ID ¹⁰⁹ | 0 | 0 | 0 | 159 | | Filament - LotNum- | 1 | 0 | 0 | 158 | | ber ¹¹⁰ | | | | | | Filament - Manufac- | 1 | 0 | 0 | 158 | | turer ¹¹¹ | | | | | | Filament - Model ¹¹² | 1 | 0 | 0 | 158 | | Filament - Power ¹¹³ | 1 | 0 | 0 | 158 | | | | | Cont | inued on next page | 92 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID ⁹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_ID ⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_Type ⁹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Experimenter Email ⁹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_FirstName ⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID ⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_Institution 100 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName $^{^{101}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Experimenter_Middle Name + 100 for the control of cont$ ¹⁰² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_UserName ¹⁰³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ¹⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterGroup_Description ¹⁰⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID
¹⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterGroup_ID ¹⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Leader_ID ¹⁰⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterGroup_Name ¹⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID 110 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber ¹¹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer ¹¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ¹¹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_Power Table 19.2 – continued from previous page | | Table 19.2 – continued from previous page | | | | | | |----------------------------------|---|-------------|---------|-----------------|--|--| | Field | Supported | Unsupported | Partial | Unknown/Missing | | | | Filament - Serial- | 1 | 0 | 0 | 158 | | | | Number ¹¹⁴ | | | | | | | | Filament - Type ¹¹⁵ | 0 | 0 | 0 | 159 | | | | FileAnnotation - An- | 0 | 0 | 0 | 159 | | | | notationRef ¹¹⁶ | | | | | | | | FileAnnotation - De- | 0 | 0 | 0 | 159 | | | | scription ¹¹⁷ | | | | | | | | FileAnnotation - | 0 | 0 | 0 | 159 | | | | ID ¹¹⁸ | | | | | | | | FileAnnotation - | 0 | 0 | 0 | 159 | | | | Namespace ¹¹⁹ | | | | | | | | Filter - Filter- | 2 | 0 | 0 | 157 | | | | Wheel ¹²⁰ | | | | | | | | Filter - ID ¹²¹ | 8 | 0 | 0 | 151 | | | | Filter - LotNum- | 1 | 0 | 0 | 158 | | | | ber ¹²² | | | | | | | | Filter - Manufac- | 1 | 0 | 0 | 158 | | | | turer ¹²³ | | | | | | | | Filter - Model ¹²⁴ | 8 | 0 | 0 | 151 | | | | Filter - SerialNum- | 1 | 0 | 0 | 158 | | | | ber ¹²⁵ | | | | | | | | Filter - Type ¹²⁶ | 2 | 0 | 0 | 157 | | | | FilterSet - | 2 | 0 | 0 | 157 | | | | DichroicRef ¹²⁷ | | | | | | | | FilterSet - Emission- | 2 | 0 | 0 | 157 | | | | FilterRef ¹²⁸ | | | | | | | | FilterSet - Excita- | 2 | 0 | 0 | 157 | | | | tionFilterRef ¹²⁹ | | | | | | | | FilterSet - ID ¹³⁰ | 2 | 0 | 0 | 157 | | | | FilterSet - LotNum- | 1 | 0 | 0 | 158 | | | | ber ¹³¹ | | | | | | | | FilterSet - Manufac- | 1 | 0 | 0 | 158 | | | | turer ¹³² | | | | | | | | FilterSet - Model ¹³³ | 2 | 0 | 0 | 157 | | | | FilterSet - Serial- | 1 | 0 | 0 | 158 | | | | Number ¹³⁴ | | | | | | | | Image - Acquisition- | 159 | 0 | 0 | 0 | | | | Date ¹³⁵ | | | | | | | | Continued on next page | | | | | | | 114http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber 135 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ¹¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filament_Type ¹¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ¹¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Description ¹¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA xsd.html#Annotation ID ¹¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace 120 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_FilterWheel ¹²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID ¹²² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber ¹²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer ¹²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ¹²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber ¹²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_Type ¹²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DichroicRef_ID ¹²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID ¹²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID 130 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterSet_ID ¹³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber ¹³² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer ¹³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ¹³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | | |--|-----------|-------------|---------|-----------------|--| | Image - Annotation-
Ref ¹³⁶ | 0 | 0 | 0 | 159 | | | Image - Description ¹³⁷ | 43 | 0 | 0 | 116 | | | Image - Experimen-
tRef ¹³⁸ | 2 | 0 | 0 | 157 | | | Image - ExperimenterGroupRef ¹³⁹ | 0 | 0 | 0 | 159 | | | Image - ExperimenterRef ¹⁴⁰ | 6 | 0 | 0 | 153 | | | Image - ID ¹⁴¹ | 159 | 0 | 0 | 0 | | | Image - Instrumen-
tRef ¹⁴² | 41 | 0 | 0 | 118 | | | Image - Microbeam-
ManipulationRef ¹⁴³ | 0 | 0 | 0 | 159 | | | Image - Name ¹⁴⁴ | 159 | 0 | 0 | 0 | | | Image - ROIRef ¹⁴⁵ | 11 | 0 | 0 | 148 | | | ImagingEnvironment - AirPressure ¹⁴⁶ | 1 | 0 | 0 | 158 | | | ImagingEnvironment - CO2Percent ¹⁴⁷ | 1 | 0 | 0 | 158 | | | ImagingEnvironment - Humidity ¹⁴⁸ | 1 | 0 | 0 | 158 | | | ImagingEnvironment - Temperature ¹⁴⁹ | 10 | 0 | 0 | 149 | | | Instrument - ID ¹⁵⁰ | 46 | 0 | 0 | 113 | | | Label - FillColor ¹⁵¹ | 0 | 0 | 0 | 159 | | | Label - FillRule ¹⁵² | 0 | 0 | 0 | 159 | | | Label - FontFam-
ily ¹⁵³ | 0 | 0 | 0 | 159 | | | Label - FontSize ¹⁵⁴ | 2 | 0 | 0 | 157 | | | Label - FontStyle ¹⁵⁵ | 0 | 0 | 0 | 159 | | | Label - ID ¹⁵⁶ | 3 | 0 | 0 | 156 | | | Label - LineCap ¹⁵⁷ | 0 | 0 | 0 | 159 | | | Label - Locked 158 | 0 | 0 | 0 | 159 | | | Label - Stroke- | 0 | 0 | 0 | 159 | | | Color ¹⁵⁹ | | | | | | | Continued on next page | | | | | | 136http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ¹³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ¹³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimentRef_ID ¹³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterGroupRef_ID ¹⁴⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID ¹⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ¹⁴³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#MicrobeamManipulationRef_ID ¹⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID ¹⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_AirPressure ¹⁴⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_CO2Percent ¹⁴⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Humidity ¹⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature ¹⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ¹⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillColor ¹⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillRule ¹⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontFamily ¹⁵⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize ¹⁵⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontStyle 156 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ¹⁵⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Shape LineCap ¹⁵⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Locked ¹⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |-----------------------------------|-----------|-------------|---------|--------------------| | Label - | 0 | 0 | 0 | 159 | | StrokeDashArray ¹⁶⁰ | | | | | | Label - | 2 | 0 | 0 | 157 | | StrokeWidth ¹⁶¹ | | | | | | Label - Text ¹⁶² | 3 | 0 | 0 | 156 | | Label - TheC ¹⁶³ | 0 | 0 | 0 | 159 | | Label - TheT ¹⁶⁴ | 0 | 0 | 0 | 159 | | Label - TheZ ¹⁶⁵ | 0 | 0 | 0 | 159 | | Label - Transform ¹⁶⁶ | 0 | 0 | 0 | 159 | | Label - Visible ¹⁶⁷ | 0 | 0 | 0 | 159 | | Label - X ¹⁶⁸ | 3 | 0 | 0 | 156 | | Label - Y ¹⁶⁹ | 3 | 0 | 0 | 156 | | Laser - Frequency- | 0 | 0 | 0 | 159 | | Multiplication ¹⁷⁰ | | | | | | Laser - ID ¹⁷¹ | 9 | 0 | 0 | 150 | | Laser - Laser- | 8 | 0 | 0 | 151 | | Medium ¹⁷² | |
 | | | Laser - LotNum- | 1 | 0 | 0 | 158 | | ber ¹⁷³ | | | | | | Laser - Manufac- | 2 | 0 | 0 | 157 | | turer ¹⁷⁴ | | | | | | Laser - Model ¹⁷⁵ | 4 | 0 | 0 | 155 | | Laser - PockelCell ¹⁷⁶ | 0 | 0 | 0 | 159 | | Laser - Power ¹⁷⁷ | 3 | 0 | 0 | 156 | | Laser - Pulse ¹⁷⁸ | 0 | 0 | 0 | 159 | | Laser - Pump ¹⁷⁹ | 0 | 0 | 0 | 159 | | Laser - Repetition- | 1 | 0 | 0 | 158 | | Rate ¹⁸⁰ | | | | | | Laser - SerialNum- | 1 | 0 | 0 | 158 | | ber ¹⁸¹ | | | | | | Laser - Tuneable ¹⁸² | 0 | 0 | 0 | 159 | | Laser - Type ¹⁸³ | 8 | 0 | 0 | 151 | | Laser - Wave- | 7 | 0 | 0 | 152 | | length ¹⁸⁴ | | | | | | LightEmittingDiode | 0 | 0 | 0 | 159 | | - ID ¹⁸⁵ | | | | | | | | | Cont | inued on next page | 160 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeDashArray ¹⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth ¹⁶² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text ¹⁶³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheC ¹⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT 165 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ ¹⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform ¹⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Visible 168 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Label_X ¹⁶⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Label_Y ¹⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_FrequencyMultiplication ¹⁷¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID ¹⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_LaserMedium ¹⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber ¹⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer 175 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ¹⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_PockelCell ¹⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_Power ¹⁷⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Pulse ¹⁷⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pump_ID ¹⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_RepetitionRate ¹⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber ¹⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Tuneable ¹⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type ¹⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Wavelength ¹⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | | | | |-----------------------------------|------------------------|-------------|---------|-----------------|--|--|--| | LightEmittingDiode | 1 | 0 | 0 | 158 | | | | | - LotNumber ¹⁸⁶ | | | | | | | | | LightEmittingDiode | 1 | 0 | 0 | 158 | | | | | - Manufacturer ¹⁸⁷ | | | | | | | | | LightEmittingDiode | 1 | 0 | 0 | 158 | | | | | - Model ¹⁸⁸ | | | | | | | | | LightEmittingDiode | 1 | 0 | 0 | 158 | | | | | - Power ¹⁸⁹ | | | | | | | | | LightEmittingDiode | 1 | 0 | 0 | 158 | | | | | - SerialNumber ¹⁹⁰ | | | | | | | | | LightPath - | 3 | 0 | 0 | 156 | | | | | DichroicRef ¹⁹¹ | | | | | | | | | LightPath - Emis- | 5 | 0 | 0 | 154 | | | | | sionFilterRef ¹⁹² | | | | | | | | | LightPath - Excita- | 1 | 0 | 0 | 158 | | | | | tionFilterRef ¹⁹³ | | | | | | | | | Line - FillColor ¹⁹⁴ | 0 | 0 | 0 | 159 | | | | | Line - FillRule ¹⁹⁵ | 0 | 0 | 0 | 159 | | | | | Line - FontFamily ¹⁹⁶ | 0 | 0 | 0 | 159 | | | | | Line - FontSize ¹⁹⁷ | 2 | 0 | 0 | 157 | | | | | Line - FontStyle ¹⁹⁸ | 0 | 0 | 0 | 159 | | | | | Line - ID ¹⁹⁹ | 5 | 0 | 0 | 154 | | | | | Line - LineCap ²⁰⁰ | 0 | 0 | 0 | 159 | | | | | Line - Locked ²⁰¹ | 0 | 0 | 0 | 159 | | | | | Line - MarkerEnd ²⁰² | 0 | 0 | 0 | 159 | | | | | Line - MarkerStart ²⁰³ | 0 | 0 | 0 | 159 | | | | | Line - StrokeColor ²⁰⁴ | 0 | 0 | 0 | 159 | | | | | Line - StrokeDashAr- | 0 | 0 | 0 | 159 | | | | | ray ²⁰⁵ | | | | | | | | | Line - | 2 | 0 | 0 | 157 | | | | | StrokeWidth ²⁰⁶ | | | | | | | | | Line - Text ²⁰⁷ | 2 | 0 | 0 | 157 | | | | | Line - TheC ²⁰⁸ | 0 | 0 | 0 | 159 | | | | | Line - TheT ²⁰⁹ | 1 | 0 | 0 | 158 | | | | | Line - TheZ ²¹⁰ | 1 | 0 | 0 | 158 | | | | | Line - Transform ²¹¹ | 1 | 0 | 0 | 158 | | | | | | Continued on next page | | | | | | | $^{186} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# ManufacturerSpec_LotNumber$ ¹⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer ¹⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ¹⁸⁹ http://www.penmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_Power ¹⁹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber ¹⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DichroicRef_ID ¹⁹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID ¹⁹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID ¹⁹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Shape FillColor ¹⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillRule 196http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontFamily ¹⁹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize ¹⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontStyle ¹⁹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ²⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Shape LineCap ²⁰¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Locked ²⁰²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROL_xsd.html#Line_MarkerEnd ²⁰³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_MarkerStart ²⁰⁴http://www.ppenmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor ²⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeDashArray ²⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth ²⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text ²⁰⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheC ²⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT $^{^{210}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html \#Shape_The Zenerated/OME-2013-06/ROI_xsd.html Zenerat$ ²¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |---------------------------------|-----------|-------------|---------|--------------------| | Line - Visible ²¹² | 0 | 0 | 0 | 159 | | Line - X1 ²¹³ | 5 | 0 | 0 | 154 | | Line - X2 ²¹⁴ | 5 | 0 | 0 | 154 | | Line - Y1 ²¹⁵ | 5 | 0 | 0 | 154 | | Line - Y2 ²¹⁶ | 5 | 0 | 0 | 154 | | ListAnnotation - An- | 0 | 0 | 0 | 159 | | notationRef ²¹⁷ | | | | | | ListAnnotation - De- | 0 | 0 | 0 | 159 | | scription ²¹⁸ | | | | | | ListAnnotation - | 0 | 0 | 0 | 159 | | ID^{219} | | | | | | ListAnnotation - | 0 | 0 | 0 | 159 | | Namespace ²²⁰ | | | | | | LongAnnotation - | 0 | 0 | 0 | 159 | | AnnotationRef ²²¹ | | | | | | LongAnnotation - | 0 | 0 | 0 | 159 | | Description ²²² | | | | | | LongAnnotation - | 0 | 0 | 0 | 159 | | ID^{223} | | | | | | LongAnnotation - | 0 | 0 | 0 | 159 | | Namespace ²²⁴ | | | | | | LongAnnotation - | 0 | 0 | 0 | 159 | | Value ²²⁵ | | | | | | Mask - FillColor ²²⁶ | 1 | 0 | 0 | 158 | | Mask - FillRule ²²⁷ | 0 | 0 | 0 | 159 | | Mask - FontFam- | 0 | 0 | 0 | 159 | | ily ²²⁸ | | | | | | Mask - FontSize ²²⁹ | 0 | 0 | 0 | 159 | | Mask - Height ²³⁰ | 2 | 0 | 0 | 157 | | Mask - ID ²³¹ | 2 | 0 | 0 | 157 | | Mask - LineCap ²³² | 0 | 0 | 0 | 159 | | Mask - Locked ²³³ | 0 | 0 | 0 | 159 | | Mask - Stroke- | 1 | 0 | 0 | 158 | | Color ²³⁴ | | | | | | Mask - | 0 | 0 | 0 | 159 | | StrokeDashArray ²³⁵ | | | | | | | | | Cont | inued on next page | ²¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_X1 ²¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_X2 ²¹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_Y1
²¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_Y2 ²¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ²¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA xsd.html#Annotation Description ²¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_ID ²²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace ²²¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ²²² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Description ²²³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_ID ²²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace ²²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#LongAnnotation_Value ²²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillColor ²²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillRule ²²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontFamily ²²⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize ²³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Mask_Height ²³¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ²³² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_LineCap ²³³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Shape Locked ²³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor ²³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeDashArray Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |----------------------------------|------------------------|-------------|---------|--------------------| | Mask - | 0 | 0 | 0 | 159 | | StrokeWidth ²³⁶ | | | | | | Mask - Text ²³⁷ | 0 | 0 | 0 | 159 | | Mask - TheC ²³⁸ | 0 | 0 | 0 | 159 | | Mask - TheT ²³⁹ | 0 | 0 | 0 | 159 | | Mask - TheZ ²⁴⁰ | 0 | 0 | 0 | 159 | | Mask - Transform ²⁴¹ | 0 | 0 | 0 | 159 | | Mask - Visible ²⁴² | 0 | 0 | 0 | 159 | | Mask - Width ²⁴³ | 2 | 0 | 0 | 157 | | Mask - X ²⁴⁴ | 2 | 0 | 0 | 157 | | Mask - Y ²⁴⁵ | 2 | 0 | 0 | 157 | | MicrobeamManipulation | on 0 | 0 | 0 | 159 | | - ExperimenterRef ²⁴⁶ | | | | | | MicrobeamManipulation | on 0 | 0 | 0 | 159 | | - ID ²⁴⁷ | | | | | | MicrobeamManipulation | on 0 | 0 | 0 | 159 | | - ROIRef ²⁴⁸ | | | | | | MicrobeamManipulation | on 0 | 0 | 0 | 159 | | - Type ²⁴⁹ | | | | | | MicrobeamManipulation | onLigh © ourceS | Settings 0 | 0 | 159 | | - Attenuation ²⁵⁰ | | | | | | MicrobeamManipulation | onLigh © ourceS | Settings 0 | 0 | 159 | | - ID ²⁵¹ | | | | | | MicrobeamManipulation | onLigh © ourceS | Settings 0 | 0 | 159 | | - Wavelength ²⁵² | | | | | | Microscope - Lot- | 1 | 0 | 0 | 158 | | Number ²⁵³ | | | | | | Microscope - Manu- | 2 | 0 | 0 | 157 | | facturer ²⁵⁴ | | | | | | Microscope - | 11 | 0 | 0 | 148 | | Model ²⁵⁵ | | | | | | Microscope - Serial- | 4 | 0 | 0 | 155 | | Number ²⁵⁶ | | | | | | Microscope - Type ²⁵⁷ | 3 | 0 | 0 | 156 | | Objective - Calibrat- | 9 | 0 | 0 | 150 | | edMagnification ²⁵⁸ | | | | | | Objective - Correc- | 25 | 0 | 0 | 134 | | tion ²⁵⁹ | | | | | | | | | Cont | inued on next page | ²³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth ²³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text ²³⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheC ²³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT ²⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROL xsd.html#Shape_TheZ ²⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform ²⁴²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Visible ²⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Mask_Width ²⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Mask_X ²⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Mask_Y ²⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID ²⁴⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#MicrobeamManipulation_ID ²⁴⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID ²⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#MicrobeamManipulation_Type ²⁵⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_Attenuation ²⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_ID ²⁵²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_Wavelength ²⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber ²⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer ²⁵⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber ²⁵⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Microscope_Type ²⁵⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification ²⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |---|-----------|-------------|---------|-----------------| | Objective - ID ²⁶⁰ | 31 | 0 | 0 | 128 | | Objective - Immer- | 26 | 0 | 0 | 133 | | sion ²⁶¹ | | | | | | Objective - Iris ²⁶² | 2 | 0 | 0 | 157 | | Objective - | 19 | 0 | 0 | 140 | | LensNA ²⁶³ | | | | | | Objective - LotNum-
ber ²⁶⁴ | 1 | 0 | 0 | 158 | | Objective - Manufacturer ²⁶⁵ | 5 | 0 | 0 | 154 | | Objective - Model ²⁶⁶ | 12 | 0 | 0 | 147 | | Objective - Nominal- | 23 | 0 | 0 | 136 | | Magnification ²⁶⁷ | | | | | | Objective - Serial- | 3 | 0 | 0 | 156 | | Number ²⁶⁸ | | | | | | Objective - Work- | 9 | 0 | 0 | 150 | | ingDistance ²⁶⁹ | | | | | | ObjectiveSettings - | 1 | 0 | 0 | 158 | | CorrectionCollar ²⁷⁰ | | | | | | ObjectiveSettings - | 26 | 0 | 0 | 133 | | ID^{271} | | | | | | ObjectiveSettings - | 1 | 0 | 0 | 158 | | Medium ²⁷² | | | | | | ObjectiveSettings - | 7 | 0 | 0 | 152 | | RefractiveIndex ²⁷³ | | | | | | Pixels - Annotation- | 0 | 0 | 0 | 159 | | Ref ²⁷⁴ | | | | | | Pixels - BigEndian ²⁷⁵ | 159 | 0 | 0 | 0 | | Pixels - Dimen- | 159 | 0 | 0 | 0 | | sionOrder ²⁷⁶ | | | | | | Pixels - ID ²⁷⁷ | 159 | 0 | 0 | 0 | | Pixels - Inter- | 159 | 0 | 0 | 0 | | leaved ²⁷⁸ | | | | | | Pixels - Physical- | 82 | 0 | 0 | 77 | | SizeX ²⁷⁹ | | | | | | Pixels - Physical- | 82 | 0 | 0 | 77 | | SizeY ²⁸⁰ | | | | | | Pixels - Physical- | 42 | 0 | 0 | 117 | | SizeZ ²⁸¹ | | | | | | Continued on next page | | | | | 260 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID ²⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion ²⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Iris ²⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA ²⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber ²⁶⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer ²⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification $^{^{268}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# ManufacturerSpec_Serial Number 1999 and 1999 and 1999 are also as a contract of the contract$ ²⁶⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance ²⁷⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_CorrectionCollar ²⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID ²⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_Medium ²⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex ²⁷⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
²⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁷⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁸⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |--|-----------|-------------|---------|--------------------| | Pixels - Significant- | 159 | 0 | 0 | 0 | | Bits ²⁸² | | | | | | Pixels - SizeC ²⁸³ | 159 | 0 | 0 | 0 | | Pixels - SizeT ²⁸⁴ | 159 | 0 | 0 | 0 | | Pixels - SizeX ²⁸⁵ | 159 | 0 | 0 | 0 | | Pixels - SizeY ²⁸⁶ | 159 | 0 | 0 | 0 | | Pixels - SizeZ ²⁸⁷ | 159 | 0 | 0 | 0 | | Pixels - TimeIncrement ²⁸⁸ | 16 | 0 | 0 | 143 | | Pixels - Type ²⁸⁹ | 159 | 0 | 0 | 0 | | Plane - Annotation- | 0 | 0 | 0 | 159 | | Ref ²⁹⁰ | | | | | | Plane - DeltaT ²⁹¹ | 22 | 0 | 0 | 137 | | Plane - Exposure- | 30 | 0 | 0 | 129 | | Time ²⁹² | | | | | | Plane - | 0 | 0 | 0 | 159 | | HashSHA1 ²⁹³ | | | | | | Plane - PositionX ²⁹⁴ | 26 | 0 | 0 | 133 | | Plane - PositionY ²⁹⁵ | 26 | 0 | 0 | 133 | | Plane - PositionZ ²⁹⁶ | 20 | 0 | 0 | 139 | | Plane - TheC ²⁹⁷ | 159 | 0 | 0 | 0 | | Plane - TheT ²⁹⁸ | 159 | 0 | 0 | 0 | | Plane - TheZ ²⁹⁹ | 159 | 0 | 0 | 0 | | Plate - Annotation-
Ref ³⁰⁰ | 0 | 0 | 0 | 159 | | Plate - ColumnNam-
ingConvention ³⁰¹ | 8 | 0 | 0 | 151 | | Plate - Columns ³⁰² | 4 | 0 | 0 | 155 | | Plate - Description ³⁰³ | 2 | 0 | 0 | 157 | | Plate - ExternalIden- | 3 | 0 | 0 | 156 | | tifier ³⁰⁴ | | | | | | Plate - ID ³⁰⁵ | 10 | 0 | 0 | 149 | | Plate - Name ³⁰⁶ | 9 | 0 | 0 | 150 | | Plate - RowNaming- | 8 | 0 | 0 | 151 | | Convention ³⁰⁷ | | | | | | | 1 | | Cont | inued on next page | 282 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁸⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement ²⁸⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ²⁹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT ²⁹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ²⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_HashSHA1 $^{^{294}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_PositionX$ ²⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY $^{^{296}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_PositionZ$ ²⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ³⁰¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ColumnNamingConvention http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Columns ³⁰³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Description ³⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ExternalIdentifier ³⁰⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID ³⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Name ³⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_RowNamingConvention Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |---|-----------|-------------|---------|--------------------| | Plate - Rows ³⁰⁸ | 4 | 0 | 0 | 155 | | Plate - Status ³⁰⁹ | 0 | 0 | 0 | 159 | | Plate - WellOrig- | 1 | 0 | 0 | 158 | | inX^{310} | | | | | | Plate - WellO- | 1 | 0 | 0 | 158 | | riginY ³¹¹ | | | | | | PlateAcquisition - | 0 | 0 | 0 | 159 | | AnnotationRef ³¹² | | | | | | PlateAcquisition - | 0 | 0 | 0 | 159 | | Description ³¹³ | | | | | | PlateAcquisition - | 2 | 0 | 0 | 157 | | EndTime ³¹⁴ | | | | 137 | | PlateAcquisition - | 8 | 0 | 0 | 151 | | ID ³¹⁵ | 0 | | | 131 | | Plate Acquisition | 8 | 0 | 0 | 151 | | - MaximumField- | 8 | 0 | | 131 | | Count ³¹⁶ | | | | | | PlateAcquisition - | 0 | 0 | 0 | 159 | | Name ³¹⁷ | U | 0 | U | 139 | | | 3 | 0 | 0 | 156 | | PlateAcquisition - StartTime ³¹⁸ | 3 | 0 | U | 130 | | | 7 | | | 150 | | PlateAcquisition - | 7 | 0 | 0 | 152 | | WellSampleRef ³¹⁹ | | | | 4.50 | | Point - FillColor ³²⁰ | 0 | 0 | 0 | 159 | | Point - FillRule ³²¹ | 0 | 0 | 0 | 159 | | Point - FontFamily ³²² | 0 | 0 | 0 | 159 | | Point - FontSize ³²³ | 1 | 0 | 0 | 158 | | Point - FontStyle ³²⁴ | 0 | 0 | 0 | 159 | | Point - ID ³²⁵ | 3 | 0 | 0 | 156 | | Point - LineCap ³²⁶ | 0 | 0 | 0 | 159 | | Point - Locked ³²⁷ | 0 | 0 | 0 | 159 | | Point - Stroke- | 1 | 0 | 0 | 158 | | Color ³²⁸ | | | | | | Point - | 1 | 0 | 0 | 158 | | StrokeDashArray ³²⁹ | | | | | | Point - | 2 | 0 | 0 | 157 | | StrokeWidth ³³⁰ | | | | | | Point - Text ³³¹ | 1 | 0 | 0 | 158 | | | | | Cont | inued on next page | $^{308} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html \# Plate_Rows$ ³⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Status ³¹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_WellOriginX ³¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_WellOriginY ³¹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ³¹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_Description ³¹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_EndTime ³¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_ID ³¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount ³¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_Name ³¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_StartTime ³¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSampleRef_ID ³²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Shape FillColor 321 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillRule ³²² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontFamily ³²³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROL_xsd.html#Shape_FontSize ³²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontStyle ³²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ³²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_LineCap ³²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Locked ³²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor 329 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeDashArray ³³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth ³³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |---|-----------|-------------|---------|--------------------| | Point - TheC ³³² | 0 | 0 | 0 | 159 | | Point - TheT ³³³ | 1 | 0 | 0 | 158 | | Point - TheZ ³³⁴ | 2 | 0 | 0 | 157 | | Point - Transform ³³⁵ | 0 | 0 | 0 | 159 | | Point - Visible ³³⁶ | 0 | 0 | 0 | 159 | | Point - X ³³⁷ | 3 | 0 | 0 | 156 | | Point - Y ³³⁸ | 3 | 0 | 0 | 156 | | Polygon - Fill-
Color ³³⁹ | 0 | 0 | 0 | 159 | | Polygon - FillRule ³⁴⁰ | 0 | 0 | 0 | 159 | | Polygon - FontFam-
ily ³⁴¹ | 0 | 0 | 0 | 159 | | Polygon - Font-
Size ³⁴² | 2 | 0 | 0 | 157 | | Polygon -
FontStyle ³⁴³ | 0 | 0 | 0 | 159 | | Polygon - ID ³⁴⁴ | 7 | 0 | 0 | 152 | | Polygon - LineCap ³⁴⁵ | 0 | 0 | 0 | 159 | | Polygon - Locked ³⁴⁶ | 0 | 0 | 0 | 159 | | Polygon - Points ³⁴⁷ | 7 | 0 | 0 | 152 | | Polygon -
Stroke-
Color ³⁴⁸ | 1 | 0 | 0 | 158 | | Polygon -
StrokeDashArray ³⁴⁹ | 1 | 0 | 0 | 158 | | Polygon - StrokeWidth ³⁵⁰ | 3 | 0 | 0 | 156 | | Polygon - Text ³⁵¹ | 2 | 0 | 0 | 157 | | Polygon - TheC ³⁵² | 0 | 0 | 0 | 159 | | Polygon - TheT ³⁵³ | 1 | 0 | 0 | 158 | | Polygon - TheZ ³⁵⁴ | 2 | 0 | 0 | 157 | | Polygon - Trans-
form ³⁵⁵ | 1 | 0 | 0 | 158 | | Polygon - Visible ³⁵⁶ | 0 | 0 | 0 | 159 | | Polyline - Fill-
Color ³⁵⁷ | 0 | 0 | 0 | 159 | | | | I | Cont | inued on next page | 332http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheC ³³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT ³³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ ³³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform ³³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Visible ³³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Point_X ³³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Point_Y ³³⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillColor 340 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Shape FillRule ³⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontFamily ³⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize ³⁴³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontStyle 344http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ³⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_LineCap ³⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Locked ³⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Polygon Points ³⁴⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor ³⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeDashArray ³⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth ³⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text ³⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheC ³⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT ³⁵⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ ³⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Shape Transform ³⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Visible ³⁵⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillColor Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |------------------------------------|-----------|-------------|---------|--------------------| | Polyline - FillRule ³⁵⁸ | 0 | 0 | 0 | 159 | | Polyline - FontFam- | 0 | 0 | 0 | 159 | | ily ³⁵⁹ | | | | | | Polyline - Font- | 2 | 0 | 0 | 157 | | Size ³⁶⁰ | | | | | | Polyline - | 0 | 0 | 0 | 159 | | FontStyle ³⁶¹ | | | | | | Polyline - ID ³⁶² | 5 | 0 | 0 | 154 | | Polyline - LineCap ³⁶³ | 0 | 0 | 0 | 159 | | Polyline - Locked ³⁶⁴ | 0 | 0 | 0 | 159 | | Polyline - Mark- | 0 | 0 | 0 | 159 | | erEnd ³⁶⁵ | | | | | | Polyline - Marker- | 0 | 0 | 0 | 159 | | Start ³⁶⁶ | | | | | | Polyline - Points ³⁶⁷ | 5 | 0 | 0 | 154 | | Polyline - Stroke- | 1 | 0 | 0 | 158 | | Color ³⁶⁸ | | | | | | Polyline - | 1 | 0 | 0 | 158 | | StrokeDashArray ³⁶⁹ | | | | | | Polyline - | 3 | 0 | 0 | 156 | | StrokeWidth ³⁷⁰ | | | | | | Polyline - Text ³⁷¹ | 2 | 0 | 0 | 157 | | Polyline - TheC ³⁷² | 0 | 0 | 0 | 159 | | Polyline - TheT ³⁷³ | 1 | 0 | 0 | 158 | | Polyline - TheZ ³⁷⁴ | 2 | 0 | 0 | 157 | | Polyline - Trans- | 1 | 0 | 0 | 158 | | form ³⁷⁵ | | | | | | Polyline - Visible ³⁷⁶ | 0 | 0 | 0 | 159 | | Project - Annotation- | 0 | 0 | 0 | 159 | | Ref ³⁷⁷ | | | | | | Project - Datase- | 0 | 0 | 0 | 159 | | tRef ³⁷⁸ | | | | | | Project - Descrip- | 0 | 0 | 0 | 159 | | tion ³⁷⁹ | | | | | | Project - Experi- | 0 | 0 | 0 | 159 | | menterGroupRef ³⁸⁰ | | | | | | Project - Experi- | 0 | 0 | 0 | 159 | | menterRef ³⁸¹ | | | | | | | • | | Cont | inued on next page | 358 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillRule http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontFamily ³⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize ³⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontStyle ³⁶² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ³⁶³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_LineCap ³⁶⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Locked ³⁶⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polyline_MarkerEnd ³⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polyline_MarkerStart ³⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polyline_Points ³⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor ³⁶⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeDashArray ³⁷⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth ³⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text ³⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheC ³⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT ³⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ ³⁷⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform ³⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Visible http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DatasetRef_ID ³⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Project_Description ³⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterGroupRef_ID ³⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |-----------------------------------|-----------|-------------|---------|--------------------| | Project - ID ³⁸² | 0 | 0 | 0 | 159 | | Project - Name ³⁸³ | 0 | 0 | 0 | 159 | | ROI - Annotation- | 0 | 0 | 0 | 159 | | Ref ³⁸⁴ | | | | | | ROI - Description ³⁸⁵ | 1 | 0 | 0 | 158 | | ROI - ID ³⁸⁶ | 11 | 0 | 0 | 148 | | ROI - Name ³⁸⁷ | 3 | 0 | 0 | 156 | | ROI - Namespace ³⁸⁸ | 0 | 0 | 0 | 159 | | Reagent - Annota- | 0 | 0 | 0 | 159 | | tionRef ³⁸⁹ | | | | | | Reagent - Descrip- | 0 | 0 | 0 | 159 | | tion ³⁹⁰ | | | | | | Reagent - ID ³⁹¹ | 0 | 0 | 0 | 159 | | Reagent - Name ³⁹² | 0 | 0 | 0 | 159 | | Reagent - ReagentI- | 0 | 0 | 0 | 159 | | dentifier ³⁹³ | | | | | | Rectangle - Fill- | 0 | 0 | 0 | 159 | | Color ³⁹⁴ | | - | | | | Rectangle - Fill- | 0 | 0 | 0 | 159 | | Rule ³⁹⁵ | | - | | | | Rectangle - FontFam- | 0 | 0 | 0 | 159 | | ily ³⁹⁶ | | _ | | | | Rectangle - Font- | 2 | 0 | 0 | 157 | | Size ³⁹⁷ | _ | | | 10, | | Rectangle - | 0 | 0 | 0 | 159 | | FontStyle ³⁹⁸ | Ü | | | 10, | | Rectangle - Height ³⁹⁹ | 7 | 0 | 0 | 152 | | Rectangle - ID ⁴⁰⁰ | ,
7 | 0 | 0 | 152 | | Rectangle - | 0 | 0 | 0 | 159 | | LineCap ⁴⁰¹ | Ü | | | 10) | | Rectangle - | 0 | 0 | 0 | 159 | | Locked ⁴⁰² | | | | 15) | | Rectangle - Stroke- | 0 | 0 | 0 | 159 | | Color ⁴⁰³ | | | | 137 | | Rectangle - | 0 | 0 | 0 | 159 | | StrokeDashArray ⁴⁰⁴ | | | | 137 | | Rectangle - | 2 | 0 | 0 | 157 | | StrokeWidth ⁴⁰⁵ | <u> </u> | | | 137 | | Stroke Width | | | Cont | inued on next page | | | | | Cont | maca on next page | 382 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Project_ID ³⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Project_Name ³⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ³⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_Description ³⁸⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID ³⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_Name ³⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_Namespace ³⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ³⁹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Reagent_Description ³⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Reagent_ID ³⁹²
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Reagent_Name ³⁹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Reagent_ReagentIdentifier ³⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillColor ³⁹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillRule ³⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontFamily ³⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROL_xsd.html#Shape_FontSize ³⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontStyle ³⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Height ⁴⁰⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ⁴⁰¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_LineCap ⁴⁰² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Locked ⁴⁰³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor ⁴⁰⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeDashArray ⁴⁰⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | | |--|-----------|-------------|---------|-----------------|--| | Rectangle - Text ⁴⁰⁶ | 2 | 0 | 0 | 157 | | | Rectangle - TheC ⁴⁰⁷ | 0 | 0 | 0 | 159 | | | Rectangle - TheT ⁴⁰⁸ | 1 | 0 | 0 | 158 | | | Rectangle - TheZ ⁴⁰⁹ | 1 | 0 | 0 | 158 | | | Rectangle - Transform ⁴¹⁰ | 1 | 0 | 0 | 158 | | | Rectangle - Visi-
ble ⁴¹¹ | 0 | 0 | 0 | 159 | | | Rectangle - Width ⁴¹² | 7 | 0 | 0 | 152 | | | Rectangle - X ⁴¹³ | 7 | 0 | 0 | 152 | | | Rectangle - Y ⁴¹⁴ | 7 | 0 | 0 | 152 | | | Screen - Annotation-
Ref ⁴¹⁵ | 0 | 0 | 0 | 159 | | | Screen - Descrip-
tion ⁴¹⁶ | 0 | 0 | 0 | 159 | | | Screen - ID ⁴¹⁷ | 1 | 0 | 0 | 158 | | | Screen - Name ⁴¹⁸ | 1 | 0 | 0 | 158 | | | Screen - PlateRef ⁴¹⁹ | 1 | 0 | 0 | 158 | | | Screen - ProtocolDe-
scription ⁴²⁰ | 0 | 0 | 0 | 159 | | | Screen - ProtocolI-
dentifier ⁴²¹ | 0 | 0 | 0 | 159 | | | Screen - ReagentSet-
Description ⁴²² | 0 | 0 | 0 | 159 | | | Screen - ReagentSe-
tIdentifier ⁴²³ | 0 | 0 | 0 | 159 | | | Screen - Type ⁴²⁴ | 0 | 0 | 0 | 159 | | | StageLabel -
Name ⁴²⁵ | 3 | 0 | 0 | 156 | | | StageLabel - X ⁴²⁶ | 2 | 0 | 0 | 157 | | | StageLabel - Y ⁴²⁷ | 2 | 0 | 0 | 157 | | | StageLabel - Z ⁴²⁸ | 3 | 0 | 0 | 156 | | | TagAnnotation - AnnotationRef ⁴²⁹ | 0 | 0 | 0 | 159 | | | TagAnnotation - Description 430 | 0 | 0 | 0 | 159 | | | Continued on next page | | | | | | 406 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text ⁴⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheC ⁴⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ ⁴¹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform ⁴¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Visible ⁴¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Width ⁴¹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_X ⁴¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Y ⁴¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ⁴¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Screen_Description ⁴¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Screen_ID ⁴¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Screen_Name ⁴¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Screen_Screen_PlateRef_ID ⁴²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Screen_ProtocolDescription ⁴²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Screen_ProtocolIdentifier ⁴²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Screen_ReagentSetDescription ⁴²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Screen_ReagentSetIdentifier ⁴²⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Screen_Type ⁴²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#StageLabel_Name ⁴²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#StageLabel_X ⁴²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#StageLabel_Y ⁴²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#StageLabel_Z 429 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ⁴³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Description Table 19.2 – continued from previous page | lable 19.2 – continued from previous page | | | | | | |--|-----------|-------------|---------|--------------------|--| | Field | Supported | Unsupported | Partial | Unknown/Missing | | | TagAnnotation - ID ⁴³¹ | 0 | 0 | 0 | 159 | | | TagAnnotation - Namespace ⁴³² | 0 | 0 | 0 | 159 | | | TagAnnotation - Value ⁴³³ | 0 | 0 | 0 | 159 | | | TermAnnotation - AnnotationRef ⁴³⁴ | 0 | 0 | 0 | 159 | | | TermAnnotation - Description ⁴³⁵ | 0 | 0 | 0 | 159 | | | TermAnnotation - ID ⁴³⁶ | 0 | 0 | 0 | 159 | | | TermAnnotation - Namespace ⁴³⁷ | 0 | 0 | 0 | 159 | | | TermAnnotation - Value ⁴³⁸ | 0 | 0 | 0 | 159 | | | TiffData - FirstC ⁴³⁹ | 0 | 0 | 0 | 159 | | | TiffData - FirstT ⁴⁴⁰ | 0 | 0 | 0 | 159 | | | TiffData - FirstZ ⁴⁴¹ | 0 | 0 | 0 | 159 | | | TiffData - IFD ⁴⁴² | 0 | 0 | 0 | 159 | | | TiffData -
PlaneCount ⁴⁴³ | 0 | 0 | 0 | 159 | | | TimestampAnnotation - AnnotationRef ⁴⁴⁴ | 0 | 0 | 0 | 159 | | | TimestampAnnotation - Description ⁴⁴⁵ | 0 | 0 | 0 | 159 | | | TimestampAnnotation - ID ⁴⁴⁶ | 0 | 0 | 0 | 159 | | | TimestampAnnotation - Namespace ⁴⁴⁷ | 0 | 0 | 0 | 159 | | | TimestampAnnotation - Value ⁴⁴⁸ | 0 | 0 | 0 | 159 | | | TransmittanceRange - CutIn ⁴⁴⁹ | 5 | 0 | 0 | 154 | | | TransmittanceRange - CutInTolerance ⁴⁵⁰ | 1 | 0 | 0 | 158 | | | TransmittanceRange - CutOut ⁴⁵¹ | 5 | 0 | 0 | 154 | | | | | | Cont | inued on next page | | 431http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_ID ⁴³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace ⁴³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#TagAnnotation_Value ⁴³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ⁴³⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Description ⁴³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_ID ⁴³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace 438 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#TermAnnotation_Value ⁴³⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TiffData_FirstC ⁴⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TiffData_FirstT ⁴⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TiffData_FirstZ ⁴⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TiffData_IFD ⁴⁴³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TiffData_PlaneCount 444 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ⁴⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Description ⁴⁴⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_ID 447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace ⁴⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#TimestampAnnotation_Value ⁴⁴⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#TransmittanceRange CutIn ⁴⁵⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutInTolerance ⁴⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutOut Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |----------------------------------|-----------|-------------|---------|--------------------| | TransmittanceRange | 1 | 0 | 0 | 158 | | - CutOutTolerance ⁴⁵² | | | | | | TransmittanceRange | 1 | 0 | 0 | 158 | | - Transmittance ⁴⁵³ | | | | | | UUID - FileName ⁴⁵⁴ | 0 | 0 | 0 | 159 | | UUID - Value ⁴⁵⁵ | 0 | 0 | 0 | 159 | | Well - Annotation- | 0 | 0 | 0 | 159 | | Ref ⁴⁵⁶ | | | | | | Well - Color ⁴⁵⁷ | 0 | 0 | 0 | 159 | | Well - Column ⁴⁵⁸ | 11 | 0 | 0 | 148 | | Well - ExternalDe- | 0 | 0 | 0 | 159 | | scription ⁴⁵⁹ | | | | | | Well - ExternalIden- | 0 | 0 | 0 | 159 | |
tifier ⁴⁶⁰ | | | | | | Well - ID ⁴⁶¹ | 11 | 0 | 0 | 148 | | Well - ReagentRef ⁴⁶² | 0 | 0 | 0 | 159 | | Well - Row ⁴⁶³ | 11 | 0 | 0 | 148 | | Well - Type ⁴⁶⁴ | 0 | 0 | 0 | 159 | | WellSample - Anno- | 0 | 0 | 0 | 159 | | tationRef ⁴⁶⁵ | | | | | | WellSample - ID ⁴⁶⁶ | 11 | 0 | 0 | 148 | | WellSample - Im- | 10 | 0 | 0 | 149 | | ageRef ⁴⁶⁷ | | | | | | WellSample - In- | 11 | 0 | 0 | 148 | | dex ⁴⁶⁸ | | | | | | WellSample - Posi- | 5 | 0 | 0 | 154 | | tionX ⁴⁶⁹ | | | | | | WellSample - Posi- | 5 | 0 | 0 | 154 | | tionY ⁴⁷⁰ | | | | | | WellSample - Time- | 0 | 0 | 0 | 159 | | point ⁴⁷¹ | | | | | | XMLAnnotation - | 0 | 0 | 0 | 159 | | AnnotationRef ⁴⁷² | | | | | | XMLAnnotation - | 0 | 0 | 0 | 159 | | ID^{473} | | | | | | XMLAnnotation - | 0 | 0 | 0 | 159 | | Namespace ⁴⁷⁴ | | | | | | 1 | l | I | Cont | inued on next page | 452 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutOutTolerance ⁴⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_Transmittance ⁴⁵⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TiffData_TiffData_UUID_FileName ⁴⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#UniversallyUniqueIdentifier ⁴⁵⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ⁴⁵⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Color ⁴⁵⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column ⁴⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ExternalDescription ⁴⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ExternalIdentifier ⁴⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#ReagentRef_ID $^{^{463}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html \#Well_Roward Management (Control of the Control Contr$ ⁴⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Type $^{{}^{465}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html \# AnnotationRef_ID$ $[\]frac{466}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html} \\ \text{WellSample_ID} \\ \text{The properties of the o$ ⁴⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImageRef_ID ⁴⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index ⁴⁶⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionX ⁴⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionY $^{^{471}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html \#WellSample_Timepoint$ ⁴⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#AnnotationRef_ID ⁴⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_ID ⁴⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html#Annotation_Namespace Table 19.2 – continued from previous page | Field | Supported | Unsupported | Partial | Unknown/Missing | |--------------------------------------|-----------|-------------|---------|-----------------| | XMLAnnotation - Value ⁴⁷⁵ | 0 | 0 | 0 | 159 | # 19.2.1 SlidebookReader This page lists supported metadata fields for the Bio-Formats Olympus Slidebook format reader. These fields are from the OME data model⁴⁷⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 34 of them (7%). - Of those, Bio-Formats fully or partially converts 34 (100%). # **Supported fields** These fields are fully supported by the Bio-Formats Olympus Slidebook format reader: • Channel: ID⁴⁷⁷ • Channel: NDFilter⁴⁷⁸ • Channel: Name⁴⁷⁹ • Channel : SamplesPerPixel⁴⁸⁰ • Image: AcquisitionDate⁴⁸¹ • Image: Description⁴⁸² • Image : ID⁴⁸³ • Image : InstrumentRef⁴⁸⁴ • Image: Name⁴⁸⁵ • Instrument : ID⁴⁸⁶ • Objective : Correction⁴⁸⁷ • Objective : ID⁴⁸⁸ • Objective : Immersion⁴⁸⁹ • Objective : Model⁴⁹⁰ • Objective : NominalMagnification⁴⁹¹ • ObjectiveSettings : ID⁴⁹² $^{^{475}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SA_xsd.html \#XMLAnnotation_Value + 100 Generated/OME-2013-06/SA_xsd.html Generated/OME-2013-06/SA_xsd.html$ ⁴⁷⁶http://www.openmicroscopy.org/site/support/ome-model/ ⁴⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁴⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_NDFilter ⁴⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name 480http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁴⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁴⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ⁴⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁴⁸⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ⁴⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁴⁸⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ⁴⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction ⁴⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID ⁴⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion ⁴⁹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 491 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification ⁴⁹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID - Pixels: BigEndian⁴⁹³ - Pixels : DimensionOrder⁴⁹⁴ - Pixels : ID⁴⁹⁵ - Pixels: Interleaved⁴⁹⁶ - Pixels : PhysicalSizeX⁴⁹⁷ - Pixels : PhysicalSizeY⁴⁹⁸ - Pixels : PhysicalSizeZ⁴⁹⁹ - Pixels : SignificantBits⁵⁰⁰ - Pixels : SizeC⁵⁰¹ - Pixels : SizeT⁵⁰² - Pixels : SizeX⁵⁰³ - Pixels : SizeY⁵⁰⁴ - Pixels : SizeZ⁵⁰⁵ - Pixels: Type⁵⁰⁶ - Plane : ExposureTime⁵⁰⁷ - Plane: TheC⁵⁰⁸ - Plane: TheT⁵⁰⁹ - Plane : TheZ⁵¹⁰ ## **Total supported: 34** Total unknown or missing: 441 #### 19.2.2 AIMReader This page lists supported metadata fields for the Bio-Formats AIM format reader. These fields are from the OME data model⁵¹¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). ⁴⁹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁴⁹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁴⁹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁴⁹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁴⁹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ⁴⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ⁴⁹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ⁵⁰⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁵⁰¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁵⁰² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁵⁰³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁵⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁵⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁵⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁵⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ⁵⁰⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁵⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT $^{^{510}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_The Zenerated/OME-2013-06/ome_xsd.html \#Plane_xsd.html \#Plane$ ⁵¹¹ http://www.openmicroscopy.org/site/support/ome-model/ ## Supported fields ## These fields are fully supported by the Bio-Formats AIM format reader: • Channel: ID⁵¹² • Channel: SamplesPerPixel⁵¹³ • Image : AcquisitionDate⁵¹⁴ • Image : ID⁵¹⁵ • Image: Name⁵¹⁶ • Pixels: BigEndian⁵¹⁷ • Pixels: DimensionOrder⁵¹⁸ • Pixels:
ID⁵¹⁹ • Pixels: Interleaved⁵²⁰ • Pixels : PhysicalSizeX⁵²¹ • Pixels : PhysicalSizeY⁵²² • Pixels : PhysicalSizeZ⁵²³ • Pixels : SignificantBits⁵²⁴ • Pixels: SizeC525 • Pixels: SizeT⁵²⁶ • Pixels : SizeX⁵²⁷ • Pixels : SizeY⁵²⁸ • Pixels: SizeZ⁵²⁹ • Pixels : Type⁵³⁰ • Plane: TheC⁵³¹ • Plane: TheT⁵³² • Plane: TheZ⁵³³ #### **Total supported: 22** # Total unknown or missing: 453 $^{512} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ ⁵¹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel $^{^{514}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate$ ⁵¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁵¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁵¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁵¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁵¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁵²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁵²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ⁵²² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ⁵²³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ⁵²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁵²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁵²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁵²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁵²⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁵²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁵³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁵³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁵³² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁵³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ## 19.2.3 AliconaReader This page lists supported metadata fields for the Bio-Formats Alicona AL3D format reader. These fields are from the OME data model⁵³⁴. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 33 of them (6%). - Of those, Bio-Formats fully or partially converts 33 (100%). ## Supported fields ### These fields are fully supported by the Bio-Formats Alicona AL3D format reader: ``` • Channel : ID⁵³⁵ ``` • Channel: SamplesPerPixel⁵³⁶ • Detector : ID⁵³⁷ • Detector: Type⁵³⁸ • DetectorSettings : ID⁵³⁹ • DetectorSettings : Voltage⁵⁴⁰ • Image : AcquisitionDate⁵⁴¹ • Image: ID⁵⁴² • Image : InstrumentRef⁵⁴³ • Image : Name⁵⁴⁴ • Instrument : ID⁵⁴⁵ • Objective : CalibratedMagnification⁵⁴⁶ • Objective : Correction⁵⁴⁷ • Objective : ID⁵⁴⁸ • Objective : Immersion⁵⁴⁹ • Objective : WorkingDistance⁵⁵⁰ • ObjectiveSettings : ID⁵⁵¹ • Pixels: BigEndian⁵⁵² ⁵³⁴http://www.openmicroscopy.org/site/support/ome-model/ ⁵³⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁵³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁵³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ⁵³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ⁵³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID ⁵⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Voltage $^{^{541}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate$ ⁵⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁵⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ⁵⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁵⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ⁵⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification ⁵⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction ⁵⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID ⁵⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion ⁵⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance ⁵⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID ⁵⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian - Pixels : DimensionOrder⁵⁵³ - Pixels: ID⁵⁵⁴ - Pixels: Interleaved⁵⁵⁵ - Pixels : PhysicalSizeX⁵⁵⁶ - Pixels : PhysicalSizeY⁵⁵⁷ - Pixels : SignificantBits⁵⁵⁸ - Pixels : SizeC⁵⁵⁹ - Pixels: SizeT⁵⁶⁰ - Pixels : SizeX⁵⁶¹ - Pixels : SizeY⁵⁶² - Pixels : SizeZ⁵⁶³ - Pixels : Type⁵⁶⁴ - Plane : TheC⁵⁶⁵ - Plane : TheT⁵⁶⁶ - Plane: TheZ⁵⁶⁷ ## **Total supported: 33** Total unknown or missing: 442 # 19.2.4 GelReader This page lists supported metadata fields for the Bio-Formats Amersham Biosciences GEL format reader. These fields are from the OME data model⁵⁶⁸. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 21 of them (4%). - Of those, Bio-Formats fully or partially converts 21 (100%). #### **Supported fields** ## These fields are fully supported by the Bio-Formats Amersham Biosciences GEL format reader: - Channel: ID⁵⁶⁹ - Channel: SamplesPerPixel⁵⁷⁰ ⁵⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁵⁵⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁵⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ⁵⁵⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ⁵⁵⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁵⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁵⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁵⁶³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁵⁶⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type $^{^{565}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Compared to the co$ ⁵⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁵⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁵⁶⁸http://www.openmicroscopy.org/site/support/ome-model/ ⁵⁶⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁵⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel - Image : AcquisitionDate⁵⁷¹ - Image : ID⁵⁷² - Image : Name⁵⁷³ - Pixels: BigEndian⁵⁷⁴ - Pixels: DimensionOrder⁵⁷⁵ - Pixels : ID⁵⁷⁶ - Pixels : Interleaved⁵⁷⁷ - Pixels: PhysicalSizeX⁵⁷⁸ - Pixels : PhysicalSizeY⁵⁷⁹ - Pixels : SignificantBits⁵⁸⁰ - Pixels : SizeC⁵⁸¹ - Pixels : SizeT⁵⁸² - Pixels: SizeX⁵⁸³ - Pixels: SizeY⁵⁸⁴ - Pixels: SizeZ⁵⁸⁵ - Pixels : Type⁵⁸⁶ - Plane: TheC⁵⁸⁷ - Plane: TheT⁵⁸⁸ - Plane: TheZ⁵⁸⁹ **Total supported: 21** Total unknown or missing: 454 # 19.2.5 AmiraReader This page lists supported metadata fields for the Bio-Formats Amira format reader. These fields are from the OME data model⁵⁹⁰. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). ⁵⁷¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁵⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁵⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name
⁵⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁵⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁵⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁵⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁵⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ⁵⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 580 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁵⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁵⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁵⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁵⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁵⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁵⁸⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 587 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁵⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁵⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁵⁹⁰http://www.openmicroscopy.org/site/support/ome-model/ ## Supported fields ## These fields are fully supported by the Bio-Formats Amira format reader: • Channel: ID⁵⁹¹ • Channel: SamplesPerPixel⁵⁹² • Image : AcquisitionDate⁵⁹³ • Image : ID⁵⁹⁴ • Image: Name⁵⁹⁵ • Pixels: BigEndian⁵⁹⁶ • Pixels: DimensionOrder⁵⁹⁷ • Pixels: ID⁵⁹⁸ • Pixels: Interleaved⁵⁹⁹ • Pixels : PhysicalSizeX⁶⁰⁰ • Pixels : PhysicalSizeY⁶⁰¹ • Pixels : PhysicalSizeZ⁶⁰² • Pixels : SignificantBits⁶⁰³ • Pixels: SizeC⁶⁰⁴ • Pixels : SizeT⁶⁰⁵ • Pixels : SizeX⁶⁰⁶ • Pixels : SizeY⁶⁰⁷ • Pixels : SizeZ⁶⁰⁸ • Pixels : Type⁶⁰⁹ • Plane : TheC⁶¹⁰ • Plane : TheT⁶¹¹ • Plane : TheZ⁶¹² #### **Total supported: 22** # Total unknown or missing: 453 $^{591} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ ⁵⁹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel $^{593} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate and the control of the$ ⁵⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 595 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 596 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 597 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁵⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁵⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 600 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 601 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 602 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ 603 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 604 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 605 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 606 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 607 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 608 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 609 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 610 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 611http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT $^{612} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_The Zarantees and the properties of of$ # 19.2.6 AnalyzeReader This page lists supported metadata fields for the Bio-Formats Analyze 7.5 format reader. These fields are from the OME data model⁶¹³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 24 of them (5%). - Of those, Bio-Formats fully or partially converts 24 (100%). ## Supported fields ## These fields are fully supported by the Bio-Formats Analyze 7.5 format reader: ``` • Channel: ID⁶¹⁴ ``` • Channel : SamplesPerPixel⁶¹⁵ • Image : AcquisitionDate⁶¹⁶ • Image : Description⁶¹⁷ • Image : ID⁶¹⁸ • Image : Name⁶¹⁹ • Pixels: BigEndian⁶²⁰ • Pixels : DimensionOrder⁶²¹ • Pixels: ID⁶²² • Pixels: Interleaved⁶²³ • Pixels : PhysicalSizeX⁶²⁴ • Pixels : PhysicalSizeY⁶²⁵ • Pixels : PhysicalSizeZ⁶²⁶ • Pixels : SignificantBits⁶²⁷ • Pixels : SizeC⁶²⁸ • Pixels : SizeT⁶²⁹ • Pixels : SizeX⁶³⁰ • Pixels : SizeY⁶³¹ ⁶¹³ http://www.openmicroscopy.org/site/support/ome-model/ ⁶¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁶¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁶¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁶¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ⁶¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁶¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁶²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁶²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁶²² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁶²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁶²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ⁶²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY $^{^{626}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Physical Size Zero and the properties of proper$ $^{^{627}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Significant Bits and the properties of properti$ ⁶²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 629 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁶³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY • Pixels : SizeZ⁶³² • Pixels: TimeIncrement⁶³³ • Pixels : Type⁶³⁴ • Plane : TheC⁶³⁵ • Plane: TheT⁶³⁶ • Plane: TheZ⁶³⁷ Total supported: 24 Total unknown or missing: 451 ## 19.2.7 AFIReader This page lists supported metadata fields for the Bio-Formats Aperio AFI format reader. These fields are from the OME data model⁶³⁸. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 23 of them (4%). - Of those, Bio-Formats fully or partially converts 23 (100%). # **Supported fields** #### These fields are fully supported by the Bio-Formats Aperio AFI format reader: • Channel : EmissionWavelength⁶³⁹ • Channel: ExcitationWavelength⁶⁴⁰ • Channel: ID⁶⁴¹ • Channel: Name⁶⁴² • Channel: SamplesPerPixel⁶⁴³ • Image : AcquisitionDate⁶⁴⁴ • Image : ID⁶⁴⁵ • Image: Name⁶⁴⁶ • Pixels: BigEndian⁶⁴⁷ • Pixels : DimensionOrder⁶⁴⁸ • Pixels : ID⁶⁴⁹ ⁶³² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ $^{^{633}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_TimeIncrement$ ⁶³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁶³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁶³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁶³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Plane TheZ http://www.openmicroscopy.org/stite/support/ome-model/ ⁶³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength ⁶⁴⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength
⁶⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁶⁴²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ⁶⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁶⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁶⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁶⁴⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁶⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 648 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁶⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID • Pixels : Interleaved⁶⁵⁰ • Pixels : SignificantBits⁶⁵¹ • Pixels: SizeC⁶⁵² • Pixels: SizeT⁶⁵³ • Pixels : SizeX⁶⁵⁴ • Pixels : SizeY⁶⁵⁵ • Pixels: SizeZ⁶⁵⁶ • Pixels : Type⁶⁵⁷ • Plane : ExposureTime⁶⁵⁸ • Plane: TheC⁶⁵⁹ • Plane: TheT⁶⁶⁰ • Plane: TheZ⁶⁶¹ **Total supported: 23** Total unknown or missing: 452 ## 19.2.8 SVSReader This page lists supported metadata fields for the Bio-Formats Aperio SVS format reader. These fields are from the OME data model⁶⁶². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). # **Supported fields** #### These fields are fully supported by the Bio-Formats Aperio SVS format reader: • Channel : EmissionWavelength⁶⁶³ • Channel: ExcitationWavelength⁶⁶⁴ • Channel: ID⁶⁶⁵ • Channel: SamplesPerPixel⁶⁶⁶ • Image : AcquisitionDate⁶⁶⁷ ⁶⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁶⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁶⁵²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁶⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁶⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁶⁵⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 656 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁶⁵⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁶⁵⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ⁶⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁶⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT $^{{}^{661}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_The Zarantees and the properties of o$ ⁶⁶² http://www.openmicroscopy.org/site/support/ome-model/ ⁶⁶³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength ⁶⁶⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength ⁶⁶⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID $^{{\}it 6666} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_Samples Per Pixel Control of the the$ $^{^{667}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate and the control of the$ - Image: Description⁶⁶⁸ - Image : ID⁶⁶⁹ - Image: Name⁶⁷⁰ - Pixels: BigEndian⁶⁷¹ - Pixels : DimensionOrder⁶⁷² - Pixels : ID⁶⁷³ - Pixels: Interleaved⁶⁷⁴ - Pixels : SignificantBits⁶⁷⁵ - Pixels: SizeC⁶⁷⁶ - Pixels : SizeT⁶⁷⁷ - Pixels : SizeX⁶⁷⁸ - Pixels : SizeY⁶⁷⁹ - Pixels : SizeZ⁶⁸⁰ - Pixels : Type⁶⁸¹ - Plane: TheC⁶⁸² - Plane: TheT⁶⁸³ - Plane: TheZ⁶⁸⁴ **Total supported: 22** Total unknown or missing: 453 ## 19.2.9 CellWorxReader This page lists supported metadata fields for the Bio-Formats CellWorx format reader. These fields are from the OME data model⁶⁸⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 45 of them (9%). - Of those, Bio-Formats fully or partially converts 45 (100%). $^{^{668}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Image_Description + 100 for the control of of$ ⁶⁶⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁶⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁶⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁶⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁶⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁶⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁶⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁶⁷⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁶⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁶⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX $^{^{679}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeY$ $^{^{680}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeZize Anticological Control of Cont$ ⁶⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁶⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁶⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁶⁸⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁶⁸⁵ http://www.openmicroscopy.org/site/support/ome-model/ ## Supported fields ## These fields are fully supported by the Bio-Formats CellWorx format reader: ``` • Channel : EmissionWavelength⁶⁸⁶ ``` • Channel: ExcitationWavelength⁶⁸⁷ • Channel: ID⁶⁸⁸ • Channel: Name⁶⁸⁹ • Channel: SamplesPerPixel⁶⁹⁰ • Detector : ID⁶⁹¹ • DetectorSettings : Gain⁶⁹² • DetectorSettings : ID⁶⁹³ • Image : AcquisitionDate⁶⁹⁴ • Image: ID⁶⁹⁵ • Image: InstrumentRef⁶⁹⁶ • Image : Name⁶⁹⁷ • Instrument : ID⁶⁹⁸ • Microscope : SerialNumber⁶⁹⁹ • Pixels : BigEndian⁷⁰⁰ • Pixels : DimensionOrder⁷⁰¹ • Pixels : ID⁷⁰² • Pixels: Interleaved⁷⁰³ • Pixels : PhysicalSizeX⁷⁰⁴ • Pixels : PhysicalSizeY⁷⁰⁵ • Pixels : SignificantBits⁷⁰⁶ • Pixels : SizeC⁷⁰⁷ • Pixels : SizeT⁷⁰⁸ • Pixels : SizeX⁷⁰⁹ $^{^{686}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_EmissionWavelength. A support of the contraction con$ 687 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength ⁶⁸⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID 689 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ⁶⁹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 691 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID 692 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain 693 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID 694 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 695 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁶⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 697 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 698 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 699 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber 700 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 701 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 702 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 703 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 704http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 705 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY
706http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁷⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 708http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 708http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁷⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX • Pixels : SizeY⁷¹⁰ • Pixels: SizeZ⁷¹¹ • Pixels : Type⁷¹² • Plane: TheC⁷¹³ • Plane: TheT⁷¹⁴ • Plane: TheZ⁷¹⁵ • Plate : ID⁷¹⁶ • Plate: Name⁷¹⁷ • PlateAcquisition: EndTime⁷¹⁸ • PlateAcquisition : ID⁷¹⁹ • PlateAcquisition : MaximumFieldCount⁷²⁰ • PlateAcquisition : StartTime⁷²¹ • PlateAcquisition : WellSampleRef⁷²² • Well: Column⁷²³ • Well: ID⁷²⁴ • Well: Row⁷²⁵ • WellSample : ID⁷²⁶ • WellSample : ImageRef⁷²⁷ • WellSample : Index⁷²⁸ • WellSample : PositionX⁷²⁹ • WellSample : PositionY⁷³⁰ **Total supported: 45** Total unknown or missing: 430 ## 19.2.10 AVIReader This page lists supported metadata fields for the Bio-Formats Audio Video Interleave format reader. These fields are from the OME data model⁷³¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. $^{^{710}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeY$ ⁷¹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁷¹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁷¹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁷¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁷¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁷¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID 717http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Name ⁷¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_EndTime ⁷¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_ID ⁷²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount ⁷²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_StartTime ⁷²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSampleRef_ID ⁷²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column ⁷²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID ⁷²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row ⁷²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID ⁷²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImageRef_ID ⁷²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index ⁷²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionX ⁷³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionY ⁷³¹ http://www.openmicroscopy.org/site/support/ome-model/ ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ## Supported fields ## These fields are fully supported by the Bio-Formats Audio Video Interleave format reader: - Channel : ID⁷³² - Channel: SamplesPerPixel⁷³³ - Image : AcquisitionDate⁷³⁴ - Image : ID⁷³⁵ - Image : Name⁷³⁶ - Pixels: BigEndian⁷³⁷ - Pixels : DimensionOrder⁷³⁸ - Pixels : ID⁷³⁹ - Pixels : Interleaved⁷⁴⁰ - Pixels : SignificantBits⁷⁴¹ - Pixels : SizeC⁷⁴² - Pixels : SizeT⁷⁴³ - Pixels : SizeX⁷⁴⁴ - Pixels : SizeY⁷⁴⁵ - Pixels : SizeZ⁷⁴⁶ - Pixels : Type⁷⁴⁷ - Plane: TheC⁷⁴⁸ - Plane : TheT⁷⁴⁹ - Plane : The Z^{750} # **Total supported: 19** ## Total unknown or missing: 456 | 732http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID | |---| | 733http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel | | 734http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate | | 735 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID | | 736 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name | | 737http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian | | 738 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder | | 739 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID | | 740 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved | | 741 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits | | 742http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC | | 743 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT | | 744http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX | | 745 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY | | 746http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ | | 747 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type | | 748 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC | | 749 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT | | http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT | 750 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ## 19.2.11 ARFReader This page lists supported metadata fields for the Bio-Formats ARF format reader. These fields are from the OME data model⁷⁵¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ## Supported fields ## These fields are fully supported by the Bio-Formats ARF format reader: ``` • Channel: ID⁷⁵² ``` • Channel : SamplesPerPixel⁷⁵³ • Image : AcquisitionDate⁷⁵⁴ • Image : ID⁷⁵⁵ • Image: Name⁷⁵⁶ • Pixels: BigEndian⁷⁵⁷ • Pixels : DimensionOrder⁷⁵⁸ • Pixels : ID⁷⁵⁹ • Pixels: Interleaved⁷⁶⁰ • Pixels : SignificantBits⁷⁶¹ • Pixels : SizeC⁷⁶² • Pixels : SizeT⁷⁶³ • Pixels : SizeX⁷⁶⁴ • Pixels : SizeY⁷⁶⁵ • Pixels : SizeZ⁷⁶⁶ Pixels: Type⁷⁶⁷ Plane: TheC⁷⁶⁸ 1141101111100 • Plane : TheT⁷⁶⁹ ⁷⁵¹ http://www.openmicroscopy.org/site/support/ome-model/ ⁷⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁷⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁷⁵⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁷⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 756 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁷⁵⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁷⁵⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁷⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁷⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁷⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁷⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁷⁶³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁷⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁷⁶⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁷⁶⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁷⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁷⁶⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁷⁶⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT • Plane: TheZ⁷⁷⁰ **Total supported: 19** Total unknown or missing: 456 ## 19.2.12 BDReader This page lists supported metadata fields for the Bio-Formats BD Pathway format reader.
These fields are from the OME data model⁷⁷¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 57 of them (12%). - Of those, Bio-Formats fully or partially converts 57 (100%). # Supported fields # These fields are fully supported by the Bio-Formats BD Pathway format reader: ``` • Channel: EmissionWavelength⁷⁷² ``` • Channel: ExcitationWavelength⁷⁷³ • Channel: ID⁷⁷⁴ • Channel: Name⁷⁷⁵ • Channel: SamplesPerPixel⁷⁷⁶ • Detector: ID⁷⁷⁷ • DetectorSettings : Binning⁷⁷⁸ • DetectorSettings : Gain⁷⁷⁹ • DetectorSettings : ID⁷⁸⁰ • DetectorSettings : Offset⁷⁸¹ • Image : AcquisitionDate⁷⁸² • Image : ID⁷⁸³ • Image : InstrumentRef⁷⁸⁴ • Image: Name⁷⁸⁵ • Image: ROIRef⁷⁸⁶ • Instrument : ID⁷⁸⁷ $^{^{770}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Zenerated/OME-2013-06/ome_xsd.html Plane_The Zenerated/OME-2013-06/ome_xsd.html Plane_The Zenerated/OME-2013-06/ome_xsd.html Plane_The Zenerated/OME-20/$ ⁷⁷¹ http://www.openmicroscopy.org/site/support/ome-model/ ⁷⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength ⁷⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength ⁷⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁷⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ⁷⁷⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ⁷⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning $⁷⁷⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Detector Settings_Gain Annual Control of the Control of Con$ ⁷⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID ⁷⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Offset ⁷⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁷⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁷⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ⁷⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁷⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID ⁷⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID • Objective : ID⁷⁸⁸ • Objective : LensNA⁷⁸⁹ • Objective : Manufacturer⁷⁹⁰ • Objective : Nominal Magnification 791 • ObjectiveSettings : ID⁷⁹² • Pixels: BigEndian⁷⁹³ • Pixels : DimensionOrder⁷⁹⁴ • Pixels : ID⁷⁹⁵ • Pixels: Interleaved⁷⁹⁶ • Pixels : SignificantBits⁷⁹⁷ • Pixels : SizeC⁷⁹⁸ • Pixels : SizeT⁷⁹⁹ • Pixels : SizeX⁸⁰⁰ • Pixels : SizeY801 • Pixels : SizeZ⁸⁰² • Pixels : Type⁸⁰³ • Plane: DeltaT804 • Plane : ExposureTime⁸⁰⁵ • Plane : TheC⁸⁰⁶ • Plane: TheT⁸⁰⁷ • Plane : The Z^{808} • Plate: ColumnNamingConvention⁸⁰⁹ • Plate: Description⁸¹⁰ • Plate : ID⁸¹¹ • Plate: Name⁸¹² ``` • Plate : RowNamingConvention⁸¹³ 788 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective ID 789 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA 790 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer 791 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification 792 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID ^{793} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_BigEndian 794 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 795 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 796 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 797 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 798 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 799 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 800 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 801 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 802 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 803 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 804 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT 805 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime 806 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 807 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 808 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 809 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ColumnNamingConvention 810 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Description 811 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID 812 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Name 813 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_RowNamingConvention ``` • PlateAcquisition : ID⁸¹⁴ • PlateAcquisition: MaximumFieldCount⁸¹⁵ • PlateAcquisition : WellSampleRef⁸¹⁶ • ROI : ID⁸¹⁷ • Rectangle: Height⁸¹⁸ • Rectangle : ID⁸¹⁹ • Rectangle : Width⁸²⁰ • Rectangle : X821 • Rectangle: Y⁸²² • Well: Column⁸²³ • Well: ID⁸²⁴ • Well: Row⁸²⁵ • WellSample : ID⁸²⁶ • WellSample : ImageRef⁸²⁷ • WellSample : Index⁸²⁸ **Total supported: 57** Total unknown or missing: 418 # 19.2.13 SDTReader This page lists supported metadata fields for the Bio-Formats SPCImage Data format reader. These fields are from the OME data model⁸²⁹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). #### **Supported fields** ## These fields are fully supported by the Bio-Formats SPCImage Data format reader: • Channel: ID⁸³⁰ • Channel : SamplesPerPixel⁸³¹ ⁸¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_ID ⁸¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount ⁸¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSampleRef_ID ⁸¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID ⁸¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Height ⁸¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ⁸²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Width ⁸²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_X $^{{}^{822}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html \# Rectangle_Y$ ⁸²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column ⁸²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID ⁸²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row ⁸²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID ⁸²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImageRef_ID ⁸²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index ⁸²⁹ http://www.openmicroscopy.org/site/support/ome-model/ ⁸³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁸³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel - Image : AcquisitionDate⁸³² - Image : ID⁸³³ - Image: Name⁸³⁴ - Pixels: BigEndian⁸³⁵ - Pixels: DimensionOrder⁸³⁶ - Pixels : ID⁸³⁷ - Pixels: Interleaved⁸³⁸ - Pixels: SignificantBits⁸³⁹ - Pixels : SizeC⁸⁴⁰ - Pixels : SizeT⁸⁴¹ - Pixels : SizeX⁸⁴² - Pixels : SizeY⁸⁴³ - Pixels : SizeZ⁸⁴⁴ - Pixels : Type⁸⁴⁵ - Plane: TheC⁸⁴⁶ - Plane: TheT⁸⁴⁷ - Plane: TheZ⁸⁴⁸ **Total supported: 19** Total unknown or missing: 456 ## 19.2.14 BioRadGelReader This page lists supported metadata fields for the Bio-Formats Bio-Rad GEL format reader. These fields are
from the OME data model⁸⁴⁹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 21 of them (4%). - Of those, Bio-Formats fully or partially converts 21 (100%). ⁸³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁸³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁸³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁸³⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁸³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁸³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁸³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁸³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁸⁴⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC $^{{}^{841}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeTatalander (Compared to the Compared Comp$ ⁸⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁸⁴³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁸⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁸⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁸⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 847http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁸⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁸⁴⁹ http://www.openmicroscopy.org/site/support/ome-model/ ## Supported fields ## These fields are fully supported by the Bio-Formats Bio-Rad GEL format reader: • Channel: ID⁸⁵⁰ • Channel: SamplesPerPixel⁸⁵¹ • Image : AcquisitionDate⁸⁵² • Image: ID⁸⁵³ • Image: Name⁸⁵⁴ • Pixels: BigEndian⁸⁵⁵ • Pixels: DimensionOrder⁸⁵⁶ • Pixels: ID⁸⁵⁷ • Pixels: Interleaved⁸⁵⁸ • Pixels : PhysicalSizeX⁸⁵⁹ • Pixels : PhysicalSizeY⁸⁶⁰ • Pixels : SignificantBits⁸⁶¹ • Pixels: SizeC862 • Pixels: SizeT863 • Pixels : SizeX⁸⁶⁴ • Pixels : SizeY⁸⁶⁵ • Pixels : SizeZ⁸⁶⁶ • Pixels : Type⁸⁶⁷ • Plane : TheC⁸⁶⁸ • Plane: TheT⁸⁶⁹ • Plane: TheZ⁸⁷⁰ ## Total supported: 21 #### Total unknown or missing: 454 850 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID 851 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 852 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 853 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 854 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name $855 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_BigEndian$ 856 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 857 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 858 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 859http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 860 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 861 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 862http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 863 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 864http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 865 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 866http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 867 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ${}^{868} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_The Compared to the c$ 869 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 870 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ## 19.2.15 BioRadReader This page lists supported metadata fields for the Bio-Formats Bio-Rad PIC format reader. These fields are from the OME data model⁸⁷¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 40 of them (8%). - Of those, Bio-Formats fully or partially converts 40 (100%). ## Supported fields ### These fields are fully supported by the Bio-Formats Bio-Rad PIC format reader: ``` • Channel: ID⁸⁷² ``` • Channel: SamplesPerPixel⁸⁷³ • Detector: Gain⁸⁷⁴ • Detector: ID⁸⁷⁵ • Detector : Offset⁸⁷⁶ • Detector : Type⁸⁷⁷ • DetectorSettings : Gain⁸⁷⁸ • DetectorSettings : ID⁸⁷⁹ • DetectorSettings : Offset⁸⁸⁰ • Experiment : ID⁸⁸¹ • Experiment : Type⁸⁸² • Image : AcquisitionDate⁸⁸³ • Image: ID⁸⁸⁴ • Image : InstrumentRef⁸⁸⁵ • Image: Name⁸⁸⁶ • Instrument : ID⁸⁸⁷ • Objective : Correction⁸⁸⁸ • Objective : ID⁸⁸⁹ • Objective : Immersion⁸⁹⁰ ⁸⁷¹ http://www.openmicroscopy.org/site/support/ome-model/ ⁸⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁸⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁸⁷⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Gain ⁸⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ⁸⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Offset ⁸⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type $⁸⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Detector Settings_Gain and the state of of$ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID ⁸⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Offset ⁸⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_ID ⁸⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_Type ⁸⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 884 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁸⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ⁸⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁸⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ⁸⁸⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction ⁸⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID ⁸⁹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion • Objective: LensNA⁸⁹¹ • Objective: Model⁸⁹² • Objective : NominalMagnification⁸⁹³ • ObjectiveSettings : ID⁸⁹⁴ • Pixels: BigEndian⁸⁹⁵ • Pixels: DimensionOrder⁸⁹⁶ • Pixels : ID⁸⁹⁷ • Pixels: Interleaved⁸⁹⁸ • Pixels : PhysicalSizeX⁸⁹⁹ • Pixels : PhysicalSizeY⁹⁰⁰ • Pixels : PhysicalSizeZ⁹⁰¹ • Pixels : SignificantBits⁹⁰² • Pixels : SizeC⁹⁰³ • Pixels : SizeT⁹⁰⁴ • Pixels : SizeX⁹⁰⁵ • Pixels : SizeY⁹⁰⁶ • Pixels : SizeZ⁹⁰⁷ • Pixels : Type⁹⁰⁸ • Plane: TheC⁹⁰⁹ • Plane: TheT⁹¹⁰ • Plane: TheZ⁹¹¹ **Total supported: 40** Total unknown or missing: 435 #### 19.2.16 BioRadSCNReader This page lists supported metadata fields for the Bio-Formats Bio-Rad SCN format reader. These fields are from the OME data model⁹¹². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ⁸⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA ⁸⁹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ⁸⁹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification ⁸⁹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID ⁸⁹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 896
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁸⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁸⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ⁹⁰⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ⁹⁰² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁹⁰³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁹⁰⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 905 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁹⁰⁶ http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁹⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁹⁰⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁹⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁹¹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁹¹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁹¹² http://www.openmicroscopy.org/site/support/ome-model/ #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 29 of them (6%). - Of those, Bio-Formats fully or partially converts 29 (100%). ## Supported fields # These fields are fully supported by the Bio-Formats Bio-Rad SCN format reader: • Channel : ID⁹¹³ • Channel: SamplesPerPixel⁹¹⁴ • Detector: ID⁹¹⁵ • DetectorSettings : Binning⁹¹⁶ • DetectorSettings : Gain⁹¹⁷ • DetectorSettings : ID⁹¹⁸ • Image : AcquisitionDate⁹¹⁹ • Image : ID⁹²⁰ • Image: Name⁹²¹ • Instrument : ID⁹²² • Microscope : Model⁹²³ • Microscope : SerialNumber⁹²⁴ • Pixels: BigEndian⁹²⁵ • Pixels : DimensionOrder⁹²⁶ • Pixels: ID⁹²⁷ • Pixels: Interleaved⁹²⁸ • Pixels : PhysicalSizeX⁹²⁹ • Pixels : PhysicalSizeY⁹³⁰ • Pixels : SignificantBits⁹³¹ • Pixels : SizeC⁹³² • Pixels : SizeT⁹³³ • Pixels : SizeX⁹³⁴ ⁹¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁹¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁹¹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Detector ID ⁹¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning ⁹¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain ⁹¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID ⁹¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁹²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 921 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁹²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ⁹²³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ⁹²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber ⁹²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁹²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁹²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁹²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁹²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX $^{^{930}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_Physical SizeY$ ⁹³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 932 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁹³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁹³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX • Pixels : SizeY⁹³⁵ • Pixels: SizeZ⁹³⁶ • Pixels: Type⁹³⁷ • Plane : ExposureTime⁹³⁸ Plane : TheC⁹³⁹ Plane : TheT⁹⁴⁰ • Plane : TheZ⁹⁴¹ **Total supported: 29** Total unknown or missing: 446 # 19.2.17 ImarisHDFReader This page lists supported metadata fields for the Bio-Formats Bitplane Imaris 5.5 (HDF) format reader. These fields are from the OME data model⁹⁴². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 23 of them (4%). - Of those, Bio-Formats fully or partially converts 23 (100%). # **Supported fields** These fields are fully supported by the Bio-Formats Bitplane Imaris 5.5 (HDF) format reader: • Channel: Color 943 • Channel: ID⁹⁴⁴ • Channel : SamplesPerPixel⁹⁴⁵ • Image : AcquisitionDate 946 • Image: ID⁹⁴⁷ • Image: Name⁹⁴⁸ • Pixels: BigEndian⁹⁴⁹ • Pixels : DimensionOrder⁹⁵⁰ • Pixels : ID⁹⁵¹ • Pixels: Interleaved⁹⁵² $^{935 \\} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \\ \#Pixels_SizeY \\ OME-2013-06/ome_xsd.html \#Pixels_SizeY$ ⁹³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁹³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type $⁹³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_Exposure Time 2013-06/ome_xsd.html T$ ⁹³⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC $^{{\}it 940} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_The Total and the properties of th$ $^{{\}it 941} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_The Zaranta and State State$ ⁹⁴² http://www.openmicroscopy.org/site/support/ome-model/ ⁹⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Color ⁹⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁹⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁹⁴⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁹⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁹⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁹⁴⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels BigEndian ⁹⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁹⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁹⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 248 - Pixels : PhysicalSizeX⁹⁵³ - Pixels : PhysicalSizeY⁹⁵⁴ - Pixels : PhysicalSizeZ⁹⁵⁵ - Pixels : SignificantBits⁹⁵⁶ - Pixels : SizeC⁹⁵⁷ - Pixels : SizeT⁹⁵⁸ - Pixels : SizeX⁹⁵⁹ - Pixels : SizeY⁹⁶⁰ - Pixels : SizeZ⁹⁶¹ - Pixels: Type⁹⁶² - Plane : TheC⁹⁶³ - Tiune : Thee - Plane: TheT⁹⁶⁴ Plane: TheZ⁹⁶⁵ Total supported: 23 Total unknown or missing: 452 #### 19.2.18 BrukerReader This page lists supported metadata fields for the Bio-Formats Bruker format reader. These fields are from the OME data model⁹⁶⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 23 of them (4%). - Of those, Bio-Formats fully or partially converts 23 (100%). #### Supported fields # These fields are fully supported by the Bio-Formats Bruker format reader: - Channel: ID⁹⁶⁷ - Channel : SamplesPerPixel⁹⁶⁸ - Experimenter : ID⁹⁶⁹ - Experimenter : Institution⁹⁷⁰ ⁹⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ⁹⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ⁹⁵⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ $^{^{956}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits$ ⁹⁵⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁹⁵⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁹⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁹⁶⁰
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁹⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁹⁶² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁹⁶³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁹⁶⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁹⁶⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁹⁶⁶http://www.openmicroscopy.org/site/support/ome-model/ ⁹⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Channel ID ⁹⁶⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁹⁶⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID 970http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_Institution ^{19.2.} Metadata fields - Experimenter : LastName⁹⁷¹ - Image : AcquisitionDate⁹⁷² - Image : ExperimenterRef⁹⁷³ - Image: ID⁹⁷⁴ - Image: Name⁹⁷⁵ - Pixels: BigEndian⁹⁷⁶ - Pixels : DimensionOrder⁹⁷⁷ - Pixels : ID⁹⁷⁸ - Pixels : Interleaved⁹⁷⁹ - Pixels : SignificantBits⁹⁸⁰ - Pixels : SizeC⁹⁸¹ - Pixels: SizeT⁹⁸² - Pixels : SizeX⁹⁸³ - Pixels : SizeY⁹⁸⁴ - Pixels : SizeZ⁹⁸⁵ - Pixels: Type⁹⁸⁶ - Plane: TheC⁹⁸⁷ - Plane: TheT⁹⁸⁸ - Plane: TheZ⁹⁸⁹ **Total supported: 23** Total unknown or missing: 452 # 19.2.19 BurleighReader This page lists supported metadata fields for the Bio-Formats Burleigh format reader. These fields are from the OME data model⁹⁹⁰. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). ⁹⁷¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName ⁹⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁹⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID ⁹⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁹⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁹⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁹⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁹⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁹⁷⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁹⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁹⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁹⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT $⁹⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SizeX$ $^{{}^{984}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeY and the contraction of contra$ ⁹⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ $⁹⁸⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_Typenger and the state of stat$ ⁹⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁹⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁹⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁹⁹⁰ http://www.openmicroscopy.org/site/support/ome-model/ ## Supported fields ## These fields are fully supported by the Bio-Formats Burleigh format reader: • Channel: ID⁹⁹¹ • Channel: SamplesPerPixel⁹⁹² • Image : AcquisitionDate⁹⁹³ • Image : ID⁹⁹⁴ • Image: Name⁹⁹⁵ • Pixels : BigEndian⁹⁹⁶ • Pixels: DimensionOrder⁹⁹⁷ • Pixels : ID⁹⁹⁸ • Pixels: Interleaved⁹⁹⁹ • Pixels : PhysicalSizeX¹⁰⁰⁰ • Pixels : PhysicalSizeY¹⁰⁰¹ • Pixels : PhysicalSizeZ¹⁰⁰² • Pixels : SignificantBits 1003 • Pixels : SizeC¹⁰⁰⁴ • Pixels: SizeT¹⁰⁰⁵ • Pixels : SizeX¹⁰⁰⁶ • Pixels : SizeY¹⁰⁰⁷ • Pixels: SizeZ¹⁰⁰⁸ • Pixels : Type¹⁰⁰⁹ • Plane : TheC¹⁰¹⁰ • Plane : TheT¹⁰¹¹ • Plane : TheZ¹⁰¹² #### **Total supported: 22** # Total unknown or missing: 453 $^{991} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ 992 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 993 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 994http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 995 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 996 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 997 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 998 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 999 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved $^{1000} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Physical Size X. A constant of the contraction contr$ 1001 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 1002 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ 1003 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 1004 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 1005 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1006 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 1007 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 1008 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 1009 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1010 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 1011 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 1012 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Plane TheZ ## 19.2.20 DNGReader This page lists supported metadata fields for the Bio-Formats DNG format reader. These fields are from the OME data model¹⁰¹³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ## Supported fields ## These fields are fully supported by the Bio-Formats DNG format reader: ``` • Channel: ID¹⁰¹⁴ ``` • Channel: SamplesPerPixel¹⁰¹⁵ • Image : AcquisitionDate¹⁰¹⁶ • Image : ID¹⁰¹⁷ • Image: Name¹⁰¹⁸ • Pixels: BigEndian¹⁰¹⁹ • Pixels : DimensionOrder 1020 • Pixels : ID¹⁰²¹ • Pixels : Interleaved 1022 • Pixels : SignificantBits 1023 • Pixels : SizeC¹⁰²⁴ • Pixels: SizeT¹⁰²⁵ • Pixels : SizeX¹⁰²⁶ • Pixels: SizeY1027 • Pixels : SizeZ¹⁰²⁸ • Pixels: Type¹⁰²⁹ • Plane: TheC¹⁰³⁰ • Plane: TheT¹⁰³¹ ¹⁰¹³ http://www.openmicroscopy.org/site/support/ome-model/ ¹⁰¹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹⁰¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ¹⁰¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 1017 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁰¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁰¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ¹⁰²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹⁰²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID $^{1022} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Interleaved$ ¹⁰²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ¹⁰²⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹⁰²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeT 1026 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹⁰²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY
¹⁰²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁰²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹⁰³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹⁰³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT • Plane: TheZ¹⁰³² **Total supported: 19** Total unknown or missing: 456 ### 19.2.21 CellomicsReader This page lists supported metadata fields for the Bio-Formats Cellomics C01 format reader. These fields are from the OME data model¹⁰³³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 31 of them (6%). - Of those, Bio-Formats fully or partially converts 31 (100%). # Supported fields # These fields are fully supported by the Bio-Formats Cellomics C01 format reader: • Channel : ID¹⁰³⁴ • Channel: SamplesPerPixel¹⁰³⁵ • Image : AcquisitionDate¹⁰³⁶ • Image : ID¹⁰³⁷ • Image: Name¹⁰³⁸ • Pixels: BigEndian 1039 • Pixels : DimensionOrder¹⁰⁴⁰ • Pixels : ID¹⁰⁴¹ • Pixels : Interleaved¹⁰⁴² • Pixels : PhysicalSizeX¹⁰⁴³ • Pixels : PhysicalSizeY¹⁰⁴⁴ • Pixels : SignificantBits¹⁰⁴⁵ • Pixels: SizeC¹⁰⁴⁶ • Pixels : SizeT¹⁰⁴⁷ • Pixels : SizeX¹⁰⁴⁸ • Pixels : SizeY¹⁰⁴⁹ ``` ^{1032} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Zenerated/OME-2013-06/ome_xsd.html Plane_xsd.html Plane_ 1033 http://www.openmicroscopy.org/site/support/ome-model/ 1034 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID 1035 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 1036 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 1037 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 1038 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1039 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 1040 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 1041 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1042 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 1043 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 1044 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 1045 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 1046 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeC 1047 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1048 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 1049 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ``` • Pixels : SizeZ¹⁰⁵⁰ • Pixels: Type¹⁰⁵¹ • Plane : TheC¹⁰⁵² • Plane: TheT¹⁰⁵³ • Plane : TheZ¹⁰⁵⁴ • Plate : ColumnNamingConvention 1055 • Plate : ID¹⁰⁵⁶ • Plate: Name¹⁰⁵⁷ • Plate: RowNamingConvention¹⁰⁵⁸ • Well: Column¹⁰⁵⁹ • Well: ID¹⁰⁶⁰ • Well: Row¹⁰⁶¹ • WellSample : ID¹⁰⁶² • WellSample : ImageRef¹⁰⁶³ • WellSample : Index 1064 **Total supported: 31** Total unknown or missing: 444 # 19.2.22 CellSensReader This page lists supported metadata fields for the Bio-Formats CellSens VSI format reader. These fields are from the OME data model 1065. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). #### Supported fields ## These fields are fully supported by the Bio-Formats CellSens VSI format reader: • Channel: ID¹⁰⁶⁶ • Channel: SamplesPerPixel¹⁰⁶⁷ $^{1050} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SizeZ$ 1051 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1052 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC $^{1053} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Table Table$ 1054 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ $^{1055} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html \#Plate_ColumnNamingConvention$ 1056 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID 1057 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Name 1058 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_RowNamingConvention 1059 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column 1060 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID 1061 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row 1062 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID 1063 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImageRef_ID 1064 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index ¹⁰⁶⁵ http://www.openmicroscopy.org/site/support/ome-model/ ¹⁰⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹⁰⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel - Image : AcquisitionDate¹⁰⁶⁸ - Image : ID¹⁰⁶⁹ - Image: Name¹⁰⁷⁰ - Pixels: BigEndian¹⁰⁷¹ - Pixels : DimensionOrder¹⁰⁷² - Pixels : ID¹⁰⁷³ - Pixels : Interleaved 1074 - Pixels : SignificantBits 1075 - Pixels : SizeC¹⁰⁷⁶ - Pixels : SizeT¹⁰⁷⁷ - Pixels : SizeX¹⁰⁷⁸ - Pixels : SizeY¹⁰⁷⁹ - Pixels : SizeZ¹⁰⁸⁰ - Pixels: Type¹⁰⁸¹ - Plane: TheC¹⁰⁸² - Plane: TheT¹⁰⁸³ - Plane: TheZ¹⁰⁸⁴ **Total supported: 19** Total unknown or missing: 456 # 19.2.23 CellVoyagerReader This page lists supported metadata fields for the Bio-Formats CellVoyager format reader. These fields are from the OME data model 1085. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 34 of them (7%). - Of those, Bio-Formats fully or partially converts 34 (100%). ``` 1068 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ``` ¹⁰⁶⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁰⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁰⁷¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ¹⁰⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹⁰⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1074 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁰⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 1076 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹⁰⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ¹⁰⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹⁰⁷⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹⁰⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁰⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels Type ¹⁰⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹⁰⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹⁰⁸⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹⁰⁸⁵ http://www.openmicroscopy.org/site/support/ome-model/ # Supported fields ## These fields are fully supported by the Bio-Formats CellVoyager format reader: ``` • Channel : ID¹⁰⁸⁶ ``` • Channel: Name¹⁰⁸⁷ • Channel: PinholeSize¹⁰⁸⁸ • Channel: SamplesPerPixel¹⁰⁸⁹ • Image : AcquisitionDate¹⁰⁹⁰ • Image : ID¹⁰⁹¹ • Image: Name¹⁰⁹² • Pixels: BigEndian¹⁰⁹³ • Pixels : DimensionOrder 1094 • Pixels : ID¹⁰⁹⁵ • Pixels : Interleaved 1096 • Pixels : SignificantBits 1097 • Pixels : SizeC¹⁰⁹⁸ • Pixels : SizeT¹⁰⁹⁹ • Pixels: SizeX¹¹⁰⁰ • Pixels : SizeY¹¹⁰¹ • Pixels : SizeZ¹¹⁰² • Pixels: Type¹¹⁰³ • Plane : TheC¹¹⁰⁴ • Plane : TheT¹¹⁰⁵ • Plane: TheZ¹¹⁰⁶ • Plate: Columns¹¹⁰⁷ • Plate : Rows¹¹⁰⁸ • PlateAcquisition:
EndTime¹¹⁰⁹ ``` \overline{^{1086} \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Channel_ID} 1087 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name 1088 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_PinholeSize 1089 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 1090 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 1091 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 1092 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1093 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 1094 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 1095 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1096 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 1097 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 1098 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 1099 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1100 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 1101 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 1102 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 1103 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ^{1104} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Compared to the c 1105 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 1106 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 1107 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Columns 1108 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Rows 1109 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW xsd.html#PlateAcquisition EndTime ``` \bullet PlateAcquisition : ID^{1110} • PlateAcquisition: MaximumFieldCount¹¹¹¹ • PlateAcquisition : StartTime¹¹¹² • Well: Column¹¹¹³ • Well: ID¹¹¹⁴ • Well: Row¹¹¹⁵ • WellSample : ID¹¹¹⁶ • WellSample : Index¹¹¹⁷ • WellSample : PositionX¹¹¹⁸ • WellSample : PositionY¹¹¹⁹ **Total supported: 34** Total unknown or missing: 441 ## 19.2.24 DeltavisionReader This page lists supported metadata fields for the Bio-Formats Deltavision format reader. These fields are from the OME data model¹¹²⁰. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 52 of them (10%). - Of those, Bio-Formats fully or partially converts 52 (100%). ## **Supported fields** ## These fields are fully supported by the Bio-Formats Deltavision format reader: • Channel : EmissionWavelength¹¹²¹ • Channel: ExcitationWavelength¹¹²² • Channel : ID^{1123} • Channel: NDFilter¹¹²⁴ • Channel: Name¹¹²⁵ • Channel: SamplesPerPixel¹¹²⁶ • Detector : ID¹¹²⁷ $^{^{1110}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html \# PlateAcquisition_ID$ ¹¹¹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount ¹¹¹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_StartTime $^{{}^{1113}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html \#Well_Column_2013-06/SPW_xsd.html Well_Column_2013-06/SPW_xsd.html Well_Column_2013-06/SPW_xsd.html Well_Column$ ¹¹¹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID ¹¹¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row ¹¹¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID 1117 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionX http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionY ¹¹²⁰ http://www.openmicroscopy.org/site/support/ome-model/ ¹¹²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength ¹¹²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength ¹¹²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹¹²⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_NDFilter ¹¹²⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name $^{{}^{1126}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_Samples Per Pixel And the properties of pro$ ¹¹²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID • Detector: Model¹¹²⁸ • Detector: Type¹¹²⁹ • DetectorSettings : Binning¹¹³⁰ • DetectorSettings : Gain¹¹³¹ • DetectorSettings : ID¹¹³² $\bullet \ Detector Settings: ReadOut Rate ^{1133} \\$ • Image : AcquisitionDate¹¹³⁴ • Image: Description 1135 • Image: ID¹¹³⁶ • Image : InstrumentRef¹¹³⁷ • Image : Name¹¹³⁸ • ImagingEnvironment : Temperature 1139 • Instrument : ID¹¹⁴⁰ • Objective : CalibratedMagnification¹¹⁴¹ • Objective : Correction¹¹⁴² • Objective : ID¹¹⁴³ • Objective : Immersion¹¹⁴⁴ • Objective : LensNA¹¹⁴⁵ • Objective : Manufacturer 1146 • Objective : Model¹¹⁴⁷ • Objective : NominalMagnification 1148 • Objective : WorkingDistance¹¹⁴⁹ • ObjectiveSettings : ID¹¹⁵⁰ • Pixels: BigEndian¹¹⁵¹ • Pixels: DimensionOrder¹¹⁵² • Pixels : ID¹¹⁵³ 1128 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 1129 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type 1130 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning 1131 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain 1132 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID $^{1133} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#DetectorSettings_ReadOutRate$ 1134 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 1135 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description 1136 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 1137 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 1138 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1139 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature 1140 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 1141 http://www.penmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification 1142 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction 1143 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Objective ID 1144 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion 1145 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA 1146 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer 1147 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 1148 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification 1149 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance 1150 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID 1151 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels BigEndian 1152 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 1153 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID - Pixels : Interleaved¹¹⁵⁴ - Pixels : PhysicalSizeX¹¹⁵⁵ - Pixels : PhysicalSizeY¹¹⁵⁶ - Pixels : PhysicalSizeZ¹¹⁵⁷ - Pixels : SignificantBits¹¹⁵⁸ - Pixels : SizeC¹¹⁵⁹ - Pixels: SizeT1160 - Pixels : SizeX¹¹⁶¹ - Pixels: SizeY¹¹⁶² - Pixels : SizeZ¹¹⁶³ - Pixels : Type¹¹⁶⁴ - Plane : DeltaT¹¹⁶⁵ - Plane : ExposureTime¹¹⁶⁶ - Plane : PositionX¹¹⁶⁷ - Plane : PositionY¹¹⁶⁸ - Plane : PositionZ¹¹⁶⁹ - Plane : TheC¹¹⁷⁰
- Plane: TheT¹¹⁷¹ - Plane: TheZ¹¹⁷² **Total supported: 52** Total unknown or missing: 423 # 19.2.25 DicomReader This page lists supported metadata fields for the Bio-Formats DICOM format reader. These fields are from the OME data model¹¹⁷³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 23 of them (4%). - Of those, Bio-Formats fully or partially converts 23 (100%). ¹¹⁵⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹¹⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ¹¹⁵⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY $^{^{1157}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_PhysicalSizeZ$ ¹¹⁵⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits $^{{}^{1159}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeC$ ¹¹⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1161 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹¹⁶² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹¹⁶³ http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 1163 http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹¹⁶⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹¹⁶⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.ntml#Plane_DeltaT ¹¹⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ¹¹⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX ¹¹⁶⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ¹¹⁶⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ $^{^{1170}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Compared to the c$ ¹¹⁷¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹¹⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹¹⁷³ http://www.openmicroscopy.org/site/support/ome-model/ # Supported fields ## These fields are fully supported by the Bio-Formats DICOM format reader: • Channel: ID¹¹⁷⁴ • Channel: SamplesPerPixel¹¹⁷⁵ • Image : AcquisitionDate¹¹⁷⁶ • Image: Description 1177 • Image : ID¹¹⁷⁸ • Image: Name¹¹⁷⁹ • Pixels: BigEndian¹¹⁸⁰ • Pixels : DimensionOrder¹¹⁸¹ • Pixels : ID¹¹⁸² • Pixels: Interleaved 1183 • Pixels : PhysicalSizeX¹¹⁸⁴ • Pixels : PhysicalSizeY¹¹⁸⁵ • Pixels : PhysicalSizeZ¹¹⁸⁶ • Pixels : SignificantBits¹¹⁸⁷ • Pixels : SizeC¹¹⁸⁸ • Pixels : SizeT¹¹⁸⁹ • Pixels : SizeX¹¹⁹⁰ • Pixels : SizeY¹¹⁹¹ • Pixels : SizeZ¹¹⁹² • Pixels: Type¹¹⁹³ • Plane: TheC¹¹⁹⁴ • Plane: TheT¹¹⁹⁵ • Plane: TheZ¹¹⁹⁶ # **Total supported: 23** #### Total unknown or missing: 452 $^{1174} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ 1175 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 1176 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 1177 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Image Description 1178 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 1179 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1180 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 1181 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 1182 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1183 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 1184 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 1185 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 1186 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ 1187 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 1188 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 1189 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1190 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 1191 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 1192 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeZ 1193 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1194 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 1195 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 1196 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ## 19.2.26 Ecat7Reader This page lists supported metadata fields for the Bio-Formats ECAT7 format reader. These fields are from the OME data model¹¹⁹⁷. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 23 of them (4%). - Of those, Bio-Formats fully or partially converts 23 (100%). ## Supported fields # These fields are fully supported by the Bio-Formats ECAT7 format reader: ``` • Channel: ID¹¹⁹⁸ ``` - Channel: SamplesPerPixel¹¹⁹⁹ - Image : AcquisitionDate¹²⁰⁰ - Image: Description 1201 - Image : ID¹²⁰² - Image: Name¹²⁰³ - Pixels: BigEndian¹²⁰⁴ - Pixels : DimensionOrder¹²⁰⁵ - Pixels: ID¹²⁰⁶ - Pixels: Interleaved 1207 - Pixels : PhysicalSizeX¹²⁰⁸ - Pixels : PhysicalSizeY¹²⁰⁹ - Pixels : PhysicalSizeZ¹²¹⁰ - Pixels: SignificantBits¹²¹¹ - Pixels : SizeC¹²¹² - Pixels : SizeT¹²¹³ - Pixels : SizeX¹²¹⁴ - Pixels: SizeY¹²¹⁵ ¹¹⁹⁷http://www.openmicroscopy.org/site/support/ome-model/ ¹¹⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID $[\]frac{1199}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Channel_SamplesPerPixel}{1200}$ ¹²⁰⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 1201 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ¹²⁰² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹²⁰³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹²⁰⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ¹²⁰⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder $^{{}^{1206}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_ID$ $^{^{1207}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Interleaved$ ¹²⁰⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ¹²⁰⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ¹²¹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicansIzez_ ¹²¹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹²¹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ¹²¹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹²¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY • Pixels : SizeZ¹²¹⁶ • Pixels : Type¹²¹⁷ • Plane: TheC¹²¹⁸ • Plane : TheT¹²¹⁹ • Plane : TheZ¹²²⁰ **Total supported: 23** Total unknown or missing: 452 ## 19.2.27 EPSReader This page lists supported metadata fields for the Bio-Formats Encapsulated PostScript format reader. These fields are from the OME data model 1221. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). # Supported fields These fields are fully supported by the
Bio-Formats Encapsulated PostScript format reader: ``` • Channel: ID¹²²² ``` • Channel: SamplesPerPixel¹²²³ • Image : AcquisitionDate 1224 • Image: ID1225 • Image: Name¹²²⁶ • Pixels: BigEndian¹²²⁷ • Pixels: DimensionOrder¹²²⁸ • Pixels : ID¹²²⁹ • Pixels: Interleaved 1230 • Pixels : SignificantBits¹²³¹ • Pixels: SizeC1232 • Pixels : SizeT¹²³³ $^{^{1216}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeZ$ ¹²¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹²¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹²¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹²²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹²²¹ http://www.openmicroscopy.org/site/support/ome-model/ ¹²²² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹²²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ¹²²⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ¹²²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 1226 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹²²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ¹²²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹²²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1230 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹²³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ¹²³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹²³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT Pixels: SizeX¹²³⁴ Pixels: SizeY¹²³⁵ • Pixels : SizeZ¹²³⁶ • Pixels : Type¹²³⁷ Plane : TheC¹²³⁸ Plane : TheT¹²³⁹ • Plane : TheZ¹²⁴⁰ **Total supported: 19** Total unknown or missing: 456 # 19.2.28 FlexReader This page lists supported metadata fields for the Bio-Formats Evotec Flex format reader. These fields are from the OME data model¹²⁴¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 69 of them (14%). - Of those, Bio-Formats fully or partially converts 69 (100%). # **Supported fields** These fields are fully supported by the Bio-Formats Evotec Flex format reader: • Channel: ID¹²⁴² • Channel : LightSourceSettingsID¹²⁴³ • Channel: Name¹²⁴⁴ • Channel : SamplesPerPixel¹²⁴⁵ • Detector: ID¹²⁴⁶ • Detector : Type¹²⁴⁷ • DetectorSettings : Binning¹²⁴⁸ • DetectorSettings : ID¹²⁴⁹ • Dichroic: ID¹²⁵⁰ • Dichroic: Model¹²⁵¹ $^{^{1234}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeX$ $^{{}^{1235}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SizeY$ ¹²³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹²³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹²³⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹²⁴¹ http://www.openmicroscopy.org/site/support/ome-model/ ¹²⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹²⁴³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_ID ¹²⁴⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ¹²⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ¹²⁴⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ¹²⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ¹²⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning ¹²⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID ¹²⁵⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dichroic_ID ¹²⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ^{19.2.} Metadata fields 262 • Filter: FilterWheel¹²⁵² • Filter: ID¹²⁵³ • Filter: Model¹²⁵⁴ • Image : AcquisitionDate¹²⁵⁵ • Image : ID¹²⁵⁶ • Image : InstrumentRef¹²⁵⁷ • Image : Name¹²⁵⁸ • Instrument : ID¹²⁵⁹ • Laser : ID¹²⁶⁰ • Laser: LaserMedium¹²⁶¹ • Laser: Type¹²⁶² • Laser : Wavelength¹²⁶³ • LightPath : DichroicRef¹²⁶⁴ • LightPath : EmissionFilterRef¹²⁶⁵ • LightPath : ExcitationFilterRef¹²⁶⁶ • Objective : CalibratedMagnification 1267 • Objective : Correction 1268 • Objective : ID¹²⁶⁹ • Objective : Immersion¹²⁷⁰ • Objective : LensNA¹²⁷¹ • ObjectiveSettings : ID¹²⁷² • Pixels : BigEndian¹²⁷³ • Pixels : DimensionOrder¹²⁷⁴ • Pixels : ID¹²⁷⁵ • Pixels: Interleaved 1276 • Pixels : PhysicalSizeX¹²⁷⁷ ``` 1252 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_FilterWheel 1253 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID 1254 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 1255 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 1256 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 1257 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 1258 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1259 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ¹²⁶⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#LightSource ID 1261 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_LaserMedium ¹²⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type 1263 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Wavelength 1264 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DichroicRef_ID 1265 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID ¹²⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID 1267 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification 1268 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction 1269 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID 1270 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion 1271 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA 1272 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID 1273 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 1274 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹²⁷⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1276 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹²⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ``` - Pixels : PhysicalSizeY¹²⁷⁸ - Pixels : SignificantBits¹²⁷⁹ - Pixels : SizeC¹²⁸⁰ - Pixels : SizeT¹²⁸¹ - Pixels : SizeX¹²⁸² - Pixels : SizeY¹²⁸³ - Pixels : SizeZ¹²⁸⁴ - Pixels: Type¹²⁸⁵ - Plane: DeltaT¹²⁸⁶ - Plane : ExposureTime¹²⁸⁷ - Plane : $Position X^{1288}$ - Plane : PositionY¹²⁸⁹ - Plane : PositionZ¹²⁹⁰ - Plane : TheC¹²⁹¹ - Plane: TheT1292 - Plane: TheZ¹²⁹³ - Plate: ColumnNamingConvention¹²⁹⁴ - Plate : ExternalIdentifier 1295 - Plate: ID¹²⁹⁶ - Plate: Name¹²⁹⁷ - Plate: RowNamingConvention¹²⁹⁸ - PlateAcquisition : ID¹²⁹⁹ - PlateAcquisition : MaximumFieldCount 1300 - PlateAcquisition : StartTime¹³⁰¹ - PlateAcquisition : WellSampleRef¹³⁰² - Well: Column¹³⁰³ ``` 1278 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 1279 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 1280 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 1281 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1282 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 1283
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹²⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 1285 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹²⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT 1287 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime 1288 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX 1289 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ¹²⁹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ 1291 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹²⁹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹²⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Plane TheZ 1294 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ColumnNamingConvention 1295 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ExternalIdentifier 1296 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID 1297 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Name 1298 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_RowNamingConvention 1299 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_ID 1300 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount 1301 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_StartTime ``` 1302 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSampleRef_ID 1303 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column • Well: ID¹³⁰⁴ • Well: Row 1305 • WellSample : ID¹³⁰⁶ • WellSample : ImageRef¹³⁰⁷ • WellSample : Index 1308 WellSample : PositionX¹³⁰⁹ WellSample : PositionY¹³¹⁰ **Total supported: 69** Total unknown or missing: 406 # 19.2.29 FEIReader This page lists supported metadata fields for the Bio-Formats FEI/Philips format reader. These fields are from the OME data model¹³¹¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ## **Supported fields** ## These fields are fully supported by the Bio-Formats FEI/Philips format reader: • Channel: ID¹³¹² • Channel : SamplesPerPixel¹³¹³ • Image : AcquisitionDate¹³¹⁴ • Image: ID¹³¹⁵ • Image: Name¹³¹⁶ • Pixels: BigEndian¹³¹⁷ • Pixels : DimensionOrder 1318 • Pixels : ID¹³¹⁹ • Pixels : Interleaved 1320 • Pixels : SignificantBits 1321 ¹³⁰⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row ¹³⁰⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID ¹³⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImageRef_ID ¹³⁰⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index ¹³⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionX ¹³¹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionY ¹³¹¹ http://www.openmicroscopy.org/site/support/ome-model/ $^{^{1312}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ ¹³¹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel $^{^{1314}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate$ ¹³¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹³¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹³¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ¹³¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹³¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ¹³²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 1321 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits http://www.opcinincroscopy.org/scircinas/Documentation/Generated/OME-2013-00/onic_asd.numi#17cts_SignificantDis Pixels: SizeC¹³²² Pixels: SizeT¹³²³ Pixels: SizeX¹³²⁴ Pixels: SizeY¹³²⁵ Pixels: SizeZ¹³²⁶ Pixels: Type¹³²⁷ Plane: TheC¹³²⁸ Plane : TheT¹³²⁹ Plane : TheZ¹³³⁰ **Total supported: 19** Total unknown or missing: 456 ## 19.2.30 FEITiffReader This page lists supported metadata fields for the Bio-Formats FEI TIFF format reader. These fields are from the OME data model¹³³¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 39 of them (8%). - Of those, Bio-Formats fully or partially converts 39 (100%). # Supported fields ## These fields are fully supported by the Bio-Formats FEI TIFF format reader: • Channel : ID¹³³² • Channel: SamplesPerPixel¹³³³ • Detector : ID¹³³⁴ • Detector : Model¹³³⁵ • Detector : Type¹³³⁶ • Experimenter : ID¹³³⁷ • Experimenter : LastName¹³³⁸ • Image : AcquisitionDate¹³³⁹ ¹³²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹³²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ¹³²⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹³²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 1326 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹³²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹³²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹³²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT $^{^{1330}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Zarantee Annual Ann$ ¹³³¹ http://www.openmicroscopy.org/site/support/ome-model/ $^{^{1332}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ $^{^{1333}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_Samples Per Pixel Annual Channel_Samples Per Pixel Pixe$ ¹³³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ¹³³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ¹³³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID ¹³³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName ¹³³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate • Image : Description 1340 • Image : ID¹³⁴¹ • Image : InstrumentRef¹³⁴² • Image : Name¹³⁴³ • Instrument : ID¹³⁴⁴ • Microscope : Model¹³⁴⁵ • Objective : Correction 1346 • Objective : ID¹³⁴⁷ • Objective : Immersion¹³⁴⁸ • Objective : NominalMagnification 1349 • Pixels : BigEndian¹³⁵⁰ • Pixels : DimensionOrder¹³⁵¹ • Pixels: ID¹³⁵² • Pixels: Interleaved 1353 • Pixels : PhysicalSizeX¹³⁵⁴ • Pixels : PhysicalSizeY¹³⁵⁵ • Pixels : SignificantBits 1356 • Pixels : SizeC¹³⁵⁷ • Pixels : SizeT¹³⁵⁸ • Pixels: SizeX¹³⁵⁹ • Pixels : SizeY¹³⁶⁰ • Pixels : SizeZ¹³⁶¹ • Pixels: TimeIncrement 1362 • Pixels: Type¹³⁶³ • Plane: TheC¹³⁶⁴ • Plane : TheT¹³⁶⁵ ¹³⁴⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description 1341 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 1342 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 1343 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1344 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 1345 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 1346 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction 1347 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID 1348 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Objective Immersion 1349 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification 1350
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 1351 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 1352 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1353 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹³⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 1355 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 1356 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 1357 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 1358 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1359 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 1360 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 1361 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹³⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement 1363 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1364 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 1365 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT • Plane : TheZ¹³⁶⁶ • StageLabel: Name¹³⁶⁷ • StageLabel : X¹³⁶⁸ • StageLabel: Y¹³⁶⁹ • StageLabel: Z¹³⁷⁰ **Total supported: 39** Total unknown or missing: 436 #### 19.2.31 FitsReader This page lists supported metadata fields for the Bio-Formats Flexible Image Transport System format reader. These fields are from the OME data model¹³⁷¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). # Supported fields These fields are fully supported by the Bio-Formats Flexible Image Transport System format reader: • Channel: ID¹³⁷² • Channel: SamplesPerPixel¹³⁷³ • Image : AcquisitionDate 1374 • Image : ID¹³⁷⁵ • Image: Name¹³⁷⁶ • Pixels: BigEndian¹³⁷⁷ • Pixels: DimensionOrder¹³⁷⁸ • Pixels : ID¹³⁷⁹ • Pixels: Interleaved 1380 • Pixels : SignificantBits¹³⁸¹ • Pixels: SizeC¹³⁸² • Pixels: SizeT¹³⁸³ $^{^{1366}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Zarantees and the properties of properties$ ¹³⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#StageLabel_Name $^{{}^{1368}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#StageLabel_X + 1200 Generated/OME-2013-06/ome_xsd.html Generated/OME-200 Generated/OME-200 Generated/OME-200 Generated/OME-200 Genera$ $^{^{1369}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#StageLabel_Y the properties of prope$ ¹³⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#StageLabel_Z ¹³⁷¹ http://www.openmicroscopy.org/site/support/ome-model/ ¹³⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID $[\]frac{1373}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html} \# Channel_Samples Per Pixel 12014 + 12014$ ¹³⁷⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 1375 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹³⁷⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹³⁷⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1377http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ¹³⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹³⁷⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ¹³⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹³⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ¹³⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹³⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT Pixels : SizeX¹³⁸⁴ Pixels : SizeY¹³⁸⁵ • Pixels : SizeZ¹³⁸⁶ • Pixels : Type¹³⁸⁷ • Plane : The C^{1388} Plane : TheT¹³⁸⁹ Plane : TheZ¹³⁹⁰ Total supported: 19 Total unknown or missing: 456 # 19.2.32 GatanDM2Reader This page lists supported metadata fields for the Bio-Formats Gatan DM2 format reader. These fields are from the OME data model¹³⁹¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 30 of them (6%). - Of those, Bio-Formats fully or partially converts 30 (100%). # **Supported fields** ## These fields are fully supported by the Bio-Formats Gatan DM2 format reader: • Channel: ID¹³⁹² • Channel: SamplesPerPixel¹³⁹³ • Detector: ID¹³⁹⁴ • DetectorSettings : Binning¹³⁹⁵ • DetectorSettings : ID¹³⁹⁶ • Experimenter : FirstName¹³⁹⁷ • Experimenter : ID¹³⁹⁸ • Experimenter : LastName¹³⁹⁹ • Image : AcquisitionDate¹⁴⁰⁰ • Image : ExperimenterRef¹⁴⁰¹ ¹³⁸⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹³⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY $[\]frac{1386}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_SizeZ}}{\frac{1386}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_SizeZ}}$ ¹³⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹³⁸⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹³⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹³⁹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹³⁹¹ http://www.openmicroscopy.org/site/support/ome-model/ ¹³⁹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Channel ID ¹³⁹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ¹³⁹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ¹³⁹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning ¹³⁹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID ¹³⁹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_FirstName ¹³⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID ¹³⁹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName
¹⁴⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ¹⁴⁰¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID • Image : ID¹⁴⁰² • Image : InstrumentRef¹⁴⁰³ • Image : Name¹⁴⁰⁴ • Instrument : ID¹⁴⁰⁵ • Pixels: BigEndian 1406 • Pixels : DimensionOrder 1407 • Pixels: ID¹⁴⁰⁸ • Pixels: Interleaved 1409 • Pixels : PhysicalSizeX¹⁴¹⁰ • Pixels: PhysicalSizeY¹⁴¹¹ • Pixels : SignificantBits 1412 • Pixels : SizeC¹⁴¹³ • Pixels: SizeT1414 • Pixels : SizeX¹⁴¹⁵ • Pixels : SizeY¹⁴¹⁶ • Pixels : SizeZ¹⁴¹⁷ • Pixels : Type¹⁴¹⁸ • Plane : TheC¹⁴¹⁹ • Plane: TheT¹⁴²⁰ • Plane : TheZ¹⁴²¹ **Total supported: 30** Total unknown or missing: 445 # 19.2.33 GatanReader This page lists supported metadata fields for the Bio-Formats Gatan Digital Micrograph format reader. These fields are from the OME data model¹⁴²². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: ``` 1402 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 1403 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 1404 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1405 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 1406 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 1407 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 1408 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1409 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 1410 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 1411 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 1412 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SignificantBits 1413 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 1414 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1415 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 1416 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 1417 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 1418 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1419 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 1420 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 1421 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 1422 http://www.openmicroscopy.org/site/support/ome-model/ ``` - The file format itself supports 36 of them (7%). - Of those, Bio-Formats fully or partially converts 36 (100%). # Supported fields ## These fields are fully supported by the Bio-Formats Gatan Digital Micrograph format reader: • Channel : AcquisitionMode¹⁴²³ • Channel : ID¹⁴²⁴ • Channel: SamplesPerPixel¹⁴²⁵ • Detector : ID¹⁴²⁶ • DetectorSettings : ID¹⁴²⁷ • DetectorSettings : Voltage¹⁴²⁸ • Image : AcquisitionDate¹⁴²⁹ • Image : ID¹⁴³⁰ • Image : Name¹⁴³¹ • Instrument : ID¹⁴³² • Objective : Correction 1433 • Objective : ID¹⁴³⁴ • Objective : Immersion¹⁴³⁵ • Objective : NominalMagnification 1436 • ObjectiveSettings : ID¹⁴³⁷ • Pixels : BigEndian 1438 • Pixels : DimensionOrder 1439 • Pixels : ID¹⁴⁴⁰ • Pixels : Interleaved 1441 • Pixels : PhysicalSizeX¹⁴⁴² \bullet Pixels: PhysicalSizeY 1443 • Pixels : PhysicalSizeZ¹⁴⁴⁴ • Pixels : SignificantBits 1445 ¹⁴²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_AcquisitionMode ¹⁴²⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹⁴²⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ¹⁴²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ¹⁴²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID $^{{}^{1428}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Detector Settings_Voltage$ ¹⁴²⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ¹⁴³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁴³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁴³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.ntml#Image_Ivame ¹⁴³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction ¹⁴³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID ¹⁴³⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion $^{^{1436}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Objective_Nominal Magnification$ ¹⁴³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID ¹⁴³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $^{^{1439}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_DimensionOrder + 12000 and 120$ ¹⁴⁴⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ¹⁴⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁴⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 1443 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ¹⁴⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ¹⁴⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits • Pixels : SizeC¹⁴⁴⁶ • Pixels: SizeT1447 • Pixels : SizeX¹⁴⁴⁸ • Pixels : SizeY¹⁴⁴⁹ • Pixels : SizeZ¹⁴⁵⁰ • Pixels : Type¹⁴⁵¹ • Plane : ExposureTime¹⁴⁵² • Plane : PositionX¹⁴⁵³ • Plane : PositionY¹⁴⁵⁴ • Plane: PositionZ¹⁴⁵⁵ • Plane : TheC¹⁴⁵⁶ • Plane: TheT¹⁴⁵⁷ • Plane: TheZ¹⁴⁵⁸ **Total supported: 36** Total unknown or missing: 439 #### 19.2.34 GIFReader This page lists supported metadata fields for the Bio-Formats Graphics Interchange Format format reader. These fields are from the OME data model¹⁴⁵⁹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). #### Supported fields These fields are fully supported by the Bio-Formats Graphics Interchange Format format reader: • Channel: ID¹⁴⁶⁰ • Channel: SamplesPerPixel¹⁴⁶¹ • Image : AcquisitionDate¹⁴⁶² • Image : ID¹⁴⁶³ ¹⁴⁴⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹⁴⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ¹⁴⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹⁴⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹⁴⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁴⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹⁴⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime 1453 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX ¹⁴⁵⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ¹⁴⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ 1456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹⁴⁵⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 1458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹⁴⁵⁹ http://www.openmicroscopy.org/site/support/ome-model/ ¹⁴⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹⁴⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ¹⁴⁶² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ¹⁴⁶³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID - Image: Name¹⁴⁶⁴ - Pixels: BigEndian¹⁴⁶⁵ - Pixels : DimensionOrder¹⁴⁶⁶ - Pixels : ID¹⁴⁶⁷ - Pixels: Interleaved 1468 - Pixels : SignificantBits 1469 - Pixels : SizeC¹⁴⁷⁰ - Pixels :
SizeT¹⁴⁷¹ - Pixels : SizeX¹⁴⁷² - Pixels : SizeY¹⁴⁷³ - Pixels : SizeZ¹⁴⁷⁴ - Pixels : Type 1475 - Plane : TheC¹⁴⁷⁶ - Tiane. Thee - Plane : TheT¹⁴⁷⁷ - Plane : TheZ¹⁴⁷⁸ ## Total supported: 19 Total unknown or missing: 456 #### 19.2.35 NAFReader This page lists supported metadata fields for the Bio-Formats Hamamatsu Aquacosmos format reader. These fields are from the OME data model¹⁴⁷⁹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). #### **Supported fields** ## These fields are fully supported by the Bio-Formats Hamamatsu Aquacosmos format reader: - Channel: ID¹⁴⁸⁰ - Channel: SamplesPerPixel¹⁴⁸¹ ¹⁴⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁴⁶⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ¹⁴⁶⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder $^{^{1467}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_ID$ ¹⁴⁶⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved $^{^{1469}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Significant Bits$ $^{^{1470}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_SizeC$ $^{1471} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_SizeT$ ¹⁴⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹⁴⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹⁴⁷⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ $^{^{1475}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Type$ $^{^{1476}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_The Compared to the co$ $^{^{1477}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Total Control of the Control of Co$ ¹⁴⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹⁴⁷⁹ http://www.openmicroscopy.org/site/support/ome-model/ ¹⁴⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹⁴⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel - Image : AcquisitionDate¹⁴⁸² - Image : ID¹⁴⁸³ - Image: Name¹⁴⁸⁴ - Pixels: BigEndian 1485 - Pixels : DimensionOrder¹⁴⁸⁶ - Pixels: ID¹⁴⁸⁷ - Pixels: Interleaved 1488 - Pixels : SignificantBits 1489 - Pixels : SizeC¹⁴⁹⁰ - Pixels : SizeT¹⁴⁹¹ - Pixels : SizeX¹⁴⁹² - Pixels : SizeY¹⁴⁹³ - Pixels: SizeZ¹⁴⁹⁴ - Pixels : Type¹⁴⁹⁵ - Plane: TheC1496 - Plane: TheT¹⁴⁹⁷ - Plane: TheZ¹⁴⁹⁸ **Total supported: 19** Total unknown or missing: 456 ## 19.2.36 HISReader This page lists supported metadata fields for the Bio-Formats Hamamatsu HIS format reader. These fields are from the OME data model 1499. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 27 of them (5%). - Of those, Bio-Formats fully or partially converts 27 (100%). ¹⁴⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ¹⁴⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁴⁸⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁴⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ¹⁴⁸⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹⁴⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1488 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁴⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 1490 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹⁴⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ¹⁴⁹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹⁴⁹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹⁴⁹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 1495 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹⁴⁹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹⁴⁹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹⁴⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹⁴⁹⁹ http://www.openmicroscopy.org/site/support/ome-model/ # Supported fields ## These fields are fully supported by the Bio-Formats Hamamatsu HIS format reader: ``` • Channel : ID¹⁵⁰⁰ ``` • Channel: SamplesPerPixel¹⁵⁰¹ • Detector: ID¹⁵⁰² • Detector : Offset 1503 • Detector: Type¹⁵⁰⁴ • DetectorSettings : Binning¹⁵⁰⁵ • DetectorSettings : ID¹⁵⁰⁶ • Image : AcquisitionDate¹⁵⁰⁷ • Image : ID¹⁵⁰⁸ • Image : InstrumentRef¹⁵⁰⁹ • Image : Name¹⁵¹⁰ • Instrument : ID¹⁵¹¹ • Pixels : BigEndian¹⁵¹² • Pixels : DimensionOrder¹⁵¹³ • Pixels: ID¹⁵¹⁴ • Pixels: Interleaved 1515 • Pixels : SignificantBits¹⁵¹⁶ • Pixels : SizeC¹⁵¹⁷ • Pixels : SizeT¹⁵¹⁸ • Pixels : SizeX¹⁵¹⁹ • Pixels : SizeY¹⁵²⁰ • Pixels : SizeZ¹⁵²¹ • Pixels: Type¹⁵²² • Plane : ExposureTime¹⁵²³ $[\]overline{^{1500}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ 1501 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 1502 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID 1503 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Offset 1504 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type 1505 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning 1506 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID 1507 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 1508 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID $^{1509} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#InstrumentRef_ID$ 1510 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1511 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 1512 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 1513 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹⁵¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1515 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁵¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 1517 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 1518 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1519 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 1520 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 1521 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁵²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1523 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime Plane : TheC¹⁵²⁴ Plane : TheT¹⁵²⁵ Plane : TheZ¹⁵²⁶ **Total supported: 27** Total unknown or missing: 448 ### 19.2.37 NDPIReader This page lists supported metadata fields for the Bio-Formats Hamamatsu NDPI format reader. These fields are from the OME data model¹⁵²⁷. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 21 of them (4%). - Of those, Bio-Formats fully or partially converts 21 (100%). # Supported fields # These fields are fully supported by the Bio-Formats Hamamatsu NDPI format reader: • Channel : ID¹⁵²⁸ • Channel: SamplesPerPixel¹⁵²⁹ • Image : AcquisitionDate¹⁵³⁰ • Image : ID¹⁵³¹ • Image: Name¹⁵³² • Pixels: BigEndian¹⁵³³ • Pixels :
DimensionOrder¹⁵³⁴ • Pixels : ID¹⁵³⁵ • Pixels: Interleaved 1536 • Pixels : PhysicalSizeX¹⁵³⁷ \bullet Pixels: PhysicalSizeY 1538 • Pixels : SignificantBits¹⁵³⁹ • Pixels: SizeC¹⁵⁴⁰ • Pixels: SizeT¹⁵⁴¹ ¹⁵²⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹⁵²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹⁵²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹⁵²⁷ http://www.openmicroscopy.org/site/support/ome-model/ ¹⁵²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹⁵²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Channel SamplesPerPixel ¹⁵³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ¹⁵³¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁵³² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁵³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ¹⁵³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹⁵³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ¹⁵³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁵³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ¹⁵³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ¹⁵³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ¹⁵⁴⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC $^{^{1541}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Size Teaching and the property of th$ Pixels: SizeX¹⁵⁴² Pixels: SizeY¹⁵⁴³ Pixels: SizeZ¹⁵⁴⁴ Pixels: Type¹⁵⁴⁵ Plane: TheC¹⁵⁴⁶ Plane: TheT¹⁵⁴⁷ Plane: TheZ¹⁵⁴⁸ **Total supported: 21** Total unknown or missing: 454 # 19.2.38 HamamatsuVMSReader This page lists supported metadata fields for the Bio-Formats Hamamatsu VMS format reader. These fields are from the OME data model¹⁵⁴⁹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 26 of them (5%). - Of those, Bio-Formats fully or partially converts 26 (100%). # Supported fields These fields are fully supported by the Bio-Formats Hamamatsu VMS format reader: • Channel: ID¹⁵⁵⁰ • Channel: SamplesPerPixel¹⁵⁵¹ • Image : AcquisitionDate¹⁵⁵² • Image : ID¹⁵⁵³ • Image : InstrumentRef¹⁵⁵⁴ • Image: Name¹⁵⁵⁵ • Instrument : ID¹⁵⁵⁶ • Objective : ID¹⁵⁵⁷ • Objective : NominalMagnification 1558 • ObjectiveSettings : ID¹⁵⁵⁹ ``` 1542 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 1543 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹⁵⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁵⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1546 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 1547 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 1548 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 1549 http://www.openmicroscopy.org/site/support/ome-model/ 1550 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ^{1551} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_Samples Per Pixel Annual Pixel 1552 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 1553 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 1554 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 1555 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1556 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 1557 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID 1558 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Objective NominalMagnification 1559 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID ``` - Pixels: BigEndian¹⁵⁶⁰ - Pixels: DimensionOrder¹⁵⁶¹ - Pixels : ID¹⁵⁶² - Pixels: Interleaved 1563 - Pixels : PhysicalSizeX¹⁵⁶⁴ - Pixels : PhysicalSizeY¹⁵⁶⁵ - Pixels : SignificantBits 1566 - Pixels : SizeC¹⁵⁶⁷ - Pixels: SizeT¹⁵⁶⁸ - Pixels : SizeX¹⁵⁶⁹ - Pixels : SizeY¹⁵⁷⁰ - Pixels : SizeZ¹⁵⁷¹ - Pixels : Type¹⁵⁷² - Plane : TheC¹⁵⁷³ - Plane: TheT1574 - Plane: TheZ¹⁵⁷⁵ Total supported: 26 Total unknown or missing: 449 # 19.2.39 HitachiReader This page lists supported metadata fields for the Bio-Formats Hitachi format reader. These fields are from the OME data model¹⁵⁷⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 31 of them (6%). - Of those, Bio-Formats fully or partially converts 31 (100%). # Supported fields ## These fields are fully supported by the Bio-Formats Hitachi format reader: • Channel : ID^{1577} 1560 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 1561 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 1562 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1563 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 1564 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 1565 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 1566 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 1567 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 1568 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1569 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 1570 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 1571 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 1572 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1573 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1574 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1574 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1574 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1574 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1574 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1574 http://www. ¹⁵⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹⁵⁷⁶ http://www.openmicroscopy.org/site/support/ome-model/ ¹⁵⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID • Channel: SamplesPerPixel¹⁵⁷⁸ • Image : AcquisitionDate¹⁵⁷⁹ • Image : ID¹⁵⁸⁰ • Image : InstrumentRef¹⁵⁸¹ • Image : Name¹⁵⁸² • Instrument : ID¹⁵⁸³ • Microscope: Model¹⁵⁸⁴ • Microscope : SerialNumber¹⁵⁸⁵ • Objective : ID¹⁵⁸⁶ • Objective : WorkingDistance¹⁵⁸⁷ • ObjectiveSettings : ID¹⁵⁸⁸ • Pixels: BigEndian¹⁵⁸⁹ • Pixels : DimensionOrder¹⁵⁹⁰ • Pixels: ID¹⁵⁹¹ • Pixels : Interleaved 1592 • Pixels : PhysicalSizeX¹⁵⁹³ • Pixels : PhysicalSizeY¹⁵⁹⁴ • Pixels : SignificantBits¹⁵⁹⁵ • Pixels: SizeC¹⁵⁹⁶ • Pixels: SizeT¹⁵⁹⁷ • Pixels : SizeX¹⁵⁹⁸ • Pixels : SizeY¹⁵⁹⁹ • Pixels : SizeZ¹⁶⁰⁰ • Pixels: Type¹⁶⁰¹ • Plane : PositionX¹⁶⁰² • Plane : Position Y^{1603} ``` ^{1578} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_Samples Per Pixel Annual Properties of the Company Compan 1579 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 1580 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁵⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 1582 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁵⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 1584 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model
1585 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber 1586 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID 1587 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance 1588 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID 1589 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 1590 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 1591 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1592 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 1593 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 1594 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ^{1595} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits 1596 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 1597 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1598 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 1599 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹⁶⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 1601 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ``` 1602 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX 1603 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY • Plane: PositionZ¹⁶⁰⁴ • Plane : TheC¹⁶⁰⁵ • Plane : TheT¹⁶⁰⁶ • Plane : TheZ¹⁶⁰⁷ **Total supported: 31** Total unknown or missing: 444 ## 19.2.40 ICSReader This page lists supported metadata fields for the Bio-Formats Image Cytometry Standard format reader. These fields are from the OME data model¹⁶⁰⁸. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 72 of them (15%). - Of those, Bio-Formats fully or partially converts 72 (100%). # Supported fields ## These fields are fully supported by the Bio-Formats Image Cytometry Standard format reader: ``` • Channel: EmissionWavelength¹⁶⁰⁹ ``` • Channel: ExcitationWavelength¹⁶¹⁰ • Channel : ID¹⁶¹¹ • Channel: Name¹⁶¹² • Channel : PinholeSize¹⁶¹³ • Channel : SamplesPerPixel¹⁶¹⁴ • Detector: ID¹⁶¹⁵ • Detector : Manufacturer 1616 • Detector : Model¹⁶¹⁷ • Detector : Type¹⁶¹⁸ • DetectorSettings : Gain¹⁶¹⁹ • DetectorSettings : ID¹⁶²⁰ • Dichroic : ID¹⁶²¹ $^{{}^{1604}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_PositionZ$ $^{{}^{1605}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_The Compared to the c$ ¹⁶⁰⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹⁶⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹⁶⁰⁸ http://www.openmicroscopy.org/site/support/ome-model/ ¹⁶⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Channel EmissionWavelength ¹⁶¹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength ¹⁶¹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Channel ID ¹⁶¹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ¹⁶¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_PinholeSize ¹⁶¹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ¹⁶¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ¹⁶¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer ¹⁶¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ¹⁶¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ¹⁶¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain ¹⁶²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gdd ¹⁶²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dichroic_ID • Dichroic: Model¹⁶²² • Experiment : ID¹⁶²³ • Experiment : Type¹⁶²⁴ • Experimenter : ID¹⁶²⁵ • Experimenter : LastName¹⁶²⁶ • Filter : ID¹⁶²⁷ • Filter: Model¹⁶²⁸ • FilterSet : DichroicRef¹⁶²⁹ • FilterSet : EmissionFilterRef¹⁶³⁰ • FilterSet : ExcitationFilterRef¹⁶³¹ • FilterSet : ID¹⁶³² • FilterSet : Model¹⁶³³ • Image : AcquisitionDate¹⁶³⁴ • Image: Description 1635 • Image : ID¹⁶³⁶ • Image : InstrumentRef¹⁶³⁷ • Image : Name¹⁶³⁸ • Instrument : ID¹⁶³⁹ • Laser : ID¹⁶⁴⁰ • Laser: LaserMedium¹⁶⁴¹ • Laser : Manufacturer 1642 • Laser: Model¹⁶⁴³ • Laser: Power¹⁶⁴⁴ • Laser : RepetitionRate 1645 • Laser: Type¹⁶⁴⁶ • Laser: Wavelength¹⁶⁴⁷ ``` ^{1622} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Manufacturer Spec_Model Manufactur 1623 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_ID ¹⁶²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Experiment Type 1625 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID 1626 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName 1627 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID 1628 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 1629 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DichroicRef_ID ¹⁶³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#FilterRef ID 1631 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID ¹⁶³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterSet_ID 1633 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 1634 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 1635 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ¹⁶³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 1637 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 1638 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1639 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ^{1640} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#LightSource_ID 1641 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_LaserMedium 1642 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer 1643 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 1644 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_Power 1645 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_RepetitionRate 1646 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type 1647 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Wavelength ``` • Microscope : Manufacturer 1648 • Microscope : Model¹⁶⁴⁹ • Objective : CalibratedMagnification 1650 • Objective : Correction 1651 • Objective : ID¹⁶⁵² • Objective : Immersion¹⁶⁵³ • Objective : LensNA¹⁶⁵⁴ • Objective: Model¹⁶⁵⁵ • Objective : WorkingDistance¹⁶⁵⁶ • ObjectiveSettings : ID¹⁶⁵⁷ • Pixels : BigEndian 1658 • Pixels : DimensionOrder¹⁶⁵⁹ • Pixels: ID¹⁶⁶⁰ • Pixels : Interleaved¹⁶⁶¹ • Pixels : PhysicalSizeX¹⁶⁶² • Pixels : PhysicalSizeY¹⁶⁶³ • Pixels: PhysicalSizeZ¹⁶⁶⁴ • Pixels : SignificantBits 1665 • Pixels : SizeC¹⁶⁶⁶ • Pixels: SizeT¹⁶⁶⁷ • Pixels : SizeX¹⁶⁶⁸ • Pixels : SizeY¹⁶⁶⁹ • Pixels : SizeZ¹⁶⁷⁰ • Pixels: TimeIncrement¹⁶⁷¹ • Pixels: Type¹⁶⁷² • Plane : DeltaT¹⁶⁷³ $^{1648} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Manufacturer Spec_Manufacturer Spec_Manufacturer Spec_Man$ 1649 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model $^{1650} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Objective_Calibrated Magnification$ ¹⁶⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction 1652
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID ¹⁶⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion 1654 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA 1655 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 1656 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Objective WorkingDistance 1657 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID 1658 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 1659 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹⁶⁶⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1661 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁶⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 1663 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 1664 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ $^{1665} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits$ 1666 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 1667 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1668 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 1669 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 1670 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 1671 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement ¹⁶⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1673 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT • Plane : ExposureTime¹⁶⁷⁴ • Plane : PositionX¹⁶⁷⁵ • Plane : PositionY¹⁶⁷⁶ • Plane : PositionZ¹⁶⁷⁷ • Plane : TheC¹⁶⁷⁸ • Plane : TheT¹⁶⁷⁹ • Plane: TheZ¹⁶⁸⁰ **Total supported: 72** Total unknown or missing: 403 # 19.2.41 ImaconReader This page lists supported metadata fields for the Bio-Formats Imacon format reader. These fields are from the OME data model¹⁶⁸¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 23 of them (4%). - Of those, Bio-Formats fully or partially converts 23 (100%). ## **Supported fields** ## These fields are fully supported by the Bio-Formats Imacon format reader: • Channel: ID¹⁶⁸² • Channel : SamplesPerPixel¹⁶⁸³ • Experimenter : FirstName¹⁶⁸⁴ • Experimenter : ID¹⁶⁸⁵ • Experimenter : LastName¹⁶⁸⁶ • Image : AcquisitionDate¹⁶⁸⁷ • Image : ExperimenterRef¹⁶⁸⁸ • Image : ID¹⁶⁸⁹ • Image: Name¹⁶⁹⁰ • Pixels: BigEndian¹⁶⁹¹ ¹⁶⁷⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ¹⁶⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX ¹⁶⁷⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ¹⁶⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ ¹⁶⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹⁶⁷⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT $^{{}^{1680}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_TheZ~1681 http://www.openmicroscopy.org/site/support/ome-model/$ ¹⁶⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹⁶⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ¹⁶⁸⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_FirstName ¹⁶⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID 1686 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName ¹⁶⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ¹⁶⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID ¹⁶⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁶⁹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁶⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ``` • Pixels : DimensionOrder¹⁶⁹² ``` • Pixels : ID1693 • Pixels: Interleaved 1694 • Pixels : SignificantBits 1695 • Pixels : SizeC¹⁶⁹⁶ • Pixels : SizeT¹⁶⁹⁷ • Pixels : SizeX¹⁶⁹⁸ • Pixels : SizeY¹⁶⁹⁹ • Pixels: SizeZ¹⁷⁰⁰ • Pixels: Type¹⁷⁰¹ • Plane : TheC¹⁷⁰² • Plane: TheT¹⁷⁰³ • Plane : TheZ¹⁷⁰⁴ Total supported: 23 Total unknown or missing: 452 #### 19.2.42 SEQReader This page lists supported metadata fields for the Bio-Formats Image-Pro Sequence format reader. These fields are from the OME data model¹⁷⁰⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). #### Supported fields ## These fields are fully supported by the Bio-Formats Image-Pro Sequence format reader: ``` • Channel: ID¹⁷⁰⁶ ``` • Channel: SamplesPerPixel¹⁷⁰⁷ • Image : AcquisitionDate¹⁷⁰⁸ • Image : ID¹⁷⁰⁹ 1692 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹⁶⁹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ¹⁶⁹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁶⁹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ¹⁶⁹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 1697 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ¹⁶⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹⁶⁹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹⁷⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁷⁰¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹⁷⁰² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹⁷⁰³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹⁷⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹⁷⁰⁵ http://www.openmicroscopy.org/site/support/ome-model/ ¹⁷⁰⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹⁷⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ¹⁷⁰⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ¹⁷⁰⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID - Image : Name¹⁷¹⁰ - Pixels : BigEndian¹⁷¹¹ - Pixels : DimensionOrder¹⁷¹² - Pixels : ID¹⁷¹³ - Pixels: Interleaved¹⁷¹⁴ - Pixels : SignificantBits¹⁷¹⁵ - Pixels: SizeC¹⁷¹⁶ - Pixels : SizeT¹⁷¹⁷ - Pixels: SizeX¹⁷¹⁸ - Pixels : SizeY¹⁷¹⁹ - Pixels : SizeZ¹⁷²⁰ - Pixels : Type¹⁷²¹ - Plane : TheC¹⁷²² - Plane : TheT¹⁷²³ - Plane : TheZ¹⁷²⁴ Total unknown or missing: 456 # 19.2.43 IPWReader This page lists supported metadata fields for the Bio-Formats Image-Pro Workspace format reader. These fields are from the OME data model¹⁷²⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 20 of them (4%). - Of those, Bio-Formats fully or partially converts 20 (100%). #### Supported fields ## These fields are fully supported by the Bio-Formats Image-Pro Workspace format reader: - Channel: ID¹⁷²⁶ - Channel : SamplesPerPixel¹⁷²⁷ ¹⁷¹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁷¹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ¹⁷¹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹⁷¹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
¹⁷¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁷¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ¹⁷¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹⁷¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT $^{^{1718}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SizeX$ ¹⁷¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹⁷²⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁷²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹⁷²² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹⁷²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_The I 1724http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_The Z ¹⁷²⁵ http://www.openmicroscopy.org/site/support/ome-model/ ¹⁷²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹⁷²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel - Image : AcquisitionDate¹⁷²⁸ - Image: Description 1729 - Image : ID¹⁷³⁰ - Image: Name¹⁷³¹ - Pixels: BigEndian¹⁷³² - Pixels : DimensionOrder¹⁷³³ - Pixels : ID¹⁷³⁴ - Pixels: Interleaved 1735 - Pixels : SignificantBits¹⁷³⁶ - Pixels : SizeC¹⁷³⁷ - Pixels: SizeT¹⁷³⁸ - Pixels : SizeX¹⁷³⁹ - Pixels : SizeY¹⁷⁴⁰ - Pixels : SizeZ¹⁷⁴¹ - Pixels: Type¹⁷⁴² - Plane: TheC¹⁷⁴³ - Plane: TheT¹⁷⁴⁴ - Plane: TheZ¹⁷⁴⁵ Total unknown or missing: 455 # 19.2.44 ImagicReader This page lists supported metadata fields for the Bio-Formats IMAGIC format reader. These fields are from the OME data model¹⁷⁴⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). $^{{}^{1728}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate and {}^{1728} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate and {}^{1728} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate and {}^{1728} http://www.openmicroscopy.org/Schemas/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionAcq$ ¹⁷²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ¹⁷³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁷³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁷³² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ¹⁷³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹⁷³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ¹⁷³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁷³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ¹⁷³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹⁷³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ¹⁷³⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹⁷⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹⁷⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁷⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹⁷⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹⁷⁴⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹⁷⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹⁷⁴⁶ http://www.openmicroscopy.org/site/support/ome-model/ ## Supported fields #### These fields are fully supported by the Bio-Formats IMAGIC format reader: • Channel: ID¹⁷⁴⁷ • Channel: SamplesPerPixel¹⁷⁴⁸ • Image : AcquisitionDate 1749 • Image : ID¹⁷⁵⁰ • Image : Name¹⁷⁵¹ • Pixels: BigEndian¹⁷⁵² • Pixels: DimensionOrder¹⁷⁵³ • Pixels : ID¹⁷⁵⁴ • Pixels: Interleaved 1755 • Pixels : PhysicalSizeX¹⁷⁵⁶ • Pixels : PhysicalSizeY¹⁷⁵⁷ • Pixels : PhysicalSizeZ¹⁷⁵⁸ • Pixels : SignificantBits 1759 • Pixels : SizeC¹⁷⁶⁰ • Pixels: SizeT¹⁷⁶¹ • Pixels : SizeX¹⁷⁶² • Pixels : SizeY¹⁷⁶³ • Pixels: SizeZ¹⁷⁶⁴ • Pixels: Type¹⁷⁶⁵ • Plane: TheC1766 • Plane : TheT¹⁷⁶⁷ • Plane: TheZ¹⁷⁶⁸ #### **Total supported: 22** # Total unknown or missing: 453 1747 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID 1748 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 1749 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ¹⁷⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁷⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name $^{^{1752}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_BigEndian$ ¹⁷⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder $[\]frac{1754}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_ID}{1755}$ ¹⁷⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁷⁵⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 1757 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY $^{^{1758}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Physical Size Zero and the property of property$ ¹⁷⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ¹⁷⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹⁷⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ¹⁷⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹⁷⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹⁷⁶⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁷⁶⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹⁷⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹⁷⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹⁷⁶⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ## 19.2.45 IMODReader This page lists supported metadata fields for the Bio-Formats IMOD format reader. These fields are from the OME data model¹⁷⁶⁹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 44 of them (9%). - Of those, Bio-Formats fully or partially converts 44 (100%). #### Supported fields #### These fields are fully supported by the Bio-Formats IMOD format reader: ``` • Channel: ID¹⁷⁷⁰ ``` • Channel: SamplesPerPixel¹⁷⁷¹ • Image : AcquisitionDate¹⁷⁷² • Image : ID¹⁷⁷³ • Image: Name¹⁷⁷⁴ • Image: ROIRef¹⁷⁷⁵ • Pixels: BigEndian¹⁷⁷⁶ • Pixels : DimensionOrder¹⁷⁷⁷ • Pixels : ID¹⁷⁷⁸ • Pixels: Interleaved 1779 • Pixels : PhysicalSizeX¹⁷⁸⁰ • Pixels : PhysicalSizeY¹⁷⁸¹ • Pixels : PhysicalSizeZ¹⁷⁸² • Pixels: SignificantBits¹⁷⁸³ • Pixels : SizeC¹⁷⁸⁴ • Pixels: SizeT¹⁷⁸⁵ • Pixels : SizeX¹⁷⁸⁶
• Pixels : SizeY¹⁷⁸⁷ ¹⁷⁶⁹http://www.openmicroscopy.org/site/support/ome-model/ ¹⁷⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID $[\]frac{1771}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html} \\ \text{Channel_SamplesPerPixel} \\ \frac{1772}{\text{constant}} \\ \text{Channel_SamplesPerPixel} \text{Chann$ ¹⁷⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ¹⁷⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁷⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁷⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1775 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID ¹⁷⁷⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ¹⁷⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹⁷⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ¹⁷⁷⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁷⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX $^{^{1781}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Physical Size Yallow and the properties of pro$ ¹⁷⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ¹⁷⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ¹⁷⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ¹⁷⁸⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹⁷⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY • Pixels : SizeZ¹⁷⁸⁸ • Pixels: Type¹⁷⁸⁹ • Plane : TheC¹⁷⁹⁰ • Plane : TheT¹⁷⁹¹ • Plane : TheZ¹⁷⁹² • Point : ID¹⁷⁹³ • Point : StrokeColor¹⁷⁹⁴ • Point : StrokeDashArray¹⁷⁹⁵ • Point : StrokeWidth¹⁷⁹⁶ • Point: TheZ¹⁷⁹⁷ • Point : X¹⁷⁹⁸ • Point : Y^{1799} • Polygon : ID^{1800} • Polygon: Points¹⁸⁰¹ • Polygon : StrokeColor¹⁸⁰² • Polygon : StrokeDashArray¹⁸⁰³ • Polygon : StrokeWidth¹⁸⁰⁴ • Polygon: TheZ¹⁸⁰⁵ • Polyline : ID¹⁸⁰⁶ • Polyline : Points¹⁸⁰⁷ • Polyline : StrokeColor¹⁸⁰⁸ • Polyline : StrokeDashArray¹⁸⁰⁹ • Polyline : StrokeWidth¹⁸¹⁰ • Polyline : TheZ¹⁸¹¹ • ROI: ID1812 • ROI : Name 1813 $^{1788} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeZize Anticological Properties and Properties Anticological Pr$ ¹⁷⁸⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1790 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 1791 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹⁷⁹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹⁷⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ¹⁷⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor 1795 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeDashArray ¹⁷⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth 1797 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ 1798 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Point_X 1799 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Point_Y ¹⁸⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 1801 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_Points 1802 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor 1803 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeDashArray 1804 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth 1805 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ 1806 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 1807 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polyline_Points 1808 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor 1809 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeDashArray 1810 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth 1811 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ 1812 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID ¹⁸¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_Name Total unknown or missing: 431 # 19.2.46 OpenlabReader This page lists supported metadata fields for the Bio-Formats Openlab LIFF format reader. These fields are from the OME data model¹⁸¹⁴. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 32 of them (6%). - Of those, Bio-Formats fully or partially converts 32 (100%). # Supported fields # These fields are fully supported by the Bio-Formats Openlab LIFF format reader: ``` • Channel : ID¹⁸¹⁵ ``` • Channel: Name¹⁸¹⁶ • Channel: SamplesPerPixel¹⁸¹⁷ • Detector : ID¹⁸¹⁸ • Detector: Type¹⁸¹⁹ • DetectorSettings : Gain¹⁸²⁰ • DetectorSettings : ID¹⁸²¹ • DetectorSettings : Offset¹⁸²² • Image : AcquisitionDate¹⁸²³ • Image : ID¹⁸²⁴ • Image : InstrumentRef¹⁸²⁵ • Image : Name¹⁸²⁶ • Instrument : ID¹⁸²⁷ • Pixels: BigEndian¹⁸²⁸ • Pixels: DimensionOrder¹⁸²⁹ • Pixels: ID¹⁸³⁰ • Pixels: Interleaved¹⁸³¹ ¹⁸¹⁴ http://www.openmicroscopy.org/site/support/ome-model/ 1815 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹⁸¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ¹⁸¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ¹⁸¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID 1819 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type $^{^{1820}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Detector Settings_Gain + 1820 http://www.openmicroscopy.org/Schemas/Gain http://www.open$ ¹⁸²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID ¹⁸²² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Offset $^{^{1823}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate$ ¹⁸²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁸²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ¹⁸²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁸²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ¹⁸²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ¹⁸²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹⁸³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1831 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved - Pixels : PhysicalSizeX¹⁸³² - Pixels : PhysicalSizeY¹⁸³³ - Pixels : SignificantBits 1834 - Pixels : SizeC¹⁸³⁵ - Pixels : SizeT¹⁸³⁶ - Pixels : SizeX¹⁸³⁷ - Pixels : SizeY¹⁸³⁸ - Pixels: SizeZ¹⁸³⁹ - Pixels: Type¹⁸⁴⁰ - Plane : PositionX¹⁸⁴¹ - Plane : Position Y^{1842} - Plane : PositionZ¹⁸⁴³ - Plane: TheC¹⁸⁴⁴ - Plane: TheT¹⁸⁴⁵ - Plane: TheZ¹⁸⁴⁶ Total unknown or missing: 443 # 19.2.47 OpenlabRawReader This page lists supported metadata fields for the Bio-Formats Openlab RAW format reader. These fields are from the OME data model 1847. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). #### Supported fields ## These fields are fully supported by the Bio-Formats Openlab RAW format reader: - Channel: ID¹⁸⁴⁸ - Channel: SamplesPerPixel¹⁸⁴⁹ ¹⁸³² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ¹⁸³³
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ¹⁸³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ¹⁸³⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹⁸³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ¹⁸³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹⁸³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹⁸³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁸⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹⁸⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX ¹⁸⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ¹⁸⁴³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ ¹⁸⁴⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 1845 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹⁸⁴⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹⁸⁴⁷ http://www.openmicroscopy.org/site/support/ome-model/ ¹⁸⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹⁸⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel - Image : AcquisitionDate¹⁸⁵⁰ - Image : ID¹⁸⁵¹ - Image: Name¹⁸⁵² - Pixels: BigEndian¹⁸⁵³ - Pixels : DimensionOrder¹⁸⁵⁴ - Pixels : ID¹⁸⁵⁵ - Pixels : Interleaved 1856 - Pixels : SignificantBits¹⁸⁵⁷ - Pixels : SizeC¹⁸⁵⁸ - Pixels : SizeT¹⁸⁵⁹ - Pixels : SizeX¹⁸⁶⁰ - Pixels : SizeY¹⁸⁶¹ - Pixels : SizeZ¹⁸⁶² - Pixels: Type¹⁸⁶³ - Plane : TheC¹⁸⁶⁴ - Plane : TheT¹⁸⁶⁵ - Plane: TheZ¹⁸⁶⁶ Total unknown or missing: 456 # 19.2.48 ImprovisionTiffReader This page lists supported metadata fields for the Bio-Formats Improvision TIFF format reader. These fields are from the OME data model¹⁸⁶⁷. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 25 of them (5%). - Of those, Bio-Formats fully or partially converts 25 (100%). ¹⁸⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁸⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name $^{^{1853}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_BigEndian$ ¹⁸⁵⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ¹⁸⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ¹⁸⁵⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁸⁵⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ¹⁸⁵⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 1859 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ¹⁸⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹⁸⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ¹⁸⁶² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁸⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ¹⁸⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹⁸⁶⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ¹⁸⁶⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ¹⁸⁶⁷ http://www.openmicroscopy.org/site/support/ome-model/ ## Supported fields # These fields are fully supported by the Bio-Formats Improvision TIFF format reader: ``` • Channel : ID¹⁸⁶⁸ ``` • Channel: Name¹⁸⁶⁹ • Channel : SamplesPerPixel¹⁸⁷⁰ • Image : AcquisitionDate¹⁸⁷¹ • Image: Description 1872 • Image : ID¹⁸⁷³ • Image: Name¹⁸⁷⁴ • Pixels: BigEndian¹⁸⁷⁵ • Pixels : DimensionOrder¹⁸⁷⁶ • Pixels : ID¹⁸⁷⁷ • Pixels: Interleaved 1878 • Pixels : PhysicalSizeX¹⁸⁷⁹ • Pixels : PhysicalSizeY¹⁸⁸⁰ • Pixels : PhysicalSizeZ¹⁸⁸¹ • Pixels : SignificantBits¹⁸⁸² • Pixels : SizeC¹⁸⁸³ • Pixels : SizeT¹⁸⁸⁴ • Pixels: SizeX¹⁸⁸⁵ • Pixels : SizeY¹⁸⁸⁶ • Pixels : SizeZ¹⁸⁸⁷ • Pixels: TimeIncrement¹⁸⁸⁸ • Pixels : Type¹⁸⁸⁹ • Plane : TheC¹⁸⁹⁰ • Plane: TheT¹⁸⁹¹ 1890 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 1891 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT $^{^{1868}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ 1869 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name $^{1870} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_Samples Per Pixel Annual Properties of the Company Compan$ 1871 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 1872 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description 1873 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 1874 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1875 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $^{1876} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_DimensionOrder$ 1877 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1878 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁸⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 1880 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 1881 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ¹⁸⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 1883 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 1884 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT $^{1885} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeX$ 1886 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 1887 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁸⁸⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement 1889 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type • Plane: TheZ¹⁸⁹² **Total supported: 25** Total unknown or missing: 450 ### 19.2.49 OBFReader This page lists supported metadata fields for the Bio-Formats OBF format reader. These fields are from the OME data model¹⁸⁹³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). # Supported fields # These fields are fully supported by the Bio-Formats OBF format reader: ``` • Channel: ID¹⁸⁹⁴ ``` • Channel: SamplesPerPixel¹⁸⁹⁵ • Image : AcquisitionDate 1896 • Image: ID1897 • Image: Name¹⁸⁹⁸ • Pixels: BigEndian 1899 • Pixels : DimensionOrder¹⁹⁰⁰ • Pixels : ID¹⁹⁰¹ • Pixels: Interleaved 1902 • Pixels : SignificantBits 1903 • Pixels : SizeC¹⁹⁰⁴ • Pixels: SizeT¹⁹⁰⁵ • Pixels : SizeX¹⁹⁰⁶ • Pixels : SizeY¹⁹⁰⁷ • Pixels : SizeZ¹⁹⁰⁸ • Pixels : Type¹⁹⁰⁹ $^{^{1892}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Plane_TheZ$ ¹⁸⁹³ http://www.openmicroscopy.org/site/support/ome-model/ ¹⁸⁹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹⁸⁹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ¹⁸⁹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ¹⁸⁹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁸⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁸⁹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $^{^{1900}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_DimensionOrder$ ¹⁹⁰¹
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ¹⁹⁰² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ¹⁹⁰³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ¹⁹⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹⁹⁰⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1906 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹⁹⁰⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁹⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type Plane : TheC¹⁹¹⁰ Plane : TheT¹⁹¹¹ Plane : TheZ¹⁹¹² **Total supported: 19** Total unknown or missing: 456 ### 19.2.50 InCellReader This page lists supported metadata fields for the Bio-Formats InCell 1000/2000 format reader. These fields are from the OME data model¹⁹¹³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 67 of them (14%). - Of those, Bio-Formats fully or partially converts 67 (100%). ## Supported fields ## These fields are fully supported by the Bio-Formats InCell 1000/2000 format reader: Channel: EmissionWavelength¹⁹¹⁴ Channel: ExcitationWavelength¹⁹¹⁵ Channel: ID¹⁹¹⁶ • Channel : Name¹⁹¹⁷ • Channel: SamplesPerPixel¹⁹¹⁸ • Detector : ID¹⁹¹⁹ • Detector : Model¹⁹²⁰ • Detector: Type 1921 • DetectorSettings : Binning¹⁹²² • DetectorSettings : Gain¹⁹²³ • DetectorSettings : ID¹⁹²⁴ • Experiment : ID^{1925} • Experiment : Type¹⁹²⁶ • Image : AcquisitionDate 1927 $^{^{1910}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Plane_The Comparison of the of$ 1911 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 1912 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 1913 http://www.openmicroscopy.org/site/support/ome-model/ 1914 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength 1915 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength 1916 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID 1917 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name 1918 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Channel SamplesPerPixel 1919 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID 1920 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 1921 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type 1922 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning 1923 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain 1924 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID 1925 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_ID 1926 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_Type 1927 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ``` • Image: Description 1928 ``` • Image : ID¹⁹³⁰ • Image : InstrumentRef¹⁹³¹ • Image : Name¹⁹³² • ImagingEnvironment : Temperature 1933 • Instrument : ID¹⁹³⁴ • Objective : Correction 1935 • Objective : ID¹⁹³⁶ • Objective : Immersion 1937 • Objective : LensNA¹⁹³⁸ • Objective : Manufacturer 1939 • Objective : NominalMagnification 1940 • ObjectiveSettings : ID¹⁹⁴¹ • ObjectiveSettings : RefractiveIndex 1942 • Pixels : BigEndian 1943 • Pixels: DimensionOrder 1944 • Pixels : ID¹⁹⁴⁵ • Pixels: Interleaved 1946 • Pixels : PhysicalSizeX¹⁹⁴⁷ • Pixels : PhysicalSizeY¹⁹⁴⁸ • Pixels : SignificantBits 1949 • Pixels : SizeC¹⁹⁵⁰ • Pixels : SizeT¹⁹⁵¹ • Pixels : SizeX¹⁹⁵² • Pixels : SizeY¹⁹⁵³ ``` ^{1928} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_Description 1929 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimentRef_ID 1930 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 1931 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 1932 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 1933 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature ¹⁹³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 1935 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction ¹⁹³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID 1937 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion 1938 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA 1939 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer 1940 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification 1941 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID 1942 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex 1943 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels BigEndian 1944 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 1945 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 1946 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 1947 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 1948 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 1949 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 1950 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹⁹⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 1952 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ``` 1953 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY [•] Image : ExperimentRef¹⁹²⁹ ``` Pixels: SizeZ¹⁹⁵⁴ Pixels: Type¹⁹⁵⁵ ``` • Plane : DeltaT¹⁹⁵⁶ • Plane : ExposureTime¹⁹⁵⁷ • Plane : PositionX¹⁹⁵⁸ • Plane : PositionY¹⁹⁵⁹ • Plane : PositionZ¹⁹⁶⁰ • Plane : TheC¹⁹⁶¹ • Plane : TheT¹⁹⁶² • Plane : TheZ¹⁹⁶³ • Plate : ColumnNamingConvention¹⁹⁶⁴ • Plate : ID¹⁹⁶⁵ • Plate: Name 1966 • Plate: RowNamingConvention¹⁹⁶⁷ • Plate: WellOriginX¹⁹⁶⁸ • Plate: WellOriginY¹⁹⁶⁹ • PlateAcquisition : ID¹⁹⁷⁰ • PlateAcquisition : MaximumFieldCount¹⁹⁷¹ • PlateAcquisition : WellSampleRef¹⁹⁷² • Well: Column¹⁹⁷³ • Well: ID¹⁹⁷⁴ • Well : Row¹⁹⁷⁵ • WellSample : ID¹⁹⁷⁶ • WellSample : ImageRef¹⁹⁷⁷ • WellSample : Index 1978 • WellSample : Position X^{1979} ``` 1954 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 1955 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 1956 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT 1957 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime 1958 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX 1959 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY 1960 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ 1961 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ¹⁹⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 1963 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 1964 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW xsd.html#Plate ColumnNamingConvention 1965 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID 1966 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Name 1967 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_RowNamingConvention ¹⁹⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_WellOriginX 1969
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_WellOriginY 1970 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_ID 1971 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW xsd.html#PlateAcquisition MaximumFieldCount 1972 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSampleRef_ID 1973 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column 1974 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID 1975 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row 1976 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID 1977 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImageRef_ID 1978 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index ¹⁹⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionX ``` • WellSample : PositionY¹⁹⁸⁰ **Total supported: 67** Total unknown or missing: 408 ## 19.2.51 InCell3000Reader This page lists supported metadata fields for the Bio-Formats InCell 3000 format reader. These fields are from the OME data model¹⁹⁸¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). # Supported fields # These fields are fully supported by the Bio-Formats InCell 3000 format reader: ``` • Channel : ID¹⁹⁸² ``` • Channel: SamplesPerPixel¹⁹⁸³ • Image : AcquisitionDate¹⁹⁸⁴ • Image: ID1985 • Image: Name 1986 • Pixels: BigEndian 1987 • Pixels : DimensionOrder 1988 • Pixels: ID¹⁹⁸⁹ • Pixels: Interleaved 1990 • Pixels : SignificantBits 1991 • Pixels : SizeC¹⁹⁹² • Pixels : SizeT¹⁹⁹³ • Pixels : SizeX¹⁹⁹⁴ • Pixels : SizeY¹⁹⁹⁵ • Pixels : SizeZ¹⁹⁹⁶ • Pixels : Type¹⁹⁹⁷ ¹⁹⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionY ¹⁹⁸¹ http://www.openmicroscopy.org/site/support/ome-model/ ¹⁹⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ¹⁹⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ¹⁹⁸⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ¹⁹⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ¹⁹⁸⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ¹⁹⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $^{^{1988}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_DimensionOrder$ ¹⁹⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID $^{{\}it 1990} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Interleaved and the control of the$ ¹⁹⁹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ¹⁹⁹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ¹⁹⁹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ¹⁹⁹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ¹⁹⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ¹⁹⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ^{19.2.} Metadata fields 298 Plane : TheC¹⁹⁹⁸ Plane : TheT¹⁹⁹⁹ Plane : TheZ²⁰⁰⁰ **Total supported: 19** Total unknown or missing: 456 #### 19.2.52 INRReader This page lists supported metadata fields for the Bio-Formats INR format reader. These fields are from the OME data model²⁰⁰¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). # **Supported fields** ### These fields are fully supported by the Bio-Formats INR format reader: • Channel: ID²⁰⁰² • Channel: SamplesPerPixel²⁰⁰³ • Image : AcquisitionDate²⁰⁰⁴ • Image : ID²⁰⁰⁵ • Image: Name²⁰⁰⁶ • Pixels: BigEndian²⁰⁰⁷ • Pixels : DimensionOrder²⁰⁰⁸ • Pixels : ID²⁰⁰⁹ • Pixels: Interleaved²⁰¹⁰ • Pixels : PhysicalSizeX²⁰¹¹ \bullet Pixels: PhysicalSizeY 2012 • Pixels : PhysicalSizeZ²⁰¹³ • Pixels : SignificantBits²⁰¹⁴ • Pixels : SizeC²⁰¹⁵ $^{^{1998}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Compared to the c$ ¹⁹⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁰⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²⁰⁰¹http://www.openmicroscopy.org/site/support/ome-model/ 2002 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁰⁰³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ${}^{2004}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate}$ ²⁰⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁰⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁰⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁰⁰⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁰⁰⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁰¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁰¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁰¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY $^{2013} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Physical Size Z$ ²⁰¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁰¹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC Pixels: SizeT²⁰¹⁶ Pixels: SizeX²⁰¹⁷ Pixels: SizeY²⁰¹⁸ Pixels: SizeZ²⁰¹⁹ Pixels: Type²⁰²⁰ Plane : TheT²⁰²² Plane : TheZ²⁰²³ • Plane: TheC²⁰²¹ Total supported: 22 Total unknown or missing: 453 #### 19.2.53 InveonReader This page lists supported metadata fields for the Bio-Formats Inveon format reader. These fields are from the OME data model²⁰²⁴. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 30 of them (6%). - Of those, Bio-Formats fully or partially converts 30 (100%). ## Supported fields # These fields are fully supported by the Bio-Formats Inveon format reader: • Channel: ID²⁰²⁵ • Channel: SamplesPerPixel²⁰²⁶ • Experimenter : ID²⁰²⁷ Experimenter: Institution²⁰²⁸ Experimenter: UserName²⁰²⁹ • Image : AcquisitionDate²⁰³⁰ • Image: Description²⁰³¹ • Image : ExperimenterRef²⁰³² • Image : ID²⁰³³ $\overline{^{2016}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \\ \# Pixels_SizeTerministry (Control of the Control th$ ²⁰¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁰¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁰¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁰²⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 2021 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁰²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁰²³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²⁰²⁴http://www.openmicroscopy.org/site/support/ome-model/ ²⁰²⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁰²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁰²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID ²⁰²⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_Institution ²⁰²⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_UserName
${}^{2030}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate}$ ²⁰³¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ${}^{2032} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#ExperimenterRef_ID$ ²⁰³³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID • Image : InstrumentRef²⁰³⁴ • Image: Name²⁰³⁵ • Instrument : ID²⁰³⁶ • Microscope : Model²⁰³⁷ • Pixels: BigEndian²⁰³⁸ • Pixels : DimensionOrder²⁰³⁹ • Pixels : ID²⁰⁴⁰ • Pixels : Interleaved²⁰⁴¹ • Pixels : PhysicalSizeX²⁰⁴² • Pixels : PhysicalSizeY²⁰⁴³ • Pixels : PhysicalSizeZ²⁰⁴⁴ • Pixels : SignificantBits²⁰⁴⁵ • Pixels : SizeC²⁰⁴⁶ • Pixels : SizeT²⁰⁴⁷ • Pixels: SizeX²⁰⁴⁸ • Pixels : SizeY²⁰⁴⁹ • Pixels : SizeZ²⁰⁵⁰ • Pixels : Type²⁰⁵¹ • Plane : TheC²⁰⁵² • Plane : TheT²⁰⁵³ • Plane : The Z^{2054} **Total supported: 30** Total unknown or missing: 445 #### 19.2.54 IvisionReader This page lists supported metadata fields for the Bio-Formats IVision format reader. These fields are from the OME data model²⁰⁵⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ``` ^{2034} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#InstrumentRef_ID ^{2035} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_Name ^{2036} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Instrument_ID ``` ²⁰³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²⁰³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $[\]frac{2039}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_DimensionOrder}{2040} \text{ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_ID}$ ²⁰⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁰⁴²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁰⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²⁰⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ²⁰⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁰⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC $^{{}^{2047}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_SizeT} \\ {}^{2048}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_SizeX} \\ {}^{2048}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_SizeX} \\ {}^{2048}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_SizeX} \\ {}^{2048}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX} {}^{2048}http://www.openmicr$ ²⁰⁴⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁰⁵⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁰⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁰⁵²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Plane TheC ²⁰⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁰⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²⁰⁵⁵http://www.openmicroscopy.org/site/support/ome-model/ #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 34 of them (7%). - Of those, Bio-Formats fully or partially converts 34 (100%). ### Supported fields #### These fields are fully supported by the Bio-Formats IVision format reader: • Channel: ID²⁰⁵⁶ • Channel: SamplesPerPixel²⁰⁵⁷ • Detector : ID²⁰⁵⁸ • Detector : Type²⁰⁵⁹ • DetectorSettings : Binning²⁰⁶⁰ • DetectorSettings : Gain²⁰⁶¹ • DetectorSettings : ID²⁰⁶² • Image : AcquisitionDate²⁰⁶³ • Image : ID²⁰⁶⁴ • Image : InstrumentRef²⁰⁶⁵ • Image: Name²⁰⁶⁶ • Instrument : ID²⁰⁶⁷ • Objective: Correction²⁰⁶⁸ • Objective : ID²⁰⁶⁹ • Objective : Immersion²⁰⁷⁰ • Objective : LensNA²⁰⁷¹ • Objective : Nominal Magnification ²⁰⁷² • ObjectiveSettings : ID²⁰⁷³ • ObjectiveSettings: RefractiveIndex²⁰⁷⁴ • Pixels : BigEndian²⁰⁷⁵ • Pixels: DimensionOrder²⁰⁷⁶ • Pixels : ID²⁰⁷⁷ ²⁰⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁰⁵⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁰⁵⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Detector ID ²⁰⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ²⁰⁶⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning ²⁰⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain ²⁰⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID ²⁰⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁰⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁰⁶⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ²⁰⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁰⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ${}^{2068} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Objective_Correction$ ²⁰⁶⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID ²⁰⁷⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion ²⁰⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA ²⁰⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification ²⁰⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID ²⁰⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex ²⁰⁷⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels BigEndian ²⁰⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁰⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID - Pixels: Interleaved²⁰⁷⁸ - Pixels : SignificantBits²⁰⁷⁹ - Pixels : SizeC²⁰⁸⁰ - Pixels : SizeT²⁰⁸¹ - Pixels : SizeX²⁰⁸² - Pixels : SizeY²⁰⁸³ - Pixels : SizeZ²⁰⁸⁴ - Pixels: TimeIncrement²⁰⁸⁵ - Pixels: Type²⁰⁸⁶ - Plane: TheC²⁰⁸⁷ - Plane : TheT²⁰⁸⁸ - Plane: TheZ²⁰⁸⁹ Total unknown or missing: 441 ## 19.2.55 IPLabReader This page lists supported metadata fields for the Bio-Formats IPLab format reader. These fields are from the OME data model²⁰⁹⁰. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 31 of them (6%). - Of those, Bio-Formats fully or partially converts 31 (100%). # Supported fields #### These fields are fully supported by the Bio-Formats IPLab format reader: - Channel: ID²⁰⁹¹ - Channel: SamplesPerPixel²⁰⁹² - Image : AcquisitionDate²⁰⁹³ - Image: Description²⁰⁹⁴ - Image : ID²⁰⁹⁵ $[\]overline{^{2078}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \\ \# Pixels_Interleaved$ ²⁰⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits $^{^{2080}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SizeC$ ²⁰⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁰⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁰⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁰⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeZ ²⁰⁸⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement ²⁰⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁰⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁰⁸⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁰⁸⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²⁰⁹⁰http://www.openmicroscopy.org/site/support/ome-model/ ²⁰⁹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID
$^{{}^{2092}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Channel_SamplesPerPixel$ ²⁰⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁰⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ²⁰⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID • Image : Name²⁰⁹⁶ • Image: ROIRef²⁰⁹⁷ • Pixels: BigEndian²⁰⁹⁸ • Pixels : DimensionOrder²⁰⁹⁹ • Pixels : ID²¹⁰⁰ • Pixels : Interleaved²¹⁰¹ • Pixels : PhysicalSizeX²¹⁰² • Pixels : PhysicalSizeY²¹⁰³ • Pixels : SignificantBits²¹⁰⁴ • Pixels : SizeC²¹⁰⁵ • Pixels : SizeT²¹⁰⁶ • Pixels : SizeX²¹⁰⁷ • Pixels : SizeY²¹⁰⁸ • Pixels : SizeZ²¹⁰⁹ • Pixels: TimeIncrement²¹¹⁰ • Pixels : Type²¹¹¹ • Plane: DeltaT²¹¹² • Plane : TheC²¹¹³ • Plane: TheT²¹¹⁴ • Plane: TheZ²¹¹⁵ • ROI : ID²¹¹⁶ • Rectangle : Height²¹¹⁷ • Rectangle : ID²¹¹⁸ • Rectangle : Width²¹¹⁹ • Rectangle : X^{2120} • Rectangle : Y^{2121} ²⁰⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID ²⁰⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁰⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²¹⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ${}^{2101}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_Interleaved$ ²¹⁰²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²¹⁰³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²¹⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²¹⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²¹⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²¹⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²¹⁰⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²¹⁰⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²¹¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement ²¹¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²¹¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT ²¹¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Plane TheC ²¹¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²¹¹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²¹¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID ²¹¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Height ²¹¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID $^{2119} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html \# Rectangle_Width Matter and Matter$ ²¹²⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_X ²¹²¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Y Total unknown or missing: 444 #### 19.2.56 JEOLReader This page lists supported metadata fields for the Bio-Formats JEOL format reader. These fields are from the OME data model²¹²². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). # Supported fields # These fields are fully supported by the Bio-Formats JEOL format reader: ``` • Channel : ID²¹²³ ``` • Channel: SamplesPerPixel²¹²⁴ • Image : AcquisitionDate²¹²⁵ • Image : ID²¹²⁶ • Image: Name²¹²⁷ • Pixels: BigEndian²¹²⁸ • Pixels : DimensionOrder²¹²⁹ • Pixels : ID²¹³⁰ • Pixels : Interleaved²¹³¹ • Pixels : SignificantBits²¹³² • Pixels : SizeC²¹³³ • Pixels : SizeT²¹³⁴ • Pixels: SizeX²¹³⁵ • Pixels: SizeY²¹³⁶ • Pixels : SizeZ²¹³⁷ • Pixels : Type²¹³⁸ • Plane : TheC²¹³⁹ ²¹²²http://www.openmicroscopy.org/site/support/ome-model/ $^{{}^{2123}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ ²¹²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel $^{{}^{2125}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDates.$ ²¹²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²¹²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²¹²⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²¹³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²¹³¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²¹³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²¹³³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²¹³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²¹³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²¹³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²¹³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²¹³⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²¹³⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC Plane : TheT²¹⁴⁰ Plane : TheZ²¹⁴¹ **Total supported: 19** Total unknown or missing: 456 ## 19.2.57 JPEG2000Reader This page lists supported metadata fields for the Bio-Formats JPEG-2000 format reader. These fields are from the OME data model²¹⁴². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ## Supported fields These fields are fully supported by the Bio-Formats JPEG-2000 format reader: ``` • Channel: ID²¹⁴³ ``` • Channel: SamplesPerPixel²¹⁴⁴ • Image : AcquisitionDate²¹⁴⁵ • Image: ID²¹⁴⁶ • Image: Name²¹⁴⁷ • Pixels: BigEndian²¹⁴⁸ • Pixels : DimensionOrder²¹⁴⁹ • Pixels: ID²¹⁵⁰ • Pixels: Interleaved²¹⁵¹ • Pixels : SignificantBits²¹⁵² • Pixels : SizeC²¹⁵³ • Pixels: SizeT²¹⁵⁴ • Pixels : SizeX²¹⁵⁵ • Pixels : SizeY²¹⁵⁶ • Pixels: SizeZ²¹⁵⁷ $^{^{2140}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Total T$ ²¹⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²¹⁴²http://www.openmicroscopy.org/site/support/ome-model/ ²¹⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²¹⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²¹⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²¹⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²¹⁴⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²¹⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $[\]frac{2149}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_DimensionOrder}{2150}$ $[\]frac{2150}{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_ID}{2151} \\ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_Interleaved$ ²¹⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²¹⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²¹⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²¹⁵⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²¹⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY $^{{}^{2157}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SizeZ$ • Pixels: Type²¹⁵⁸ • Plane: TheC²¹⁵⁹ • Plane : TheT²¹⁶⁰ • Plane: TheZ²¹⁶¹ **Total supported: 19** Total unknown or missing: 456 ## 19.2.58 JPEGReader This page lists supported metadata fields for the Bio-Formats JPEG format reader. These fields are from the OME data model²¹⁶². Bio-Formats standardizes each
format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ## Supported fields ### These fields are fully supported by the Bio-Formats JPEG format reader: • Channel: ID²¹⁶³ • Channel: SamplesPerPixel²¹⁶⁴ • Image : AcquisitionDate²¹⁶⁵ • Image: ID²¹⁶⁶ • Image: Name²¹⁶⁷ • Pixels: BigEndian²¹⁶⁸ • Pixels : DimensionOrder²¹⁶⁹ • Pixels : ID²¹⁷⁰ • Pixels : Interleaved²¹⁷¹ • Pixels : SignificantBits²¹⁷² • Pixels: SizeC²¹⁷³ • Pixels: SizeT²¹⁷⁴ • Pixels : SizeX²¹⁷⁵ $^{^{2158}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Typerated/OME-2013-06/ome_xsd.html Pixels_Type$ ²¹⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²¹⁶⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²¹⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²¹⁶²http://www.openmicroscopy.org/site/support/ome-model/ ²¹⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²¹⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²¹⁶⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate $^{{}^{2166}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_ID$ ²¹⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²¹⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $^{^{2169}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_DimensionOrder$ ²¹⁷⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²¹⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²¹⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²¹⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²¹⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²¹⁷⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX • Pixels : SizeY²¹⁷⁶ • Pixels : SizeZ²¹⁷⁷ • Pixels : Type²¹⁷⁸ • Plane : TheC²¹⁷⁹ • Plane : TheT²¹⁸⁰ • Plane : $TheZ^{2181}$ Total supported: 19 Total unknown or missing: 456 # 19.2.59 JPKReader This page lists supported metadata fields for the Bio-Formats JPK Instruments format reader. These fields are from the OME data model²¹⁸². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). # **Supported fields** ## These fields are fully supported by the Bio-Formats JPK Instruments format reader: • Channel: ID²¹⁸³ • Channel: SamplesPerPixel²¹⁸⁴ • Image : AcquisitionDate²¹⁸⁵ • Image: ID²¹⁸⁶ • Image: Name²¹⁸⁷ • Pixels: BigEndian²¹⁸⁸ • Pixels : DimensionOrder²¹⁸⁹ • Pixels : ID²¹⁹⁰ • Pixels : Interleaved²¹⁹¹ • Pixels : SignificantBits²¹⁹² • Pixels : SizeC²¹⁹³ ²¹⁷⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 2177 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²¹⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²¹⁸²http://www.openmicroscopy.org/site/support/ome-model/ ²¹⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²¹⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²¹⁸⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²¹⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²¹⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²¹⁸⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²¹⁸⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²¹⁹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²¹⁹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²¹⁹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²¹⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC Pixels: SizeT²¹⁹⁴ Pixels: SizeX²¹⁹⁵ Pixels: SizeY²¹⁹⁶ Pixels: SizeZ²¹⁹⁷ Pixels: Type²¹⁹⁸ Plane: TheC²¹⁹⁹ Plane : TheT²²⁰⁰ Plane : TheZ²²⁰¹ Total supported: 19 Total unknown or missing: 456 ## 19.2.60 JPXReader This page lists supported metadata fields for the Bio-Formats JPX format reader. These fields are from the OME data model²²⁰². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ## Supported fields # These fields are fully supported by the Bio-Formats JPX format reader: • Channel : ID²²⁰³ • Channel: SamplesPerPixel²²⁰⁴ • Image : AcquisitionDate²²⁰⁵ • Image : ID²²⁰⁶ • Image: Name²²⁰⁷ • Pixels: BigEndian²²⁰⁸ • Pixels : DimensionOrder²²⁰⁹ • Pixels: ID²²¹⁰ • Pixels: Interleaved²²¹¹ $^{^{2194}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeT$ ²¹⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²¹⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²¹⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²¹⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²¹⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²²⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²²⁰¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²²⁰²http://www.openmicroscopy.org/site/support/ome-model/ ²²⁰³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²²⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel $\frac{2205}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate}$ ²²⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²²⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²²⁰⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ${\it 2209} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_DimensionOrder and {\it Constitution} and {\it Constitution} are also as a constitution of the constitu$ ²²¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²²¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved • Pixels : SignificantBits²²¹² • Pixels : SizeC²²¹³ • Pixels: SizeT²²¹⁴ • Pixels : SizeX²²¹⁵ • Pixels : SizeY²²¹⁶ • Pixels : SizeZ²²¹⁷ • Pixels: Type²²¹⁸ • Plane: TheC²²¹⁹ • Plane: TheT²²²⁰ • Plane: TheZ²²²¹ ### Total supported: 19 Total unknown or missing: 456 #### 19.2.61 KhorosReader This page lists supported metadata fields for the Bio-Formats Khoros XV format reader. These fields are from the OME data model²²²². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ## Supported fields #### These fields are fully supported by the Bio-Formats Khoros XV format reader: • Channel : ID²²²³ • Channel: SamplesPerPixel²²²⁴ • Image : AcquisitionDate²²²⁵ • Image : ID²²²⁶ • Image: Name²²²⁷ • Pixels : BigEndian²²²⁸ • Pixels : DimensionOrder²²²⁹ $^{{}^{2212}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits$ ²²¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC
²²¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²²¹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²²¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²²¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²²¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²²¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²²²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²²²¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²²²²http://www.openmicroscopy.org/site/support/ome-model/ ²²²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²²²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²²²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 2226 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²²²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²²²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²²²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder • Pixels : ID²²³⁰ • Pixels: Interleaved²²³¹ • Pixels : SignificantBits²²³² • Pixels : SizeC²²³³ • Pixels: SizeT²²³⁴ • Pixels : SizeX²²³⁵ • Pixels : SizeY²²³⁶ • Pixels : SizeZ²²³⁷ • Pixels: Type²²³⁸ • Plane: TheC²²³⁹ • Plane : TheT²²⁴⁰ • Plane: TheZ²²⁴¹ **Total supported: 19** Total unknown or missing: 456 ## 19.2.62 KodakReader This page lists supported metadata fields for the Bio-Formats Kodak Molecular Imaging format reader. These fields are from the OME data model²²⁴². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 26 of them (5%). - Of those, Bio-Formats fully or partially converts 26 (100%). # Supported fields #### These fields are fully supported by the Bio-Formats Kodak Molecular Imaging format reader: • Channel: ID²²⁴³ • Channel : SamplesPerPixel²²⁴⁴ • Image : AcquisitionDate²²⁴⁵ • Image : ID²²⁴⁶ • Image : InstrumentRef²²⁴⁷ ²²³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²²³¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²²³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²²³³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²²³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²²³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²²³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²²³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²²³⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels Type ²²³⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²²⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²²⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²²⁴²http://www.openmicroscopy.org/site/support/ome-model/ ²²⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID $^{{}^{2244}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_Samples Per Pixel Pixel$ ²²⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²²⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²²⁴⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID • Image: Name²²⁴⁸ • ImagingEnvironment : Temperature²²⁴⁹ • Instrument : ID²²⁵⁰ • Microscope : Model²²⁵¹ • Pixels: BigEndian²²⁵² • Pixels : DimensionOrder²²⁵³ • Pixels : ID²²⁵⁴ • Pixels: Interleaved²²⁵⁵ • Pixels : PhysicalSizeX²²⁵⁶ • Pixels : PhysicalSizeY²²⁵⁷ • Pixels : SignificantBits²²⁵⁸ • Pixels: SizeC²²⁵⁹ • Pixels : SizeT²²⁶⁰ • Pixels: SizeX²²⁶¹ • Pixels: SizeY²²⁶² • Pixels : SizeZ²²⁶³ • Pixels : Type²²⁶⁴ • Plane : ExposureTime²²⁶⁵ • Plane: TheC²²⁶⁶ • Plane: TheT²²⁶⁷ • Plane: TheZ²²⁶⁸ **Total supported: 26** Total unknown or missing: 449 #### 19.2.63 LiFlimReader This page lists supported metadata fields for the Bio-Formats LI-FLIM format reader. These fields are from the OME data model²²⁶⁹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. $^{{\}color{blue}{}^{2248}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_Name$ ²²⁴⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature ²²⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ²²⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²²⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²²⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²²⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²²⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²²⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²²⁵⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²²³/http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²²⁵⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²²⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²²⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²²⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²²⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²²⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²²⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type $^{{\}it 2265} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_Exposure Time$ ²²⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²²⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT $^{{}^{2268}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Zames and the properties of of$ ²²⁶⁹http://www.openmicroscopy.org/site/support/ome-model/ #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 25 of them (5%). - Of those, Bio-Formats fully or partially converts 25 (100%). #### Supported fields #### These fields are fully supported by the Bio-Formats LI-FLIM format reader: ``` • Channel: ID²²⁷⁰ ``` • Channel: SamplesPerPixel²²⁷¹ • Image : AcquisitionDate²²⁷² • Image : ID²²⁷³ • Image: Name²²⁷⁴ • Image: ROIRef²²⁷⁵ • Pixels: BigEndian²²⁷⁶ • Pixels : DimensionOrder²²⁷⁷ • Pixels : ID²²⁷⁸ • Pixels: Interleaved²²⁷⁹ • Pixels : SignificantBits²²⁸⁰ • Pixels: SizeC²²⁸¹ • Pixels: SizeT²²⁸² • Pixels : SizeX²²⁸³ • Pixels : SizeY²²⁸⁴ • Pixels: SizeZ²²⁸⁵ • Pixels: Type²²⁸⁶ • Plane : DeltaT²²⁸⁷ • Plane : ExposureTime²²⁸⁸ • Plane: TheC²²⁸⁹ • Plane: TheT²²⁹⁰ • Plane : TheZ²²⁹¹ ²²⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²²⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²²⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²²⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Image Name ²²⁷⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID ²²⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²²⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²²⁷⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²²⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved $^{{\}it 2280} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits$
²²⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²²⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²²⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²²⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²²⁸⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²²⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²²⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT ²²⁸⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ²²⁸⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²²⁹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²²⁹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ • Polygon: ID²²⁹² • Polygon: Points²²⁹³ • ROI : ID²²⁹⁴ Total supported: 25 Total unknown or missing: 450 # 19.2.64 ImspectorReader This page lists supported metadata fields for the Bio-Formats Lavision Imspector format reader. These fields are from the OME data model²²⁹⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ## Supported fields ### These fields are fully supported by the Bio-Formats Lavision Imspector format reader: • Channel : ID²²⁹⁶ • Channel: SamplesPerPixel²²⁹⁷ • Image : AcquisitionDate²²⁹⁸ • Image : ID²²⁹⁹ • Image: Name²³⁰⁰ • Pixels: BigEndian²³⁰¹ • Pixels : DimensionOrder²³⁰² • Pixels: ID²³⁰³ • Pixels: Interleaved²³⁰⁴ • Pixels : SignificantBits²³⁰⁵ • Pixels: SizeC²³⁰⁶ • Pixels : SizeT²³⁰⁷ • Pixels: SizeX²³⁰⁸ • Pixels : SizeY²³⁰⁹ $^{{\}color{blue} {}^{2292}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html \#Shape_ID$ ²²⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_Points ²²⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID ²²⁹⁵http://www.openmicroscopy.org/site/support/ome-model/ ²²⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²²⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²²⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²²⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²³⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²³⁰¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²³⁰²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²³⁰³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID $^{^{2304}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_Interleaved$ ²³⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²³⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²³⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT $^{{\}it 2308} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeX$ ²³⁰⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY Pixels: SizeZ²³¹⁰ Pixels: Type²³¹¹ Plane: TheC²³¹² Plane: TheT²³¹³ Plane: TheZ²³¹⁴ Total supported: 19 Total unknown or missing: 456 #### 19.2.65 LeicaReader This page lists supported metadata fields for the Bio-Formats Leica format reader. These fields are from the OME data model²³¹⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 56 of them (11%). - Of those, Bio-Formats fully or partially converts 56 (100%). # Supported fields # These fields are fully supported by the Bio-Formats Leica format reader: • Channel : Color²³¹⁶ • Channel: EmissionWavelength²³¹⁷ • Channel: ExcitationWavelength²³¹⁸ • Channel: ID²³¹⁹ • Channel: Name²³²⁰ • Channel : PinholeSize²³²¹ • Channel: SamplesPerPixel²³²² • Detector: ID²³²³ • Detector : Offset²³²⁴ • Detector : Type²³²⁵ • Detector : Voltage²³²⁶ • DetectorSettings : ID²³²⁷ ²³¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²³¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²³¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²³¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²³¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²³¹⁵http://www.openmicroscopy.org/site/support/ome-model/ ²³¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Color ²³¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength ²³¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength ²³¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID $^{{}^{2321}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_PinholeSize$ ²³²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²³²³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ²³²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Offset ²³²⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ²³²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Voltage ²³²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID • Filter : ID²³²⁸ • Filter: Model²³²⁹ • Image : AcquisitionDate²³³⁰ • Image : Description²³³¹ • Image : ID²³³² • Image : InstrumentRef²³³³ • Image : Name²³³⁴ • Instrument : ID²³³⁵ • LightPath : EmissionFilterRef²³³⁶ • Objective : Correction²³³⁷ • Objective : ID²³³⁸ • Objective : Immersion²³³⁹ • Objective : LensNA²³⁴⁰ • Objective : Model²³⁴¹ • Objective : NominalMagnification²³⁴² • Objective : SerialNumber²³⁴³ • ObjectiveSettings : ID²³⁴⁴ • ObjectiveSettings : RefractiveIndex²³⁴⁵ • Pixels: BigEndian²³⁴⁶ • Pixels: DimensionOrder²³⁴⁷ • Pixels : ID²³⁴⁸ • Pixels: Interleaved²³⁴⁹ • Pixels : PhysicalSizeX²³⁵⁰ • Pixels: PhysicalSizeY²³⁵¹ • Pixels : PhysicalSizeZ²³⁵² • Pixels : SignificantBits²³⁵³ ``` 2328 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID ²³²⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²³³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²³³¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ²³³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID {}^{2333} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#InstrumentRef_ID ²³³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²³³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ²³³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID ²³³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction 2338 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID ²³³⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion ²³⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA ²³⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ^{2342} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Objective_Nominal Magnification ²³⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber {}^{2344} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#ObjectiveSettings_ID ²³⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#ObjectiveSettings RefractiveIndex ²³⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²³⁴⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder
²³⁴⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²³⁴⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²³⁵⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX {\it 2351} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Physical SizeY. The property of ²³⁵²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ²³⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ``` - Pixels : SizeC²³⁵⁴ - Pixels : SizeT²³⁵⁵ - Pixels : SizeX²³⁵⁶ - Pixels : SizeY²³⁵⁷ - Pixels : SizeZ²³⁵⁸ - Pixels: TimeIncrement²³⁵⁹ - Pixels : Type²³⁶⁰ - Plane : DeltaT²³⁶¹ - Plane : ExposureTime²³⁶² - Plane : PositionX²³⁶³ - Plane : PositionY²³⁶⁴ - Plane : TheC²³⁶⁵ - Plane : TheT²³⁶⁶ - Plane: TheZ²³⁶⁷ - StageLabel: Name²³⁶⁸ - StageLabel : Z^{2369} - TransmittanceRange : CutIn²³⁷⁰ - TransmittanceRange : CutOut²³⁷¹ Total unknown or missing: 419 # 19.2.66 LIFReader This page lists supported metadata fields for the Bio-Formats Leica Image File Format format reader. These fields are from the OME data model²³⁷². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - \bullet The file format itself supports 85 of them (17%). - Of those, Bio-Formats fully or partially converts 85 (100%). ²³⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC $^{{\}color{blue}2355 \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SizeT}$ ²³⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²³⁵⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²³⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement ¹³⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²³⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT ²³⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ²³⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX ²³⁶⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ²³⁶⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²³⁶⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²³⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²³⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#StageLabel_Name ²³⁶⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#StageLabel_Z ²³⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutIn $^{^{2371}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Transmittance Range_CutOut$ ²³⁷²http://www.openmicroscopy.org/site/support/ome-model/ # Supported fields ### These fields are fully supported by the Bio-Formats Leica Image File Format format reader: ``` • Channel: Color²³⁷³ ``` • Channel: ExcitationWavelength²³⁷⁴ • Channel: ID²³⁷⁵ • Channel: LightSourceSettingsAttenuation²³⁷⁶ • Channel : LightSourceSettingsID²³⁷⁷ • Channel: Name²³⁷⁸ • Channel: PinholeSize²³⁷⁹ • Channel: SamplesPerPixel²³⁸⁰ • Detector: ID²³⁸¹ • Detector: Model²³⁸² • Detector : Offset²³⁸³ • Detector : Type²³⁸⁴ • Detector: Zoom²³⁸⁵ • DetectorSettings : Gain²³⁸⁶ • DetectorSettings : ID²³⁸⁷ • DetectorSettings : Offset²³⁸⁸ • Filter : ID²³⁸⁹ • Filter: Model²³⁹⁰ • Image : AcquisitionDate²³⁹¹ • Image : Description²³⁹² • Image : ID²³⁹³ • Image : InstrumentRef²³⁹⁴ • Image: Name²³⁹⁵ • Image: ROIRef²³⁹⁶ 2394 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 2395 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 2396 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID $[\]overline{^{2373}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_Color + Color +$ ²³⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength ${}^{2375}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ ²³⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_Attenuation ²³⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_ID ²³⁷⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ²³⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_PinholeSize ²³⁸⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²³⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ²³⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²³⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Offset ²³⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ²³⁸⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Zoom ²³⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain ²³⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID ²³⁸⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Offset ²³⁸⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID ²³⁹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²³⁹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²³⁹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ²³⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ^{19.2.} Metadata fields 318 • Instrument : ID²³⁹⁷ • Label: FontSize²³⁹⁸ • Label : ID²³⁹⁹ • Label: StrokeWidth²⁴⁰⁰ • Label: Text²⁴⁰¹ • Label : X^{2402} • Label: Y²⁴⁰³ • Laser : ID²⁴⁰⁴ • Laser: LaserMedium²⁴⁰⁵ • Laser: Type²⁴⁰⁶ • Laser : Wavelength²⁴⁰⁷ • LightPath: EmissionFilterRef²⁴⁰⁸ • Line : ID^{2409} • Line: X1²⁴¹⁰ • Line: X2²⁴¹¹ • Line : Y1²⁴¹² • Line: Y2²⁴¹³ • Microscope : Model²⁴¹⁴ • Microscope: Type²⁴¹⁵ • Objective : Correction²⁴¹⁶ • Objective : ID²⁴¹⁷ • Objective : Immersion²⁴¹⁸ • Objective : LensNA²⁴¹⁹ • Objective : Model²⁴²⁰ • Objective : NominalMagnification²⁴²¹ • Objective : SerialNumber²⁴²² ``` ²³⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ²³⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize ²³⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ²⁴⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth ²⁴⁰¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text ²⁴⁰³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Label_Y ²⁴⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID ²⁴⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_LaserMedium ²⁴⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type ²⁴⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Wavelength ²⁴⁰⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID {}^{2409}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html \#Shape_ID ²⁴¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_X1 ²⁴¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_X2 ²⁴¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_Y1 ²⁴¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_Y2 ²⁴¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²⁴¹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Microscope_Type ²⁴¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction ²⁴¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID ²⁴¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion
²⁴¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA ²⁴²⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²⁴²¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification ²⁴²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber ``` ``` • ObjectiveSettings : ID²⁴²³ ``` • Pixels : DimensionOrder²⁴²⁶ • Pixels : ID²⁴²⁷ • Pixels : Interleaved²⁴²⁸ • Pixels : PhysicalSizeX²⁴²⁹ • Pixels : PhysicalSizeY²⁴³⁰ • Pixels : PhysicalSizeZ²⁴³¹ • Pixels : SignificantBits²⁴³² • Pixels : SizeC²⁴³³ • Pixels : SizeT²⁴³⁴ • Pixels : SizeX²⁴³⁵ • Pixels : SizeY²⁴³⁶ • Pixels: SizeZ²⁴³⁷ • Pixels: TimeIncrement²⁴³⁸ • Pixels : Type²⁴³⁹ • Plane: DeltaT²⁴⁴⁰ • Plane : ExposureTime²⁴⁴¹ • Plane : PositionX²⁴⁴² • Plane : Position Y^{2443} • Plane : PositionZ²⁴⁴⁴ • Plane : TheC²⁴⁴⁵ • Plane : TheT²⁴⁴⁶ • Plane: TheZ²⁴⁴⁷ • Polygon: ID²⁴⁴⁸ ``` 2423 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID ²⁴²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex ²⁴²⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁴²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁴²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID {}^{2428} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Interleaved ²⁴²⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁴³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²⁴³¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ²⁴³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁴³³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁴³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁴³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁴³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁴³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁴³⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement ²⁴³⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁴⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT ²⁴⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ²⁴⁴²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX ²⁴⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY {}^{2444} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_PositionZ ²⁴⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁴⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ``` 2447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 2448 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID [•] ObjectiveSettings : RefractiveIndex²⁴²⁴ [•] Pixels : BigEndian²⁴²⁵ • Polygon: Points²⁴⁴⁹ • ROI : ID²⁴⁵⁰ • Rectangle : Height²⁴⁵¹ • Rectangle : ID²⁴⁵² • Rectangle : Width²⁴⁵³ • Rectangle : X²⁴⁵⁴ • Rectangle: Y²⁴⁵⁵ • TransmittanceRange : CutIn²⁴⁵⁶ • TransmittanceRange : CutOut²⁴⁵⁷ **Total supported: 85** Total unknown or missing: 390 # 19.2.67 LeicaSCNReader This page lists supported metadata fields for the Bio-Formats Leica SCN format reader. These fields are from the OME data model²⁴⁵⁸. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 33 of them (6%). - Of those, Bio-Formats fully or partially converts 33 (100%). # Supported fields ### These fields are fully supported by the Bio-Formats Leica SCN format reader: • Channel: ID²⁴⁵⁹ • Channel : IlluminationType²⁴⁶⁰ • Channel: SamplesPerPixel²⁴⁶¹ • Image : AcquisitionDate²⁴⁶² • Image: Description²⁴⁶³ • Image : ID²⁴⁶⁴ • Image: InstrumentRef²⁴⁶⁵ • Image : Name²⁴⁶⁶ ²⁴⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_Points $^{{\}it 2450} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html \#ROI_ID$ ²⁴⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Height ²⁴⁵²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ²⁴⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Width ²⁴⁵⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Y $^{^{2456}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Transmittance Range_CutIn$ ²⁴⁵⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutOut ²⁴⁵⁸http://www.openmicroscopy.org/site/support/ome-model/ ²⁴⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁴⁶⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_IlluminationType ²⁴⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel $^{{}^{2462}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate}$ ²⁴⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ²⁴⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁴⁶⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ²⁴⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name • Instrument : ID²⁴⁶⁷ • Objective : CalibratedMagnification²⁴⁶⁸ • Objective : ID²⁴⁶⁹ • Objective : LensNA²⁴⁷⁰ • Objective : Nominal Magnification ²⁴⁷¹ • ObjectiveSettings : ID²⁴⁷² • Pixels: BigEndian²⁴⁷³ • Pixels : DimensionOrder²⁴⁷⁴ • Pixels : ID²⁴⁷⁵ • Pixels: Interleaved²⁴⁷⁶ • Pixels : PhysicalSizeX²⁴⁷⁷ • Pixels : PhysicalSizeY²⁴⁷⁸ • Pixels : PhysicalSizeZ²⁴⁷⁹ • Pixels : SignificantBits²⁴⁸⁰ • Pixels : SizeC²⁴⁸¹ • Pixels: SizeT²⁴⁸² • Pixels : SizeX²⁴⁸³ • Pixels : SizeY²⁴⁸⁴ • Pixels : SizeZ²⁴⁸⁵ • Pixels : Type²⁴⁸⁶ • Plane : PositionX²⁴⁸⁷ • Plane : PositionY²⁴⁸⁸ • Plane : The C^{2489} • Plane : TheT²⁴⁹⁰ • Plane: TheZ²⁴⁹¹ ### **Total supported: 33** #### Total unknown or missing: 442 ``` \overline{^{2467}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Instrument_ID ²⁴⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification ^{2469} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Objective_ID ²⁴⁷⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA ²⁴⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification ²⁴⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID ²⁴⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁴⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁴⁷⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁴⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁴⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁴⁷⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²⁴⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ {}^{2480}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_SignificantBits ²⁴⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁴⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁴⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁴⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁴⁸⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁴⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁴⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX
²⁴⁸⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ²⁴⁸⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁴⁹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ``` 2491 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ## 19.2.68 LEOReader This page lists supported metadata fields for the Bio-Formats LEO format reader. These fields are from the OME data model²⁴⁹². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 27 of them (5%). - Of those, Bio-Formats fully or partially converts 27 (100%). ### Supported fields ### These fields are fully supported by the Bio-Formats LEO format reader: ``` • Channel: ID²⁴⁹³ ``` • Channel: SamplesPerPixel²⁴⁹⁴ • Image : AcquisitionDate²⁴⁹⁵ • Image : ID²⁴⁹⁶ • Image : InstrumentRef²⁴⁹⁷ • Image: Name²⁴⁹⁸ • Instrument : ID²⁴⁹⁹ • Objective : Correction²⁵⁰⁰ • Objective : ID²⁵⁰¹ • Objective : Immersion²⁵⁰² • Objective : WorkingDistance²⁵⁰³ • Pixels: BigEndian²⁵⁰⁴ • Pixels : DimensionOrder²⁵⁰⁵ • Pixels: ID²⁵⁰⁶ • Pixels : Interleaved²⁵⁰⁷ • Pixels : PhysicalSizeX²⁵⁰⁸ • Pixels : PhysicalSizeY²⁵⁰⁹ • Pixels : SignificantBits²⁵¹⁰ ²⁴⁹²http://www.openmicroscopy.org/site/support/ome-model/ ²⁴⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁴⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁴⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁴⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁴⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ²⁴⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁴⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ²⁵⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction ²⁵⁰¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID ²⁵⁰²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion ²⁵⁰³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance ²⁵⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁵⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁵⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁵⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁵⁰⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁵⁰⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²⁵¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits Pixels: SizeC²⁵¹¹ Pixels: SizeT²⁵¹² Pixels: SizeX²⁵¹³ Pixels: SizeY²⁵¹⁴ Pixels: SizeZ²⁵¹⁵ Pixels: Type²⁵¹⁶ Plane: TheC²⁵¹⁷ Plane: TheT²⁵¹⁸ **Total supported: 27** Total unknown or missing: 448 • Plane: TheZ²⁵¹⁹ ## 19.2.69 L2DReader This page lists supported metadata fields for the Bio-Formats Li-Cor L2D format reader. These fields are from the OME data model²⁵²⁰. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 29 of them (6%). - Of those, Bio-Formats fully or partially converts 29 (100%). # Supported fields ### These fields are fully supported by the Bio-Formats Li-Cor L2D format reader: • Channel: ID²⁵²¹ • Channel : LightSourceSettingsID²⁵²² • Channel: SamplesPerPixel²⁵²³ • Image : AcquisitionDate²⁵²⁴ • Image: Description²⁵²⁵ • Image : ID²⁵²⁶ • Image : InstrumentRef²⁵²⁷ • Image : Name²⁵²⁸ ²⁵¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁵¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁵¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁵¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁵¹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁵¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁵¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁵¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁵¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁵¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²⁵²⁰http://www.openmicroscopy.org/site/support/ome-model/ ²⁵²¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID $^{{}^{2522}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#LightSourceSettings_ID$ ²⁵²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁵²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁵²⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ²⁵²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID $^{{}^{2527}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#InstrumentRef_ID$ • Instrument : ID²⁵²⁹ • Laser : ID²⁵³⁰ • Laser: LaserMedium²⁵³¹ • Laser: Type²⁵³² • Laser: Wavelength²⁵³³ • Microscope: Model²⁵³⁴ • Microscope : Type²⁵³⁵ • Pixels: BigEndian²⁵³⁶ • Pixels : DimensionOrder²⁵³⁷ • Pixels : ID²⁵³⁸ • Pixels: Interleaved²⁵³⁹ • Pixels : SignificantBits²⁵⁴⁰ • Pixels : SizeC²⁵⁴¹ • Pixels : SizeT²⁵⁴² • Pixels: SizeX²⁵⁴³ • Pixels : SizeY²⁵⁴⁴ • Pixels : SizeZ²⁵⁴⁵ • Pixels : Type²⁵⁴⁶ • Plane : TheC²⁵⁴⁷ • Plane: TheT²⁵⁴⁸ • Plane : The Z^{2549} Total supported: 29 Total unknown or missing: 446 ## 19.2.70 LIMReader This page lists supported metadata fields for the Bio-Formats Laboratory Imaging format reader. These fields are from the OME data model²⁵⁵⁰. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. $^{{}^{2529}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Instrument_ID$ ²⁵³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID ²⁵³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_LaserMedium ²⁵³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type ²⁵³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Wavelength 2534 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Microscope_Type ²⁵³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $^{{}^{2537}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_DimensionOrder$ ²⁵³⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁵³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved $[\]frac{2540}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits}{2540}$ ²⁵⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁵⁴²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁵⁴³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁵⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁵⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁵⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type $^{{}^{2547}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Plane_TheC} \\ {}^{2548}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Plane_TheT} \\ {}^{2548}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Plane_TheT} \\ {}^{2548}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT} {}^{2548}http://www.openmicroscopy.html#Plane_TheT} \\ {}^{2548}h$ ²⁵⁴⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ
²⁵⁵⁰http://www.openmicroscopy.org/site/support/ome-model/ #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ### Supported fields # These fields are fully supported by the Bio-Formats Laboratory Imaging format reader: - Channel: ID²⁵⁵¹ - Channel: SamplesPerPixel²⁵⁵² - Image : AcquisitionDate²⁵⁵³ - Image : ID²⁵⁵⁴ - Image: Name²⁵⁵⁵ - Pixels: BigEndian²⁵⁵⁶ - Pixels : DimensionOrder²⁵⁵⁷ - Pixels : ID²⁵⁵⁸ - Pixels: Interleaved²⁵⁵⁹ - Pixels : SignificantBits²⁵⁶⁰ - Pixels : SizeC²⁵⁶¹ - Pixels: SizeT²⁵⁶² - Pixels: SizeX²⁵⁶³ - Pixels: SizeY²⁵⁶⁴ - Pixels: SizeZ²⁵⁶⁵ - Pixels: Type²⁵⁶⁶ - Plane: TheC²⁵⁶⁷ - Plane: TheT²⁵⁶⁸ - Plane : TheZ²⁵⁶⁹ # **Total supported: 19** ### Total unknown or missing: 456 ``` ²⁵⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁵⁵²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel {}^{2553}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate} ²⁵⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁵⁵⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name {}^{2556}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_BigEndian} ²⁵⁵⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁵⁵⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁵⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved {}^{2560}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits} ²⁵⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁵⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁵⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁵⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁵⁶⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁵⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁵⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁵⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ``` ²⁵⁶⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ # 19.2.71 MetamorphTiffReader This page lists supported metadata fields for the Bio-Formats Metamorph TIFF format reader. These fields are from the OME data model²⁵⁷⁰. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 38 of them (8%). - Of those, Bio-Formats fully or partially converts 38 (100%). ### Supported fields # These fields are fully supported by the Bio-Formats Metamorph TIFF format reader: ``` • Channel: ID²⁵⁷¹ ``` • Channel: Name²⁵⁷² • Channel: SamplesPerPixel²⁵⁷³ • Image : AcquisitionDate²⁵⁷⁴ • Image: Description²⁵⁷⁵ • Image : ID²⁵⁷⁶ • Image: Name²⁵⁷⁷ • ImagingEnvironment : Temperature²⁵⁷⁸ • Pixels : BigEndian²⁵⁷⁹ • Pixels : DimensionOrder²⁵⁸⁰ • Pixels : ID²⁵⁸¹ • Pixels : Interleaved²⁵⁸² • Pixels : PhysicalSizeX²⁵⁸³ • Pixels: PhysicalSizeY²⁵⁸⁴ • Pixels: PhysicalSizeZ²⁵⁸⁵ • Pixels : SignificantBits²⁵⁸⁶ • Pixels : SizeC²⁵⁸⁷ • Pixels : SizeT²⁵⁸⁸ ²⁵⁷⁰http://www.openmicroscopy.org/site/support/ome-model/ ²⁵⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁵⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ²⁵⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁵⁷⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁵⁷⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ²⁵⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁵⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁵⁷⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature ²⁵⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁵⁸⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁵⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁵⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels Interleaved ²⁵⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁵⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²⁵⁸⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ²⁵⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁵⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁵⁸⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT • Pixels : SizeX²⁵⁸⁹ • Pixels : SizeY²⁵⁹⁰ • Pixels : SizeZ²⁵⁹¹ • Pixels : Type²⁵⁹² • Plane : DeltaT²⁵⁹³ • Plane : ExposureTime²⁵⁹⁴ • Plane : Position X^{2595} • Plane : PositionY²⁵⁹⁶ • Plane: TheC²⁵⁹⁷ • Plane: TheT²⁵⁹⁸ • Plane: TheZ²⁵⁹⁹ • Plate: ColumnNamingConvention²⁶⁰⁰ • Plate : ID²⁶⁰¹ • Plate: RowNamingConvention²⁶⁰² • Well: Column²⁶⁰³ • Well : ID²⁶⁰⁴ • Well: Row²⁶⁰⁵ • WellSample : ID^{2606} • WellSample : ImageRef²⁶⁰⁷ • WellSample : Index²⁶⁰⁸ **Total supported: 38** Total unknown or missing: 437 # 19.2.72 MetamorphReader This page lists supported metadata fields for the Bio-Formats Metamorph STK format reader. These fields are from the OME data model²⁶⁰⁹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: ``` {}^{2589}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SizeX ²⁵⁹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁵⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁵⁹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁵⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT ²⁵⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime {}^{2595}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_PositionX ²⁵⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ²⁵⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁵⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁵⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²⁶⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ColumnNamingConvention ²⁶⁰¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID ²⁶⁰²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_RowNamingConvention ²⁶⁰³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column ²⁶⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID ²⁶⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row {}^{2606}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html\#WellSample_ID ²⁶⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImageRef_ID {}^{2608} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html \#WellSample_Index and the substitution of s ²⁶⁰⁹http://www.openmicroscopy.org/site/support/ome-model/ ``` - The file format itself supports 43 of them (9%). - Of those, Bio-Formats fully or partially converts 43 (100%). # Supported fields ### These fields are fully supported by the Bio-Formats Metamorph STK format reader: ``` • Channel: ID²⁶¹⁰ ``` • Channel : LightSourceSettingsID²⁶¹¹ • Channel : LightSourceSettingsWavelength²⁶¹² • Channel: Name²⁶¹³ • Channel: SamplesPerPixel²⁶¹⁴ • Detector: ID²⁶¹⁵ • Detector : Type²⁶¹⁶ • DetectorSettings : Binning²⁶¹⁷ • DetectorSettings : Gain²⁶¹⁸ • DetectorSettings : ID²⁶¹⁹ • DetectorSettings : ReadOutRate²⁶²⁰ • Image : AcquisitionDate²⁶²¹ • Image: Description²⁶²² • Image: ID²⁶²³ • Image : InstrumentRef²⁶²⁴ • Image : Name²⁶²⁵ • ImagingEnvironment : Temperature²⁶²⁶ • Instrument : ID²⁶²⁷ • Laser : ID²⁶²⁸ • Laser: LaserMedium²⁶²⁹ • Laser: Type²⁶³⁰ • Pixels:
BigEndian²⁶³¹ • Pixels : DimensionOrder²⁶³² ²⁶¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁶¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_ID ²⁶¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_Wavelength ²⁶¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ²⁶¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁶¹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ²⁶¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ²⁶¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning ²⁶¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain ²⁶¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID ${}^{2620}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#DetectorSettings_ReadOutRate}$ ²⁶²¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁶²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ²⁶²³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁶²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ²⁶²⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁶²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature ²⁶²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ²⁶²⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID ²⁶²⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Laser LaserMedium ²⁶³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type ²⁶³¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁶³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder - Pixels : ID²⁶³³ - Pixels : Interleaved²⁶³⁴ - Pixels : PhysicalSizeX²⁶³⁵ - Pixels : PhysicalSizeY²⁶³⁶ - Pixels: PhysicalSizeZ²⁶³⁷ - Pixels : SignificantBits²⁶³⁸ - Pixels : SizeC²⁶³⁹ - Pixels : SizeT²⁶⁴⁰ - Pixels : SizeX²⁶⁴¹ - Pixels: SizeY²⁶⁴² - Pixels : SizeZ²⁶⁴³ - Pixels : Type²⁶⁴⁴ - 71 - Plane : DeltaT²⁶⁴⁵ - Plane : ExposureTime²⁶⁴⁶ - Plane : PositionX²⁶⁴⁷ - Plane : Position Y^{2648} - Plane : PositionZ²⁶⁴⁹ - Plane : TheC²⁶⁵⁰ - Plane : The T^{2651} - Plane : TheZ²⁶⁵² # **Total supported: 43** Total unknown or missing: 432 # 19.2.73 MIASReader This page lists supported metadata fields for the Bio-Formats MIAS format reader. These fields are from the OME data model²⁶⁵³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: ``` ²⁶³³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁶³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁶³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁶³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²⁶³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ²⁶³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁶³⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁶⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁶⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁶⁴²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁶⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁶⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁶⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT ²⁶⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ²⁶⁴⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX ²⁶⁴⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ²⁶⁴⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ ²⁶⁵⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁶⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ^{2652} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_The Zenerated/OME-2013-06/ome_xsd.html \#Plane_xsd.html \#Pl ²⁶⁵³http://www.openmicroscopy.org/site/support/ome-model/ ``` - The file format itself supports 64 of them (13%). - Of those, Bio-Formats fully or partially converts 64 (100%). # Supported fields ### These fields are fully supported by the Bio-Formats MIAS format reader: • Channel : Color²⁶⁵⁴ • Channel: ID²⁶⁵⁵ • Channel: Name²⁶⁵⁶ • Channel: SamplesPerPixel²⁶⁵⁷ • Ellipse : ID^{2658} • Ellipse : RadiusX²⁶⁵⁹ • Ellipse : RadiusY²⁶⁶⁰ • Ellipse : Text²⁶⁶¹ • Ellipse: TheT²⁶⁶² • Ellipse : The Z^{2663} • Ellipse : X^{2664} • Ellipse : Y²⁶⁶⁵ • Experiment : Description²⁶⁶⁶ • Experiment : ID²⁶⁶⁷ • Experiment : Type²⁶⁶⁸ • Image : AcquisitionDate²⁶⁶⁹ • Image : ExperimentRef²⁶⁷⁰ • Image : ID²⁶⁷¹ • Image : InstrumentRef²⁶⁷² • Image: Name²⁶⁷³ • Image: ROIRef²⁶⁷⁴ • Instrument : ID²⁶⁷⁵ • Mask : FillColor²⁶⁷⁶ ``` ²⁶⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Color ²⁶⁵⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁶⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ²⁶⁵⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁶⁵⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ²⁶⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_RadiusX ²⁶⁶⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_RadiusY ²⁶⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text ²⁶⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT ²⁶⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ ²⁶⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_X ²⁶⁶⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_Y ²⁶⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_Description ²⁶⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_ID ²⁶⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_Type {}^{2669} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate} ²⁶⁷⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimentRef_ID ²⁶⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁶⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ²⁶⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁶⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID ²⁶⁷⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ``` ²⁶⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FillColor • Mask: Height²⁶⁷⁷ • Mask : ID²⁶⁷⁸ • Mask : StrokeColor²⁶⁷⁹ • Mask: Width²⁶⁸⁰ • Mask : X²⁶⁸¹ • Mask : Y²⁶⁸² • Objective : ID²⁶⁸³ • Objective : Model²⁶⁸⁴ • Objective : NominalMagnification²⁶⁸⁵ • Pixels: BigEndian²⁶⁸⁶ • Pixels: DimensionOrder²⁶⁸⁷ • Pixels : ID²⁶⁸⁸ • Pixels: Interleaved²⁶⁸⁹ • Pixels : PhysicalSizeX²⁶⁹⁰ • Pixels: PhysicalSizeY²⁶⁹¹ • Pixels: SignificantBits²⁶⁹² • Pixels : SizeC²⁶⁹³ • Pixels : SizeT²⁶⁹⁴ • Pixels : SizeX²⁶⁹⁵ • Pixels : SizeY²⁶⁹⁶ • Pixels : SizeZ²⁶⁹⁷ • Pixels : Type²⁶⁹⁸ • Plane : ExposureTime²⁶⁹⁹ Plane : TheC²⁷⁰⁰ Plane : TheT²⁷⁰¹ • Plane : TheZ²⁷⁰² ``` ²⁶⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Mask_Height ²⁶⁷⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ²⁶⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeColor ²⁶⁸⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Mask_Width
²⁶⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Mask_X ²⁶⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Mask_Y ²⁶⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID ²⁶⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²⁶⁸⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Objective NominalMagnification ²⁶⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁶⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁶⁸⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁶⁸⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁶⁹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁶⁹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²⁶⁹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁶⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁶⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁶⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeX ²⁶⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁶⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁶⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁶⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ²⁷⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁷⁰¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁷⁰²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ``` • Plate : ColumnNamingConvention²⁷⁰³ • Plate: ExternalIdentifier²⁷⁰⁴ • Plate : ID²⁷⁰⁵ • Plate: Name²⁷⁰⁶ • Plate: RowNamingConvention²⁷⁰⁷ \bullet PlateAcquisition : ID^{2708} • PlateAcquisition: MaximumFieldCount²⁷⁰⁹ • PlateAcquisition : WellSampleRef²⁷¹⁰ • ROI : ID²⁷¹¹ • Well: Column²⁷¹² • Well : ID²⁷¹³ • Well: Row²⁷¹⁴ • WellSample : ID²⁷¹⁵ • WellSample : ImageRef²⁷¹⁶ • WellSample : Index²⁷¹⁷ Total supported: 64 Total unknown or missing: 411 # 19.2.74 MicromanagerReader This page lists supported metadata fields for the Bio-Formats Micro-Manager format reader. These fields are from the OME data model²⁷¹⁸. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 38 of them (8%). - Of those, Bio-Formats fully or partially converts 38 (100%). ### **Supported fields** ### These fields are fully supported by the Bio-Formats Micro-Manager format reader: • Channel: ID²⁷¹⁹ • Channel: Name²⁷²⁰ $^{^{2703}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html \#Plate_ColumnNamingConvention$ ²⁷⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ExternalIdentifier ²⁷⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID $^{{\}color{blue}2706} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html \#Plate_Name-2013-06/SPW_xsd.html \#Plate_Name-2013-06/SPW_xsd.h$ ²⁷⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_RowNamingConvention $[\]frac{2708}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html \#PlateAcquisition_ID}{2700}$ ²⁷⁰⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount ²⁷¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSampleRef_ID ²⁷¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID $^{{\}it 2712} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html \#Well_Column$ ²⁷¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID ²⁷¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row ²⁷¹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID ²⁷¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImageRef_ID ²⁷¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index ²⁷¹⁸http://www.openmicroscopy.org/site/support/ome-model/ ²⁷¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁷²⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name • Channel: SamplesPerPixel²⁷²¹ • Detector : ID²⁷²² • Detector : Manufacturer²⁷²³ • Detector: Model²⁷²⁴ • Detector : SerialNumber²⁷²⁵ • Detector : Type²⁷²⁶ • DetectorSettings : Binning²⁷²⁷ • DetectorSettings : Gain²⁷²⁸ • DetectorSettings : ID²⁷²⁹ • DetectorSettings : Voltage²⁷³⁰ • Image : AcquisitionDate²⁷³¹ • Image: Description²⁷³² • Image : ID²⁷³³ • Image : InstrumentRef²⁷³⁴ • Image : Name²⁷³⁵ • ImagingEnvironment : Temperature²⁷³⁶ • Instrument : ID²⁷³⁷ • Pixels: BigEndian²⁷³⁸ • Pixels : DimensionOrder²⁷³⁹ • Pixels : ID²⁷⁴⁰ • Pixels: Interleaved²⁷⁴¹ • Pixels : PhysicalSizeX²⁷⁴² • Pixels : PhysicalSizeY²⁷⁴³ • Pixels : PhysicalSizeZ²⁷⁴⁴ • Pixels : SignificantBits²⁷⁴⁵ • Pixels : SizeC²⁷⁴⁶ ²⁷²¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁷²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ²⁷²³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer ²⁷²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²⁷²⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber ²⁷²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ²⁷²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning ²⁷²⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain ²⁷²⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID ²⁷³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Voltage ²⁷³¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁷³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ²⁷³³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁷³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ²⁷³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁷³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature ²⁷³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ²⁷³⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ${\it 2739} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_DimensionOrder$ ²⁷⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁷⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁷⁴²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX $2743 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Physical Size Years and the properties of propert$ ²⁷⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ²⁷⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁷⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC • Pixels: SizeT²⁷⁴⁷ • Pixels: SizeX²⁷⁴⁸ • Pixels : SizeY²⁷⁴⁹ • Pixels : SizeZ²⁷⁵⁰ • Pixels: Type²⁷⁵¹ • Plane : DeltaT²⁷⁵² • Plane : ExposureTime²⁷⁵³ • Plane : TheC²⁷⁵⁴ • Plane: TheT²⁷⁵⁵ • Plane : TheZ²⁷⁵⁶ # **Total supported: 38** Total unknown or missing: 437 ### 19.2.75 MINCReader This page lists supported metadata fields for the Bio-Formats MINC MRI format reader. These fields are from the OME data model²⁷⁵⁷. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 23 of them (4%). - Of those, Bio-Formats fully or partially converts 23 (100%). ## Supported fields ### These fields are
fully supported by the Bio-Formats MINC MRI format reader: • Channel: ID²⁷⁵⁸ • Channel: SamplesPerPixel²⁷⁵⁹ • Image : AcquisitionDate²⁷⁶⁰ • Image: Description²⁷⁶¹ • Image : ID²⁷⁶² • Image: Name²⁷⁶³ • Pixels: BigEndian²⁷⁶⁴ $[\]overline{^{2747}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeTations and the properties of propertie$ ²⁷⁴⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁷⁴⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁷⁵⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁷⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁷⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT ²⁷⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ²⁷⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁷⁵⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁷⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²⁷⁵⁷http://www.openmicroscopy.org/site/support/ome-model/ ²⁷⁵⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁷⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁷⁶⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁷⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ²⁷⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁷⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁷⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian - Pixels: DimensionOrder²⁷⁶⁵ - Pixels : ID²⁷⁶⁶ - Pixels: Interleaved²⁷⁶⁷ - Pixels : PhysicalSizeX²⁷⁶⁸ - Pixels : PhysicalSizeY²⁷⁶⁹ - Pixels : PhysicalSizeZ²⁷⁷⁰ - Pixels : SignificantBits²⁷⁷¹ - Pixels : SizeC²⁷⁷² - Pixels: SizeT²⁷⁷³ - Pixels : SizeX²⁷⁷⁴ - Pixels: SizeY²⁷⁷⁵ - Pixels : SizeZ²⁷⁷⁶ - Pixels: Type²⁷⁷⁷ - Plane: TheC²⁷⁷⁸ - Plane: TheT²⁷⁷⁹ - Plane : TheZ²⁷⁸⁰ Total supported: 23 Total unknown or missing: 452 ## 19.2.76 MRWReader This page lists supported metadata fields for the Bio-Formats Minolta MRW format reader. These fields are from the OME data model²⁷⁸¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). # Supported fields ## These fields are fully supported by the Bio-Formats Minolta MRW format reader: • Channel : ID^{2782} $^{2765} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_DimensionOrder$ ²⁷⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁷⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁷⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁷⁶⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²⁷⁷⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ²⁷⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁷⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁷⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁷⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁷⁷⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ${\it 2776} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeZ$ ²⁷⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁷⁷⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁷⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁷⁸⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²⁷⁸¹http://www.openmicroscopy.org/site/support/ome-model/ ²⁷⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID - Channel: SamplesPerPixel²⁷⁸³ - Image : AcquisitionDate²⁷⁸⁴ - Image : ID²⁷⁸⁵ - Image: Name²⁷⁸⁶ - Pixels: BigEndian²⁷⁸⁷ - Pixels: DimensionOrder²⁷⁸⁸ - Pixels : ID²⁷⁸⁹ - Pixels: Interleaved²⁷⁹⁰ - Pixels : SignificantBits²⁷⁹¹ - Pixels : SizeC²⁷⁹² - Pixels : SizeT²⁷⁹³ - Pixels : SizeX²⁷⁹⁴ - Pixels : SizeY²⁷⁹⁵ - Pixels: SizeZ²⁷⁹⁶ - Pixels: Type²⁷⁹⁷ - Plane: TheC²⁷⁹⁸ - Plane: TheT²⁷⁹⁹ - Plane : TheZ²⁸⁰⁰ ### **Total supported: 19** Total unknown or missing: 456 #### 19.2.77 MNGReader This page lists supported metadata fields for the Bio-Formats Multiple Network Graphics format reader. These fields are from the OME data model²⁸⁰¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). $^{{}^{2783}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Channel_SamplesPerPixel$ ²⁷⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁷⁸⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁷⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁷⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁷⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁷⁸⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID $^{^{2790}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_Interleaved$ ²⁷⁹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁷⁹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁷⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁷⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁷⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁷⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁷⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁷⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁷⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT $^{{}^{2800}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Plane_TheZ$ ²⁸⁰¹http://www.openmicroscopy.org/site/support/ome-model/ # Supported fields ### These fields are fully supported by the Bio-Formats Multiple Network Graphics format reader: • Channel : ID²⁸⁰² • Channel: SamplesPerPixel²⁸⁰³ • Image : AcquisitionDate²⁸⁰⁴ • Image : ID²⁸⁰⁵ • Image: Name²⁸⁰⁶ • Pixels: BigEndian²⁸⁰⁷ • Pixels: DimensionOrder²⁸⁰⁸ • Pixels : ID²⁸⁰⁹ • Pixels: Interleaved²⁸¹⁰ • Pixels : SignificantBits²⁸¹¹ • Pixels : SizeC²⁸¹² • Pixels: SizeT²⁸¹³ • Pixels : SizeX²⁸¹⁴ • Pixels: SizeY²⁸¹⁵ • Pixels : SizeZ²⁸¹⁶ • Pixels : Type²⁸¹⁷ • Plane: TheC²⁸¹⁸ • Plane: TheT²⁸¹⁹ • Plane: TheZ²⁸²⁰ **Total supported: 19** Total unknown or missing: 456 # 19.2.78 MolecularImagingReader This page lists supported metadata fields for the Bio-Formats Molecular Imaging format reader. These fields are from the OME data model²⁸²¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ``` ²⁸⁰²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ``` ²⁸⁰³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁸⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁸⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁸⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁸⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $^{{}^{2808}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_DimensionOrder$ ²⁸⁰⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
²⁸¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁸¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁸¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁸¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁸¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁸¹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁸¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁸¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁸¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁸¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁸²⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Plane TheZ ²⁸²¹http://www.openmicroscopy.org/site/support/ome-model/ ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 21 of them (4%). - Of those, Bio-Formats fully or partially converts 21 (100%). ### **Supported fields** ### These fields are fully supported by the Bio-Formats Molecular Imaging format reader: - Channel : ID²⁸²² - Channel: SamplesPerPixel²⁸²³ - Image : AcquisitionDate²⁸²⁴ - Image : ID²⁸²⁵ - Image: Name²⁸²⁶ - Pixels : BigEndian²⁸²⁷ - Pixels : DimensionOrder²⁸²⁸ - Pixels : ID²⁸²⁹ - Pixels: Interleaved²⁸³⁰ - Pixels: PhysicalSizeX²⁸³¹ - Pixels : PhysicalSizeY²⁸³² - Pixels : SignificantBits²⁸³³ - Pixels : SizeC²⁸³⁴ - Pixels: SizeT²⁸³⁵ - Pixels : SizeX²⁸³⁶ - Pixels : SizeY²⁸³⁷ - Pixels : SizeZ²⁸³⁸ - Pixels : Type²⁸³⁹ - Plane: TheC²⁸⁴⁰ - Plane : TheT²⁸⁴¹ - Plane : TheZ²⁸⁴² # **Total supported: 21** #### Total unknown or missing: 454 ²⁸²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁸²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁸²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁸²⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁸²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁸²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁸²⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁸²⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁸³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁸³¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁸³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²⁸³³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁸³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁸³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁸³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁸³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁸³⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁸³⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁸⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁸⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁸⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ## 19.2.79 MRCReader This page lists supported metadata fields for the Bio-Formats Medical Research Council format reader. These fields are from the OME data model²⁸⁴³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). ## Supported fields # These fields are fully supported by the Bio-Formats Medical Research Council format reader: ``` • Channel: ID²⁸⁴⁴ ``` • Channel: SamplesPerPixel²⁸⁴⁵ • Image : AcquisitionDate²⁸⁴⁶ • Image : ID²⁸⁴⁷ • Image: Name²⁸⁴⁸ • Pixels: BigEndian²⁸⁴⁹ • Pixels: DimensionOrder²⁸⁵⁰ • Pixels: ID²⁸⁵¹ • Pixels: Interleaved²⁸⁵² • Pixels : PhysicalSizeX²⁸⁵³ • Pixels : PhysicalSizeY²⁸⁵⁴ • Pixels: PhysicalSizeZ²⁸⁵⁵ • Pixels : SignificantBits²⁸⁵⁶ • Pixels: SizeC²⁸⁵⁷ • Pixels: SizeT²⁸⁵⁸ • Pixels : SizeX²⁸⁵⁹ • Pixels : SizeY²⁸⁶⁰ • Pixels: SizeZ²⁸⁶¹ • Pixels: Type²⁸⁶² ²⁸⁴³http://www.openmicroscopy.org/site/support/ome-model/ ²⁸⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁸⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁸⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁸⁴⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁸⁴⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁸⁴⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁸⁵⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁸⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁸⁵²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁸⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁸⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²⁸⁵⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ²⁸⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁸⁵⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁸⁵⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁸⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁸⁶⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeY ²⁸⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁸⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type Plane : TheC²⁸⁶³ Plane : TheT²⁸⁶⁴ Plane : TheZ²⁸⁶⁵ Total supported: 22 Total unknown or missing: 453 ### 19.2.80 NikonReader This page lists supported metadata fields for the Bio-Formats Nikon NEF format reader. These fields are from the OME data model²⁸⁶⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). # Supported fields ### These fields are fully supported by the Bio-Formats Nikon NEF format reader: • Channel: ID²⁸⁶⁷ • Channel: SamplesPerPixel²⁸⁶⁸ • Image : AcquisitionDate²⁸⁶⁹ • Image : ID²⁸⁷⁰ • Image: Name²⁸⁷¹ • Pixels: BigEndian²⁸⁷² • Pixels : DimensionOrder²⁸⁷³ • Pixels : ID²⁸⁷⁴ • Pixels: Interleaved²⁸⁷⁵ • Pixels : SignificantBits²⁸⁷⁶ • Pixels : SizeC²⁸⁷⁷ • Pixels: SizeT²⁸⁷⁸ • Pixels : SizeX²⁸⁷⁹ • Pixels: SizeY²⁸⁸⁰ ``` ^{2863} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Compared to the c ²⁸⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ^{2865} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_The Zenerated/OME-2013-06/ome_xsd.html \#Plane_xsd.html \#Plan ²⁸⁶⁶http://www.openmicroscopy.org/site/support/ome-model/ ²⁸⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁸⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ^{2869} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate ²⁸⁷⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁸⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁸⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁸⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁸⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID
²⁸⁷⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ^{2876} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits ²⁸⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁸⁷⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁸⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁸⁸⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ``` Pixels : SizeZ²⁸⁸¹ Pixels : Type²⁸⁸² Plane : TheC²⁸⁸³ Plane : TheT²⁸⁸⁴ • Plane: TheZ²⁸⁸⁵ **Total supported: 19** Total unknown or missing: 456 #### 19.2.81 NiftiReader This page lists supported metadata fields for the Bio-Formats NIfTI format reader. These fields are from the OME data model²⁸⁸⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 24 of them (5%). - Of those, Bio-Formats fully or partially converts 24 (100%). # Supported fields ### These fields are fully supported by the Bio-Formats NIfTI format reader: • Channel: ID²⁸⁸⁷ • Channel: SamplesPerPixel²⁸⁸⁸ • Image : AcquisitionDate²⁸⁸⁹ • Image: Description²⁸⁹⁰ • Image: ID²⁸⁹¹ • Image: Name²⁸⁹² • Pixels: BigEndian²⁸⁹³ • Pixels : DimensionOrder²⁸⁹⁴ • Pixels : ID²⁸⁹⁵ • Pixels: Interleaved²⁸⁹⁶ • Pixels : PhysicalSizeX²⁸⁹⁷ • Pixels : PhysicalSizeY²⁸⁹⁸ ²⁸⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁸⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁸⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁸⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁸⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²⁸⁸⁶http://www.openmicroscopy.org/site/support/ome-model/ ²⁸⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁸⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel $^{{}^{2889}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate} and the substitution of of$ ²⁸⁹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ²⁸⁹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁸⁹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name $^{{}^{2893}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_BigEndian - Compared Foundation Fou$ ²⁸⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁸⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁸⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁸⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁸⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY - Pixels : PhysicalSizeZ²⁸⁹⁹ - Pixels : SignificantBits²⁹⁰⁰ - Pixels : SizeC²⁹⁰¹ - Pixels : SizeT²⁹⁰² - Pixels : SizeX²⁹⁰³ - Pixels : SizeY²⁹⁰⁴ - Pixels: SizeZ²⁹⁰⁵ - Pixels: TimeIncrement²⁹⁰⁶ - Pixels: Type²⁹⁰⁷ - Plane: TheC²⁹⁰⁸ - Plane: TheT²⁹⁰⁹ - Plane: TheZ²⁹¹⁰ Total supported: 24 Total unknown or missing: 451 ## 19.2.82 NikonElementsTiffReader This page lists supported metadata fields for the Bio-Formats Nikon Elements TIFF format reader. These fields are from the OME data model²⁹¹¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 50 of them (10%). - Of those, Bio-Formats fully or partially converts 50 (100%). # **Supported fields** ### These fields are fully supported by the Bio-Formats Nikon Elements TIFF format reader: - Channel : AcquisitionMode²⁹¹² - Channel: EmissionWavelength²⁹¹³ - Channel: ExcitationWavelength²⁹¹⁴ - Channel: ID²⁹¹⁵ - Channel : Name²⁹¹⁶ ``` {}^{2899} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_PhysicalSizeZ ``` ²⁹⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁹⁰¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁹⁰²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ²⁹⁰³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁹⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁹⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁹⁰⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement ²⁹⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type $[\]frac{2908}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_The Company}{2000}$ ²⁹⁰⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁹¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²⁹¹¹http://www.openmicroscopy.org/site/support/ome-model/ ²⁹¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_AcquisitionMode $^{^{2913}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_EmissionWavelength.$ ²⁹¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength ²⁹¹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ²⁹¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ^{19.2.} Metadata fields 343 - Channel: PinholeSize²⁹¹⁷ - Channel: SamplesPerPixel²⁹¹⁸ - Detector : ID²⁹¹⁹ - Detector: Model²⁹²⁰ - Detector: Type²⁹²¹ - DetectorSettings : Binning²⁹²² - DetectorSettings : Gain²⁹²³ - DetectorSettings : ID²⁹²⁴ - DetectorSettings : ReadOutRate²⁹²⁵ - DetectorSettings : Voltage²⁹²⁶ - Image : AcquisitionDate²⁹²⁷ - Image : ID²⁹²⁸ - Image : InstrumentRef²⁹²⁹ - Image: Name²⁹³⁰ - ImagingEnvironment : Temperature²⁹³¹ - Instrument : ID²⁹³² - Objective : CalibratedMagnification²⁹³³ - Objective : Correction²⁹³⁴ - Objective: ID²⁹³⁵ - Objective : Immersion²⁹³⁶ - Objective : LensNA²⁹³⁷ - Objective : Model²⁹³⁸ - ObjectiveSettings : ID²⁹³⁹ - ObjectiveSettings : RefractiveIndex²⁹⁴⁰ - Pixels : BigEndian²⁹⁴¹ ``` • Pixels : DimensionOrder²⁹⁴² ^{2917} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_PinholeSize ²⁹¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁹¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ²⁹²⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²⁹²¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ²⁹²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning ²⁹²³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain ²⁹²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID ²⁹²⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ReadOutRate ²⁹²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Voltage ²⁹²⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁹²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁹²⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ²⁹³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁹³¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature ²⁹³²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ²⁹³³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification ²⁹³⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction ²⁹³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID ²⁹³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion ²⁹³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA
²⁹³⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²⁹³⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID ²⁹⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex ²⁹⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ``` ²⁹⁴²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder - Pixels : ID²⁹⁴³ - Pixels: Interleaved²⁹⁴⁴ - Pixels : PhysicalSizeX²⁹⁴⁵ - Pixels : PhysicalSizeY²⁹⁴⁶ - Pixels: PhysicalSizeZ²⁹⁴⁷ - Pixels : SignificantBits²⁹⁴⁸ - Pixels : SizeC²⁹⁴⁹ - Pixels : SizeT²⁹⁵⁰ - Pixels: SizeX²⁹⁵¹ - Pixels : SizeY²⁹⁵² - Pixels : SizeZ²⁹⁵³ - Pixels : Type²⁹⁵⁴ - Plane : ExposureTime²⁹⁵⁵ - Plane : PositionX²⁹⁵⁶ - Plane : PositionY²⁹⁵⁷ - Plane : PositionZ²⁹⁵⁸ - Plane: TheC²⁹⁵⁹ - Plane: TheT²⁹⁶⁰ - Plane: TheZ²⁹⁶¹ **Total supported: 50** Total unknown or missing: 425 # 19.2.83 NikonTiffReader This page lists supported metadata fields for the Bio-Formats Nikon TIFF format reader. These fields are from the OME data model²⁹⁶². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 47 of them (9%). - Of those, Bio-Formats fully or partially converts 47 (100%). ``` 2943 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ``` ²⁹⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁹⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁹⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²⁹⁴⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ²⁹⁴⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ²⁹⁴⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ²⁹⁵⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeT ²⁹⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ²⁹⁵²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ²⁹⁵³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ²⁹⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ²⁹⁵⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ²⁹⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX ²⁹⁵⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ²⁹⁵⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ ²⁹⁵⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ²⁹⁶⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ²⁹⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ²⁹⁶²http://www.openmicroscopy.org/site/support/ome-model/ # Supported fields # These fields are fully supported by the Bio-Formats Nikon TIFF format reader: ``` \bullet \ \ Channel: Emission Wavelength^{2963} ``` • Channel: ExcitationWavelength²⁹⁶⁴ • Channel: ID²⁹⁶⁵ • Channel : PinholeSize²⁹⁶⁶ • Channel: SamplesPerPixel²⁹⁶⁷ • Detector : Gain²⁹⁶⁸ • Detector: ID²⁹⁶⁹ • Detector: Type²⁹⁷⁰ • Dichroic: ID²⁹⁷¹ • Dichroic: Model²⁹⁷² • Filter : ID²⁹⁷³ • Filter: Model²⁹⁷⁴ • Image : AcquisitionDate²⁹⁷⁵ • Image: Description²⁹⁷⁶ • Image : ID²⁹⁷⁷ • Image : InstrumentRef²⁹⁷⁸ • Image: Name²⁹⁷⁹ • Instrument : ID²⁹⁸⁰ • Laser : ID²⁹⁸¹ • Laser: LaserMedium²⁹⁸² • Laser: Model²⁹⁸³ • Laser: Type²⁹⁸⁴ • Laser: Wavelength²⁹⁸⁵ • Objective : Correction²⁹⁸⁶ ²⁹⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction $[\]overline{^{2963}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Channel_EmissionWavelength$ ²⁹⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength $^{2965} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ ²⁹⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_PinholeSize ²⁹⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ²⁹⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Gain ²⁹⁶⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ²⁹⁷⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ²⁹⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dichroic_ID ²⁹⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²⁹⁷³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID ²⁹⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²⁹⁷⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ²⁹⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ²⁹⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ²⁹⁷⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ²⁹⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ²⁹⁸⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ²⁹⁸¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID ²⁹⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_LaserMedium ²⁹⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ²⁹⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type ²⁹⁸⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Wavelength • Objective : ID²⁹⁸⁷ • Objective : Immersion²⁹⁸⁸ • Objective : LensNA²⁹⁸⁹ • Objective : Nominal Magnification ²⁹⁹⁰ • Objective : WorkingDistance²⁹⁹¹ • ObjectiveSettings : ID²⁹⁹² • Pixels: BigEndian²⁹⁹³ • Pixels : DimensionOrder²⁹⁹⁴ • Pixels : ID²⁹⁹⁵ • Pixels: Interleaved²⁹⁹⁶ • Pixels : PhysicalSizeX²⁹⁹⁷ • Pixels : PhysicalSizeY²⁹⁹⁸ • Pixels : PhysicalSizeZ²⁹⁹⁹ • Pixels : SignificantBits³⁰⁰⁰ • Pixels : SizeC³⁰⁰¹ • Pixels: SizeT³⁰⁰² • Pixels : SizeX³⁰⁰³ • Pixels : SizeY³⁰⁰⁴ • Pixels : SizeZ³⁰⁰⁵ • Pixels : Type³⁰⁰⁶ • Plane : The C^{3007} • Plane : TheT³⁰⁰⁸ • Plane: TheZ³⁰⁰⁹ ### Total supported: 47 # Total unknown or missing: 428 ${}^{2987}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Objective_ID$ ²⁹⁸⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion ²⁹⁸⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA ²⁹⁹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification ²⁹⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance ²⁹⁹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID ²⁹⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ²⁹⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ²⁹⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ²⁹⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ²⁹⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ²⁹⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ²⁹⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ³⁰⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 3001 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3002 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 3003 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 3004 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3005 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 3006 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3007 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 3008
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 3009 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ## 19.2.84 NativeND2Reader This page lists supported metadata fields for the Bio-Formats Nikon ND2 format reader. These fields are from the OME data model³⁰¹⁰. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 52 of them (10%). - Of those, Bio-Formats fully or partially converts 52 (100%). ### Supported fields ### These fields are fully supported by the Bio-Formats Nikon ND2 format reader: ``` • Channel: AcquisitionMode³⁰¹¹ ``` • Channel: Color³⁰¹² • Channel : EmissionWavelength³⁰¹³ • Channel: ExcitationWavelength³⁰¹⁴ • Channel : ID³⁰¹⁵ • Channel: Name³⁰¹⁶ • Channel : PinholeSize³⁰¹⁷ • Channel: SamplesPerPixel³⁰¹⁸ • Detector : ID³⁰¹⁹ • Detector: Model³⁰²⁰ • Detector : Type³⁰²¹ • DetectorSettings : Binning³⁰²² • DetectorSettings : Gain³⁰²³ • DetectorSettings : ID³⁰²⁴ • DetectorSettings : ReadOutRate³⁰²⁵ • DetectorSettings : Voltage³⁰²⁶ • Image : AcquisitionDate³⁰²⁷ • Image : ID³⁰²⁸ • Image : InstrumentRef³⁰²⁹ ³⁰¹⁰ http://www.openmicroscopy.org/site/support/ome-model/ 3011 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_AcquisitionMode 3012 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Channel Color 3013 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength 3014 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength 3015 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID 3016 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name 3017 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_PinholeSize 3018 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 3019 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID 3020 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 3021 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type 3022 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning 3023 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain 3024 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID 3025 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ReadOutRate 3026 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Voltage 3027 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 3028 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 3029 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ``` • Image : Name³⁰³⁰ ``` • ImagingEnvironment : Temperature³⁰³¹ • Instrument : ID³⁰³² • Objective : CalibratedMagnification 3033 • Objective : Correction 3034 • Objective : ID³⁰³⁵ • Objective : Immersion³⁰³⁶ • Objective : LensNA³⁰³⁷ • Objective : Model³⁰³⁸ • ObjectiveSettings : ID³⁰³⁹ • ObjectiveSettings : RefractiveIndex³⁰⁴⁰ • Pixels : BigEndian³⁰⁴¹ • Pixels: DimensionOrder³⁰⁴² • Pixels : ID³⁰⁴³ • Pixels: Interleaved³⁰⁴⁴ • Pixels : PhysicalSizeX³⁰⁴⁵ • Pixels : PhysicalSizeY³⁰⁴⁶ • Pixels: PhysicalSizeZ³⁰⁴⁷ • Pixels : SignificantBits³⁰⁴⁸ • Pixels : SizeC³⁰⁴⁹ • Pixels: SizeT3050 • Pixels: SizeX³⁰⁵¹ • Pixels : SizeY³⁰⁵² • Pixels : $SizeZ^{3053}$ • Pixels : Type³⁰⁵⁴ • Plane : DeltaT³⁰⁵⁵ ``` 3030 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 3031 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature 3032 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 3033 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification 3034 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction 3035 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID 3036 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion 3037 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA 3038 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 3039 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID 3040 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_RefractiveIndex 3041 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 3042 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 3043 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 3044 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 3045 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 3046 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 3047 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ 3048 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 3049 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3050 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 3051 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 3052 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3053 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeZ 3054 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ``` 3055 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT • Plane : ExposureTime³⁰⁵⁶ • Plane : PositionX³⁰⁵⁷ • Plane : PositionY³⁰⁵⁸ • Plane : PositionZ³⁰⁵⁹ • Plane : TheC³⁰⁶⁰ • Plane : TheT³⁰⁶¹ • Plane: TheZ³⁰⁶² **Total supported: 52** Total unknown or missing: 423 ## 19.2.85 NRRDReader This page lists supported metadata fields for the Bio-Formats NRRD format reader. These fields are from the OME data model³⁰⁶³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). # Supported fields ## These fields are fully supported by the Bio-Formats NRRD format reader: • Channel: ID³⁰⁶⁴ • Channel : SamplesPerPixel³⁰⁶⁵ • Image : AcquisitionDate³⁰⁶⁶ • Image : ID³⁰⁶⁷ • Image: Name³⁰⁶⁸ • Pixels : BigEndian³⁰⁶⁹ • Pixels : DimensionOrder³⁰⁷⁰ • Pixels : ID³⁰⁷¹ • Pixels: Interleaved³⁰⁷² • Pixels : PhysicalSizeX³⁰⁷³ ³⁰⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime $^{3057} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_PositionX$ 3058 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ³⁰⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ 3060 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³⁰⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³⁰⁶² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁰⁶³ http://www.openmicroscopy.org/site/support/ome-model/ ³⁰⁶⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁰⁶⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁰⁶⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁰⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³⁰⁶⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁰⁶⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁰⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁰⁷¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁰⁷²
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁰⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX - Pixels : PhysicalSizeY³⁰⁷⁴ - Pixels : PhysicalSizeZ³⁰⁷⁵ - Pixels : SignificantBits³⁰⁷⁶ - Pixels : SizeC³⁰⁷⁷ - Pixels: SizeT³⁰⁷⁸ - Pixels : SizeX³⁰⁷⁹ - Pixels : SizeY³⁰⁸⁰ - Pixels: SizeZ³⁰⁸¹ - Pixels : Type³⁰⁸² - Plane : TheC³⁰⁸³ - Plane : TheT³⁰⁸⁴ - Plane: TheZ³⁰⁸⁵ **Total supported: 22** Total unknown or missing: 453 ## 19.2.86 APLReader This page lists supported metadata fields for the Bio-Formats Olympus APL format reader. These fields are from the OME data model³⁰⁸⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 21 of them (4%). - Of those, Bio-Formats fully or partially converts 21 (100%). # Supported fields #### These fields are fully supported by the Bio-Formats Olympus APL format reader: - Channel: ID³⁰⁸⁷ - Channel: SamplesPerPixel³⁰⁸⁸ - Image : AcquisitionDate³⁰⁸⁹ - Image: ID3090 - Image : Name³⁰⁹¹ ³⁰⁷⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY $^{^{3075}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_PhysicalSizeZ$ ³⁰⁷⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ³⁰⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁰⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁰⁷⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁰⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁰⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁰⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels Type ³⁰⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 3084 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³⁰⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁰⁸⁶ http://www.openmicroscopy.org/site/support/ome-model/ ³⁰⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁰⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁰⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁰⁹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³⁰⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name - Pixels: BigEndian³⁰⁹² - Pixels : DimensionOrder³⁰⁹³ - Pixels : ID³⁰⁹⁴ - Pixels: Interleaved³⁰⁹⁵ - Pixels : PhysicalSizeX³⁰⁹⁶ - Pixels : PhysicalSizeY³⁰⁹⁷ - Pixels : SignificantBits³⁰⁹⁸ - Pixels : SizeC³⁰⁹⁹ - Pixels: SizeT3100 - Pixels: SizeX³¹⁰¹ - Pixels : SizeY³¹⁰² - Pixels: SizeZ³¹⁰³ - Pixels: Type³¹⁰⁴ - Plane: TheC³¹⁰⁵ - Plane: TheT3106 - Plane: TheZ³¹⁰⁷ Total supported: 21 Total unknown or missing: 454 ## 19.2.87 FV1000Reader This page lists supported metadata fields for the Bio-Formats Olympus FV1000 format reader. These fields are from the OME data model³¹⁰⁸. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 109 of them (22%). - Of those, Bio-Formats fully or partially converts 109 (100%). # Supported fields ## These fields are fully supported by the Bio-Formats Olympus FV1000 format reader: • Channel : EmissionWavelength³¹⁰⁹ ``` 3092http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ^{3093} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_DimensionOrder ³⁰⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ^{3095} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Interleaved 3096 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 3097 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 3098 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 3099 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3100 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeT 3101 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 3102http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3103 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 3104 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3105 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 3106 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ``` ³¹⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³¹⁰⁸ http://www.openmicroscopy.org/site/support/ome-model/ ³¹⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength ``` • Channel: ExcitationWavelength³¹¹⁰ ``` • Channel : IlluminationType³¹¹² • Channel : LightSourceSettingsID³¹¹³ • Channel: LightSourceSettingsWavelength³¹¹⁴ • Channel: Name³¹¹⁵ • Channel: SamplesPerPixel³¹¹⁶ • Detector : Gain³¹¹⁷ • Detector: ID³¹¹⁸ • Detector : Type³¹¹⁹ • Detector: Voltage³¹²⁰ • DetectorSettings : ID³¹²¹ • Dichroic : ID³¹²² • Dichroic: Model³¹²³ • Ellipse : FontSize³¹²⁴ • Ellipse : ID^{3125} • Ellipse : RadiusX³¹²⁶ • Ellipse : RadiusY³¹²⁷ • Ellipse : StrokeWidth³¹²⁸ • Ellipse : TheT³¹²⁹ • Ellipse : $TheZ^{3130}$ • Ellipse : Transform³¹³¹ • Ellipse : X³¹³² • Ellipse : Y³¹³³ • Filter : ID³¹³⁴ • Filter: Model³¹³⁵ ``` 3110 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength 3111 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID 3112 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_IlluminationType 3113 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_ID 3114 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSourceSettings_Wavelength 3115 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name 3116 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 3117 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Gain 3118 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID 3119 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type 3120 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Voltage 3121 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID 3122 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dichroic_ID 3123http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 3124 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize 3125 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Shape ID 3126 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_RadiusX 3127 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_RadiusY 3128 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth 3129 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT 3130 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ 3131 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform 3132 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_X 3133 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_Y 3134 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID ``` 3135 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model [•] Channel: ID³¹¹¹ ``` • Image : AcquisitionDate³¹³⁶ ``` - Image : ID³¹³⁷ - Image : InstrumentRef³¹³⁸ - Image: Name³¹³⁹ - Image: ROIRef³¹⁴⁰ - Instrument : ID³¹⁴¹ - Laser : ID3142 - Laser: LaserMedium³¹⁴³ - Laser: Type³¹⁴⁴ - Laser: Wavelength³¹⁴⁵ - LightPath : DichroicRef³¹⁴⁶ - LightPath :
EmissionFilterRef³¹⁴⁷ - Line : FontSize³¹⁴⁸ - Line : ID³¹⁴⁹ - Line: StrokeWidth³¹⁵⁰ - Line: TheT3151 - Line: TheZ³¹⁵² - Line: Transform³¹⁵³ - Line : X1³¹⁵⁴ - Line : X2³¹⁵⁵ - Line : Y1³¹⁵⁶ - Line : Y2³¹⁵⁷ - Objective : Correction³¹⁵⁸ - Objective: ID³¹⁵⁹ - Objective : Immersion³¹⁶⁰ - Objective : LensNA³¹⁶¹ ``` ^{3136} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate 3137 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 3138 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 3139 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 3140 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID 3141 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 3142 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID 3143 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_LaserMedium 3144http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type 3145 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Wavelength 3146 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DichroicRef_ID 3147 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID 3148 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize 3149 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 3151 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT 3152 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ 3153 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Shape Transform 3154 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_X1 3155 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Line X2 3156 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_Y1 3157 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_Y2 3158 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction 3159 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID 3160 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion ``` ³¹⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA • Objective : Model³¹⁶² • Objective : Nominal Magnification 3163 • Objective : WorkingDistance³¹⁶⁴ • ObjectiveSettings : ID³¹⁶⁵ • Pixels: BigEndian³¹⁶⁶ • Pixels: DimensionOrder³¹⁶⁷ • Pixels : ID³¹⁶⁸ • Pixels: Interleaved3169 • Pixels : PhysicalSizeX³¹⁷⁰ • Pixels : PhysicalSizeY³¹⁷¹ • Pixels : PhysicalSizeZ³¹⁷² • Pixels : SignificantBits³¹⁷³ • Pixels : SizeC³¹⁷⁴ • Pixels: SizeT³¹⁷⁵ • Pixels: SizeX3176 • Pixels : SizeY³¹⁷⁷ • Pixels: SizeZ³¹⁷⁸ • Pixels : TimeIncrement³¹⁷⁹ • Pixels: Type³¹⁸⁰ • Plane: TheC³¹⁸¹ • Plane : The T^{3182} • Plane : $TheZ^{3183}$ • Point: FontSize³¹⁸⁴ • Point : ID³¹⁸⁵ • Point : StrokeWidth³¹⁸⁶ • Point : TheT³¹⁸⁷ 3162http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 3163 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification 3164 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance 3165 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID 3166 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 3167 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 3168 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID $^{3169} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Interleaved$ 3170 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 3171 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 3172 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ 3173 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 3174 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3175 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 3176 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 3177 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3178 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 3179 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement 3180 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3181 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 3182 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 3183 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 3184 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize 3185 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Shape ID 3186 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth 3187 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT • Point: TheZ³¹⁸⁸ • Point : X³¹⁸⁹ • Point : Y³¹⁹⁰ • Polygon : FontSize³¹⁹¹ • Polygon : ID³¹⁹² • Polygon: Points³¹⁹³ • Polygon : StrokeWidth³¹⁹⁴ • Polygon: TheT³¹⁹⁵ • Polygon: TheZ³¹⁹⁶ • Polygon: Transform³¹⁹⁷ • Polyline : FontSize³¹⁹⁸ • Polyline : ID³¹⁹⁹ • Polyline : Points³²⁰⁰ • Polyline : StrokeWidth³²⁰¹ • Polyline : TheT³²⁰² • Polyline : $TheZ^{3203}$ • Polyline : Transform³²⁰⁴ • ROI : ID³²⁰⁵ • Rectangle : FontSize³²⁰⁶ • Rectangle : Height³²⁰⁷ • Rectangle : ID³²⁰⁸ • Rectangle : StrokeWidth³²⁰⁹ • Rectangle : TheT³²¹⁰ • Rectangle : TheZ³²¹¹ • Rectangle : Transform³²¹² • Rectangle: Width³²¹³ ``` 3188 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ 3189 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Point_X 3190 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Point_Y 3191 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize 3192 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ^{3193} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html \#Polygon_Points ³¹⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth 3195 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT 3196 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ 3197 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform 3198 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize 3199 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 3200 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polyline_Points 3201 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth 3202 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT 3203 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ 3204 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform ³²⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#ROI ID 3206 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize ³²⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Height 3208 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 3209 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth 3210 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheT 3211 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_TheZ 3212 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform ^{3213} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html \# Rectangle_Width Management of the property ``` Rectangle: X³²¹⁴Rectangle: Y³²¹⁵ TransmittanceRange : CutIn³²¹⁶ TransmittanceRange : CutOut³²¹⁷ **Total supported: 109** Total unknown or missing: 366 ### 19.2.88 FluoviewReader This page
lists supported metadata fields for the Bio-Formats Olympus Fluoview/ABD TIFF format reader. These fields are from the OME data model³²¹⁸. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 49 of them (10%). - Of those, Bio-Formats fully or partially converts 49 (100%). #### Supported fields These fields are fully supported by the Bio-Formats Olympus Fluoview/ABD TIFF format reader: • Channel : ID³²¹⁹ • Channel: Name³²²⁰ • Channel: SamplesPerPixel³²²¹ • Detector: ID³²²² • Detector : Manufacturer³²²³ • Detector: Model³²²⁴ • Detector: Type³²²⁵ • DetectorSettings : Gain³²²⁶ • DetectorSettings : ID³²²⁷ • DetectorSettings : Offset³²²⁸ • DetectorSettings : ReadOutRate³²²⁹ • DetectorSettings : Voltage³²³⁰ • Image : AcquisitionDate³²³¹ ``` 3214 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_X ``` ³²¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Y ³²¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutIn ³²¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutOut ³²¹⁸ http://www.openmicroscopy.org/site/support/ome-model/ ³²¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³²²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ³²²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel $^{{\}it 3222} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Detector_ID$ ³²²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer ³²²⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ³²²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ³²²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain ³²²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID 3228 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Offset ³²²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ReadOutRate ³²³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Voltage ³²³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ``` • Image: Description³²³² ``` • Image : InstrumentRef³²³⁴ • Image : Name³²³⁵ • ImagingEnvironment : Temperature³²³⁶ • Instrument : ID³²³⁷ • Objective : CalibratedMagnification 3238 • Objective : Correction³²³⁹ • Objective: ID³²⁴⁰ • Objective : Immersion³²⁴¹ • Objective : LensNA³²⁴² • Objective: Model³²⁴³ • ObjectiveSettings : ID³²⁴⁴ • Pixels: BigEndian³²⁴⁵ • Pixels : DimensionOrder³²⁴⁶ • Pixels : ID³²⁴⁷ • Pixels: Interleaved³²⁴⁸ • Pixels : PhysicalSizeX³²⁴⁹ • Pixels : PhysicalSizeY³²⁵⁰ • Pixels : PhysicalSizeZ³²⁵¹ • Pixels : SignificantBits³²⁵² • Pixels : SizeC³²⁵³ • Pixels : SizeT³²⁵⁴ • Pixels : SizeX³²⁵⁵ • Pixels : SizeY³²⁵⁶ • Pixels : SizeZ³²⁵⁷ ``` 3232 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description 3233 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 3234 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 3235 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 3236 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature 3237 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 3238 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification 3239 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction 3240 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID 3241 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion 3242 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA 3243 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ³²⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID 3245 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 3246 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³²⁴⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 3248 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 3249 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 3250 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 3251 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ 3252 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 3253 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3254 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 3255 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 3256 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ``` 3257 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ [•] Image : ID³²³³ • Pixels: TimeIncrement³²⁵⁸ • Pixels: Type³²⁵⁹ • Plane : DeltaT³²⁶⁰ • Plane: ExposureTime³²⁶¹ • Plane : PositionX³²⁶² • Plane : PositionY³²⁶³ • Plane : PositionZ³²⁶⁴ • Plane : TheC³²⁶⁵ • Plane: TheT³²⁶⁶ • Plane : TheZ³²⁶⁷ #### **Total supported: 49** Total unknown or missing: 426 #### 19.2.89 ScanrReader This page lists supported metadata fields for the Bio-Formats Olympus ScanR format reader. These fields are from the OME data model³²⁶⁸. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 43 of them (9%). - Of those, Bio-Formats fully or partially converts 43 (100%). ### **Supported fields** These fields are fully supported by the Bio-Formats Olympus ScanR format reader: • Channel: ID3269 • Channel : Name³²⁷⁰ • Channel: SamplesPerPixel³²⁷¹ • Image : AcquisitionDate³²⁷² • Image : ID³²⁷³ • Image: Name³²⁷⁴ • Pixels: BigEndian³²⁷⁵ ³²⁵⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement ³²⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³²⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT ³²⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ³²⁶² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX 3263 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ³²⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ ³²⁶⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³²⁶⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³²⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³²⁶⁸ http://www.openmicroscopy.org/site/support/ome-model/ ³²⁶⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³²⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ³²⁷¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³²⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³²⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³²⁷⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³²⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ``` • Pixels: DimensionOrder³²⁷⁶ ``` • Pixels : ID³²⁷⁷ • Pixels: Interleaved³²⁷⁸ • Pixels : PhysicalSizeX³²⁷⁹ • Pixels : PhysicalSizeY³²⁸⁰ • Pixels : SignificantBits³²⁸¹ • Pixels : SizeC³²⁸² • Pixels: SizeT3283 • Pixels: SizeX³²⁸⁴ • Pixels : SizeY³²⁸⁵ • Pixels : SizeZ³²⁸⁶ • Pixels : Type³²⁸⁷ • Plane : DeltaT³²⁸⁸ • Plane : ExposureTime³²⁸⁹ • Plane : PositionX³²⁹⁰ • Plane : PositionY³²⁹¹ • Plane : TheC³²⁹² • Plane: TheT³²⁹³ • Plane: TheZ³²⁹⁴ • Plate: ColumnNamingConvention³²⁹⁵ •
Plate : Columns³²⁹⁶ • Plate : ID³²⁹⁷ • Plate: Name³²⁹⁸ • Plate: RowNamingConvention³²⁹⁹ • Plate: Rows³³⁰⁰ • PlateAcquisition : ID^{3301} ``` {}^{3276}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_DimensionOrder 3277 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 3278 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 3279 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ³²⁸⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ^{3281} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits 3282 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3283 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 3284 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 3285 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3286 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³²⁸⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3288 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT 3289 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime 3290 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX 3291 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY 3292 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³²⁹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 3294 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 3295 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ColumnNamingConvention 3296 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Columns 3297 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID 3298 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Name 3299 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_RowNamingConvention 3300 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Rows 3301 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_ID ``` • PlateAcquisition : MaximumFieldCount³³⁰² • PlateAcquisition : WellSampleRef³³⁰³ • Well: Column³³⁰⁴ • Well: ID³³⁰⁵ • Well: Row³³⁰⁶ • WellSample : ID³³⁰⁷ • WellSample : ImageRef³³⁰⁸ • WellSample : Index³³⁰⁹ • WellSample : PositionX³³¹⁰ • WellSample : PositionY³³¹¹ Total supported: 43 Total unknown or missing: 432 #### 19.2.90 SISReader This page lists supported metadata fields for the Bio-Formats Olympus SIS TIFF format reader. These fields are from the OME data model³³¹². Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 33 of them (6%). - Of those, Bio-Formats fully or partially converts 33 (100%). ### **Supported fields** These fields are fully supported by the Bio-Formats Olympus SIS TIFF format reader: • Channel: ID³³¹³ • Channel : Name³³¹⁴ • Channel: SamplesPerPixel³³¹⁵ • Detector: ID³³¹⁶ • Detector: Model³³¹⁷ • Detector: Type³³¹⁸ • DetectorSettings : ID³³¹⁹ ³³⁰² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount $^{^{3303}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html \#WellSampleRef_ID$ ³³⁰⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column ³³⁰⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID ³³⁰⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row ³³⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID ³³⁰⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImageRef_ID ³³⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index ³³¹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionX ³³¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_PositionY ³³¹²http://www.openmicroscopy.org/site/support/ome-model/ ³³¹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³³¹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ³³¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³³¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ³³¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ³³¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ³³¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID ``` • Image : AcquisitionDate³³²⁰ ``` • Image : InstrumentRef³³²² • Image : Name³³²³ • Instrument : ID³³²⁴ • Objective : Correction³³²⁵ • Objective : ID³³²⁶ • Objective : Immersion³³²⁷ • Objective : Nominal Magnification ³³²⁸ • ObjectiveSettings : ID³³²⁹ • Pixels: BigEndian³³³⁰ • Pixels : DimensionOrder³³³¹ • Pixels : ID³³³² • Pixels: Interleaved³³³³ • Pixels : PhysicalSizeX³³³⁴ • Pixels : PhysicalSizeY³³³⁵ • Pixels : SignificantBits³³³⁶ • Pixels : SizeC³³³⁷ • Pixels : SizeT³³³⁸ • Pixels: SizeX³³³⁹ • Pixels : SizeY³³⁴⁰ • Pixels : SizeZ³³⁴¹ • Pixels : Type³³⁴² • Plane : TheC³³⁴³ • Plane: TheT³³⁴⁴ • Plane : TheZ³³⁴⁵ ``` 3320 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 3321 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 3322 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 3323 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 3324 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 3325 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction 3326 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID 3327 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion 3328 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification 3329 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID 3330 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 3331 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 3332 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 3333 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 3334 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 3335 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 3336 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 3337 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3338 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 3339 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 3340 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3341 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 3342 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3343 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 3344 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ``` 3345 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ [•] Image: ID³³²¹ Total unknown or missing: 442 #### 19.2.91 OMETiffReader This page lists supported metadata fields for the Bio-Formats OME-TIFF format reader. These fields are from the OME data model³³⁴⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them
(4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ### Supported fields # These fields are fully supported by the Bio-Formats OME-TIFF format reader: ``` • Channel: ID³³⁴⁷ ``` • Channel: SamplesPerPixel³³⁴⁸ • Image : AcquisitionDate³³⁴⁹ • Image : ID³³⁵⁰ • Image: Name³³⁵¹ • Pixels: BigEndian³³⁵² • Pixels : DimensionOrder³³⁵³ • Pixels: ID³³⁵⁴ • Pixels: Interleaved³³⁵⁵ • Pixels : SignificantBits³³⁵⁶ • Pixels: SizeC³³⁵⁷ • Pixels: SizeT³³⁵⁸ • Pixels : SizeX³³⁵⁹ • Pixels: SizeY³³⁶⁰ • Pixels : SizeZ³³⁶¹ • Pixels: Type³³⁶² • Plane: TheC³³⁶³ ³³⁴⁶ http://www.openmicroscopy.org/site/support/ome-model/ $^{{\}it 3347} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ $^{{\}it 3348} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_Samples Per Pixel {\it 100} properties and pro$ ³³⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³³⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³³⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Image Name ³³⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³³⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³³⁵⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³³⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved $^{{\}it 3356} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits$ ³³⁵⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³³⁵⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³³⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³³⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³³⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³³⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³³⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC mp,,, www.openmeroscopy.org/solientation/sol Plane : TheT³³⁶⁴ Plane : TheZ³³⁶⁵ Total supported: 19 Total unknown or missing: 456 #### 19.2.92 OMEXMLReader This page lists supported metadata fields for the Bio-Formats OME-XML format reader. These fields are from the OME data model³³⁶⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). # **Supported fields** # These fields are fully supported by the Bio-Formats OME-XML format reader: • Channel: ID³³⁶⁷ • Channel: SamplesPerPixel³³⁶⁸ • Image : AcquisitionDate³³⁶⁹ • Image : ID³³⁷⁰ • Image: Name³³⁷¹ • Pixels : BigEndian³³⁷² • Pixels : DimensionOrder³³⁷³ • Pixels: ID³³⁷⁴ • Pixels: Interleaved³³⁷⁵ • Pixels : SignificantBits³³⁷⁶ • Pixels : SizeC³³⁷⁷ • Pixels: SizeT³³⁷⁸ • Pixels : SizeX³³⁷⁹ • Pixels : SizeY³³⁸⁰ • Pixels : SizeZ³³⁸¹ $^{^{3364}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Total T$ ³³⁶⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³³⁶⁶http://www.openmicroscopy.org/site/support/ome-model/ ³³⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³³⁶⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³³⁶⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³³⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³³⁷¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³³⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $[\]frac{3373}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_DimensionOrder}{2374}$ ³³⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³³⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³³⁷⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ³³⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3378 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³³⁷⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³³⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³³⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ • Pixels : Type³³⁸² Plane: TheC³³⁸³ Plane: TheT³³⁸⁴ • Plane : TheZ³³⁸⁵ **Total supported: 19** Total unknown or missing: 456 ### 19.2.93 OxfordInstrumentsReader This page lists supported metadata fields for the Bio-Formats Oxford Instruments format reader. These fields are from the OME data model³³⁸⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the *metadata summary table*: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). #### Supported fields #### These fields are fully supported by the Bio-Formats Oxford Instruments format reader: • Channel: ID³³⁸⁷ • Channel: SamplesPerPixel³³⁸⁸ • Image : AcquisitionDate³³⁸⁹ • Image: Description³³⁹⁰ • Image: ID³³⁹¹ • Image: Name³³⁹² • Pixels: BigEndian³³⁹³ • Pixels : DimensionOrder³³⁹⁴ • Pixels: ID³³⁹⁵ • Pixels: Interleaved³³⁹⁶ • Pixels : PhysicalSizeX³³⁹⁷ • Pixels : PhysicalSizeY³³⁹⁸ • Pixels : SignificantBits³³⁹⁹ ³³⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³³⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³³⁸⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³³⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³³⁸⁶ http://www.openmicroscopy.org/site/support/ome-model/ ³³⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³³⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³³⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate $³³⁹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Image_Description$ ³³⁹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID $^{^{3392}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_Name$ $^{^{3393}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_BigEndian$ ³³⁹⁴
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³³⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³³⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³³⁹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ³³⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ³³⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits Pixels: SizeC³⁴⁰⁰ Pixels: SizeT³⁴⁰¹ Pixels: SizeX³⁴⁰² Pixels: SizeY³⁴⁰³ Pixels: SizeZ³⁴⁰⁴ Pixels: Type³⁴⁰⁵ Plane: TheC³⁴⁰⁶ Plane: TheT³⁴⁰⁷ Total supported: 22 Total unknown or missing: 453 • Plane: TheZ³⁴⁰⁸ ### 19.2.94 PCORAWReader This page lists supported metadata fields for the Bio-Formats PCO-RAW format reader. These fields are from the OME data model³⁴⁰⁹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 26 of them (5%). - Of those, Bio-Formats fully or partially converts 26 (100%). ### Supported fields ### These fields are fully supported by the Bio-Formats PCO-RAW format reader: • Channel : ID³⁴¹⁰ • Channel: SamplesPerPixel³⁴¹¹ • Detector : ID³⁴¹² • Detector : SerialNumber³⁴¹³ • DetectorSettings : Binning³⁴¹⁴ • DetectorSettings : ID³⁴¹⁵ • Image : AcquisitionDate³⁴¹⁶ • Image: Description³⁴¹⁷ ³⁴⁰⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁴⁰¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 3402 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 3403 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3404 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 3405 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3406 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 3407 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 3408 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 3409 http://www.openmicroscopy.org/site/support/ome-model/ 3410 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID $^{3411} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_Samples Per Pixel Annual Properties of the Company Compan$ 3412 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID 3413 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber 3414 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning 3415 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID $^{3416} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate$ $^{^{3417}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_Description$ • Image : ID³⁴¹⁸ • Image: Name³⁴¹⁹ • Instrument : ID³⁴²⁰ • Pixels: BigEndian³⁴²¹ • Pixels : DimensionOrder³⁴²² • Pixels : ID³⁴²³ • Pixels : Interleaved³⁴²⁴ • Pixels : SignificantBits³⁴²⁵ • Pixels: SizeC3426 • Pixels: SizeT³⁴²⁷ • Pixels : SizeX³⁴²⁸ • Pixels : SizeY³⁴²⁹ • Pixels : SizeZ³⁴³⁰ • Pixels: Type³⁴³¹ • Plane : ExposureTime³⁴³² • Plane : TheC³⁴³³ • Plane: TheT³⁴³⁴ • Plane: TheZ³⁴³⁵ #### **Total supported: 26** Total unknown or missing: 449 #### 19.2.95 PCXReader This page lists supported metadata fields for the Bio-Formats PCX format reader. These fields are from the OME data model³⁴³⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ³⁴¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³⁴¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁴²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ³⁴²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁴²² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁴²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁴²⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁴²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ³⁴²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3427 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁴²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁴²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁴³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁴³¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3432 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ³⁴³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³⁴³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³⁴³⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁴³⁶ http://www.openmicroscopy.org/site/support/ome-model/ ### Supported fields #### These fields are fully supported by the Bio-Formats PCX format reader: • Channel : ID³⁴³⁷ • Channel: SamplesPerPixel³⁴³⁸ • Image : AcquisitionDate³⁴³⁹ • Image : ID³⁴⁴⁰ • Image: Name³⁴⁴¹ • Pixels: BigEndian³⁴⁴² • Pixels: DimensionOrder³⁴⁴³ • Pixels : ID³⁴⁴⁴ • Pixels : Interleaved³⁴⁴⁵ • Pixels : SignificantBits³⁴⁴⁶ • Pixels : SizeC³⁴⁴⁷ • Pixels: SizeT3448 • Pixels : SizeX³⁴⁴⁹ • Pixels : SizeY³⁴⁵⁰ • Pixels : SizeZ³⁴⁵¹ • Pixels : Type³⁴⁵² • Plane : $TheC^{3453}$ • Plane: TheT³⁴⁵⁴ • Plane: TheZ³⁴⁵⁵ **Total supported: 19** Total unknown or missing: 456 ### 19.2.96 PDSReader This page lists supported metadata fields for the Bio-Formats Perkin Elmer Densitometer format reader. These fields are from the OME data model³⁴⁵⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ``` 3437 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ``` ³⁴³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁴³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁴⁴⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³⁴⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁴⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $^{{\}it 34443} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_DimensionOrder {\it 24443} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_DimensionOrder {\it 24444} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_DimensionOrder {\it 24444} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_DimensionOrder {\it 24444} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html http://www.openmicroscopy.html {\it 24444} http://www.openmicroscopy.html {\it 24444} http://www.openmicroscopy.html {\it 24444} http://www.openmicroscopy.html {\it 24444} http://www.openmicroscopy.html {$ ³⁴⁴⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁴⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved $^{{\}it 3446} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits {\it 3447} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SizeC$ ³⁴⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁴⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁴⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3451 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁴⁵²
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³⁴⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixeis_type ³⁴⁵⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³⁴⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁴⁵⁶ http://www.openmicroscopy.org/site/support/ome-model/ #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 23 of them (4%). - Of those, Bio-Formats fully or partially converts 23 (100%). #### Supported fields #### These fields are fully supported by the Bio-Formats Perkin Elmer Densitometer format reader: ``` • Channel : ID³⁴⁵⁷ ``` • Channel: SamplesPerPixel³⁴⁵⁸ • Image : AcquisitionDate³⁴⁵⁹ • Image : ID³⁴⁶⁰ • Image: Name³⁴⁶¹ • Pixels: BigEndian³⁴⁶² • Pixels : DimensionOrder³⁴⁶³ • Pixels : ID³⁴⁶⁴ • Pixels : Interleaved 3465 • Pixels : PhysicalSizeX³⁴⁶⁶ • Pixels : PhysicalSizeY³⁴⁶⁷ • Pixels : SignificantBits³⁴⁶⁸ • Pixels : SizeC³⁴⁶⁹ • Pixels: SizeT3470 • Pixels : SizeX³⁴⁷¹ • Pixels : SizeY³⁴⁷² • Pixels: SizeZ³⁴⁷³ • Pixels : Type³⁴⁷⁴ • Plane : PositionX³⁴⁷⁵ • Plane : Position Y^{3476} • Plane: TheC³⁴⁷⁷ • Plane: TheT³⁴⁷⁸ $^{^{3457}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ ³⁴⁵⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁴⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Image AcquisitionDate ³⁴⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 3461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Image Name ³⁴⁶² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁴⁶³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁴⁶⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁴⁶⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁴⁶⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 3467 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ³⁴⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ³⁴⁶⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁴⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeT ³⁴⁷¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁴⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁴⁷⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³⁴⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX ³⁴⁷⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Plane PositionY ³⁴⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 3478 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT • Plane: TheZ³⁴⁷⁹ **Total supported: 23** Total unknown or missing: 452 # 19.2.97 OperettaReader This page lists supported metadata fields for the Bio-Formats PerkinElmer Operetta format reader. These fields are from the OME data model³⁴⁸⁰. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 43 of them (9%). - Of those, Bio-Formats fully or partially converts 43 (100%). # Supported fields These fields are fully supported by the Bio-Formats PerkinElmer Operetta format reader: • Channel: ID³⁴⁸¹ • Channel: Name³⁴⁸² • Channel: SamplesPerPixel³⁴⁸³ • Experimenter : ID³⁴⁸⁴ • Experimenter : LastName³⁴⁸⁵ • Image : AcquisitionDate³⁴⁸⁶ • Image : ExperimenterRef³⁴⁸⁷ • Image : ID³⁴⁸⁸ • Image: Name³⁴⁸⁹ • Pixels: BigEndian³⁴⁹⁰ • Pixels : DimensionOrder³⁴⁹¹ • Pixels : ID³⁴⁹² • Pixels: Interleaved³⁴⁹³ • Pixels : PhysicalSizeX³⁴⁹⁴ • Pixels : PhysicalSizeY³⁴⁹⁵ • Pixels : SignificantBits³⁴⁹⁶ $^{^{3479}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Plane_TheZ$ ³⁴⁸⁰ http://www.openmicroscopy.org/site/support/ome-model/ ³⁴⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁴⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ³⁴⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁴⁸⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID ³⁴⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Experimenter LastName $^{^{3486}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate$ ³⁴⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#ExperimenterRef ID ³⁴⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 3489 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁴⁹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 3491 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁴⁹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁴⁹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁴⁹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ³⁴⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ³⁴⁹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ``` • Pixels : SizeC³⁴⁹⁷ ``` • Pixels : SizeX³⁴⁹⁹ • Pixels : SizeY³⁵⁰⁰ • Pixels : SizeZ³⁵⁰¹ • Pixels : Type³⁵⁰² • Plane : PositionX³⁵⁰³ • Plane : PositionY³⁵⁰⁴ • Plane : PositionZ³⁵⁰⁵ • Plane: TheC3506 • Plane : TheT³⁵⁰⁷ • Plane: TheZ³⁵⁰⁸ • Plate : Columns³⁵⁰⁹ • Plate: Description³⁵¹⁰ • Plate: ExternalIdentifier³⁵¹¹ • Plate : ID³⁵¹² • Plate: Name³⁵¹³ • Plate: Rows³⁵¹⁴ • PlateAcquisition : ID³⁵¹⁵ • PlateAcquisition: MaximumFieldCount³⁵¹⁶ • PlateAcquisition : WellSampleRef³⁵¹⁷ • Well: Column³⁵¹⁸ • Well: ID³⁵¹⁹ • Well : Row³⁵²⁰ • WellSample : ID³⁵²¹ • WellSample : ImageRef³⁵²² ``` 3497 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3498 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 3499 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 3500 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3501 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 3502 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3503 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX 3504 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY 3505 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Plane PositionZ 3506 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³⁵⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 3508 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 3509 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Columns 3510 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Description 3511 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ExternalIdentifier 3512 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_ID 3513 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Name 3514 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Plate_Rows 3515 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_ID 3516 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#PlateAcquisition_MaximumFieldCount 3517 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSampleRef_ID 3518 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Column 3519 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_ID 3520 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#Well_Row 3521 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_ID ```
3522http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImageRef_ID [•] Pixels: SizeT³⁴⁹⁸ • WellSample : Index³⁵²³ **Total supported: 43** Total unknown or missing: 432 #### 19.2.98 PerkinElmerReader This page lists supported metadata fields for the Bio-Formats PerkinElmer format reader. These fields are from the OME data model³⁵²⁴. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 30 of them (6%). - Of those, Bio-Formats fully or partially converts 30 (100%). # Supported fields # These fields are fully supported by the Bio-Formats PerkinElmer format reader: ``` • Channel : EmissionWavelength³⁵²⁵ ``` • Channel: ExcitationWavelength³⁵²⁶ • Channel: ID³⁵²⁷ • Channel : SamplesPerPixel³⁵²⁸ • Image : AcquisitionDate³⁵²⁹ • Image : ID³⁵³⁰ • Image : InstrumentRef³⁵³¹ • Image: Name³⁵³² • Instrument : ID³⁵³³ • Pixels: BigEndian³⁵³⁴ • Pixels: DimensionOrder³⁵³⁵ • Pixels: ID³⁵³⁶ • Pixels : Interleaved³⁵³⁷ • Pixels : PhysicalSizeX³⁵³⁸ • Pixels : PhysicalSizeY³⁵³⁹ • Pixels : SignificantBits³⁵⁴⁰ ³⁵²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/SPW_xsd.html#WellSample_Index ³⁵²⁴http://www.openmicroscopy.org/site/support/ome-model/ ³⁵²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength ³⁵²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ExcitationWavelength ³⁵²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁵²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁵²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁵³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³⁵³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID ³⁵³² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁵³³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ³⁵³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁵³⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁵³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 3537 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁵³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ³⁵³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY $^{^{3540}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits$ - Pixels : SizeC³⁵⁴¹ - Pixels: SizeT³⁵⁴² - Pixels : SizeX³⁵⁴³ - Pixels : SizeY³⁵⁴⁴ - Pixels : SizeZ³⁵⁴⁵ - Pixels : Type³⁵⁴⁶ - Plane: DeltaT³⁵⁴⁷ - Plane : ExposureTime³⁵⁴⁸ - Plane : PositionX³⁵⁴⁹ - Plane : PositionY³⁵⁵⁰ - Plane : PositionZ³⁵⁵¹ - Plane: TheC³⁵⁵² - Plane : TheT³⁵⁵³ - Plane: TheZ³⁵⁵⁴ Total unknown or missing: 445 ### 19.2.99 PGMReader This page lists supported metadata fields for the Bio-Formats Portable Gray Map format reader. These fields are from the OME data model³⁵⁵⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ### Supported fields #### These fields are fully supported by the Bio-Formats Portable Gray Map format reader: - Channel: ID³⁵⁵⁶ - Channel: SamplesPerPixel³⁵⁵⁷ - Image : AcquisitionDate³⁵⁵⁸ ³⁵⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁵⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁵⁴³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁵⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁵⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁵⁴⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3547 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT ³⁵⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime ³⁵⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_Exposure11 (ME-2013-06/ome_xsd.html#Plane_PositionX) ³⁵⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ³⁵⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ ³⁵⁵²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³⁵⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³⁵⁵⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁵⁵⁵ http://www.openmicroscopy.org/site/support/ome-model/ ³⁵⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁵⁵⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel $^{^{3558}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate$ - Image : ID³⁵⁵⁹ - Image : Name³⁵⁶⁰ - Pixels: BigEndian³⁵⁶¹ - Pixels : DimensionOrder³⁵⁶² - Pixels : ID³⁵⁶³ - Pixels: Interleaved³⁵⁶⁴ - Pixels : SignificantBits³⁵⁶⁵ - Pixels : SizeC³⁵⁶⁶ - Pixels: SizeT³⁵⁶⁷ - Pixels: SizeX³⁵⁶⁸ - Pixels : SizeY³⁵⁶⁹ - Pixels : SizeZ³⁵⁷⁰ - Pixels: Type³⁵⁷¹ - Plane : TheC³⁵⁷² - 2572 - Plane : TheT³⁵⁷³ - Plane : TheZ³⁵⁷⁴ Total unknown or missing: 456 ### 19.2.100 PSDReader This page lists supported metadata fields for the Bio-Formats Adobe Photoshop format reader. These fields are from the OME data model³⁵⁷⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ## Supported fields #### These fields are fully supported by the Bio-Formats Adobe Photoshop format reader: • Channel : ID³⁵⁷⁶ $^{3559} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_ID$ 3560 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 3561 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 3562 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 3563 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁵⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 3565 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 3566 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeC 3567 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 3568 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 3569 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3570 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 3571 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3572 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 3573 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 3574 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 3575 http://www.openmicroscopy.org/site/support/ome-model/ 3576 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID - Channel: SamplesPerPixel³⁵⁷⁷ - Image : AcquisitionDate³⁵⁷⁸ - Image : ID³⁵⁷⁹ - Image: Name³⁵⁸⁰ - Pixels: BigEndian³⁵⁸¹ - Pixels: DimensionOrder³⁵⁸² - Pixels : ID³⁵⁸³ - Pixels: Interleaved³⁵⁸⁴ - Pixels : SignificantBits³⁵⁸⁵ - Pixels : SizeC³⁵⁸⁶ - Pixels : SizeT³⁵⁸⁷ - Pixels : SizeX³⁵⁸⁸ - Pixels : SizeY³⁵⁸⁹ - Pixels: SizeZ³⁵⁹⁰ - Pixels: Type³⁵⁹¹ - Plane: TheC³⁵⁹² - Plane: TheT³⁵⁹³ - Plane: TheZ³⁵⁹⁴ Total unknown or missing: 456 # 19.2.101 PhotoshopTiffReader This page lists supported metadata fields for the Bio-Formats Adobe Photoshop TIFF format reader. These fields are from the OME data model³⁵⁹⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ###
Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ³⁵⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁵⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁵⁷⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³⁵⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁵⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁵⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 3583 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁵⁸⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved $^{^{3585}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits$ ³⁵⁸⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeC ³⁵⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 3588 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeX ³⁵⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3590 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁵⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³⁵⁹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³⁵⁹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³⁵⁹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁵⁹⁵ http://www.openmicroscopy.org/site/support/ome-model/ ### Supported fields #### These fields are fully supported by the Bio-Formats Adobe Photoshop TIFF format reader: • Channel : ID³⁵⁹⁶ • Channel: SamplesPerPixel³⁵⁹⁷ • Image : AcquisitionDate³⁵⁹⁸ • Image : ID³⁵⁹⁹ • Image: Name³⁶⁰⁰ • Pixels: BigEndian³⁶⁰¹ • Pixels: DimensionOrder³⁶⁰² • Pixels : ID³⁶⁰³ • Pixels: Interleaved³⁶⁰⁴ • Pixels : SignificantBits³⁶⁰⁵ • Pixels : SizeC³⁶⁰⁶ • Pixels: SizeT³⁶⁰⁷ • Pixels : SizeX³⁶⁰⁸ • Pixels: SizeY³⁶⁰⁹ • Pixels : SizeZ³⁶¹⁰ • Pixels : Type³⁶¹¹ • Plane : TheC³⁶¹² • Plane: TheT³⁶¹³ • Plane: TheZ³⁶¹⁴ Total supported: 19 Total unknown or missing: 456 ### 19.2.102 PictReader This page lists supported metadata fields for the Bio-Formats PICT format reader. These fields are from the OME data model³⁶¹⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. 3596 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁵⁹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁵⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁵⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³⁶⁰⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁶⁰¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁶⁰² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁶⁰³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 3604 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁶⁰⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 3606 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁶⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁶⁰⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁶⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁶¹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁶¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³⁶¹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 3613 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Plane TheT ³⁶¹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁶¹⁵ http://www.openmicroscopy.org/site/support/ome-model/ ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). # **Supported fields** ### These fields are fully supported by the Bio-Formats PICT format reader: - Channel : ID³⁶¹⁶ - Channel: SamplesPerPixel³⁶¹⁷ - Image : AcquisitionDate³⁶¹⁸ - Image : ID³⁶¹⁹ - Image : Name³⁶²⁰ - Pixels: BigEndian³⁶²¹ - Pixels : DimensionOrder³⁶²² - Pixels : ID³⁶²³ - Pixels : Interleaved³⁶²⁴ - Pixels : SignificantBits³⁶²⁵ - Pixels : SizeC³⁶²⁶ - Pixels : SizeT³⁶²⁷ - Pixels : SizeX³⁶²⁸ - Pixels : SizeY³⁶²⁹ - Pixels : SizeZ³⁶³⁰ - Pixels : Type³⁶³¹ - Plane : TheC³⁶³² - Plane : TheT³⁶³³ - Plane : The Z^{3634} # **Total supported: 19** ### Total unknown or missing: 456 | ³⁶¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID | |--| | ³⁶¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel | | ³⁶¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate | | 3619 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID | | 3620 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name | | 3621 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian | | 3622http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder | | 3623 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID | | 3624 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved | | 3625 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits | | 3626 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC | | 3627 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT | | 3628 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX | | 3629 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY | | ³⁶³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ | | 3631 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type | | 3632 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC | | 3633 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT | | 3634 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ | ### 19.2.103 APNGReader This page lists supported metadata fields for the Bio-Formats Animated PNG format reader. These fields are from the OME data model³⁶³⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). #### Supported fields # These fields are fully supported by the Bio-Formats Animated PNG format reader: ``` • Channel : ID³⁶³⁶ ``` • Channel: SamplesPerPixel³⁶³⁷ • Image : AcquisitionDate³⁶³⁸ • Image : ID³⁶³⁹ • Image: Name³⁶⁴⁰ • Pixels: BigEndian³⁶⁴¹ • Pixels : DimensionOrder³⁶⁴² • Pixels: ID³⁶⁴³ • Pixels: Interleaved³⁶⁴⁴ • Pixels : SignificantBits³⁶⁴⁵ • Pixels : SizeC³⁶⁴⁶ • Pixels : SizeT³⁶⁴⁷ • Pixels: SizeX³⁶⁴⁸ • Pixels : SizeY³⁶⁴⁹ • Pixels : SizeZ³⁶⁵⁰ • Pixels: Type³⁶⁵¹ • Plane : TheC³⁶⁵² • Plane: TheT³⁶⁵³ ³⁶³⁵http://www.openmicroscopy.org/site/support/ome-model/ ³⁶³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁶³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁶³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁶³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 3640 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁶⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁶⁴²
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁶⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁶⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁶⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ³⁶⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁶⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT $^{^{3648}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeX$ 3649 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁶⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁶⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³⁶⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³⁶⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT • Plane: TheZ³⁶⁵⁴ **Total supported: 19** Total unknown or missing: 456 #### 19.2.104 PrairieReader This page lists supported metadata fields for the Bio-Formats Prairie TIFF format reader. These fields are from the OME data model³⁶⁵⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 45 of them (9%). - Of those, Bio-Formats fully or partially converts 45 (100%). # Supported fields # These fields are fully supported by the Bio-Formats Prairie TIFF format reader: • Channel: ID³⁶⁵⁶ • Channel: Name³⁶⁵⁷ • Channel: SamplesPerPixel³⁶⁵⁸ • Detector : ID³⁶⁵⁹ • Detector: Type³⁶⁶⁰ • Detector : Zoom³⁶⁶¹ • DetectorSettings : Gain³⁶⁶² • DetectorSettings : ID³⁶⁶³ • DetectorSettings : Offset³⁶⁶⁴ • Image : AcquisitionDate³⁶⁶⁵ • Image : ID³⁶⁶⁶ • Image : InstrumentRef³⁶⁶⁷ • Image: Name³⁶⁶⁸ • Instrument : ID³⁶⁶⁹ • Laser : ID³⁶⁷⁰ • Laser: Power³⁶⁷¹ $^{^{3654}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Zenerated/OME-2013-06/ome_xsd.html Plane_xsd.html Plane_$ 3655 http://www.openmicroscopy.org/site/support/ome-model/ 3656 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID 3657 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name 3658 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 3659 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Detector ID 3660 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type 3661 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Detector Zoom 3662 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain 3663 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID $^{3664} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Detector Settings_Offset$ 3665 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 3666 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 3667 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 3668 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 3669 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 3670 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#LightSource ID ³⁶⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_Power • Microscope: Model³⁶⁷² • Objective : Correction³⁶⁷³ • Objective : ID³⁶⁷⁴ • Objective : Immersion³⁶⁷⁵ • Objective : LensNA³⁶⁷⁶ • Objective : Manufacturer³⁶⁷⁷ • Objective : Nominal Magnification 3678 • ObjectiveSettings : ID³⁶⁷⁹ • Pixels: BigEndian³⁶⁸⁰ • Pixels : DimensionOrder³⁶⁸¹ • Pixels : ID³⁶⁸² • Pixels: Interleaved³⁶⁸³ • Pixels : PhysicalSizeX³⁶⁸⁴ • Pixels : PhysicalSizeY³⁶⁸⁵ • Pixels : SignificantBits³⁶⁸⁶ • Pixels : SizeC³⁶⁸⁷ • Pixels: SizeT3688 • Pixels : SizeX³⁶⁸⁹ • Pixels : SizeY³⁶⁹⁰ • Pixels : SizeZ³⁶⁹¹ • Pixels: TimeIncrement³⁶⁹² • Pixels : Type³⁶⁹³ • Plane : DeltaT³⁶⁹⁴ • Plane : PositionX³⁶⁹⁵ • Plane : PositionY³⁶⁹⁶ • Plane : PositionZ³⁶⁹⁷ 3672 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 3673 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction 3674 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID 3675 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion 3676 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA 3677http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer 3678 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification 3679 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID 3680 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels BigEndian 3681 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 3682 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 3683 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 3684 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 3685 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 3686 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 3687 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3688 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeT 3689 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 3690 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels SizeY 3691 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 3692 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement 3693 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3694 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT 3695 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX 3696 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY 3697 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ • Plane: TheC3698 • Plane: TheT³⁶⁹⁹ • Plane : TheZ³⁷⁰⁰ **Total supported: 45** Total unknown or missing: 430 #### 19.2.105 QuesantReader This page lists supported metadata fields for the Bio-Formats Quesant AFM format reader. These fields are from the OME data model³⁷⁰¹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g., physical width of the image in microns) in a formatindependent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). ### Supported fields #### These fields are fully supported by the Bio-Formats Quesant AFM format reader: • Channel: ID³⁷⁰² • Channel: SamplesPerPixel³⁷⁰³ • Image : AcquisitionDate³⁷⁰⁴ • Image: Description³⁷⁰⁵ • Image : ID³⁷⁰⁶ • Image: Name³⁷⁰⁷ • Pixels: BigEndian³⁷⁰⁸ • Pixels : DimensionOrder³⁷⁰⁹ • Pixels : ID³⁷¹⁰ • Pixels: Interleaved³⁷¹¹ • Pixels : PhysicalSizeX³⁷¹² • Pixels : PhysicalSizeY³⁷¹³ • Pixels : SignificantBits³⁷¹⁴ • Pixels : SizeC³⁷¹⁵ $^{^{3698}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Company of the Co$ 3699 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT $^{^{3700}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Zenerated/OME-2013-06/ome_xsd.html Plane_xsd.html Plane_$ ³⁷⁰¹http://www.openmicroscopy.org/site/support/ome-model/ ³⁷⁰² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁷⁰³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁷⁰⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁷⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description
³⁷⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³⁷⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁷⁰⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁷⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁷¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁷¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁷¹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ³⁷¹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ³⁷¹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ³⁷¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC • Pixels : SizeT³⁷¹⁶ • Pixels: SizeX³⁷¹⁷ • Pixels : SizeY³⁷¹⁸ • Pixels: SizeZ³⁷¹⁹ • Pixels: Type³⁷²⁰ • Plane: TheC³⁷²¹ • Plane: TheT³⁷²² • Plane : TheZ³⁷²³ Total supported: 22 Total unknown or missing: 453 #### 19.2.106 NativeQTReader This page lists supported metadata fields for the Bio-Formats QuickTime format reader. These fields are from the OME data model³⁷²⁴. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ### Supported fields # These fields are fully supported by the Bio-Formats QuickTime format reader: • Channel : ID³⁷²⁵ • Channel: SamplesPerPixel³⁷²⁶ • Image : AcquisitionDate³⁷²⁷ • Image : ID³⁷²⁸ • Image: Name³⁷²⁹ • Pixels: BigEndian³⁷³⁰ • Pixels : DimensionOrder³⁷³¹ • Pixels : ID³⁷³² • Pixels : Interleaved³⁷³³ ³⁷¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁷¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁷¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁷²⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³⁷²¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³⁷²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³⁷²³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁷²⁴http://www.openmicroscopy.org/site/support/ome-model/ ³⁷²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁷²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁷²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁷²⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³⁷²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁷³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels BigEndian ³⁷³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁷³² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁷³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved • Pixels : SignificantBits³⁷³⁴ • Pixels : SizeC³⁷³⁵ • Pixels : SizeT³⁷³⁶ • Pixels : SizeX³⁷³⁷ • Pixels : SizeY³⁷³⁸ • Pixels : SizeZ³⁷³⁹ • Pixels : Type³⁷⁴⁰ • Plane : TheC³⁷⁴¹ • Plane: TheT³⁷⁴² • Plane : TheZ³⁷⁴³ # Total supported: 19 Total unknown or missing: 456 #### 19.2.107 RHKReader This page lists supported metadata fields for the Bio-Formats RHK Technologies format reader. These fields are from the OME data model³⁷⁴⁴. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). ### Supported fields These fields are fully supported by the Bio-Formats RHK Technologies format reader: • Channel: ID³⁷⁴⁵ • Channel: SamplesPerPixel³⁷⁴⁶ • Image : AcquisitionDate³⁷⁴⁷ • Image : Description³⁷⁴⁸ • Image : ID³⁷⁴⁹ • Image : Name³⁷⁵⁰ • Pixels: BigEndian³⁷⁵¹ ³⁷³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ³⁷³⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁷³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁷³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁷³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁷³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁷⁴⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³⁷⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³⁷⁴²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³⁷⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁷⁴⁴http://www.openmicroscopy.org/site/support/ome-model/ ³⁷⁴⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁷⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁷⁴⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁷⁴⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ³⁷⁴⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³⁷⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name - Pixels: DimensionOrder³⁷⁵² - Pixels : ID³⁷⁵³ - Pixels: Interleaved³⁷⁵⁴ - Pixels : PhysicalSizeX³⁷⁵⁵ - Pixels : PhysicalSizeY³⁷⁵⁶ - Pixels: SignificantBits³⁷⁵⁷ - Pixels : SizeC³⁷⁵⁸ - Pixels: SizeT³⁷⁵⁹ - Pixels: SizeX³⁷⁶⁰ - Pixels : SizeY³⁷⁶¹ - Pixels : SizeZ³⁷⁶² - Pixels : Type³⁷⁶³ - Plane : TheC³⁷⁶⁴ - Plane : TheT³⁷⁶⁵ - Plane: TheZ³⁷⁶⁶ Total unknown or missing: 453 ## 19.2.108 SBIGReader This page lists supported metadata fields for the Bio-Formats SBIG format reader. These fields are from the OME data model³⁷⁶⁷. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). #### Supported fields ### These fields are fully supported by the Bio-Formats SBIG format reader: - Channel: ID³⁷⁶⁸ - Channel: SamplesPerPixel³⁷⁶⁹ ³⁷⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁷⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁷⁵⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁷⁵⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ³⁷⁵⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ³⁷⁵⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 3758 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁷⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁷⁶⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁷⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁷⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁷⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³⁷⁶⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³⁷⁶⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³⁷⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁷⁶⁷ http://www.openmicroscopy.org/site/support/ome-model/ ³⁷⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁷⁶⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel - Image : AcquisitionDate³⁷⁷⁰ - Image: Description³⁷⁷¹ - Image : ID³⁷⁷² - Image: Name³⁷⁷³ - Pixels : BigEndian³⁷⁷⁴ - Pixels: DimensionOrder³⁷⁷⁵ - Pixels : ID³⁷⁷⁶ - Pixels : Interleaved³⁷⁷⁷ - Pixels:
PhysicalSizeX³⁷⁷⁸ - Pixels : PhysicalSizeY³⁷⁷⁹ - Pixels : SignificantBits³⁷⁸⁰ - Pixels : SizeC³⁷⁸¹ - Pixels : SizeT³⁷⁸² - Pixels: SizeX³⁷⁸³ - Pixels : SizeY³⁷⁸⁴ - Pixels : SizeZ³⁷⁸⁵ - Pixels: Type³⁷⁸⁶ - Plane: TheC³⁷⁸⁷ - Plane: TheT³⁷⁸⁸ - Plane : TheZ³⁷⁸⁹ Total unknown or missing: 453 # 19.2.109 SeikoReader This page lists supported metadata fields for the Bio-Formats Seiko format reader. These fields are from the OME data model³⁷⁹⁰. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: ``` ³⁷⁷¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description 3772 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 3773 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Image Name 3774 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 3775 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 3776 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁷⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 3778 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 3779 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ³⁷⁸⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 3781 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁷⁸²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁷⁸³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁷⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ^{3785} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeZ ³⁷⁸⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3787 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 3788 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ^{3789} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Zenerated/OME-2013-06/ome_xsd.html Plane_xsd.html Plane_ ³⁷⁹⁰http://www.openmicroscopy.org/site/support/ome-model/ ``` - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). ### Supported fields ### These fields are fully supported by the Bio-Formats Seiko format reader: - Channel: ID³⁷⁹¹ - Channel: SamplesPerPixel³⁷⁹² - Image : AcquisitionDate³⁷⁹³ - Image: Description³⁷⁹⁴ - Image : ID³⁷⁹⁵ - Image: Name³⁷⁹⁶ - Pixels : BigEndian³⁷⁹⁷ - Pixels : DimensionOrder³⁷⁹⁸ - Pixels : ID³⁷⁹⁹ - Pixels: Interleaved³⁸⁰⁰ - Pixels : PhysicalSizeX³⁸⁰¹ - Pixels : PhysicalSizeY³⁸⁰² - Pixels : SignificantBits³⁸⁰³ - Pixels : SizeC³⁸⁰⁴ - Pixels : SizeT³⁸⁰⁵ - Pixels : SizeX³⁸⁰⁶ - Pixels : SizeY³⁸⁰⁷ - Pixels: SizeZ³⁸⁰⁸ - Pixels : Type³⁸⁰⁹ - Plane: TheC3810 - Plane: TheT³⁸¹¹ - Plane : TheZ³⁸¹² ³⁷⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁷⁹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel $^{^{3793}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate$ $^{^{3794}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_Description$ $^{3795} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_ID$ ³⁷⁹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁷⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁷⁹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Pixels DimensionOrder ³⁷⁹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁸⁰⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved $^{{}^{3801}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_Physical Size X. A constant of the contraction contr$ ³⁸⁰² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ³⁸⁰³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ³⁸⁰⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁸⁰⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁸⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁸⁰⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁸⁰⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁸⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³⁸¹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³⁸¹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 3812 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ Total unknown or missing: 453 #### 19.2.110 PCIReader This page lists supported metadata fields for the Bio-Formats Compix Simple-PCI format reader. These fields are from the OME data model³⁸¹³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ### Of the 475 fields documented in the metadata summary table: - The file format itself supports 29 of them (6%). - Of those, Bio-Formats fully or partially converts 29 (100%). ### Supported fields # These fields are fully supported by the Bio-Formats Compix Simple-PCI format reader: • Channel: ID³⁸¹⁴ • Channel: SamplesPerPixel³⁸¹⁵ • Detector : ID³⁸¹⁶ • Detector : Type³⁸¹⁷ • DetectorSettings : Binning³⁸¹⁸ • DetectorSettings : ID³⁸¹⁹ • Image : AcquisitionDate³⁸²⁰ • Image : ID³⁸²¹ • Image : InstrumentRef³⁸²² • Image: Name³⁸²³ • Instrument : ID³⁸²⁴ • Pixels: BigEndian³⁸²⁵ • Pixels : DimensionOrder³⁸²⁶ • Pixels : ID³⁸²⁷ • Pixels: Interleaved³⁸²⁸ • Pixels : PhysicalSizeX³⁸²⁹ • Pixels : PhysicalSizeY³⁸³⁰ ³⁸¹³http://www.openmicroscopy.org/site/support/ome-model/ ³⁸¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁸¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁸¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ³⁸¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type ³⁸¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning ³⁸¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID $^{^{3820}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate$ ³⁸²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³⁸²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 3823http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁸²⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ³⁸²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁸²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁸²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁸²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁸²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 3830 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ^{19.2.} Metadata fields 387 ``` • Pixels : SignificantBits³⁸³¹ ``` • Pixels : SizeC³⁸³² • Pixels : SizeT³⁸³³ • Pixels : SizeX³⁸³⁴ • Pixels: SizeY³⁸³⁵ • Pixels : SizeZ³⁸³⁶ • Pixels : TimeIncrement³⁸³⁷ • Pixels : Type³⁸³⁸ • Plane : DeltaT³⁸³⁹ • Plane: TheC³⁸⁴⁰ • Plane: TheT³⁸⁴¹ • Plane: TheZ³⁸⁴² Total supported: 29 Total unknown or missing: 446 # 19.2.111 SimplePCITiffReader This page lists supported metadata fields for the Bio-Formats SimplePCI TIFF format reader. These fields are from the OME data model³⁸⁴³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 33 of them (6%). - Of those, Bio-Formats fully or partially converts 33 (100%). # **Supported
fields** #### These fields are fully supported by the Bio-Formats SimplePCI TIFF format reader: ``` • Channel: ID³⁸⁴⁴ ``` • Channel: SamplesPerPixel³⁸⁴⁵ • Detector: ID³⁸⁴⁶ • Detector : Model³⁸⁴⁷ • Detector: Type³⁸⁴⁸ ³⁸³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ³⁸³² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁸³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁸³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁸³⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁸³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁸³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement ³⁸³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type $^{^{3839}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_DeltaT$ $^{^{3840}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Compared to the c$ ³⁸⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT $^{^{3842}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Zenerated/OME-2013-06/ome_xsd.html Plane_xsd.html Plane_xsd.html$ ³⁸⁴³http://www.openmicroscopy.org/site/support/ome-model/ ³⁸⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁸⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁸⁴⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ³⁸⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ³⁸⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type • DetectorSettings : Binning³⁸⁴⁹ • DetectorSettings : ID³⁸⁵⁰ • Image : AcquisitionDate³⁸⁵¹ • Image: Description³⁸⁵² • Image : ID³⁸⁵³ • Image : InstrumentRef³⁸⁵⁴ • Image: Name³⁸⁵⁵ • Instrument : ID³⁸⁵⁶ • Objective : ID³⁸⁵⁷ • Objective : Immersion³⁸⁵⁸ • Objective : NominalMagnification 3859 • Pixels : BigEndian³⁸⁶⁰ • Pixels : DimensionOrder³⁸⁶¹ • Pixels : ID³⁸⁶² • Pixels: Interleaved³⁸⁶³ • Pixels : PhysicalSizeX³⁸⁶⁴ • Pixels : PhysicalSizeY³⁸⁶⁵ • Pixels : SignificantBits³⁸⁶⁶ • Pixels : SizeC³⁸⁶⁷ • Pixels: SizeT3868 • Pixels : SizeX³⁸⁶⁹ • Pixels : SizeY³⁸⁷⁰ • Pixels : SizeZ³⁸⁷¹ • Pixels: Type³⁸⁷² • Plane : ExposureTime³⁸⁷³ • Plane : TheC³⁸⁷⁴ 3849 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning 3850 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID 3851 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 3852http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description 3853 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 3854 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 3855 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 3856 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID 3857 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID 3858 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion 3859 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification 3860 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁸⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 3862 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 3863 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 3864 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 3865 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY $^{3866} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits$ 3867 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3868 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁸⁶⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 3870 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3871 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 3872 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3873 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_ExposureTime 3874 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC • Plane: TheT³⁸⁷⁵ • Plane: TheZ³⁸⁷⁶ **Total supported: 33** Total unknown or missing: 442 #### 19.2.112 SMCameraReader This page lists supported metadata fields for the Bio-Formats SM Camera format reader. These fields are from the OME data model³⁸⁷⁷. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. # Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). # Supported fields # These fields are fully supported by the Bio-Formats SM Camera format reader: • Channel: ID³⁸⁷⁸ • Channel: SamplesPerPixel³⁸⁷⁹ • Image : AcquisitionDate³⁸⁸⁰ • Image: ID3881 • Image: Name³⁸⁸² • Pixels: BigEndian³⁸⁸³ • Pixels : DimensionOrder³⁸⁸⁴ • Pixels: ID³⁸⁸⁵ • Pixels: Interleaved³⁸⁸⁶ • Pixels : SignificantBits³⁸⁸⁷ • Pixels : SizeC³⁸⁸⁸ • Pixels: SizeT³⁸⁸⁹ • Pixels : SizeX³⁸⁹⁰ • Pixels: SizeY3891 • Pixels : SizeZ³⁸⁹² $^{^{3875}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Total Control of the Control of Co$ 3876 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 3877 http://www.openmicroscopy.org/site/support/ome-model/ ³⁸⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁸⁷⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁸⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁸⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 3882 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁸⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $^{^{3884}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_DimensionOrder$ ³⁸⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁸⁸⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁸⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 3888 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁸⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁸⁹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁸⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 3892 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ^{19.2.} Metadata fields 390 • Pixels : Type³⁸⁹³ • Plane: TheC3894 • Plane : TheT³⁸⁹⁵ • Plane: TheZ³⁸⁹⁶ **Total supported: 19** Total unknown or missing: 456 # 19.2.113 SpiderReader This page lists supported metadata fields for the Bio-Formats SPIDER format reader. These fields are from the OME data model³⁸⁹⁷. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 21 of them (4%). - Of those, Bio-Formats fully or partially converts 21 (100%). #### Supported fields #### These fields are fully supported by the Bio-Formats SPIDER format reader: • Channel: ID³⁸⁹⁸ • Channel: SamplesPerPixel³⁸⁹⁹ • Image : AcquisitionDate³⁹⁰⁰ • Image : ID³⁹⁰¹ • Image : Name³⁹⁰² • Pixels: BigEndian³⁹⁰³ • Pixels: DimensionOrder³⁹⁰⁴ • Pixels : ID³⁹⁰⁵ • Pixels: Interleaved³⁹⁰⁶ • Pixels : PhysicalSizeX³⁹⁰⁷ • Pixels : PhysicalSizeY³⁹⁰⁸ • Pixels : SignificantBits³⁹⁰⁹ • Pixels : SizeC³⁹¹⁰ ³⁹¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC $^{^{3893}}
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Type$ 3894 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 3895 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 3896 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 3897 http://www.openmicroscopy.org/site/support/ome-model/ 3898 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁸⁹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 3900 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁹⁰¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³⁹⁰²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 3903 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁹⁰⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁹⁰⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁹⁰⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 3907 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 3908 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 3909 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits • Pixels : SizeT³⁹¹¹ • Pixels: SizeX³⁹¹² • Pixels : SizeY³⁹¹³ • Pixels : SizeZ³⁹¹⁴ • Pixels: Type³⁹¹⁵ • Plane : The C^{3916} • Plane : TheT³⁹¹⁷ • Plane : TheZ³⁹¹⁸ Total supported: 21 Total unknown or missing: 454 # 19.2.114 TargaReader This page lists supported metadata fields for the Bio-Formats Truevision Targa format reader. These fields are from the OME data model³⁹¹⁹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 20 of them (4%). - Of those, Bio-Formats fully or partially converts 20 (100%). ## Supported fields These fields are fully supported by the Bio-Formats Truevision Targa format reader: • Channel: ID³⁹²⁰ • Channel: SamplesPerPixel³⁹²¹ • Image : AcquisitionDate³⁹²² • Image: Description³⁹²³ • Image : ID³⁹²⁴ • Image: Name³⁹²⁵ • Pixels: BigEndian³⁹²⁶ • Pixels : DimensionOrder³⁹²⁷ • Pixels : ID³⁹²⁸ $^{3911} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SizeT$ ³⁹¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁹¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁹¹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 3915 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³⁹¹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³⁹¹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 3918 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁹¹⁹http://www.openmicroscopy.org/site/support/ome-model/ ³⁹²⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁹²¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁹²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁹²³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ³⁹²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 3925 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Image Name ³⁹²⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁹²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁹²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID • Pixels: Interleaved³⁹²⁹ • Pixels : SignificantBits³⁹³⁰ • Pixels : SizeC³⁹³¹ • Pixels : SizeT³⁹³² • Pixels : SizeX³⁹³³ • Pixels : SizeY³⁹³⁴ • Pixels : SizeZ³⁹³⁵ • Pixels: Type³⁹³⁶ • Plane: TheC³⁹³⁷ • Plane: TheT³⁹³⁸ • Plane : TheZ³⁹³⁹ Total supported: 20 Total unknown or missing: 455 #### 19.2.115 TextReader This page lists supported metadata fields for the Bio-Formats Text format reader. These fields are from the OME data model³⁹⁴⁰. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ## Of the 475 fields documented in the *metadata summary table*: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). #### Supported fields ## These fields are fully supported by the Bio-Formats Text format reader: • Channel : ID³⁹⁴¹ • Channel: SamplesPerPixel³⁹⁴² • Image : AcquisitionDate³⁹⁴³ • Image : ID³⁹⁴⁴ • Image: Name³⁹⁴⁵ • Pixels: BigEndian³⁹⁴⁶ ³⁹²⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁹³⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ³⁹³¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3932 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁹³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁹³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁹³⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁹³⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³⁹³⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Plane TheC ³⁹³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³⁹³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁹⁴⁰http://www.openmicroscopy.org/site/support/ome-model/ ³⁹⁴¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁹⁴² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁹⁴³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ³⁹⁴⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ³⁹⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁹⁴⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian - Pixels : DimensionOrder³⁹⁴⁷ - Pixels : ID³⁹⁴⁸ - Pixels: Interleaved³⁹⁴⁹ - Pixels : SignificantBits³⁹⁵⁰ - Pixels : SizeC³⁹⁵¹ - Pixels : SizeT³⁹⁵² - Pixels: SizeX³⁹⁵³ - Pixels : SizeY³⁹⁵⁴ - Pixels : SizeZ³⁹⁵⁵ - Pixels: Type³⁹⁵⁶ - Plane : TheC³⁹⁵⁷ - Plane: TheT³⁹⁵⁸ - Plane: TheZ³⁹⁵⁹ **Total supported: 19** Total unknown or missing: 456 #### 19.2.116 TiffReader This page lists supported metadata fields for the Bio-Formats Tagged Image File Format format reader. These fields are from the OME data model³⁹⁶⁰. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). #### Supported fields ## These fields are fully supported by the Bio-Formats Tagged Image File Format format reader: - Channel: ID³⁹⁶¹ - Channel: SamplesPerPixel³⁹⁶² - Image : AcquisitionDate³⁹⁶³ - Image: Description³⁹⁶⁴ ³⁹⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁹⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁹⁴⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁹⁵⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ³⁹⁵¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 3952 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁹⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁹⁵⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁹⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁹⁵⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 3957 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC
³⁹⁵⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³⁹⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁹⁶⁰http://www.openmicroscopy.org/site/support/ome-model/ ³⁹⁶¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ³⁹⁶²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ³⁹⁶³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 3964 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description - Image : ID³⁹⁶⁵ - Image: Name³⁹⁶⁶ - Pixels: BigEndian³⁹⁶⁷ - Pixels : DimensionOrder³⁹⁶⁸ - Pixels : ID³⁹⁶⁹ - Pixels: Interleaved³⁹⁷⁰ - Pixels: PhysicalSizeZ³⁹⁷¹ - Pixels : SignificantBits³⁹⁷² - Pixels : SizeC³⁹⁷³ - Pixels: SizeT³⁹⁷⁴ - Pixels : SizeX³⁹⁷⁵ - Pixels : SizeY³⁹⁷⁶ - Pixels: SizeZ³⁹⁷⁷ - Pixels: TimeIncrement³⁹⁷⁸ - Pixels: Type³⁹⁷⁹ - Plane: TheC³⁹⁸⁰ - Plane: TheT³⁹⁸¹ - Plane : TheZ³⁹⁸² **Total supported: 22** Total unknown or missing: 453 #### 19.2.117 TillVisionReader This page lists supported metadata fields for the Bio-Formats TillVision format reader. These fields are from the OME data model³⁹⁸³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). ``` 3965 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ``` ³⁹⁶⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ³⁹⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ³⁹⁶⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ³⁹⁶⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁹⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ³⁹⁷¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ³⁹⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ³⁹⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁹⁷⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ³⁹⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁹⁷⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ³⁹⁷⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ³⁹⁷⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement ³⁹⁷⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ³⁹⁸⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ³⁹⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ³⁹⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ³⁹⁸³ http://www.openmicroscopy.org/site/support/ome-model/ #### Supported fields #### These fields are fully supported by the Bio-Formats TillVision format reader: • Channel: ID³⁹⁸⁴ • Channel: SamplesPerPixel³⁹⁸⁵ • Experiment : ID³⁹⁸⁶ • Experiment : Type³⁹⁸⁷ • Image : AcquisitionDate³⁹⁸⁸ • Image : ID³⁹⁸⁹ • Image: Name³⁹⁹⁰ • Pixels: BigEndian³⁹⁹¹ • Pixels : DimensionOrder³⁹⁹² • Pixels : ID³⁹⁹³ • Pixels : Interleaved³⁹⁹⁴ • Pixels : SignificantBits³⁹⁹⁵ • Pixels : SizeC³⁹⁹⁶ • Pixels: SizeT³⁹⁹⁷ • Pixels : SizeX³⁹⁹⁸ • Pixels : SizeY³⁹⁹⁹ • Pixels : SizeZ⁴⁰⁰⁰ • Pixels: Type⁴⁰⁰¹ • Plane : ExposureTime⁴⁰⁰² • Plane: TheC⁴⁰⁰³ • Plane : TheT⁴⁰⁰⁴ • Plane : TheZ⁴⁰⁰⁵ #### **Total supported: 22** ## Total unknown or missing: 453 3985 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 3986 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_ID 3987 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experiment_Type 3988 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 3989 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 3990 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 3991 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 3992 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 3993 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ³⁹⁸⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID $^{^{3994}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_Interleaved$ ³⁹⁹⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ³⁹⁹⁶http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ³⁹⁹⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ³⁹⁹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁴⁰⁰¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type $[\]frac{4002}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Plane_ExposureTime}{\text{Time }} = \frac{1000}{\text{cm}} \frac{1000}{\text{c$ $^{{\}color{blue}^{4003}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_The Comparison of the compa$ ⁴⁰⁰⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 4005 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ # 19.2.118 TopometrixReader This page lists supported metadata fields for the Bio-Formats TopoMetrix format reader. These fields are from the OME data model⁴⁰⁰⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). #### Supported fields #### These fields are fully supported by the Bio-Formats TopoMetrix format reader: ``` • Channel: ID⁴⁰⁰⁷ ``` • Channel: SamplesPerPixel⁴⁰⁰⁸ • Image : AcquisitionDate⁴⁰⁰⁹ • Image: Description⁴⁰¹⁰ • Image : ID⁴⁰¹¹ • Image: Name⁴⁰¹² • Pixels: BigEndian⁴⁰¹³ • Pixels : DimensionOrder⁴⁰¹⁴ • Pixels : ID⁴⁰¹⁵ • Pixels : Interleaved⁴⁰¹⁶ • Pixels : PhysicalSizeX⁴⁰¹⁷ • Pixels : PhysicalSizeY⁴⁰¹⁸ • Pixels : SignificantBits⁴⁰¹⁹ • Pixels: SizeC4020 • Pixels : SizeT⁴⁰²¹ • Pixels : SizeX⁴⁰²² • Pixels : SizeY⁴⁰²³ • Pixels : SizeZ⁴⁰²⁴ • Pixels : Type⁴⁰²⁵ ⁴⁰⁰⁶http://www.openmicroscopy.org/site/support/ome-model/ ⁴⁰⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁴⁰⁰⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁴⁰⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate $[\]frac{4010}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_Description}}{4011} \\ \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html}\\ \text{Image_ID} \\ \text{Image_$ ⁴⁰¹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁴⁰¹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $^{{}^{4014}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_DimensionOrder + {}^{4014} http://www.openmicroscopy.html Pixels_DimensionOrder + {}^{4014} http://www.openmicroscopy.html Pixels_DimensionOrder + {}^{4014} html Pixels_DimensionOrder$ ⁴⁰¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 4016 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁴⁰¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 4018 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁴⁰²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁴⁰²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁴⁰²²
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁴⁰²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁴⁰²⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 4025 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type Plane : TheC⁴⁰²⁶ Plane : TheT⁴⁰²⁷ Plane : TheZ⁴⁰²⁸ Total supported: 22 Total unknown or missing: 453 #### 19.2.119 TrestleReader This page lists supported metadata fields for the Bio-Formats Trestle format reader. These fields are from the OME data model⁴⁰²⁹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 26 of them (5%). - Of those, Bio-Formats fully or partially converts 26 (100%). ## Supported fields #### These fields are fully supported by the Bio-Formats Trestle format reader: • Channel : ID⁴⁰³⁰ • Channel : Sample • Channel : SamplesPerPixel⁴⁰³¹ • Image : AcquisitionDate⁴⁰³² • Image : ID⁴⁰³³ • Image: Name⁴⁰³⁴ • Image: ROIRef⁴⁰³⁵ • Mask: Height⁴⁰³⁶ • Mask : ID⁴⁰³⁷ • Mask: Width⁴⁰³⁸ • Mask : X⁴⁰³⁹ • Mask : Y4040 • Pixels: BigEndian⁴⁰⁴¹ • Pixels : DimensionOrder⁴⁰⁴² • Pixels : ID⁴⁰⁴³ ``` {}^{4026}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_The Compared to the c 4027 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 4028 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 4029 http://www.openmicroscopy.org/site/support/ome-model/ 4030 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID 4031 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel {}^{4032} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate 4033 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 4034 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 4035 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID 4036 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Mask_Height 4037 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 4038 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Mask Width 4039 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Mask_X 4040 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Mask Y 4041 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 4042 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 4043 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ``` • Pixels : Interleaved⁴⁰⁴⁴ • Pixels : SignificantBits⁴⁰⁴⁵ • Pixels : SizeC⁴⁰⁴⁶ • Pixels : SizeT⁴⁰⁴⁷ • Pixels : SizeX⁴⁰⁴⁸ • Pixels : SizeY⁴⁰⁴⁹ • Pixels : SizeZ⁴⁰⁵⁰ • Pixels: Type⁴⁰⁵¹ • Plane : The C^{4052} • Plane: TheT⁴⁰⁵³ • Plane : TheZ⁴⁰⁵⁴ • ROI : ID⁴⁰⁵⁵ **Total supported: 26** Total unknown or missing: 449 ## 19.2.120 **UBMReader** This page lists supported metadata fields for the Bio-Formats UBM format reader. These fields are from the OME data model⁴⁰⁵⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). # **Supported fields** #### These fields are fully supported by the Bio-Formats UBM format reader: • Channel: ID⁴⁰⁵⁷ • Channel : SamplesPerPixel⁴⁰⁵⁸ • Image : AcquisitionDate⁴⁰⁵⁹ • Image : ID⁴⁰⁶⁰ • Image: Name⁴⁰⁶¹ $[\]frac{4044 \text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_Interleaved}{\text{Notional Schemas and Schemas$ ⁴⁰⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁴⁰⁴⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁴⁰⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 4048 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁴⁰⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁴⁰⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁴⁰⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁴⁰⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁴⁰⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 4054 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁴⁰⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID ⁴⁰⁵⁶ http://www.openmicroscopy.org/site/support/ome-model/ ⁴⁰⁵⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁴⁰⁵⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁴⁰⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁴⁰⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁴⁰⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name - Pixels: BigEndian⁴⁰⁶² - Pixels : DimensionOrder⁴⁰⁶³ - Pixels : ID⁴⁰⁶⁴ - Pixels: Interleaved⁴⁰⁶⁵ - Pixels : SignificantBits⁴⁰⁶⁶ - Pixels : SizeC⁴⁰⁶⁷ - Pixels: SizeT4068 - Pixels : SizeX⁴⁰⁶⁹ - Pixels : SizeY⁴⁰⁷⁰ - Pixels : SizeZ⁴⁰⁷¹ - Pixels : Type⁴⁰⁷² - Plane : TheC⁴⁰⁷³ - Plane : TheT⁴⁰⁷⁴ - 1 14410 1 1110 1 - Plane: TheZ⁴⁰⁷⁵ # **Total supported: 19** Total unknown or missing: 456 ## 19.2.121 UnisokuReader This page lists supported metadata fields for the Bio-Formats Unisoku STM format reader. These fields are from the OME data model⁴⁰⁷⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). ## Supported fields #### These fields are fully supported by the Bio-Formats Unisoku STM format reader: - Channel: ID⁴⁰⁷⁷ - Channel: SamplesPerPixel⁴⁰⁷⁸ - Image : AcquisitionDate⁴⁰⁷⁹ ⁴⁰⁶² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁴⁰⁶³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁴⁰⁶⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁴⁰⁶⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁴⁰⁶⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁴⁰⁶⁷http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁴⁰⁶⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁴⁰⁶⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁴⁰⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁴⁰⁷¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁴⁰⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁴⁰⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 4074 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁴⁰⁷⁵ http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁴⁰⁷⁶ http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-00/ome_xsd.ii ⁴⁰⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁴⁰⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel $^{{}^{4079}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate}$ - Image: Description⁴⁰⁸⁰ - Image : ID⁴⁰⁸¹ - Image: Name⁴⁰⁸² - Pixels: BigEndian⁴⁰⁸³ - Pixels : DimensionOrder⁴⁰⁸⁴ - Pixels : ID⁴⁰⁸⁵ - Pixels : Interleaved⁴⁰⁸⁶ - Pixels: PhysicalSizeX⁴⁰⁸⁷ - Pixels : PhysicalSizeY⁴⁰⁸⁸ - Pixels : SignificantBits⁴⁰⁸⁹ - Pixels : SizeC⁴⁰⁹⁰ - Pixels: SizeT⁴⁰⁹¹ - Pixels : SizeX⁴⁰⁹² - Pixels : SizeY⁴⁰⁹³ - Pixels : SizeZ⁴⁰⁹⁴ - Pixels : Type⁴⁰⁹⁵ - Plane: TheC⁴⁰⁹⁶ - Plane : TheT⁴⁰⁹⁷ - Plane: TheZ⁴⁰⁹⁸ Total supported: 22 Total unknown or missing: 453 ## 19.2.122 VarianFDFReader This page lists supported metadata fields for the Bio-Formats Varian FDF format reader. These fields
are from the OME data model⁴⁰⁹⁹. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 25 of them (5%). - Of those, Bio-Formats fully or partially converts 25 (100%). ``` 4080 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description ``` ⁴⁰⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁴⁰⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁴⁰⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁴⁰⁸⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁴⁰⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID $[\]frac{4086}{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_Interleaved}$ ⁴⁰⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ⁴⁰⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ⁴⁰⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁴⁰⁹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁴⁰⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 4092 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁴⁰⁹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY $^{^{4094}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeZ$ 4095 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁴⁰⁹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁴⁰⁹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT $^{{}^{4098}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Zenerated/OME-2013-06/ome_xsd.html Plane_xsd.html Plane_xsd.ht$ ⁴⁰⁹⁹ http://www.openmicroscopy.org/site/support/ome-model/ ## Supported fields #### These fields are fully supported by the Bio-Formats Varian FDF format reader: ``` • Channel : ID⁴¹⁰⁰ ``` • Channel: SamplesPerPixel⁴¹⁰¹ • Image : AcquisitionDate⁴¹⁰² • Image : ID⁴¹⁰³ • Image: Name⁴¹⁰⁴ • Pixels: BigEndian⁴¹⁰⁵ • Pixels: DimensionOrder⁴¹⁰⁶ • Pixels : ID⁴¹⁰⁷ • Pixels : Interleaved⁴¹⁰⁸ • Pixels : PhysicalSizeX⁴¹⁰⁹ • Pixels : PhysicalSizeY⁴¹¹⁰ • Pixels : PhysicalSizeZ⁴¹¹¹ • Pixels : SignificantBits⁴¹¹² • Pixels: SizeC4113 • Pixels: SizeT⁴¹¹⁴ • Pixels : SizeX⁴¹¹⁵ • Pixels : SizeY⁴¹¹⁶ • Pixels: SizeZ⁴¹¹⁷ • Pixels: Type⁴¹¹⁸ • Plane : PositionX⁴¹¹⁹ • Plane : PositionY⁴¹²⁰ • Plane : PositionZ⁴¹²¹ • Plane: TheC⁴¹²² • Plane : The T^{4123} ⁴¹⁰¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁴¹⁰² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁴¹⁰³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁴¹⁰⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁴¹⁰⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁴¹⁰⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 4107 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID $^{{}^{4108}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_Interleaved {}^{4108} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_Interleaved {}^{4108} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html http://www.openmicroscopy.org/Schemas/Sc$ $^{{}^{4109}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_Physical Size X {}^{4109} http://www.openmicroscopy.html \#Pixels_Physical Size X {}^{4109} http://www.openmicroscopy.html Widels_Physical Size X {}^{4109} html Widels_Physical Size X {}^{4109} html Widels_Physical Size X {}^{4109} html Widels_Ph$ ⁴¹¹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ⁴¹¹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ 4112 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁴¹¹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁴¹¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁴¹¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁴¹¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁴¹¹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 4119 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX ⁴¹²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ⁴¹²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ ⁴¹²² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 4123 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ^{19.2.} Metadata fields 402 • Plane: TheZ⁴¹²⁴ **Total supported: 25** Total unknown or missing: 450 #### 19.2.123 VGSAMReader This page lists supported metadata fields for the Bio-Formats VG SAM format reader. These fields are from the OME data model⁴¹²⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). # Supported fields # These fields are fully supported by the Bio-Formats VG SAM format reader: ``` • Channel: ID⁴¹²⁶ ``` • Channel: SamplesPerPixel⁴¹²⁷ • Image : AcquisitionDate⁴¹²⁸ • Image: ID4129 • Image: Name⁴¹³⁰ • Pixels: BigEndian⁴¹³¹ • Pixels : DimensionOrder⁴¹³² • Pixels : ID⁴¹³³ • Pixels : Interleaved⁴¹³⁴ • Pixels : SignificantBits⁴¹³⁵ • Pixels : SizeC⁴¹³⁶ • Pixels : SizeT⁴¹³⁷ • Pixels : SizeX⁴¹³⁸ • Pixels : SizeY⁴¹³⁹ • Pixels : SizeZ⁴¹⁴⁰ • Pixels : Type⁴¹⁴¹ $^{{}^{4124}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Zenerated/OME-2013-06/ome_xsd.html Plane_xsd.html \#$ ⁴¹²⁵ http://www.openmicroscopy.org/site/support/ome-model/ ⁴¹²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁴¹²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁴¹²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁴¹²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁴¹³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁴¹³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $^{{}^{4132}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_DimensionOrder$ ⁴¹³³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID $^{{}^{4134}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Interleaved Algorithms and the contraction of contrac$ ⁴¹³⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁴¹³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁴¹³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 4138 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁴¹³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁴¹⁴⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁴¹⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type Plane : TheC⁴¹⁴² Plane : TheT⁴¹⁴³ Plane : TheZ⁴¹⁴⁴ **Total supported: 19** Total unknown or missing: 456 #### 19.2.124 VisitechReader This page lists supported metadata fields for the Bio-Formats Visitech XYS format reader. These fields are from the OME data model⁴¹⁴⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns)
in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ## Supported fields #### These fields are fully supported by the Bio-Formats Visitech XYS format reader: • Channel : ID⁴¹⁴⁶ • Channel: SamplesPerPixel⁴¹⁴⁷ • Image : AcquisitionDate⁴¹⁴⁸ • Image : ID⁴¹⁴⁹ • Image: Name⁴¹⁵⁰ • Pixels: BigEndian⁴¹⁵¹ • Pixels: DimensionOrder⁴¹⁵² • Pixels : ID⁴¹⁵³ • Pixels : Interleaved⁴¹⁵⁴ • Pixels : SignificantBits⁴¹⁵⁵ • Pixels: SizeC⁴¹⁵⁶ • Pixels : SizeT⁴¹⁵⁷ • Pixels : SizeX⁴¹⁵⁸ • Pixels : SizeY⁴¹⁵⁹ $[\]frac{4142}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html} \\ \text{Plane_The Control of the Control of Con$ ⁴¹⁴³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁴¹⁴⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁴¹⁴⁵ http://www.openmicroscopy.org/site/support/ome-model/ ⁴¹⁴⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁴¹⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁴¹⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁴¹⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁴¹⁵⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁴¹⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁴¹⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁴¹⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁴¹⁵⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁴¹⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁴¹⁵⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁴¹⁵⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁴¹⁵⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 4159 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY Pixels: SizeZ⁴¹⁶⁰ Pixels: Type⁴¹⁶¹ Plane: TheC⁴¹⁶² Plane: TheT⁴¹⁶³ Plane: TheZ⁴¹⁶⁴ **Total supported: 19** Total unknown or missing: 456 # 19.2.125 VolocityClippingReader This page lists supported metadata fields for the Bio-Formats Volocity Library Clipping format reader. These fields are from the OME data model⁴¹⁶⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ## Supported fields These fields are fully supported by the Bio-Formats Volocity Library Clipping format reader: ``` • Channel : ID⁴¹⁶⁶ ``` • Channel : SamplesPerPixel⁴¹⁶⁷ • Image : AcquisitionDate⁴¹⁶⁸ • Image : ID⁴¹⁶⁹ • Image : Name⁴¹⁷⁰ • Pixels : BigEndian⁴¹⁷¹ • Pixels : DimensionOrder⁴¹⁷² • Pixels : ID⁴¹⁷³ • Pixels: Interleaved⁴¹⁷⁴ • Pixels : SignificantBits⁴¹⁷⁵ • Pixels : SizeC⁴¹⁷⁶ • Pixels : SizeT⁴¹⁷⁷ $[\]frac{4160}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SizeZ}$ ⁴¹⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁴¹⁶² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁴¹⁶³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁴¹⁶⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁴¹⁶⁵ http://www.openmicroscopy.org/site/support/ome-model/ ⁴¹⁶⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁴¹⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁴¹⁶⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate $^{^{4169}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_ID\\ ^{4170} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_Name$ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁴¹⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁴¹⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁴¹⁷⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁴¹⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁴¹⁷⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁴¹⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT Pixels: SizeX⁴¹⁷⁸ Pixels: SizeY⁴¹⁷⁹ Pixels: SizeZ⁴¹⁸⁰ Pixels: Type⁴¹⁸¹ Plane: TheC⁴¹⁸² Plane: TheT⁴¹⁸³ • Plane: TheZ⁴¹⁸⁴ Total supported: 19 Total unknown or missing: 456 # 19.2.126 VolocityReader This page lists supported metadata fields for the Bio-Formats Volocity Library format reader. These fields are from the OME data model⁴¹⁸⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 37 of them (7%). - Of those, Bio-Formats fully or partially converts 37 (100%). ## **Supported fields** These fields are fully supported by the Bio-Formats Volocity Library format reader: • Channel : ID^{4186} • Channel : Name⁴¹⁸⁷ • Channel: SamplesPerPixel⁴¹⁸⁸ • Detector : ID⁴¹⁸⁹ • Detector: Model⁴¹⁹⁰ • DetectorSettings : ID⁴¹⁹¹ • Image : AcquisitionDate⁴¹⁹² • Image: Description⁴¹⁹³ • Image : ID⁴¹⁹⁴ • Image : InstrumentRef⁴¹⁹⁵ ⁴¹⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 4179 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁴¹⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁴¹⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁴¹⁸² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ntp://www.openmicroscopy.org/scnemas/Documentation/Generated/OME-2013-00/ome_xsd.ntmi#Plane_1 neZ ⁴¹⁸⁵ http://www.openmicroscopy.org/site/support/ome-model/ $^{{}^{4186}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_ID$ ⁴¹⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name $^{{}^{4188}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_Samples Per Pixel Annual Samples Per$ ⁴¹⁸⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID ⁴¹⁹⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ⁴¹⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID $[\]frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate}{\text{AcquisitionDate}} = \frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate}{\text{AcquisitionDate}} = \frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate}{\text{AcquisitionDate}} = \frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate}{\text{AcquisitionDate}} = \frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate}{\text{AcquisitionDate}} = \frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate}{\text{AcquisitionDate}} = \frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate}{\text{AcquisitionDate}} = \frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate}{\text{AcquisitionDate}} = \frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate}{\text{AcquisitionDate}} = \frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation}} = \frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html}} = \frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html}} = \frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html}} = \frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html}} =
\frac{4192}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html}} = \frac{4192}{\text{http://www.openmicroscopy.html}} = \frac{4192}{\text{http://www.openmicroscopy.html}} = \frac{4192}{\text{http://www.openmicroscopy.html}} = \frac{4192}{\text{http://www.openmicroscopy.html}} = \frac{4192}{\text{http:$ $[\]frac{4193}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_Description}{\text{Model of the properties prope$ ⁴¹⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁴¹⁹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID • Image: Name⁴¹⁹⁶ • Instrument : ID4197 • Objective : Correction⁴¹⁹⁸ • Objective : ID⁴¹⁹⁹ • Objective : Immersion⁴²⁰⁰ • Objective : NominalMagnification⁴²⁰¹ • ObjectiveSettings : ID⁴²⁰² • Pixels: BigEndian⁴²⁰³ • Pixels : DimensionOrder⁴²⁰⁴ • Pixels: ID⁴²⁰⁵ • Pixels : Interleaved 4206 • Pixels : PhysicalSizeX⁴²⁰⁷ • Pixels : PhysicalSizeY⁴²⁰⁸ • Pixels : PhysicalSizeZ⁴²⁰⁹ • Pixels : SignificantBits⁴²¹⁰ • Pixels : SizeC⁴²¹¹ • Pixels: SizeT⁴²¹² • Pixels : SizeX⁴²¹³ • Pixels : SizeY⁴²¹⁴ • Pixels : SizeZ⁴²¹⁵ • Pixels : Type⁴²¹⁶ • Plane : PositionX⁴²¹⁷ • Plane : Position Y^{4218} • Plane : PositionZ⁴²¹⁹ • Plane: TheC⁴²²⁰ • Plane : TheT⁴²²¹ ⁴¹⁹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ⁴¹⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction ⁴¹⁹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID ⁴²⁰⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion ⁴²⁰¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification ⁴²⁰² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID $[\]frac{4203}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_BigEndian}{\text{Model of the properties prope$ $[\]frac{4204}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_DimensionOrder}{\text{Model of the properties the$ ⁴²⁰⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁴²⁰⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁴²⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ⁴²⁰⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY $[\]frac{4209}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Pixels_PhysicalSizeZ}{2200}$ ⁴²¹⁰http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁴²¹¹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁴²¹²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁴²¹³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁴²¹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁴²¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁴²¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁴²¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX ⁴²¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ⁴²¹⁹http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ ⁴²²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_Position/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁴²²¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT • Plane: TheZ4222 **Total supported: 37** Total unknown or missing: 438 ## 19.2.127 WATOPReader This page lists supported metadata fields for the Bio-Formats WA Technology TOP format reader. These fields are from the OME data model⁴²²³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 22 of them (4%). - Of those, Bio-Formats fully or partially converts 22 (100%). # Supported fields # These fields are fully supported by the Bio-Formats WA Technology TOP format reader: ``` • Channel : ID⁴²²⁴ ``` • Channel: SamplesPerPixel⁴²²⁵ • Image : AcquisitionDate⁴²²⁶ • Image : Description⁴²²⁷ • Image: ID4228 • Image: Name⁴²²⁹ • Pixels : BigEndian⁴²³⁰ • Pixels : DimensionOrder⁴²³¹ • Pixels: ID⁴²³² • Pixels : Interleaved⁴²³³ • Pixels : PhysicalSizeX⁴²³⁴ • Pixels : PhysicalSizeY⁴²³⁵ • Pixels : SignificantBits⁴²³⁶ • Pixels : SizeC⁴²³⁷ • Pixels: SizeT4238 • Pixels : SizeX⁴²³⁹ ⁴²²²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 4223http://www.openmicroscopy.org/site/support/ome-model/ http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁴²²⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁴²²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDated/OME-2013-06/ome_xsd.html#Image_Description ⁴²²⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁴²²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁴²³⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁴²³¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁴²³² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁴²³³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁴²³⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ⁴²³⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ⁴²³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁴²³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁴²³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 4239 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ^{19.2.} Metadata fields 408 Pixels: SizeY⁴²⁴⁰ Pixels: SizeZ⁴²⁴¹ Pixels: Type⁴²⁴² Plane: TheC⁴²⁴³ Plane: TheT⁴²⁴⁴ • Plane : The Z^{4245} Total supported: 22 Total unknown or missing: 453 ## 19.2.128 BMPReader This page lists supported metadata fields for the Bio-Formats Windows Bitmap format reader. These fields are from the OME data model⁴²⁴⁶. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 21 of them (4%). - Of those, Bio-Formats fully or partially converts 21 (100%). ## **Supported fields** ## These fields are fully supported by the Bio-Formats Windows Bitmap format reader: • Channel: ID⁴²⁴⁷ • Channel: SamplesPerPixel⁴²⁴⁸ • Image : AcquisitionDate⁴²⁴⁹ • Image : ID⁴²⁵⁰ • Image: Name⁴²⁵¹ • Pixels : BigEndian⁴²⁵² • Pixels : DimensionOrder⁴²⁵³ • Pixels : ID⁴²⁵⁴ • Pixels: Interleaved⁴²⁵⁵ • Pixels : PhysicalSizeX⁴²⁵⁶ • Pixels : PhysicalSizeY⁴²⁵⁷ ⁴²⁴⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁴²⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁴²⁴²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁴²⁴³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁴²⁴⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁴²⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁴²⁴⁶http://www.openmicroscopy.org/site/support/ome-model/ ⁴²⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID $^{{}^{4248}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_Samples Per Pixel Annual Properties of the Company Comp$ ⁴²⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate $^{{}^{4250}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_ID$ ⁴²⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁴²⁵² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian ⁴²⁵³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder ⁴²⁵⁴
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁴²⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁴²⁵⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 4257 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY • Pixels : SignificantBits⁴²⁵⁸ • Pixels : SizeC⁴²⁵⁹ • Pixels: SizeT⁴²⁶⁰ • Pixels : SizeX⁴²⁶¹ • Pixels : SizeY⁴²⁶² • Pixels : SizeZ⁴²⁶³ • Pixels : Type⁴²⁶⁴ • Plane : TheC⁴²⁶⁵ • Plane: TheT⁴²⁶⁶ • Plane : TheZ⁴²⁶⁷ # **Total supported: 21** Total unknown or missing: 454 #### 19.2.129 WIzReader This page lists supported metadata fields for the Bio-Formats Woolz format reader. These fields are from the OME data model⁴²⁶⁸. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ## Of the 475 fields documented in the metadata summary table: - The file format itself supports 26 of them (5%). - Of those, Bio-Formats fully or partially converts 26 (100%). ## Supported fields #### These fields are fully supported by the Bio-Formats Woolz format reader: • Channel: ID4269 • Channel: SamplesPerPixel⁴²⁷⁰ • Image : AcquisitionDate⁴²⁷¹ • Image : ID⁴²⁷² • Image: Name⁴²⁷³ • Pixels : BigEndian⁴²⁷⁴ • Pixels : DimensionOrder⁴²⁷⁵ $^{{}^{4258}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_SignificantBits$ ⁴²⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁴²⁶⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁴²⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁴²⁶² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁴²⁶³http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁴²⁶⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁴²⁶⁵http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁴²⁶⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁴²⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁴²⁶⁸ http://www.openmicroscopy.org/site/support/ome-model/ ⁴²⁶⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁴²⁷⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁴²⁷¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁴²⁷²http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁴²⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁴²⁷⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 4275 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder - Pixels : ID⁴²⁷⁶ - Pixels: Interleaved⁴²⁷⁷ - Pixels : PhysicalSizeX⁴²⁷⁸ - Pixels : PhysicalSizeY⁴²⁷⁹ - Pixels: PhysicalSizeZ⁴²⁸⁰ - Pixels : SignificantBits⁴²⁸¹ - Pixels: SizeC4282 - Pixels: SizeT⁴²⁸³ - Pixels: SizeX⁴²⁸⁴ - Pixels : SizeY⁴²⁸⁵ - Pixels : SizeZ⁴²⁸⁶ - Pixels: Type⁴²⁸⁷ - Plane: TheC4288 - Plane: TheT⁴²⁸⁹ - Plane: TheZ⁴²⁹⁰ - StageLabel: Name⁴²⁹¹ - StageLabel: X⁴²⁹² - StageLabel : Y^{4293} - StageLabel: Z⁴²⁹⁴ Total supported: 26 Total unknown or missing: 449 ## 19.2.130 ZeissTIFFReader This page lists supported metadata fields for the Bio-Formats Zeiss AxioVision TIFF format reader. These fields are from the OME data model⁴²⁹⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). ⁴²⁷⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID ⁴²⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁴²⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX $^{{}^{4279}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_Physical SizeY$ ⁴²⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ⁴²⁸¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 4282 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁴²⁸³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁴²⁸⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁴²⁸⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY $^{{}^{4286}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_SizeZ$ ⁴²⁸⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁴²⁸⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 4289 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT $^{{}^{4290}}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_The Zenerated/OME-2013-06/ome_xsd.html Plane_xsd.html Plane_xsd.htm$ ⁴²⁹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#StageLabel_Name $^{{}^{4292}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Stage Label_X + 1.00 for the control of of$ ⁴²⁹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#StageLabel_Y $^{{}^{4294}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#StageLabel_Z$ ⁴²⁹⁵ http://www.openmicroscopy.org/site/support/ome-model/ ## Supported fields #### These fields are fully supported by the Bio-Formats Zeiss AxioVision TIFF format reader: • Channel: ID⁴²⁹⁶ • Channel: SamplesPerPixel⁴²⁹⁷ • Image : AcquisitionDate⁴²⁹⁸ • Image : ID⁴²⁹⁹ • Image: Name⁴³⁰⁰ • Pixels: BigEndian⁴³⁰¹ • Pixels: DimensionOrder⁴³⁰² • Pixels : ID⁴³⁰³ • Pixels: Interleaved⁴³⁰⁴ • Pixels : SignificantBits⁴³⁰⁵ • Pixels : SizeC⁴³⁰⁶ • Pixels: SizeT4307 • Pixels : SizeX⁴³⁰⁸ • Pixels: SizeY⁴³⁰⁹ • Pixels : SizeZ⁴³¹⁰ • Pixels: Type⁴³¹¹ • Plane: TheC⁴³¹² • Plane: TheT⁴³¹³ • Plane: TheZ⁴³¹⁴ **Total supported: 19** Total unknown or missing: 456 ## 19.2.131 ZeissZVIReader This page lists supported metadata fields for the Bio-Formats Zeiss Vision Image (ZVI) format reader. These fields are from the OME data model⁴³¹⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. ``` 4296 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ``` ⁴²⁹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel ⁴²⁹⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate ⁴²⁹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ⁴³⁰⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name ⁴³⁰¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian $^{4302 \,} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_DimensionOrder$ ⁴³⁰³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID $^{^{4304}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Pixels_Interleaved$ 4305 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁴³⁰⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁴³⁰⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁴³⁰⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁴³⁰⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 4310 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁴³¹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type ⁴³¹² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁴³¹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁴³¹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Plane TheZ ⁴³¹⁵ http://www.openmicroscopy.org/site/support/ome-model/ #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 19 of them (4%). - Of those, Bio-Formats fully or partially converts 19 (100%). #### Supported fields #### These fields
are fully supported by the Bio-Formats Zeiss Vision Image (ZVI) format reader: - Channel : ID^{4316} - Channel: SamplesPerPixel⁴³¹⁷ - Image : AcquisitionDate⁴³¹⁸ - Image : ID⁴³¹⁹ - Image: Name⁴³²⁰ - Pixels : BigEndian⁴³²¹ - Pixels : DimensionOrder⁴³²² - Pixels : ID⁴³²³ - Pixels: Interleaved⁴³²⁴ - Pixels : SignificantBits⁴³²⁵ - Pixels : SizeC⁴³²⁶ - Pixels: SizeT4327 - Pixels : SizeX⁴³²⁸ - Pixels : SizeY⁴³²⁹ - Pixels : SizeZ⁴³³⁰ - Pixels: Type⁴³³¹ - Plane: TheC⁴³³² - Plane: TheT⁴³³³ - Plane : TheZ⁴³³⁴ ## **Total supported: 19** #### Total unknown or missing: 456 ``` 4316 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID 4317 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_SamplesPerPixel 4318 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate 4319 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 4320 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 4321 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 4322 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder 4323 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 4324 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 4325 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 4326 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 4327 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 4328 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 4329 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 4330 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 4331 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 4332 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 4333 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ``` 4334 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ## 19.2.132 ZeissCZIReader This page lists supported metadata fields for the Bio-Formats Zeiss CZI format reader. These fields are from the OME data model⁴³³⁵. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a formatindependent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 157 of them (33%). - Of those, Bio-Formats fully or partially converts 157 (100%). #### Supported fields ## These fields are fully supported by the Bio-Formats Zeiss CZI format reader: ``` • Arc : LotNumber⁴³³⁶ ``` • Arc : Manufacturer⁴³³⁷ • Arc : Model⁴³³⁸ • Arc: Power⁴³³⁹ • Arc : SerialNumber⁴³⁴⁰ • Channel: AcquisitionMode⁴³⁴¹ • Channel : Color⁴³⁴² • Channel : EmissionWavelength⁴³⁴³ • Channel : ExcitationWavelength⁴³⁴⁴ • Channel: Fluor⁴³⁴⁵ • Channel: ID⁴³⁴⁶ • Channel : IlluminationType⁴³⁴⁷ • Channel: Name⁴³⁴⁸ • Channel : PinholeSize⁴³⁴⁹ • Channel: SamplesPerPixel⁴³⁵⁰ • Detector : AmplificationGain⁴³⁵¹ • Detector : Gain⁴³⁵² • Detector : ID⁴³⁵³ ⁴³³⁵ http://www.openmicroscopy.org/site/support/ome-model/ ⁴³³⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber ⁴³³⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer ⁴³³⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ⁴³³⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_Power $[\]frac{4340}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html} \\ \text{ManufacturerSpec_SerialNumber} \text{ManufacturerSpec_$ ⁴³⁴¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_AcquisitionMode 4342 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Color ⁴³⁴³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_EmissionWavelength $^{{}^{4344}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Channel_Excitation Wavelength And the state of the control of the state o$ ⁴³⁴⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Fluor ⁴³⁴⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID ⁴³⁴⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_IlluminationType ⁴³⁴⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name ⁴³⁴⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_PinholeSize $[\]frac{4350}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html} \\ \text{#Channel_SamplesPerPixel}$ ⁴³⁵¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_AmplificationGain $^{{}^{4352}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Detector_Gain Annual Control of the Control of Contro$ 4353 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID - Detector : LotNumber⁴³⁵⁴ - Detector : Manufacturer⁴³⁵⁵ - Detector: Model⁴³⁵⁶ - Detector : Offset⁴³⁵⁷ - Detector : SerialNumber⁴³⁵⁸ - Detector : Type⁴³⁵⁹ - Detector : Zoom⁴³⁶⁰ - DetectorSettings : Binning⁴³⁶¹ - DetectorSettings : Gain⁴³⁶² - DetectorSettings : ID⁴³⁶³ - Dichroic: ID⁴³⁶⁴ - Dichroic : LotNumber⁴³⁶⁵ - Dichroic : Manufacturer⁴³⁶⁶ - Dichroic: Model⁴³⁶⁷ - Dichroic : SerialNumber⁴³⁶⁸ - Ellipse : ID^{4369} - Ellipse : RadiusX⁴³⁷⁰ - Ellipse : RadiusY⁴³⁷¹ - Ellipse : Text⁴³⁷² - Ellipse : X⁴³⁷³ - Ellipse : Y⁴³⁷⁴ - Experimenter : Email⁴³⁷⁵ - Experimenter : FirstName⁴³⁷⁶ - Experimenter : ID⁴³⁷⁷ - Experimenter: Institution⁴³⁷⁸ - Experimenter : LastName⁴³⁷⁹ 4379 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_LastName $^{{}^{4354}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Manufacturer Spec_Lot Number Num$ 4355 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer 4356 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 4357 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Offset 4358 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber 4359 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type 4360 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Zoom 4361 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning 4362 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Gain $\frac{4363}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID}{\text{http://www.openmicroscopy.html}}{\text{http://www.openmicr$ 4364
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Dichroic ID 4365 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber 4366 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer 4367 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 4368 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber 4369 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ${}^{4370}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html\#Ellipse_RadiusX$ 4371 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Ellipse RadiusY 4372 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text 4373 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_X 4374 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_Y 4375 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_Email 4376 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_FirstName 4377 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID 4378 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_Institution - Experimenter : MiddleName⁴³⁸⁰ - Experimenter : UserName⁴³⁸¹ - Filament : LotNumber⁴³⁸² - Filament : Manufacturer⁴³⁸³ - Filament : Model⁴³⁸⁴ - Filament : Power⁴³⁸⁵ - Filament : SerialNumber⁴³⁸⁶ - Filter: FilterWheel⁴³⁸⁷ - Filter : ID⁴³⁸⁸ - Filter: LotNumber⁴³⁸⁹ - Filter: Manufacturer⁴³⁹⁰ - Filter: Model⁴³⁹¹ - Filter: SerialNumber⁴³⁹² - Filter: Type⁴³⁹³ - FilterSet : DichroicRef⁴³⁹⁴ - FilterSet : EmissionFilterRef⁴³⁹⁵ - FilterSet : ExcitationFilterRef⁴³⁹⁶ - FilterSet : ID⁴³⁹⁷ - FilterSet : LotNumber⁴³⁹⁸ - FilterSet : Manufacturer⁴³⁹⁹ - FilterSet : Model⁴⁴⁰⁰ - FilterSet : SerialNumber⁴⁴⁰¹ - Image : AcquisitionDate⁴⁴⁰² - Image: Description⁴⁴⁰³ - Image: ExperimenterRef⁴⁴⁰⁴ - Image : ID⁴⁴⁰⁵ ``` 4380 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_MiddleName 4381 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_UserName 4382 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber 4383 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer 4384 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 4385 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_Power 4386 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber 4387 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_FilterWheel 4388 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID \frac{4389}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html} \\ \text{ManufacturerSpec_LotNumber} 4390 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer 4391 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model \frac{4392}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html} \\ \text{ManufacturerSpec_SerialNumber of the properties t 4393 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_Type 4394 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DichroicRef_ID 4395 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID 4396 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID 4397 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#FilterSet ID \frac{4398}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html}\\ \text{#ManufacturerSpec_LotNumber} 4399 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer {}^{4400}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#ManufacturerSpec_Model 4401 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber 4402 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_AcquisitionDate {}^{4403}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_Description 4404 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ExperimenterRef_ID ``` 4405 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID ``` • Image : InstrumentRef⁴⁴⁰⁶ ``` • ImagingEnvironment : AirPressure⁴⁴⁰⁹ • ImagingEnvironment : CO2Percent⁴⁴¹⁰ • ImagingEnvironment : Humidity⁴⁴¹¹ • ImagingEnvironment : Temperature⁴⁴¹² • Instrument : ID⁴⁴¹³ • Laser : LotNumber⁴⁴¹⁴ • Laser : Manufacturer⁴⁴¹⁵ • Laser : Model⁴⁴¹⁶ • Laser: Power⁴⁴¹⁷ • Laser : SerialNumber⁴⁴¹⁸ • LightEmittingDiode : LotNumber⁴⁴¹⁹ • LightEmittingDiode : Manufacturer⁴⁴²⁰ • LightEmittingDiode : Model⁴⁴²¹ • LightEmittingDiode : Power⁴⁴²² • LightEmittingDiode : SerialNumber⁴⁴²³ • Line : ID⁴⁴²⁴ • Line: Text⁴⁴²⁵ • Line : X1⁴⁴²⁶ • Line : X2⁴⁴²⁷ • Line : $Y1^{4428}$ • Line : Y2⁴⁴²⁹ • Microscope : LotNumber⁴⁴³⁰ • Microscope : Manufacturer⁴⁴³¹ [•] Image: Name⁴⁴⁰⁷ [•] Image: ROIRef⁴⁴⁰⁸ ⁴⁴⁰⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 4407 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 4408 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID 4409 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_AirPressure 4410 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_CO2Percent ⁴⁴¹¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Humidity http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ImagingEnvironment_Temperature ⁴⁴¹³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ⁴⁴¹⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber ⁴⁴¹⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer ⁴⁴¹⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ⁴⁴¹⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_Power ⁴⁴¹⁸http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber ⁴⁴¹⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber ⁴⁴²⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer 4421 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model ⁴⁴²² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_Power ⁴⁴²³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#ManufacturerSpec SerialNumber ⁴⁴²⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID $^{{\}it 4425} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html \#Shape_Text. And the properties of p$ ⁴⁴²⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_X1 ⁴⁴²⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_X2 $[\]frac{4428}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html} \# Line_Y11428 + 2013-06/ROI_xsd.html$ ⁴⁴²⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_Y2 4430 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_bottvanioci • Microscope: Model⁴⁴³² • Microscope : SerialNumber⁴⁴³³ • Microscope : Type⁴⁴³⁴ • Objective : CalibratedMagnification 4435 • Objective : Correction⁴⁴³⁶ • Objective : ID⁴⁴³⁷ • Objective : Immersion⁴⁴³⁸ • Objective : Iris⁴⁴³⁹ • Objective : LensNA⁴⁴⁴⁰ • Objective : LotNumber⁴⁴⁴¹ • Objective : Manufacturer⁴⁴⁴² • Objective : Model⁴⁴⁴³ • Objective : NominalMagnification 4444 • Objective : SerialNumber⁴⁴⁴⁵ • Objective : WorkingDistance⁴⁴⁴⁶ • ObjectiveSettings : CorrectionCollar 4447 • ObjectiveSettings : ID⁴⁴⁴⁸ • ObjectiveSettings : Medium⁴⁴⁴⁹ • ObjectiveSettings : RefractiveIndex⁴⁴⁵⁰ • Pixels: BigEndian⁴⁴⁵¹ • Pixels : DimensionOrder⁴⁴⁵² • Pixels : ID⁴⁴⁵³ • Pixels: Interleaved⁴⁴⁵⁴ • Pixels : PhysicalSizeX⁴⁴⁵⁵ • Pixels : PhysicalSizeY⁴⁴⁵⁶ • Pixels : PhysicalSizeZ⁴⁴⁵⁷ ``` 4432
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 4433 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber 4434 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Microscope_Type 4435 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_CalibratedMagnification 4436 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction {}^{4437}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Objective_ID 4438 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion 4439 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Iris 4440 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA 4441 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_LotNumber 4442 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Manufacturer 4443 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model {\color{blue} {}^{4444}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html {\color{blue} \#Objective_Nominal Magnification} {\color{blue} {}^{4444}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html http://www.openmicroscopy.html {\color{blue} {}^{4444}} http://www.openmicroscopy.html {\color{blue} {}^{44 4445 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_SerialNumber 4446 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_WorkingDistance 4447 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_CorrectionCollar {\it 4448} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#ObjectiveSettings_ID 4449 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#ObjectiveSettings Medium \frac{4450}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html} \\ \text{\#ObjectiveSettings_RefractiveIndex} \text{\#ObjectiveSettings_Ref 4451 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian {}^{4452}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Pixels_DimensionOrder 4453 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID 4454 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved 4455 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX 4456 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY 4457 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ``` • Pixels : SignificantBits⁴⁴⁵⁸ • Pixels : SizeC⁴⁴⁵⁹ • Pixels : SizeT⁴⁴⁶⁰ • Pixels : SizeX⁴⁴⁶¹ • Pixels : SizeY⁴⁴⁶² • Pixels : SizeZ⁴⁴⁶³ • Pixels : Type⁴⁴⁶⁴ • Plane: DeltaT4465 • Plane : ExposureTime⁴⁴⁶⁶ • Plane : PositionX⁴⁴⁶⁷ • Plane : Position Y^{4468} • Plane : PositionZ⁴⁴⁶⁹ • Plane : TheC⁴⁴⁷⁰ • Plane : TheT⁴⁴⁷¹ • Plane: TheZ⁴⁴⁷² • Polygon: ID⁴⁴⁷³ • Polygon: Points⁴⁴⁷⁴ • Polygon: Text⁴⁴⁷⁵ • Polyline : ID⁴⁴⁷⁶ • Polyline : Points⁴⁴⁷⁷ • Polyline : Text⁴⁴⁷⁸ • ROI : Description⁴⁴⁷⁹ • ROI : ID⁴⁴⁸⁰ • ROI : Name⁴⁴⁸¹ • Rectangle : Height⁴⁴⁸² • Rectangle : ID⁴⁴⁸³ ``` 4458 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits 4459 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC 4460 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT 4461 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX 4462 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY 4463 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ 4464 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type 4465 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_DeltaT 4466 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Plane ExposureTime 4467 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX 4468 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY {}^{4469} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Plane_PositionZ 4470 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC 4471 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT 4472 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ 4473 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 4474 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_Points 4475 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text 4476 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 4477 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polyline_Points 4478 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text 4479 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROL xsd.html#ROL Description 4480 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID 4481 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_Name 4482 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Height 4483 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID ``` Rectangle: Text⁴⁴⁸⁴ Rectangle: Width⁴⁴⁸⁵ Rectangle: X⁴⁴⁸⁶ Rectangle: Y⁴⁴⁸⁷ • TransmittanceRange : CutIn⁴⁴⁸⁸ • TransmittanceRange : CutInTolerance⁴⁴⁸⁹ • TransmittanceRange : CutOut⁴⁴⁹⁰ TransmittanceRange : CutOutTolerance⁴⁴⁹¹ TransmittanceRange : Transmittance⁴⁴⁹² **Total supported: 157** Total unknown or missing: 318 # 19.2.133 ZeissLSMReader This page lists supported metadata fields for the Bio-Formats Zeiss Laser-Scanning Microscopy format reader. These fields are from the OME data model⁴⁴⁹³. Bio-Formats standardizes each format's original metadata to and from the OME data model so that you can work with a particular piece of metadata (e.g. physical width of the image in microns) in a format-independent way. #### Of the 475 fields documented in the metadata summary table: - The file format itself supports 101 of them (21%). - Of those, Bio-Formats fully or partially converts 101 (100%). ## Supported fields These fields are fully supported by the Bio-Formats Zeiss Laser-Scanning Microscopy format reader: Channel: Color⁴⁴⁹⁴ Channel: ID⁴⁴⁹⁵ Channel: Name⁴⁴⁹⁶ Channel: PinholeSize⁴⁴⁹⁷ Channel: SamplesPerPixel⁴⁴⁹⁸ • Detector : AmplificationGain⁴⁴⁹⁹ Detector : Gain⁴⁵⁰⁰ Detector : ID⁴⁵⁰¹ ${}^{4484} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html \#Shape_Text.$ 4485 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Width 4486 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_X 4487 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Rectangle Y 4488 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutIn 4489 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutInTolerance 4490 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutOut 4491 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutOutTolerance 4492 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_Transmittance 4493 http://www.openmicroscopy.org/site/support/ome-model/ 4494 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Color 4495 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_ID 4496 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_Name 4497 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Channel_PinholeSize 4498 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Channel SamplesPerPixel $\frac{4499}{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \# Detector_Amplification Gain}$ 4500 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Gain 4501 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_ID • Detector: Type⁴⁵⁰² • Detector: Zoom⁴⁵⁰³ • DetectorSettings : Binning⁴⁵⁰⁴ • DetectorSettings : ID⁴⁵⁰⁵ • Dichroic: ID⁴⁵⁰⁶ • Dichroic: Model⁴⁵⁰⁷ • Ellipse : FontSize⁴⁵⁰⁸ •
Ellipse : ID⁴⁵⁰⁹ • Ellipse : RadiusX⁴⁵¹⁰ • Ellipse : RadiusY⁴⁵¹¹ • Ellipse : StrokeWidth⁴⁵¹² • Ellipse : Transform⁴⁵¹³ • Ellipse : X⁴⁵¹⁴ • Ellipse : Y⁴⁵¹⁵ • Experimenter : ID⁴⁵¹⁶ • Experimenter : UserName⁴⁵¹⁷ • Filter : ID⁴⁵¹⁸ • Filter: Model⁴⁵¹⁹ • Filter: Type⁴⁵²⁰ • Image : AcquisitionDate⁴⁵²¹ • Image: Description⁴⁵²² • Image : ID⁴⁵²³ • Image : InstrumentRef⁴⁵²⁴ • Image: Name⁴⁵²⁵ • Image: ROIRef⁴⁵²⁶ • Instrument : ID^{4527} ``` 4502 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Type 4503 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Detector_Zoom 4504 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_Binning 4505 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DetectorSettings_ID 4506 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Dichroic_ID 4507 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 4508 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize 4509 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 4510 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_RadiusX 4511 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_RadiusY 4512 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth 4513 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Transform 4514 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_X 4515 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Ellipse_Y 4516 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_ID 4517 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Experimenter_UserName 4518 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_ID 4519 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 4520 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Filter_Type {}^{4521}http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#Image_AcquisitionDate} 4522 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Description 4523 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_ID 4524 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#InstrumentRef_ID 4525 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Image_Name 4526 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROIRef_ID 4527 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Instrument_ID ``` - Label : FontSize⁴⁵²⁸ - Label : ID⁴⁵²⁹ - Label : StrokeWidth⁴⁵³⁰ - Label: Text⁴⁵³¹ - Label : X⁴⁵³² - Label : Y⁴⁵³³ - Laser : ID⁴⁵³⁴ - Laser: LaserMedium⁴⁵³⁵ - Laser: Model⁴⁵³⁶ - Laser: Type⁴⁵³⁷ - Laser: Wavelength⁴⁵³⁸ - LightPath : DichroicRef⁴⁵³⁹ - LightPath : EmissionFilterRef⁴⁵⁴⁰ - Line : FontSize⁴⁵⁴¹ - Line: ID4542 - Line : StrokeWidth⁴⁵⁴³ - Line: X14544 - Line: X2⁴⁵⁴⁵ - Line: Y14546 - Line : Y2⁴⁵⁴⁷ - Objective : Correction⁴⁵⁴⁸ - Objective : ID⁴⁵⁴⁹ - Objective : Immersion⁴⁵⁵⁰ - Objective : Iris⁴⁵⁵¹ - Objective : LensNA⁴⁵⁵² ``` • Objective : NominalMagnification⁴⁵⁵³ 4528 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI xsd.html#Shape FontSize 4529 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 4530 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth 4531 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_Text 4532 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Label_X 4533 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Label_Y 4534 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#LightSource_ID 4535 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_LaserMedium 4536 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ManufacturerSpec_Model 4537 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Laser_Type 4538 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome xsd.html#Laser Wavelength 4539 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#DichroicRef_ID 4540 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#FilterRef_ID 4541 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize 4542 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 4543 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth 4544http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_X1 4545 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_X2 4546 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_Y1 4547 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Line_Y2 4548 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Correction 4549 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_ID 4550 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Immersion 4551 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_Iris 4552 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_LensNA ``` 4553 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Objective_NominalMagnification - ObjectiveSettings : ID⁴⁵⁵⁴ - Pixels: BigEndian⁴⁵⁵⁵ - Pixels : DimensionOrder⁴⁵⁵⁶ - Pixels : ID⁴⁵⁵⁷ - Pixels: Interleaved⁴⁵⁵⁸ - Pixels : PhysicalSizeX⁴⁵⁵⁹ - Pixels : PhysicalSizeY⁴⁵⁶⁰ - Pixels : PhysicalSizeZ⁴⁵⁶¹ - Pixels : SignificantBits⁴⁵⁶² - Pixels : SizeC⁴⁵⁶³ - Pixels : SizeT⁴⁵⁶⁴ - Pixels : SizeX⁴⁵⁶⁵ - Pixels : SizeY⁴⁵⁶⁶ - Pixels : SizeZ⁴⁵⁶⁷ - Pixels : TimeIncrement⁴⁵⁶⁸ - Pixels : Type⁴⁵⁶⁹ - Plane : DeltaT⁴⁵⁷⁰ - Plane : PositionX⁴⁵⁷¹ - Plane : PositionY⁴⁵⁷² - Plane : PositionZ⁴⁵⁷³ - Plane: TheC4574 - Plane : TheT⁴⁵⁷⁵ - Plane : TheZ⁴⁵⁷⁶ - Polygon : FontSize⁴⁵⁷⁷ - Polygon: ID⁴⁵⁷⁸ - Polygon: Points⁴⁵⁷⁹ $[\]frac{4554}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html\#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#ObjectiveSettings_ID}{\text{http://www.openmicroscopy.org/Schema$ ⁴⁵⁵⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_BigEndian 4556 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_DimensionOrder http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_ID=4558 http://www.openmicroscopy.org/schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Interleaved ⁴⁵⁵⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeX ⁴⁵⁶⁰
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeY ⁴⁵⁶¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_PhysicalSizeZ ⁴⁵⁶² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SignificantBits ⁴⁵⁶³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeC ⁴⁵⁶⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeT ⁴⁵⁶⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeX ⁴⁵⁶⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeY ⁴⁵⁶⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_SizeZ ⁴⁵⁶⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_TimeIncrement ⁴⁵⁶⁹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Pixels_Type $^{^{4570}} http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html \#Plane_DeltaTation/Generated/OME-2013-06/ome_xsd.html \#Plane_DeltaTation/Generated/Generated/Generated/Generated/Generated/Generated/Generated/Generated/Generated/Generated/Generated/Generated/Generated/Generated/Generate$ ⁴⁵⁷¹ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionX ⁴⁵⁷² http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionY ⁴⁵⁷³ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_PositionZ ⁴⁵⁷⁴ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheC ⁴⁵⁷⁵ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheT ⁴⁵⁷⁶ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#Plane_TheZ ⁴⁵⁷⁷ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize ⁴⁵⁷⁸ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 4579 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polygon_Points • Polygon : StrokeWidth⁴⁵⁸⁰ • Polyline : FontSize⁴⁵⁸¹ • Polyline : ID⁴⁵⁸² • Polyline : Points⁴⁵⁸³ • Polyline : StrokeWidth⁴⁵⁸⁴ • ROI : ID⁴⁵⁸⁵ • Rectangle : FontSize⁴⁵⁸⁶ • Rectangle : Height⁴⁵⁸⁷ • Rectangle : ID⁴⁵⁸⁸ • Rectangle : StrokeWidth⁴⁵⁸⁹ • Rectangle : Width⁴⁵⁹⁰ • Rectangle : X⁴⁵⁹¹ • Rectangle : Y⁴⁵⁹² • TransmittanceRange : CutIn⁴⁵⁹³ • TransmittanceRange : CutOut⁴⁵⁹⁴ ## Total supported: 101 # Total unknown or missing: 374 The version 5 releases use the *June 2013* release of the OME-Model⁴⁵⁹⁵. ⁴⁵⁸⁰ http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth 4581 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize 4582 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 4583 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Polyline_Points 4584 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_StrokeWidth 4585 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#ROI_ID 4586 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_FontSize 4587 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Height 4588 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Shape_ID 4589 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Width 4591 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_X 4592 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_X 4593 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Y 4593 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Y 4594 http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ROI_xsd.html#Rectangle_Y ⁴⁵⁹⁴http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2013-06/ome_xsd.html#TransmittanceRange_CutOut ⁴⁵⁹⁵ http://www.openmicroscopy.org/site/support/ome-model/ | Symbols .hx, 106 | | |------------------------------------|-------------------------| | | | | .1sc, 113 .ics, 132 | | | .2, 174 .ids, 132 | | | .2fl, 188 .img, 107, 1 | 117, 125, 135, 144, 162 | | .3, 174 .ims, 116 | | | .4, 174 .inr, 141 | | | .acff, 193 .ipl, 142 | | | .afi, 108 .ipm, 143 | | | .afm, 179 .ipw, 134 | | | .aim, 104 .jp2, 145 | | | .al3d, 105 .jpg, 132, 1 | 45, 189 | | .am, 106 .jpk, 146 | | | .amiramesh, 106 .jpx, 147 | | | .apl, 165 | | | .arf, 111 .labels, 106 | | | .avi, 110 | | | .bip, 148 | | | .bmp, 132, 195 | | | .c01, 119 .lim, 154 | | | .cfg, 178 .lsm, 199 | | | .cr2, 118 .mdb, 199 | | | .crw, 118 .mea, 124 | | | .cxd, 183 .mnc, 157 | | | .czi, 198 .mng, 159 | | | .dat, 144, 168, 190 .mod, 136 | | | .dcm, 121 .mov, 179 | | | .dicom, 121 .mrc, 160 | | | .dm2, 127 .mrw, 158 | | | .dm3, 126 .msr, 139, 1 | 49 | | .dti, 191 .mtb, 165 | | | .dv, 120 .mvd2, 193 | | | eps, 123 .naf, 129 | | | .epsi, 123 .nd, 155 | | | .exp, 112 .nd2, 164 | | | .fdf, 191 .ndpi, 130 | | | .fff, 133 | | | .ffr, 188 .nhdr, 164 | | | .fits, 126 .nrrd, 164 | | | .flex, 124 .obf, 139 | | | .fli, 149 | | | .frm, 140 .oib, 166 | | | .gel, 106 .oif, 166 | | | .gif, 128 .ome, 170 | 60 | | .grey, 106 .ome.tiff, 16 | 39 | | .hdr, 107, 142, 162, 190 .par, 144 | 14 | | .hed, 135 .pcoraw, 17 | 1 | | .his, 129 .pcx, 172 | | | .htd, 110 .pds, 173 | | | .html, 192 .pgm, 175 | | | .pic, 114 | В | |---|---| | .pict, 177 | BD Pathway, 112 | | .png, 108, 177 | Becker & Hickl SPCImage, 113 | | .pnl, 110 | bfconvert, 42 | | .pr3, 189 | Bio-Rad Gel, 113 | | .ps, 123 | Bio-Rad PIC, 114 | | .psd, 175 | Bio-Rad SCN, 115 | | .r3d, 120 | Bitplane Imaris, 116 | | .raw, 114, 138, 164 | Bruker MRI, 117 | | .rec, 171 | BSD, 103 | | .res, 124 | Burleigh, 117 | | .scn, 115, 152, 153 | C | | .sdt, 113
.seq, 134 | C | | .sld, 103, 189 | Canon DNG, 118 | | .sm2, 181 | Cellomics, 119 | | .sm3, 181 | cellSens VSI, 119 | | .spi, 185 | CellVoyager, 120 | | .stk, 155, 185 | CLASSPATH, 60 | | .stp, 159 | D | | .svs, 108, 109 | _ | | .sxm, 153 | DeltaVision, 120 | | .tfr, 188 | DICOM, 121 | | .tga, 185 | E | | .tif, 104, 112, 120, 132, 138, 140, 150, 153, 156, 157, 161, 165, | | | 167, 168, 174, 176, 178, 187, 189 | ECAT7, 122 | | .tiff, 125, 155, 162, 163, 168, 173, 176, 184, 196 | environment variable
CLASSPATH, 60 | | .tnb, 165 | EPS (Encapsulated PostScript), 123 | | .top, 171 | Evotec/PerkinElmer Opera Flex, 124 | | .txt, 132, 157, 164, 186 | Export, 103 | | .v, 122 | r, | | .vms, 131 | F | | .vsi, 119 | FEI, 125 | | .vws, 188
.wat, 194 | FEI TIFF, 125 | | .wat, 194 | FITS (Flexible Image Transport System), 126 | | .xdce, 140 | formatlist, 42 | | .xml, 114, 120, 157, 168, 173, 178, 196 | 0 | | .xqd, 182 | G | | .xqf, 182 | Gatan Digital Micrograph, 126 | | .xv, 147 | Gatan Digital Micrograph 2, 127 | | .xys, 192 | GIF (Graphics Interchange Format), 128 | | .zfp, 188 | 1.1 | | .zfr, 188 | Н | | .zvi, 197 | Hamamatsu Aquacosmos NAF, 129 | | 3i SlideBook, 103 | Hamamatsu HIS, 129 | | Λ | Hamamatsu ndpi, 130 | | A | Hamamatsu VMS, 131 | | Adobe Photoshop PSD, 175 | Hitachi S-4800, 132 | | AIM, 104 | 1 | | Alicona 3D, 105 | | | Amersham Biosciences Gel, 106 | ICS (Image Cytometry Standard), 132 | | Amira Mesh, 106 | ijview, 42 | | Analyze 7.5, 107 | Imacon, 133 | | Andor Bio-Imaging Division (ABD) TIFF, 104 | ImagePro Sequence, 134 | | Animated PNG, 108 | ImagePro Workspace, 134 | | Aperio AFI, 108
Aperio SVS TIFF, 109 | IMAGIC, 135
IMOD, 136 | | Applied Precision CellWorX, 110 | Improvision Openlab LIFF, 137 | | AVI (Audio Video Interleave), 110 | Improvision Openlab Raw, 138 | | Avon Raw Format 111 | Improvision TIFF 138 | Index 426 | Imspector OBF, 139 | OME-XML, 170 | |--|---| | InCell 1000, 140 | Openness, 103 | | InCell 3000, 140 | Oxford Instruments, 171 | | INR, 141 | _ | | Inveon, 142 | P | | IPLab, 142 | PCORAW, 171 | | IPLab-Mac, 143 | PCX (PC Paintbrush), 172 | | itkRGBSCIFIOImageTest, 48 | Perkin Elmer Densitometer, 173 | | itkSCIFIOImageInfoTest, 48 | PerkinElmer Operetta, 173 | | itkSCIFIOImageIOTest, 48 | <u> -</u> | | itkVectorImageSCIFIOImageIOTest, 48 | PerkinElmer UltraView, 174 | | it vector images cur to image to test, 46 | PGM (Portable Gray Map), 175 | | J | Photoshop TIFF, 176 | | | PICT (Macintosh Picture), 177 | | JEOL, 144 | Pixels, 102 | | JPEG, 145 | PNG (Portable Network Graphics), 177 | | JPEG 2000, 145 | Prairie Technologies TIFF, 178 | | JPK, 146 | Presence, 103 | | JPX, 147 |
\circ | | 1/ | Q | | K | Quesant, 179 | | Khoros VIFF (Visualization Image File Format) Bitmap, 147 | QuickTime Movie, 179 | | Kodak BIP, 148 | _ | | | R | | L | Ratings legend and definitions, 102 | | Lambert Instruments FLIM, 149 | RHK, 181 | | LaVision Imspector, 149 | Kiik, 101 | | Leica LAS AF LIF (Leica Image File Format), 151 | S | | Leica LCS LEI, 150 | | | Leica SCN, 152 | SBIG, 182 | | | Seiko, 182 | | LEO, 153 | showinf, 42 | | Li-Cor L2D, 153
LIM (Laboratory Imaging/Nikon), 154 | SimplePCI & HCImage, 183 | | | SimplePCI & HCImage TIFF, 184 | | Envi (Euboratory imaging/ivikon), 134 | · • | | | SM Camera, 184 | | M | · • | | | SM Camera, 184
SPIDER, 185 | | M | SM Camera, 184 | | Metadata, 103
MetaMorph 7.5 TIFF, 155
MetaMorph Stack (STK), 155 | SM Camera, 184
SPIDER, 185 | | M Metadata, 103 MetaMorph 7.5 TIFF, 155 | SM Camera, 184
SPIDER, 185 | | Metadata, 103
MetaMorph 7.5 TIFF, 155
MetaMorph Stack (STK), 155 | SM Camera, 184
SPIDER, 185
T
Targa, 185 | | Metadata, 103
MetaMorph 7.5 TIFF, 155
MetaMorph Stack (STK), 155
MIAS (Maia Scientific), 156 | SM Camera, 184
SPIDER, 185
T
Targa, 185
Text, 186 | | M Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 | | M Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 | | M Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 | | M Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 | | M Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 | | M Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U | | M Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 | | M Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N NEF (Nikon Electronic Format), 161 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 Unisoku, 190 | | M Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N NEF (Nikon Electronic Format), 161 NIfTI, 162 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 | | Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N NEF (Nikon Electronic Format), 161 NIfTI, 162 Nikon Elements TIFF, 162 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 Unisoku, 190 Utility, 103 | | Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N NEF (Nikon Electronic Format), 161 NIfTI, 162 Nikon Elements TIFF, 162 Nikon EZ-C1 TIFF, 163 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 Unisoku, 190 Utility, 103 V | | Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N NEF (Nikon Electronic Format), 161 NIfTI, 162 Nikon Elements TIFF, 162 Nikon EZ-C1 TIFF, 163 Nikon NIS-Elements ND2, 164 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 Unisoku, 190 Utility, 103 V Varian FDF, 191 | | Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N NEF (Nikon Electronic Format), 161 NIfTI, 162 Nikon Elements TIFF, 162 Nikon EZ-C1 TIFF, 163 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 Unisoku, 190 Utility, 103 V Varian FDF, 191 VG SAM, 191 | | Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N NEF (Nikon Electronic Format), 161 NIfTI, 162 Nikon Elements TIFF, 162 Nikon EZ-C1 TIFF, 163 Nikon NIS-Elements ND2, 164 NRRD (Nearly Raw Raster Data), 164 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 Unisoku, 190 Utility, 103 V Varian FDF, 191 VG SAM, 191 VisiTech XYS, 192 | | Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N NEF (Nikon Electronic Format), 161 NIfTI, 162 Nikon Elements TIFF, 162 Nikon EZ-C1 TIFF, 163 Nikon NIS-Elements ND2, 164 NRRD (Nearly Raw Raster Data), 164 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 Unisoku, 190 Utility, 103 V Varian FDF, 191 VG SAM, 191 VisiTech XYS, 192 Volocity, 193 | | Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N NEF (Nikon Electronic Format), 161 NIfTI, 162 Nikon Elements TIFF, 162 Nikon Elements TIFF, 163 Nikon NIS-Elements ND2, 164 NRRD (Nearly Raw Raster Data), 164 O Olympus CellR/APL, 165 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 Unisoku, 190 Utility, 103 V Varian FDF, 191 VG SAM, 191 VisiTech XYS, 192 | | Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N NEF (Nikon Electronic Format), 161 NIfTI, 162 Nikon Elements TIFF, 162 Nikon EZ-C1 TIFF, 163 Nikon NIS-Elements ND2, 164 NRRD (Nearly Raw Raster Data), 164 O Olympus CellR/APL, 165 Olympus FluoView FV1000, 166 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 Unisoku, 190 Utility, 103 V Varian FDF, 191 VG SAM, 191 VisiTech XYS, 192 Volocity, 193 Volocity Library Clipping, 193 | | Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N NEF (Nikon Electronic Format), 161 NIfTI, 162 Nikon Elements TIFF, 162 Nikon Elements TIFF, 163 Nikon NIS-Elements ND2, 164 NRRD (Nearly Raw Raster Data), 164 O Olympus CellR/APL, 165 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text,
186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 Unisoku, 190 Utility, 103 V Varian FDF, 191 VG SAM, 191 VisiTech XYS, 192 Volocity, 193 | | Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N NEF (Nikon Electronic Format), 161 NIfTI, 162 Nikon Elements TIFF, 162 Nikon EZ-C1 TIFF, 163 Nikon NIS-Elements ND2, 164 NRRD (Nearly Raw Raster Data), 164 O Olympus CellR/APL, 165 Olympus FluoView FV1000, 166 Olympus FluoView TIFF, 167 Olympus ScanR, 168 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 Unisoku, 190 Utility, 103 V Varian FDF, 191 VG SAM, 191 VisiTech XYS, 192 Volocity, 193 Volocity Library Clipping, 193 | | Metadata, 103 MetaMorph 7.5 TIFF, 155 MetaMorph Stack (STK), 155 MIAS (Maia Scientific), 156 Micro-Manager, 157 MINC MRI, 157 Minolta MRW, 158 MNG (Multiple-image Network Graphics), 159 Molecular Imaging, 159 MRC (Medical Research Council), 160 N NEF (Nikon Electronic Format), 161 NIfTI, 162 Nikon Elements TIFF, 162 Nikon EZ-C1 TIFF, 163 Nikon NIS-Elements ND2, 164 NRRD (Nearly Raw Raster Data), 164 O Olympus CellR/APL, 165 Olympus FluoView FV1000, 166 Olympus FluoView TIFF, 167 | SM Camera, 184 SPIDER, 185 T Targa, 185 Text, 186 TIFF (Tagged Image File Format), 187 tiffcomment, 42 TillPhotonics TillVision, 188 Topometrix, 188 Trestle, 189 U UBM, 189 Unisoku, 190 Utility, 103 V Varian FDF, 191 VG SAM, 191 VisiTech XYS, 192 Volocity, 193 Volocity Library Clipping, 193 W | Index 427 # Χ xmlindent, **42** xmlvalid, **42** # Z Zeiss AxioVision TIFF, 196 Zeiss AxioVision ZVI (Zeiss Vision Image), 197 Zeiss CZI, 198 Zeiss LSM (Laser Scanning Microscope) 510/710, 199 Index 428